1
|
Bhattacharya J, Nitnavare RB, Bhatnagar-Mathur P, Reddy PS. Cytoplasmic male sterility-based hybrids: mechanistic insights. PLANTA 2024; 260:100. [PMID: 39302508 DOI: 10.1007/s00425-024-04532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop. The development of hybrids for achieving heterosis has been well-studied and proven to be robust and efficient. Cytoplasmic male sterility (CMS) has been explored extensively in the production of hybrids. The underlying mechanisms of CMS include the role of cytotoxic proteins, PCD of tapetal cells, and improper RNA editing of restoration factors. On the other hand, the restoration of fertility is caused by the presence of restorer-of-fertility (Rf) genes or restorer genes, which inhibit the effects of sterility-causing genes. The interaction between mitochondria and the nuclear genome is crucial for several regulatory pathways, as observed in the CMS-Rf system and occurs at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These CMS-Rf mechanisms have been validated in several crop systems. This review aims to summarize the nucleo-mitochondrial interaction mechanism of the CMS-Rf system. It also sheds light on biotechnological interventions, such as genetic engineering and genome editing, to achieve CMS-based hybrids.
Collapse
Affiliation(s)
- Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Rahul B Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, LE12 5RD, UK
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory of United Nation, International Atomic Energy Agency, 1400, Vienna, Austria.
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
2
|
Chang Y, Liu B, Jiang Y, Cao D, Liu Y, Li Y. Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco. Funct Integr Genomics 2023; 23:205. [PMID: 37335501 DOI: 10.1007/s10142-023-01136-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Genome editing has become more and more popular in animal and plant systems following the emergence of CRISPR/Cas9 technology. However, target sequence modification by CRISPR/Cas9 has not been reported in the plant mitochondrial genome, mtDNA. In plants, a type of male sterility known as cytoplasmic male sterility (CMS) has been associated with certain mitochondrial genes, but few genes have been confirmed by direct mitochondrial gene-targeted modifications. Here, the CMS-associated gene (mtatp9) in tobacco was cleaved using mitoCRISPR/Cas9 with a mitochondrial localization signal. The male-sterile mutant, with aborted stamens, exhibited only 70% of the mtDNA copy number of the wild type and exhibited an altered percentage of heteroplasmic mtatp9 alleles; otherwise, the seed setting rate of the mutant flowers was zero. Transcriptomic analyses showed that glycolysis, tricarboxylic acid cycle metabolism and the oxidative phosphorylation pathway, which are all related to aerobic respiration, were inhibited in stamens of the male-sterile gene-edited mutant. In addition, overexpression of the synonymous mutations dsmtatp9 could restore fertility to the male-sterile mutant. Our results strongly suggest that mutation of mtatp9 causes CMS and that mitoCRISPR/Cas9 can be used to modify the mitochondrial genome of plants.
Collapse
Affiliation(s)
- Yanzi Chang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Jiang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Academy of Agriculture and Forestry Science, Qinghai University, Xining, 810008, Qinghai, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongju Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
4
|
Han Y, Gao Y, Zhou H, Zhai X, Ding Q, Ma L. Mitochondrial genes are involved in the fertility transformation of the thermosensitive male-sterile line YS3038 in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:61. [PMID: 37309316 PMCID: PMC10236089 DOI: 10.1007/s11032-021-01252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 09/05/2021] [Indexed: 06/14/2023]
Abstract
Heterosis can improve the stress resistance, quality, and yield of crops, and the male sterility of wheat can be utilized to accelerate the breeding process of hybrid. To determine whether mitochondrial genes are involved in the fertility of K-type cytoplasmic male-sterile (CMS) line and the YS-type thermosensitive male-sterile (TMS) line in wheat, we sequenced and assembled the mitochondrial genomes of K519A, 519B, and YS3038 by next-generation sequencing (NGS). The non-synonymous mutations were analyzed, and the first-generation sequencing was conducted to verify the non-synonymous mutation sites. Furthermore, the expression patterns of genes with non-synonymous mutations were analyzed. Finally, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to test the functions of the candidate genes. The results revealed that the mitochondrial genomes of K519A, 519B, and YS3038 were 420,543, 433,560, and 452,567 bp in length, respectively. Besides, 33, 31, and 37 protein-coding genes were identified in K519A, 519B, and YS3038, respectively. There were 14 protein-coding genes and 83 open reading frame (ORF) sequences that differed between K519A and 519B and 10 protein-coding genes and 122 ORF sequences that differed between K519A and YS3038. At the binucleate stage, seven genes (nad6, ORF256, ORF216, ORF138, atp6, nad3, and cox1) were downregulated in K519A compared with 519B, and 10 genes (nad6, atp6, cox3, atp8, nad3, cox1, rps3, ORF216, ORF138, and ORF224) were downregulated in YS3038 compared with K519A. Besides, six genes (nad6, ORF138, cox3, cox1, rps3, and ORF224) were downregulated under fertile conditions relative to sterile conditions in YS3038. Gene silencing analysis showed that the silencing of cox1 significantly reduced the seed setting rate of YS3038, indicating that the cox1 gene may be involved in the fertility transformation of YS3038. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01252-x.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 Hebei China
| | - Yujie Gao
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Xiaoguang Zhai
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| |
Collapse
|
5
|
Deslous P, Bournonville C, Decros G, Okabe Y, Mauxion JP, Jorly J, Gadin S, Brès C, Mori K, Ferrand C, Prigent S, Ariizumi T, Ezura H, Hernould M, Rothan C, Pétriacq P, Gibon Y, Baldet P. Overproduction of ascorbic acid impairs pollen fertility in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3091-3107. [PMID: 33530105 DOI: 10.1093/jxb/erab040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Ascorbate is a major antioxidant buffer in plants. Several approaches have been used to increase the ascorbate content of fruits and vegetables. Here, we combined forward genetics with mapping-by-sequencing approaches using an ethyl methanesulfonate (EMS)-mutagenized Micro-Tom population to identify putative regulators underlying a high-ascorbate phenotype in tomato fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5, up to 5-fold wild-type level) had strongly impaired flower development and produced seedless fruit. Genetic characterization was performed by outcrossing P17C5 with cv. M82. We identified the mutation responsible for the ascorbate-enriched trait in a cis-acting upstream open reading frame (uORF) involved in the downstream regulation of GDP-l-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enriched trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5 × M82 plants, and the CRISPR-mutated line. These studies revealed that high ascorbate content is linked to impaired floral organ architecture, particularly anther and pollen development, leading to male sterility. RNA-seq analysis suggested that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.
