1
|
Law JD, Gao Y, Wysocki VH, Gopalan V. Design of a yeast SUMO tag to eliminate internal translation initiation. Protein Sci 2025; 34:e5256. [PMID: 39692120 DOI: 10.1002/pro.5256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.g., small ubiquitin-like-modifier [SUMO]) tags. Following purification, these tags are removed to avoid their interference with target protein structure and function. The wide use of N-terminal His6-SUMO fusions is partly due to efficient cleavage of the SUMO tag's C-terminal Gly-Gly motif by the Ulp1 SUMO protease and generation of the native N-terminus of the target protein. While adopting this system to purify the Salmonella homodimeric FraB deglycase, we discovered that Shine-Dalgarno (SD) sequences in the eukaryotic SUMO tag resulted in truncated proteins. This finding has precedents for synthesis of partial proteins in Escherichia coli from cryptic ribosome-binding sites within eukaryotic coding sequences. The SUMO open reading frame has two "GGNGGN" motifs that resemble SD sequences, one of which encodes the Gly-Gly motif required for Ulp1 cleavage. By mutating these SD sequences, we generated SUMONIT (no internal translation), a variant that eliminated production of the truncated proteins without affecting the levels of full-length His6-SUMO-FraB or Ulp1 cleavage. SUMONIT should be part of the toolkit for enhancing SUMO fusion protein yield, purity, and homogeneity (especially for homo-oligomers). Moreover, we showcase the value of native mass spectrometry in revealing the complications that arise from generation of truncated proteins, as well as oxidation events and protease inhibitor adducts, which are indiscernible by commonly employed lower resolution methods.
Collapse
Affiliation(s)
- Jamison D Law
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Yuan Gao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Singh J, Mishra RK, Ayyub SA, Hussain T, Varshney U. The initiation factor 3 (IF3) residues interacting with initiator tRNA elbow modulate the fidelity of translation initiation and growth fitness in Escherichia coli. Nucleic Acids Res 2022; 50:11712-11726. [PMID: 36399509 PMCID: PMC9723500 DOI: 10.1093/nar/gkac1053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Initiation factor 3 (IF3) regulates the fidelity of bacterial translation initiation by debarring the use of non-canonical start codons or non-initiator tRNAs and prevents premature docking of the 50S ribosomal subunit to the 30S pre-initiation complex (PIC). The C-terminal domain (CTD) of IF3 can carry out most of the known functions of IF3 and sustain Escherichia coli growth. However, the roles of the N-terminal domain (NTD) have remained unclear. We hypothesized that the interaction between NTD and initiator tRNAfMet (i-tRNA) is essential to coordinate the movement of the two domains during the initiation pathway to ensure fidelity of the process. Here, using atomistic molecular dynamics (MD) simulation, we show that R25A/Q33A/R66A mutations do not impact NTD structure but disrupt its interaction with i-tRNA. These NTD residues modulate the fidelity of translation initiation and are crucial for bacterial growth. Our observations also implicate the role of these interactions in the subunit dissociation activity of CTD of IF3. Overall, the study shows that the interactions between NTD of IF3 and i-tRNA are crucial for coupling the movements of NTD and CTD of IF3 during the initiation pathway and in imparting growth fitness to E. coli.
Collapse
Affiliation(s)
| | | | - Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Correspondence may also be addressed to Tanweer Hussain. Tel: +91 80 22933262;
| | - Umesh Varshney
- To whom correspondence should be addressed. Tel: +91 80 22932686;
| |
Collapse
|
3
|
Maksimova EM, Vinogradova DS, Osterman IA, Kasatsky PS, Nikonov OS, Milón P, Dontsova OA, Sergiev PV, Paleskava A, Konevega AL. Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation. Front Microbiol 2021; 12:618857. [PMID: 33643246 PMCID: PMC7907450 DOI: 10.3389/fmicb.2021.618857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami.
Collapse
Affiliation(s)
- Elena M Maksimova
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Daria S Vinogradova
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,NanoTemper Technologies Rus, St. Petersburg, Russia
| | - Ilya A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel S Kasatsky
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Pohl Milón
- Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
4
|
Younkin AD, Gregory ST, O'Connor M. Alterations in the ribosomal protein bL12 of E. coli affecting the initiation, elongation and termination of protein synthesis. Biochimie 2020; 175:173-180. [PMID: 32569619 DOI: 10.1016/j.biochi.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Abstract
In bacteria, ribosomal protein bL12 forms the prominent stalk structure on the ribosome and binds to multiple, distinct translational GTPase factors during the sequential steps of translation. Using a genetic selection in E. coli for altered readthrough of UGA stop codons, we have isolated seven different mutations affecting the C-terminal domain of the protein that forms the interaction surface with translation factors. Analysis of these altered proteins, along with four additional alterations previously shown to affect IF2-ribosome interactions, indicates that multiple steps of translation are affected, consistent with bL12's interaction with multiple factors. Surprisingly, deletion of the release factor GTPase, RF3, has relatively little effect on bL12-promoted stop codon readthrough, suggesting that other steps in termination are also influenced by bL12.