Collapse
Affiliation(s)
- Paul Deslous
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Céline Bournonville
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Guillaume Decros
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Yoshihiro Okabe
- Gene Research Centre, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 205-8572, Japan
| | | | - Joana Jorly
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Stéphanie Gadin
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Cécile Brès
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Kentaro Mori
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Carine Ferrand
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Sylvain Prigent
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Tohru Ariizumi
- Gene Research Centre, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 205-8572, Japan
| | - Hiroshi Ezura
- Gene Research Centre, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 205-8572, Japan
| | - Michel Hernould
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Christophe Rothan
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| | - Pierre Baldet
- Université de Bordeaux, INRAE, UMR 1332 BFP, 33882 Villenave d'Ornon, France
| |
Collapse
|
6
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
7
|
Wu Z, Hu K, Yan M, Song L, Wen J, Ma C, Shen J, Fu T, Yi B, Tu J. Mitochondrial genome and transcriptome analysis of five alloplasmic male-sterile lines in Brassica juncea. BMC Genomics 2019; 20:348. [PMID: 31068124 PMCID: PMC6507029 DOI: 10.1186/s12864-019-5721-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/22/2019] [Indexed: 01/15/2023] Open
Abstract
Background Alloplasmic lines, in which the nuclear genome is combined with wild cytoplasm, are often characterized by cytoplasmic male sterility (CMS), regardless of whether it was derived from sexual or somatic hybridization with wild relatives. In this study, we sequenced and analyzed the mitochondrial genomes of five such alloplasmic lines in Brassica juncea. Results The assembled and annotated mitochondrial genomes of the five alloplasmic lines were found to have virtually identical gene contents. They preserved most of the ancestral mitochondrial segments, and the same candidate male sterility gene (orf108) was found harbored in mitotype-specific sequences. We also detected promiscuous sequences of chloroplast origin that were conserved among plants of the Brassicaceae, and found the RNA editing profiles to vary across the five mitochondrial genomes. Conclusions On the basis of our characterization of the genetic nature of five alloplasmic mitochondrial genomes, we speculated that the putative candidate male sterility gene orf108 may not be responsible for the CMS observed in Brassica oxyrrhina and Diplotaxis catholica. Furthermore, we propose the potential coincidence of CMS in alloplasmic lines. Our findings lay the foundation for further elucidation of male sterility gene. Electronic supplementary material The online version of this article (10.1186/s12864-019-5721-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zengxiang Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjiao Yan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liping Song
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
C�rdoba JP, Fassolari M, Marchetti F, Soto D, Pagnussat GC, Zabaleta E. Different Types Domains are Present in Complex I from Immature Seeds and of CA Adult Plants in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:986-998. [PMID: 30668784 PMCID: PMC6498749 DOI: 10.1093/pcp/pcz011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.
Collapse
Affiliation(s)
- Juan Pablo C�rdoba
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - D�bora Soto
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
- Corresponding author: E-mail, ; Fax, +54 223 475 30 30
| |
Collapse
|
9
|
Reddemann A, Horn R. Recombination Events Involving the atp9 Gene Are Associated with Male Sterility of CMS PET2 in Sunflower. Int J Mol Sci 2018; 19:E806. [PMID: 29534485 PMCID: PMC5877667 DOI: 10.3390/ijms19030806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic male sterility (CMS) systems represent ideal mutants to study the role of mitochondria in pollen development. In sunflower, CMS PET2 also has the potential to become an alternative CMS source for commercial sunflower hybrid breeding. CMS PET2 originates from an interspecific cross of H. petiolaris and H. annuus as CMS PET1, but results in a different CMS mechanism. Southern analyses revealed differences for atp6, atp9 and cob between CMS PET2, CMS PET1 and the male-fertile line HA89. A second identical copy of atp6 was present on an additional CMS PET2-specific fragment. In addition, the atp9 gene was duplicated. However, this duplication was followed by an insertion of 271 bp of unknown origin in the 5' coding region of the atp9 gene in CMS PET2, which led to the creation of two unique open reading frames orf288 and orf231. The first 53 bp of orf288 are identical to the 5' end of atp9. Orf231 consists apart from the first 3 bp, being part of the 271-bp-insertion, of the last 228 bp of atp9. These CMS PET2-specific orfs are co-transcribed. All 11 editing sites of the atp9 gene present in orf231 are fully edited. The anther-specific reduction of the co-transcript in fertility-restored hybrids supports the involvement in male-sterility based on CMS PET2.
Collapse
Affiliation(s)
- Antje Reddemann
- Institut für Biowissenschaften, Abt. Pflanzengenetik, Universität Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Renate Horn
- Institut für Biowissenschaften, Abt. Pflanzengenetik, Universität Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.
| |
Collapse
|
10
|
Shukla P, Singh NK, Gautam R, Ahmed I, Yadav D, Sharma A, Kirti PB. Molecular Approaches for Manipulating Male Sterility and Strategies for Fertility Restoration in Plants. Mol Biotechnol 2017; 59:445-457. [PMID: 28791615 DOI: 10.1007/s12033-017-0027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system. In this review article, we outline the approaches used for generating male sterile plants using an effective pollination control system to highlight the recent progress that occurred in this area. Furthermore, we propose possible future directions for biotechnological improvements that will allow the farmers to buy hybrid seed once for many generations in a cost-effective manner.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, J & K, 192 121, India.
| | - Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, 7505101, Rishon LeZion, Israel
| | - Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Israr Ahmed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanker Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Akanksha Sharma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
11
|
Guo J, Wang P, Cheng Q, Sun L, Wang H, Wang Y, Kao L, Li Y, Qiu T, Yang W, Shen H. Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.). J Proteomics 2017; 168:15-27. [PMID: 28847649 DOI: 10.1016/j.jprot.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/12/2017] [Accepted: 08/18/2017] [Indexed: 01/05/2023]
Abstract
Although cytoplasmic male sterility (CMS) is widely used for developing pepper hybrids, its molecular mechanism remains unclear. In this study, we used a high-throughput proteomics method called label-free to compare protein abundance across a pepper CMS line (A-line) and its isogenic maintainer line (B-line). Data are available via ProteomeXchange with identifier PXD006104. Approximately 324 differentially abundant protein species were identified and quantified; among which, 47 were up-accumulated and 140 were down-accumulated in the A-line; additionally, 75 and 62 protein species were specifically accumulated in the A-line and B-line, respectively. Protein species involved in pollen exine formation, pyruvate metabolic processes, the tricarboxylic acid cycle, the mitochondrial electron transport chain, and oxidative stress response were observed to be differentially accumulated between A-line and B-line, suggesting their potential roles in the regulation of pepper pollen abortion. Based on our data, we proposed a potential regulatory network for pepper CMS that unifies these processes. BIOLOGICAL SIGNIFICANCE Artificial emasculation is a major obstacle in pepper hybrid breeding for its high labor cost and poor seed purity. While the use of cytoplasmic male sterility (CMS) in hybrid system is seriously frustrated because a long time is needed to cultivate male sterility line and its isogenic restore line. Transgenic technology is an effective and rapid method to obtain male sterility lines and its widely application has very important significance in speeding up breeding process in pepper. Although numerous studies have been conducted to select the genes related to male sterility, the molecular mechanism of cytoplasmic male sterility in pepper remains unknown. In this study, we used the high-throughput proteomic method called "label-free", coupled with liquid chromatography-quadrupole mass spectrometry (LC-MS/MS), to perform a novel comparison of expression profiles in a CMS pepper line and its maintainer line. Based on our results, we proposed a potential regulated protein network involved in pollen development as a novel mechanism of pepper CMS.
Collapse
Affiliation(s)
- Jinju Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Peng Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Limin Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Hongyu Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yutong Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Lina Kao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yanan Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Tuoyu Qiu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Sun Y, Law YS, Cheng S, Lim BL. RNA editing of cytochrome c maturation transcripts is responsive to the energy status of leaf cells in Arabidopsis thaliana. Mitochondrion 2017; 35:23-34. [PMID: 28478183 DOI: 10.1016/j.mito.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Overexpression of AtPAP2, a phosphatase located on the outer membranes of chloroplasts and mitochondria, leads to higher energy outputs from these organelles. AtPAP2 interacts with seven MORF proteins of the editosome complex. RNA-sequencing analysis showed that the editing degrees of most sites did not differ significantly between OE and WT, except some sites on the transcripts of several cytochrome c maturation (Ccm) genes. Western blotting of 2D BN-PAGE showed that the patterns of CcmFN1 polypeptides were different between the lines. We proposed that AtPAP2 may influence cytochrome c biogenesis by modulating RNA editing through its interaction with MORF proteins.
Collapse
Affiliation(s)
- Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
13
|
|
14
|
Zhao Y, Liao X, Huang Z, Chen P, Zhou B, Liu D, Kong X, Zhou R. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants. MITOCHONDRIAL DNA 2015; 26:495-500. [PMID: 24617462 DOI: 10.3109/19401736.2013.878904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In summary, the two manual chimeric genes might be related to male sterility in kenaf.
Collapse
Affiliation(s)
- Yanhong Zhao
- College of Agriculture, Guangxi University , Nanning , China and
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chakraborty A, Mitra J, Bhattacharyya J, Pradhan S, Sikdar N, Das S, Chakraborty S, Kumar S, Lakhanpaul S, Sen SK. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. PLANTA 2015; 241:1463-1479. [PMID: 25754232 DOI: 10.1007/s00425-015-2269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ji JJ, Huang W, Li Z, Chai WG, Yin YX, Li DW, Gong ZH. Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers. FRONTIERS IN PLANT SCIENCE 2015; 6:272. [PMID: 25954296 PMCID: PMC4406146 DOI: 10.3389/fpls.2015.00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
Though cytoplasmic male sterility (CMS) in peppers is associated with the orf507 gene, definitive and direct evidence that it directly causes male sterility is still lacking. In this study, differences in histochemical localization of anther cytochrome c oxidase between the pepper CMS line and maintainer line were observed mainly in the tapetal cells and tapetal membrane. Inducible and specific expression of the orf507 gene in the pepper maintainer line found that transformants were morphologically similar to untransformed and transformed control plants, but had shrunken anthers that showed little dehiscence and fewer pollen grains with lower germination rate and higher naturally damaged rate. These characters were different from those of CMS line which does not produce any pollen grains. Meanwhile a pollination test using transformants as the male parent set few fruit and there were few seeds in the limited number of fruits. At the tetrad stage, ablation of the tapetal cell induced by premature programmed cell death (PCD) occurred in the transformants and the microspores were distorted and degraded at the mononuclear stage. Stable transmission of induced semi-male sterility was confirmed by a test cross. In addition, expression of orf507 in the maintainer lines seemed to inhibit expression of atp6-2 to a certain extent, and lead to the increase of the activity of cytochrome c oxidase and the ATP hydrolysis of the mitochondrial F1Fo-ATP synthase. These results introduce the premature PCD caused by orf507 gene in tapetal cells and semi-male sterility, but not complete male sterility.
Collapse
Affiliation(s)
- Jiao-Jiao Ji
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Wei Huang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Zheng Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Wei-Guo Chai
- Institute of Vegetables, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Yan-Xu Yin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Da-Wei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
17
|
Wesołowski W, Szklarczyk M, Szalonek M, Słowińska J. Analysis of the mitochondrial proteome in cytoplasmic male-sterile and male-fertile beets. J Proteomics 2015; 119:61-74. [DOI: 10.1016/j.jprot.2014.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/10/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
|
18
|
Singh SP, Srivastava R, Kumar J. Male sterility systems in wheat and opportunities for hybrid wheat development. ACTA PHYSIOLOGIAE PLANTARUM 2015; 37:1713. [PMID: 0 DOI: 10.1007/s11738-014-1713-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
19
|
Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW. Temporal and spatial control of gene expression in horticultural crops. HORTICULTURE RESEARCH 2014; 1:14047. [PMID: 26504550 PMCID: PMC4596326 DOI: 10.1038/hortres.2014.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 05/05/2023]
Abstract
Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Leonardo Soriano
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba, Brazil
| | - Raju Kandel
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
20
|
Hammani K, Giegé P. RNA metabolism in plant mitochondria. TRENDS IN PLANT SCIENCE 2014; 19:380-9. [PMID: 24462302 DOI: 10.1016/j.tplants.2013.12.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/02/2023]
Abstract
Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Philippe Giegé
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
21
|
Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 2014; 19 Pt B:198-205. [PMID: 24732436 DOI: 10.1016/j.mito.2014.04.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility and its fertility restoration via nuclear genes offer the possibility to understand the role of mitochondria during microsporogenesis. In most cases rearrangements in the mitochondrial DNA involving known mitochondrial genes as well as unknown sequences result in the creation of new chimeric open reading frames, which encode proteins containing transmembrane domains. So far, most of the CMS systems have been characterized via restriction fragment polymorphisms followed by transcript analysis. However, whole mitochondrial genome sequence analyses comparing male sterile and fertile cytoplasm open options for deeper insights into mitochondrial genome rearrangements. We more and more start to unravel how mitochondria are involved in triggering death of the male reproductive organs. Reduced levels of ATP accompanied by increased concentrations of reactive oxygen species, which are produced more under conditions of mitochondrial dysfunction, seem to play a major role in the fate of pollen production. Nuclear genes, so called restorer-of-fertility are able to restore the male fertility. Fertility restoration can occur via pentatricopeptide repeat (PPR) proteins or via different mechanisms involving non-PPR proteins.
Collapse
|
22
|
Transgenic plants: performance, release and containment. World J Microbiol Biotechnol 2014; 10:139-44. [PMID: 24420934 DOI: 10.1007/bf00360874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1993] [Accepted: 08/29/1993] [Indexed: 10/26/2022]
Abstract
This review focuses on transgenic plants, from the initial stages of the genetic modification process in the laboratory to their release stage in the field and indicates possible areas of concern and strategies for dealing with them. The classes of marker genes and issues about their safety, the gene flow and strategies that are used to isolate transgenic plants genetically are specifically examined. In addition, an assessment is provided of the phenomena which affect the performance of transgenic plants, such as gene disruption, the pleiotropic effect on plant phenotype and genetic variation. Finally, strategies are suggested for preventing unexpected consequences of transgenic plant production.
Collapse
|
23
|
Matsunaga M, Takahashi Y, Yui-Kurino R, Mikami T, Kubo T. Evolutionary aspects of a unique internal mitochondrial targeting signal in nuclear-migrated rps19 of sugar beet (Beta vulgaris L.). Gene 2013; 517:19-26. [PMID: 23305819 DOI: 10.1016/j.gene.2012.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
The endosymbiotic theory postulates that many genes migrated from endosymbionts to the nuclear genomes of their hosts. Some migrated genes lack presequences directing proteins to mitochondria, and their mitochondrial targeting signals appear to be inscribed in the core coding regions as internal targeting signals (ITSs). ITSs may have evolved after sequence transfer to nuclei or ITSs may have pre-existed before sequence transfer. Here, we report the molecular cloning of a sugar beet gene for ribosomal protein S19 (Rps19; the first letter is capitalized when the gene is a nuclear gene). We show that sugar beet Rps19 (BvRps19) is an ITS-type gene. Based on amino-acid sequence comparison, dicotyledonous rps19s (the first letter is lower-cased when the gene is a mitochondrial gene), such as tobacco rps19 (Ntrps19), resemble an ancestral form of BvRps19. We investigated whether differences in amino-acid sequences between BvRps19 and Ntrps19 were involved in ITS evolution. Analyses of the intracellular localization of chimaeric GFP-fusion proteins that were transiently expressed in Welsh onion cells showed that Ntrps19-gfp was not localized in mitochondria. When several BvRps19-type amino acid substitutions, none of which was seen in any other angiosperm rps19, were introduced into Ntrps19-gfp, the modified Ntrps19-gfp became localized in mitochondria, supporting the notion that an ITS in BvRps19 evolved following sequence transfer to nuclei. Not all of these substitutions were seen in other ITS-type Rps19s, suggesting that the ITSs of Rps19 are diverse.
Collapse
Affiliation(s)
- Muneyuki Matsunaga
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
24
|
Hu J, Yi R, Zhang H, Ding Y. Nucleo-cytoplasmic interactions affect RNA editing of cox2, atp6 and atp9 in alloplasmic male-sterile rice (Oryza sativa L.) lines. Mitochondrion 2013; 13:87-95. [PMID: 23395688 DOI: 10.1016/j.mito.2013.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 11/24/2022]
Abstract
RNA editing plays an important role in the regulation of mitochondrial gene expression in flowering plants. In this study, we examined RNA editing of the mitochondrial genes cox2, atp6 and atp9 in five isonuclear alloplasmic male-sterile lines (IAMSLs) of rice to investigate whether different cytoplasmic types affect RNA editing. Although many editing sites were conserved among the three genes, we found that the editing efficiency of certain sites was significantly different between different IAMSLs or between IAMSLs and their corresponding cytoplasmic donor CMS lines. Furthermore, several editing sites were found to be either present or absent in certain IAMSLs and their corresponding CMS lines. These results indicate that nuclear loci, as well as unknown editing factors within the mitochondria of different cytoplasmic types, may be involved in RNA editing, and they suggest that RNA editing in plant mitochondria is affected by nucleo-cytoplasmic interactions.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Ji J, Huang W, Yin C, Gong Z. Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6-2 genes. Int J Mol Sci 2013; 14:1050-68. [PMID: 23296278 PMCID: PMC3565306 DOI: 10.3390/ijms14011050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
Cytoplasmic male sterility (CMS) in pepper (Capsicum annuum L.) has been associated with novel genes in the mitochondria, such as orf507 and Ψatp6-2. Plant sterility has been proved to result from the rearrangement of the mitochondrial genome. Previous studies have demonstrated that orf507 is co-transcribed with the cox II gene, and Ψatp6-2 is truncated at the 3' region of the atp6-2 that is found in the maintainer line. Until this time, little has been known about the relationship between the novel gene and the function of its corresponding enzyme in mitochondria from the CMS pepper line. Moreover, the aberrant function of the mitochondrial enzymes is seldom reported in pepper. In this study, we observed that anther abortion occurred after the tetrad stage in the CMS line (HW203A), which was accompanied by premature programmed cell death (PCD) in the tapetum. The spatiotemporal expression patterns of orf507 and Ψatp6-2 were analyzed together with the corresponding enzyme activities to investigate the interactions of the genes and mitochondrial enzymes. The two genes were both highly expressed in the anther. The orf507 was down-regulated in HW203A (CMS line), with nearly no expression in HW203B (the maintainer line). In contrast, the cytochrome c oxidase activity in HW203A showed the opposite trend, reaching its highest peak at the tetrad stage when compared with HW203B at the same stage. The Ψatp6-2 in the CMS line was also down-regulated, but it was up-regulated in the maintainer line. The corresponding F(1)F(o)-ATPase activity in the CMS line was gradually decreased along with the development of the anther, which showed the same trend for Ψatp6-2 gene expression. On the contrary, with up-regulated gene expression of atp6-2 in the maintainer line, the F(1)F(o)-ATPase activity sharply decreased after the initial development stage, but gradually increased following the tetrad stage, which was contrary to what happened in the CMS line. Taken together, all these results may provide evidence for the involvement of aberrant mitochondrial cytochrome c oxidase and F(1)F(o)-ATPase in CMS pepper anther abortion. Moreover, the novel orf507 and Ψatp6-2 genes in the mitochondria may be involved in the dysfunction of the cytochrome c oxidase and F(1)F(o)-ATPase, respectively, which are responsible for the abortion of anthers in the CMS line.
Collapse
Affiliation(s)
- Jiaojiao Ji
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Wei Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuanchuan Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Zhenhui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-029-8708-2102; Fax: +86-029-8708-2613
| |
Collapse
|
26
|
Farré JC, Aknin C, Araya A, Castandet B. RNA editing in mitochondrial trans-introns is required for splicing. PLoS One 2012; 7:e52644. [PMID: 23285127 PMCID: PMC3527595 DOI: 10.1371/journal.pone.0052644] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/19/2012] [Indexed: 11/29/2022] Open
Abstract
In plant mitochondria, gene expression of translatable mRNAs is a complex process with two critical steps, RNA editing and splicing. We studied the role of RNA editing on non-coding regions of the mat-r-nad1e-nad5c transcript from wheat mitochondria. This RNA contains two trans-introns, 3'-nad1-I4 and 3'-nad5-I2, involved in different trans-splicing events, ensuring the association of nad1d-nad1e and nad5b-nad5c exons from nad1 and nad5 mRNAs respectively. The C-to-U editing changes studied here affect homologous positions on 3'-nad1-I4 and 3'-nad5-I2. It is proposed that these base changes are necessary to place an Adenosine residue in a bulging conformation characteristic of domain VI (D6) from group II introns. In this work, we investigated the role of RNA editing events on 3'-nad1-I4 and 3'-nad5-I2 in the trans-splicing process using in vivo and in organello approaches. When the branched intermediates formed during the splicing process were analyzed, the C residues from D6 intron domains from 3'-nad1-I4 and 3'-nad5-I2 were found changed to U, suggesting that RNA editing of these residues could be mandatory for splicing. This assumption was tested by expressing recombinant mat-r-nad1e transgenes introduced into mitochondria by electroporation. Mutation of the editing target residue dramatically affected trans-splicing. Interestingly, the exon joining efficiency was not recovered by compensatory mutations, suggesting that the role of RNA editing is not confined to the restoration of the secondary structure of domain D6 of the intron. Our results strongly support the hypothesis that RNA editing in trans-introns precedes maturation, and is required for the splicing reaction. In addition, this is the first report using an in organello approach to study the trans-splicing process, opening the way to future studies of this peculiar mechanism.
Collapse
Affiliation(s)
- Jean-Claude Farré
- UMR5234 Microbiologie Fondamentale et Pathologie, Centre National de la Recherche Scientifique and Université Bordeaux-Segalen, Bordeaux, France
| | - Cindy Aknin
- UMR5234 Microbiologie Fondamentale et Pathologie, Centre National de la Recherche Scientifique and Université Bordeaux-Segalen, Bordeaux, France
| | - Alejandro Araya
- UMR5234 Microbiologie Fondamentale et Pathologie, Centre National de la Recherche Scientifique and Université Bordeaux-Segalen, Bordeaux, France
- Institut de Biologie Végétale Moléculaire, UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, Vilenave d'Ornon, France
- * E-mail:
| | - Benoît Castandet
- UMR5234 Microbiologie Fondamentale et Pathologie, Centre National de la Recherche Scientifique and Université Bordeaux-Segalen, Bordeaux, France
| |
Collapse
|
27
|
|
28
|
Castandet B, Araya A. The nucleocytoplasmic conflict, a driving force for the emergence of plant organellar RNA editing. IUBMB Life 2011; 64:120-5. [PMID: 22162179 DOI: 10.1002/iub.581] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/01/2011] [Indexed: 11/11/2022]
Abstract
RNA editing challenges the central dogma of molecular biology by changing the genetic information at the transcript level. In plant organelles, RNAs are modified by deamination of some specific cytosine residues, but the origin of this process remains puzzling. Different from the generally accepted neutral model to explain the emergence of RNA editing in plant organelles, we propose a new hypothesis based on the nucleocytoplasmic conflict theory. We assume that mutations in organellar genomes arose first and spread into the population provided they increased the transmission of their own maternally inherited genome. RNA editing appeared subsequently as a nuclear-encoded correction mechanism to restore the transmission of the nuclear genome. In plants, a well-known consequence of the nucleocytoplasmic conflict is cytoplasmic male sterility (CMS) which is counteracted by the emergence of fertility restorer genes (Rf) belonging to the pentatricopeptide repeat (PPR) protein family. Interestingly, RNA-editing deficiency can lead to CMS, and it now clearly appears that PPR proteins are major players in RNA editing. This striking similarity between the mechanisms of fertility restoration and RNA editing can be explained if both reactions are the consequence of the same driving force, the nucleocytoplasmic conflict. Similarly, the prevalence of RNA editing in eukaryotic organellar genomes could also be a consequence of the genetic antagonism between organellar and nuclear genomes.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853, USA.
| | | |
Collapse
|
29
|
Castandet B, Araya A. RNA editing in plant organelles. Why make it easy? BIOCHEMISTRY (MOSCOW) 2011; 76:924-31. [DOI: 10.1134/s0006297911080086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Nizampatnam NR, Dinesh Kumar V. Intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restores male fertility in transgenic male sterile tobacco plants expressing orfH522. PLANT MOLECULAR BIOLOGY 2011; 76:557-73. [PMID: 21584859 DOI: 10.1007/s11103-011-9789-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/07/2011] [Indexed: 05/27/2023]
Abstract
The present work was aimed at developing vector construct(s) suitable for restoring fertility in transgenic male sterile tobacco plants expressing male-sterility-inducing ORFH522 in tapetal cell layer (Nizampatnam et al. Planta 229:987-1001, 2009). PTGS vectors that could produce either intron spliced hairpin RNA against the orfH522 or induce silencing of orfH522 by heterologous 3'UTR region were developed using the selected 316 bp (orf316) fragment of orfH522. The constructs were independently mobilized into Agrobacterium and used for transforming tobacco. The T(1) generation plants carrying the restorer gene cassettes in homozygous condition were identified and crossed with the male sterile transgenic tobacco plants to obtain the hybrid seeds. PCR analysis of hybrid plants indicated segregation for the sterility inducing cassette while all the plants carried the restorer cassette. Hybrid plants produced fertile pollen grains and formed normal capsules upon selfing. Further molecular analyses of these hybrid plants with RT-PCR, Northern blotting and siRNA detection, revealed that intron interrupted hairpin RNA (ihp-RNA) mediated gene silencing was more effective compared to silencing by heterologous 3'UTR (SHUTR) as indicated by the complete degradation of orfH522 transcripts and formation of higher levels of orf316 specific siRNA molecules in plants carrying ihp-RNA restorer construct. Segregation analyses of F(2) (selfed hybrid) plants confirmed the co-segregation of gene cassettes and the traits in Mendelian di-hybrid ratio (9:3:3:1). Taken together, the results established that intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restored fertility in transgenic male sterile tobacco plants expressing orfH522 and ihp-RNA was more efficient in silencing orfH522 transcripts.
Collapse
|
31
|
Castandet B, Araya A. The RNA editing pattern of cox2 mRNA is affected by point mutations in plant mitochondria. PLoS One 2011; 6:e20867. [PMID: 21695137 PMCID: PMC3113845 DOI: 10.1371/journal.pone.0020867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/11/2011] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial transcriptome from land plants undergoes hundreds of specific C-to-U changes by RNA editing. These events are important since most of them occur in the coding region of mRNAs. One challenging question is to understand the mechanism of recognition of a selected C residue (editing sites) on the transcript. It has been reported that a short region surrounding the target C forms the cis-recognition elements, but individual residues on it do not play similar roles for the different editing sites. Here, we studied the role of the −1 and +1 nucleotide in wheat cox2 editing site recognition using an in organello approach. We found that four different recognition patterns can be distinguished: (a) +1 dependency, (b) −1 dependency, (c) +1/−1 dependency, and (d) no dependency on nearest neighbor residues. A striking observation was that whereas a 23 nt cis region is necessary for editing, some mutants affect the editing efficiency of unmodified distant sites. As a rule, mutations or pre-edited variants of the transcript have an impact on the complete set of editing targets. When some Cs were changed into Us, the remaining editing sites presented a higher efficiency of C-to-U conversion than in wild type mRNA. Our data suggest that the complex response observed for cox2 mRNA may be a consequence of the fate of the transcript during mitochondrial gene expression.
Collapse
Affiliation(s)
- Benoît Castandet
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, MCMP- UMR5234, Centre National de la Recherche Scientifique and Université Bordeaux Segalen. Bordeaux, France
| | | |
Collapse
|
32
|
Hammani K, des Francs-Small CC, Takenaka M, Tanz SK, Okuda K, Shikanai T, Brennicke A, Small I. The pentatricopeptide repeat protein OTP87 is essential for RNA editing of nad7 and atp1 transcripts in Arabidopsis mitochondria. J Biol Chem 2011; 286:21361-71. [PMID: 21504904 DOI: 10.1074/jbc.m111.230516] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant organelles, RNA editing is a post-transcriptional mechanism that converts specific cytidines to uridines in RNA of both mitochondria and plastids, altering the information encoded by the gene. The cytidine to be edited is determined by a cis-element surrounding the editing site that is specifically recognized and bound by a trans-acting factor. All the trans-acting editing factors identified so far in plant organelles are members of a large protein family, the pentatricopeptide repeat (PPR) proteins. We have identified the Organelle Transcript Processing 87 (OTP87) gene, which is required for RNA editing of the nad7-C24 and atp1-C1178 sites in Arabidopsis mitochondria. OTP87 encodes an E-subclass PPR protein with an unusually short E-domain. The recombinant protein expressed in Escherichia coli specifically binds to RNAs comprising 30 nucleotides upstream and 10 nucleotides downstream of the nad7-C24 and atp1-C1178 editing sites. The loss-of-function of OTP87 results in small plants with growth and developmental delays. In the otp87 mutant, the amount of assembled respiratory complex V (ATP synthase) is highly reduced compared with the wild type suggesting that the amino acid alteration in ATP1 caused by loss of editing at the atp1-C1178 site affects complex V assembly in mitochondria.
Collapse
Affiliation(s)
- Kamel Hammani
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2011; 68:567-86. [PMID: 20938709 PMCID: PMC11114842 DOI: 10.1007/s00018-010-0538-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.
Collapse
Affiliation(s)
- Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Bonn, Germany.
| |
Collapse
|
34
|
Busi MV, Gomez-Lobato ME, Rius SP, Turowski VR, Casati P, Zabaleta EJ, Gomez-Casati DF, Araya A. Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana. MOLECULAR PLANT 2011; 4:127-43. [PMID: 20978083 DOI: 10.1093/mp/ssq065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We characterized the transcriptomic response of transgenic plants carrying a mitochondrial dysfunction induced by the expression of the unedited form of the ATP synthase subunit 9. The u-ATP9 transgene driven by A9 and APETALA3 promoters induce mitochondrial dysfunction revealed by a decrease in both oxygen uptake and adenine nucleotides (ATP, ADP) levels without changes in the ATP/ADP ratio. Furthermore, we measured an increase in ROS accumulation and a decrease in glutathione and ascorbate levels with a concomitant oxidative stress response. The transcriptome analysis of young Arabidopsis flowers, validated by qRT-PCR and enzymatic or functional tests, showed dramatic changes in u-ATP9 plants. Both lines display a modification in the expression of various genes involved in carbon, lipid, and cell wall metabolism, suggesting that an important metabolic readjustment occurs in plants with a mitochondrial dysfunction. Interestingly, transcript levels involved in mitochondrial respiration, protein synthesis, and degradation are affected. Moreover, the levels of several mRNAs encoding for transcription factors and DNA binding proteins were also changed. Some of them are involved in stress and hormone responses, suggesting that several signaling pathways overlap. Indeed, the transcriptome data revealed that the mitochondrial dysfunction dramatically alters the expression of genes involved in signaling pathways, including those related to ethylene, absicic acid, and auxin signal transduction. Our data suggest that the mitochondrial dysfunction model used in this report may be useful to uncover the retrograde signaling mechanism between the nucleus and mitochondria in plant cells.
Collapse
Affiliation(s)
- Maria V Busi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM, Chascomús, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bentolila S, Knight W, Hanson M. Natural variation in Arabidopsis leads to the identification of REME1, a pentatricopeptide repeat-DYW protein controlling the editing of mitochondrial transcripts. PLANT PHYSIOLOGY 2010; 154:1966-82. [PMID: 20974892 PMCID: PMC2996027 DOI: 10.1104/pp.110.165969] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vascular plants, organelle RNAs are edited by C-to-U base modification. Hundreds of mitochondrial C residues are targeted for editing in flowering plants. In this study, we exploited naturally occurring variation in editing extent to identify Required for Efficiency of Mitochondrial Editing1 (REME1), an Arabidopsis (Arabidopsis thaliana) pentatricopeptide repeat protein-encoding gene belonging to the DYW subclass that promotes editing of at least two C residues on different mitochondrial transcripts. Positional cloning identified REME1 unambiguously as the gene controlling editing of nad2-558. Virus-induced gene silencing of REME1 confirmed its role in editing of nad2-558 and allowed us to identify orfX-552 as a second C whose editing is positively controlled by REME1. An unexpected outcome of REME1 silencing was the finding of a number of mitochondrial C targets whose editing extent exhibits a significant and reproducible increase in silenced tissues. That increase was shown to be partly due to the virus inoculation and partly to REME1-specific silencing. Analysis of an insertional T-DNA mutant within the REME1 coding sequence confirmed the findings of the virus-induced gene silencing experiments: decrease in editing extent of nad2-558 and orfX-552 and increase in editing extent of two sites, matR-1771 and rpl5-92. Transgenic complementation of the low-edited accession (Landsberg erecta) restored the editing of nad2-558 and orfX-552 to high-edited accession (Columbia)-type levels or to even higher levels than Columbia. There was no effect of the transgene on editing extent of matR-1771 and rpl5-92. The strategy and tools used in this report can be applied to identify additional genes that affect editing extent in plant mitochondria.
Collapse
|
36
|
Castandet B, Choury D, Bégu D, Jordana X, Araya A. Intron RNA editing is essential for splicing in plant mitochondria. Nucleic Acids Res 2010; 38:7112-21. [PMID: 20615898 PMCID: PMC2978366 DOI: 10.1093/nar/gkq591] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most plant mitochondria messenger RNAs (mRNAs) undergo editing through C-to-U conversions located mainly in exon sequences. However, some RNA editing events are found in non-coding regions at critical positions in the predicted secondary and tertiary structures of introns, suggesting that RNA editing could be important for splicing. Here, we studied the relationships between editing and splicing of the mRNA encoding the ribosomal protein S10 (rps10), which has a group II intron and five editing sites. Two of them, C2 and C3, predicted to stabilize the folded structure of the intron necessary for splicing, were studied by using rps10 mutants introduced into isolated potato mitochondria by electroporation. While mutations of C2 involved in EBS2/IBS2 interactions did not affect splicing, probably by the presence of an alternative EBS2′ region in domain I of the intron, the edition of site C3 turned out to be critical for rps10 mRNA splicing; only the edited (U) form of the transcript was processed. Interestingly, RNA editing was strongly reduced in transcripts from two different intronless genes, rps10 from potato and cox2 from wheat, suggesting that efficient RNA processing may require a close interaction of factors engaged in different maturation processes. This is the first report linking editing and splicing in conditions close to the in vivo situation.
Collapse
Affiliation(s)
- Benoît Castandet
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité (MCMP), UMR5234 CNRS- Université Victor Segalen Bordeaux2. 146 rue Léo Saignat 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
37
|
Wang J, Cao MJ, Pan GT, Lu YL, Rong TZ. RNA editing of mitochondrial functional genes atp6 and cox2 in maize (Zea mays L.). Mitochondrion 2009; 9:364-9. [PMID: 19666144 DOI: 10.1016/j.mito.2009.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/13/2009] [Accepted: 07/31/2009] [Indexed: 11/18/2022]
Abstract
RNA editing of two mitochondrial or organs genes, atp6 and cox2, in different tissues were analyzed using homonucleic but alloplasmic, and homoplasmic but heteronucleic maize (zea mays L.) as experimental materials. A total of 18 and 26 editing sites for atp6 conservative region transcript were identified by direct and clone sequencing, respectively. By direct sequencing 23 and 22 editing sites for cox2 transcript were identified in 48-2 and Huangzaosi nuclear backgrounds, respectively. From the direct sequencing results, the occurrence rates of different transcripts generally increase in sterile lines. It is concluded that RNA editing of atp6 and cox2 might have a certain relationship with maize CMS.
Collapse
Affiliation(s)
- Jing Wang
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education, Ya'an 625014, Sichuan, China
| | | | | | | | | |
Collapse
|
38
|
Duroc Y, Hiard S, Vrielynck N, Ragu S, Budar F. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. PLANT MOLECULAR BIOLOGY 2009; 70:123-37. [PMID: 19199092 DOI: 10.1007/s11103-009-9461-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 01/19/2009] [Indexed: 05/08/2023]
Abstract
The Ogura cytoplasmic male sterility causing protein, ORF138, was found to be part of a complex with an apparent size of over 750 kDa in the inner membrane of mitochondria of sterile plants. ORF138 did not colocalize with any of the oxidative phosphorylation complexes, nor did its presence modify their apparent size or amount, compared to samples from fertile isogenic plants. We attempted to detect potential proteins or nucleic acids that could be involved in the large ORF138 complex by 2D PAGE, immunoprecipitation and nuclease treatments of native extracts. All our results suggest that the ORF138 protein is the main, if not only, component of this large complex. The capacities of complexes I, II, IV, and ATP synthase were identical in samples from sterile and fertile plants. Isolated mitochondria from sterile plants showed a higher oxygen consumption than those from fertile plants. In vivo respiration measurements suggest that the difference in O(2) consumption measured at the organelle level is compensated at the cell/tissue level, completely in leaves, but only partially in male reproductive organs.
Collapse
Affiliation(s)
- Yann Duroc
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA UR254, Route de Saint-Cyr, 78026, Versailles cedex, France
| | | | | | | | | |
Collapse
|
39
|
Nizampatnam NR, Doodhi H, Kalinati Narasimhan Y, Mulpuri S, Viswanathaswamy DK. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. PLANTA 2009; 229:987-1001. [PMID: 19151958 DOI: 10.1007/s00425-009-0888-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/03/2009] [Indexed: 05/22/2023]
Abstract
Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.
Collapse
|
40
|
Takenaka M, van der Merwe JA, Verbitskiy D, Neuwirt J, Zehrmann A, Brennicke A. RNA Editing in Plant Mitochondria. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
41
|
Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A. The process of RNA editing in plant mitochondria. Mitochondrion 2008; 8:35-46. [PMID: 18326075 DOI: 10.1016/j.mito.2007.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RNA editing changes more than 400 cytidines to uridines in the mRNAs of mitochondria in flowering plants. In other plants such as ferns and mosses, RNA editing reactions changing C to U and U to C are observed at almost equal frequencies. Development of transfection systems with isolated mitochondria and of in vitro systems with extracts from mitochondria has considerably improved our understanding of the recognition of specific editing sites in the last few years. These assays have also yielded information about the biochemical parameters, but the enzymes involved have not yet been identified. Here we summarize our present understanding of the process of RNA editing in flowering plant mitochondria.
Collapse
|
42
|
Busi MV, Gómez-Casati DF, Perales M, Araya A, Zabaleta E. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:1-6. [PMID: 16531059 DOI: 10.1016/j.plaphy.2006.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Indexed: 05/07/2023]
Abstract
Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.
Collapse
Affiliation(s)
- María V Busi
- IIB-INTECH, UNSAM-CONICET, Camino Circunvalación Km6, 7130 Chascomus, Argentina
| | | | | | | | | |
Collapse
|
43
|
Choury D, Farré JC, Jordana X, Araya A. Gene expression studies in isolated mitochondria: Solanum tuberosum rps10 is recognized by cognate potato but not by the transcription, splicing and editing machinery of wheat mitochondria. Nucleic Acids Res 2005; 33:7058-65. [PMID: 16352866 PMCID: PMC1312363 DOI: 10.1093/nar/gki1017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The complex gene expression mechanisms that occur in plant mitochondria, such as RNA editing and splicing, are not yet well understood. RNA editing in higher plant mitochondria is a highly specific process which modifies mRNA sequences by C-to-U conversions. It has been suggested that in some cases this process is required for splicing. Here, we use an experimental model based on the introduction of DNA into isolated mitochondria by electroporation to study organellar gene expression events. Our aim was to compare processing and editing of potato small ribosomal protein 10 gene (rps10) transcripts in heterologous (wheat mitochondria) and homologous (potato mitochondria) contexts. rps10 is a suitable model because it contains a group II intron, is absent in wheat mitochondria but is actively expressed in potato mitochondria, where transcripts are spliced and undergo five C-to-U editing events. For this purpose, conditions for electroporating isolated potato mitochondria were established. rps10 was placed under the control of either potato or wheat cox2 promoters. We found that rps10 was only transcribed under the control of a cognate promoter. In wheat mitochondria, rps10 transcripts were neither spliced nor edited while they are correctly processed in potato mitochondria. Interestingly, a wheat editing site grafted into rps10 was not recognized by wheat mitochondria but was correctly edited in potato mitochondria. Taken together, these results suggest that editing might occur only when the transcripts are engaged in processing and that they would not be available to editing factors outside of a putative RNA maturation machinery complex.
Collapse
Affiliation(s)
| | | | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileCasilla 114-D, Santiago, Chile
| | - Alejandro Araya
- To whom correspondence should be addressed. Tel: +33 5 57 57 17 46; Fax: +33 5 57 57 17 66;
| |
Collapse
|
44
|
Kim DH, Kim BD. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr Genet 2005; 49:59-67. [PMID: 16328502 DOI: 10.1007/s00294-005-0032-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/09/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
The mitochondrial atp6 gene in male fertile (N) and CMS (S) pepper has previously been compared and was found to be present in two copies (Kim et al. in J Kor Soc Hort Sci 42:121-127 2001). In the current study, these atp6 copies were amplified by an inverse PCR technique, and the coding region as well as the 5' and 3' flanking regions were sequenced. The atp6 copies in CMS pepper were detected as one intact gene and one pseudogene, truncated at the 3' coding region. When the atp6 genes in pepper were compared to other plant species, pepper, potato, and petunia all possessed a sequence of 12 identical amino acids at the 3' extended region, which was considered a hallmark of the Solanaceae family. Northern blot analysis showed differences in mRNA band patterns between CMS and restorer lines, indicating that atp6 gene is one of the candidates for CMS in pepper.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Plant Science, College of Agriculture and Life Sciences, and Center for Plant Molecular Genetics & Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | |
Collapse
|
45
|
Linke B, Börner T. Mitochondrial effects on flower and pollen development. Mitochondrion 2005; 5:389-402. [PMID: 16275170 DOI: 10.1016/j.mito.2005.10.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/17/2022]
Affiliation(s)
- Bettina Linke
- Department of Biology, Humboldt University Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | |
Collapse
|
46
|
Neuwirt J, Takenaka M, van der Merwe JA, Brennicke A. An in vitro RNA editing system from cauliflower mitochondria: editing site recognition parameters can vary in different plant species. RNA (NEW YORK, N.Y.) 2005; 11:1563-70. [PMID: 16131591 PMCID: PMC1370840 DOI: 10.1261/rna.2740905] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 07/01/2005] [Indexed: 05/04/2023]
Abstract
Most of the 400 RNA editing sites in flowering plant mitochondria are found in mRNAs. Consequently, the sequence vicinities of homologous sites are highly conserved between different species and are presumably recognized by likewise conserved trans-factors. To investigate the evolutionary adaptation to sequence variation, we have now analyzed the recognition elements of an editing site with divergent upstream sequences in the two species pea and cauliflower. This variation is tolerated at the site selected, because the upstream cis-elements reach into the 5'-UTR of the mRNA. To compare cis-recognition features in pea and cauliflower mitochondria, we developed a new in vitro RNA editing system for cauliflower. In vitro editing assays with deleted and mutated template RNAs show that the major recognition elements for both species are located within the conserved sequence. In cauliflower, however, the essential upstream nucleotides extend further upstream than they do in pea. In-depth analysis of single-nucleotide mutations reveals critical spacing of the editing site and the specific recognition elements, and shows that the +1 nucleotide identity is important in cauliflower, but not in pea.
Collapse
Affiliation(s)
- Julia Neuwirt
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | | |
Collapse
|
47
|
Ruiz ON, Daniell H. Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. PLANT PHYSIOLOGY 2005; 138:1232-46. [PMID: 16009998 PMCID: PMC1176397 DOI: 10.1104/pp.104.057729] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/21/2005] [Accepted: 03/14/2005] [Indexed: 05/03/2023]
Abstract
While investigating expression of the polydroxybutyrate pathway in transgenic chloroplasts, we addressed the specific role of beta-ketothiolase. Therefore, we expressed the phaA gene via the chloroplast genome. Prior attempts to express the phaA gene in transgenic plants were unsuccessful. We studied the effect of light regulation of the phaA gene using the psbA promoter and 5' untranslated region, and evaluated expression under different photoperiods. Stable transgene integration into the chloroplast genome and homoplasmy were confirmed by Southern analysis. The phaA gene was efficiently transcribed in all tissue types examined, including leaves, flowers, and anthers. Coomassie-stained gel and western blots confirmed hyperexpression of beta-ketothiolase in leaves and anthers, with proportionately high levels of enzyme activity. The transgenic lines were normal except for the male-sterile phenotype, lacking pollen. Scanning electron microscopy revealed a collapsed morphology of the pollen grains. Floral developmental studies revealed that transgenic lines showed an accelerated pattern of anther development, affecting their maturation, and resulted in aberrant tissue patterns. Abnormal thickening of the outer wall, enlarged endothecium, and vacuolation affected pollen grains and resulted in the irregular shape or collapsed phenotype. Reversibility of the male-sterile phenotype was observed under continuous illumination, resulting in viable pollen and copious amount of seeds. This study results in the first engineered cytoplasmic male-sterility system in plants, offers a new tool for transgene containment for both nuclear and organelle genomes, and provides an expedient mechanism for F(1) hybrid seed production.
Collapse
Affiliation(s)
- Oscar N Ruiz
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32816-2364. USA
| | | |
Collapse
|
48
|
Pei Y, Chen Z, Cao J, Chen X, Liu X. Cytoplasmic male sterility of tuber mustard is associated with the alternative spliced mitochondrial T gene transcripts. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03183718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Engelke T, Tatlioglu T. The fertility restorer genes X and T alter the transcripts of a novel mitochondrial gene implicated in CMS1 in chives (Allium schoenoprasum L.). Mol Genet Genomics 2004; 271:150-60. [PMID: 14727184 DOI: 10.1007/s00438-003-0966-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 11/28/2003] [Indexed: 10/26/2022]
Abstract
A chimeric mitochondrial gene configuration, mainly derived from sequences associated with the essential genes atp9 and atp6, was isolated from the sterility-inducing cytoplasm of the CMS1 system in chives (Allium schoenoprasum L.). This sequence is not found in four other cytoplasm types from chives; however, two copies are present in the mitochondrial DNA of CMS1-inducing cytoplasm, whose 5'-sequences are homologous to those of the atp9 gene. We provide evidence to show that one of the two CMS1-specific copies is actively transcribed, and two transcripts which terminate at the same position but differ in their 5'initiation sites were localized using the RACE technique. These transcripts of 942 and 961 nt, respectively, were confirmed to be the major products of this gene in CMS1 plants by Northern hybridization. However, smaller transcripts were found to accumulate in plants in which fertility had been restored. Restoration of fertility was induced either by the gene X, or the gene T at high temperatures. In (S1) X. genotypes a transcript with an estimated size of 440 nt was detected in all tissues examined. An additional hybridization signal with an estimated size of approximately 850 nt is expressed in temperature-sensitive plants [(S1) xxT.], and the intensity of a minor 350-nt transcript is enhanced. These latter alterations, conditioned by the gene T, occur independently of the growth temperature, but are limited to the flowers; they were not observed in leaves. The CMS1 transcripts are edited at seven positions and contain an ORF with a maximum coding capacity of 780 nt (containing the start codon derived from the atp9 gene in-frame). Use of the third in-frame start codon would result in the synthesis of a protein of a size very close to that of a previously described CMS1-specific protein, which has an apparent molecular weight of 18 kDa. The coding sequence that begins at this third in-frame start codon is also present in the sterility-inducing cytoplasms (S) and (T) in the onion, and absent in (N) cytoplasm.
Collapse
Affiliation(s)
- T Engelke
- Abteilung Angewandte Genetik, Universität Hannover, Herrenhäuser Str 2, 30419 Hannover, Germany.
| | | |
Collapse
|
50
|
|