Collapse
Affiliation(s)
- Adam D Younkin
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Michael O'Connor
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
5
|
Chengguang H, Sabatini P, Brandi L, Giuliodori AM, Pon CL, Gualerzi CO. Ribosomal selection of mRNAs with degenerate initiation triplets. Nucleic Acids Res 2017; 45:7309-7325. [PMID: 28575317 PMCID: PMC5499595 DOI: 10.1093/nar/gkx472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
To assess the influence of degenerate initiation triplets on mRNA recruitment by ribosomes, five mRNAs identical but for their start codon (AUG, GUG, UUG, AUU and AUA) were offered to a limiting amount of ribosomes, alone or in competition with an identical AUGmRNA bearing a mutation conferring different electrophoretic mobility to the product. Translational efficiency and competitiveness of test mRNAs toward this AUGmRNA were determined quantifying the relative amounts of the electrophoretically separated wt and mutated products synthesized in vitro and found to be influenced to different extents by the nature of their initiation triplet and by parameters such as temperature and nutrient availability in the medium. The behaviors of AUAmRNA, UUGmRNA and AUGmRNA were the same between 20 and 40°C whereas the GUG and AUUmRNAs were less active and competed poorly with the AUGmRNA, especially at low temperature. Nutrient limitation and preferential inhibition by ppGpp severely affected activity and competitiveness of all mRNAs bearing non-AUG starts, the UUGmRNA being the least affected. Overall, our data indicate that beyond these effects exclusively due to the degenerate start codons within an optimized translational initiation region, an important role is played by the context in which the rare start codons are present.
Collapse
Affiliation(s)
- He Chengguang
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China.,Laboratory of Genetics, University of Camerino 62032 Camerino, Italy
| | - Paola Sabatini
- Laboratory of Genetics, University of Camerino 62032 Camerino, Italy
| | - Letizia Brandi
- Laboratory of Genetics, University of Camerino 62032 Camerino, Italy
| | - Anna M Giuliodori
- Laboratory of Genetics, University of Camerino 62032 Camerino, Italy
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino 62032 Camerino, Italy
| | | |
Collapse
|
6
|
López-Alonso JP, Fabbretti A, Kaminishi T, Iturrioz I, Brandi L, Gil-Carton D, Gualerzi CO, Fucini P, Connell SR. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. Nucleic Acids Res 2017; 45:2179-2187. [PMID: 27986852 PMCID: PMC5389724 DOI: 10.1093/nar/gkw1251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Attilio Fabbretti
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | - Tatsuya Kaminishi
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Idoia Iturrioz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Letizia Brandi
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | - David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | | | - Paola Fucini
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Sean R Connell
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Chulluncuy R, Espiche C, Nakamoto JA, Fabbretti A, Milón P. Conformational Response of 30S-bound IF3 to A-Site Binders Streptomycin and Kanamycin. Antibiotics (Basel) 2016; 5:antibiotics5040038. [PMID: 27983590 PMCID: PMC5187519 DOI: 10.3390/antibiotics5040038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/22/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Aminoglycoside antibiotics are widely used to treat infectious diseases. Among them, streptomycin and kanamycin (and derivatives) are of importance to battle multidrug-resistant (MDR) Mycobacterium tuberculosis. Both drugs bind the small ribosomal subunit (30S) and inhibit protein synthesis. Genetic, structural, and biochemical studies indicate that local and long-range conformational rearrangements of the 30S subunit account for this inhibition. Here, we use intramolecular FRET between the C- and N-terminus domains of the flexible IF3 to monitor real-time perturbations of their binding sites on the 30S platform. Steady and pre-steady state binding experiments show that both aminoglycosides bring IF3 domains apart, promoting an elongated state of the factor. Binding of Initiation Factor IF1 triggers closure of IF3 bound to the 30S complex, while both aminoglycosides revert the IF1-dependent conformation. Our results uncover dynamic perturbations across the 30S subunit, from the A-site to the platform, and suggest that both aminoglycosides could interfere with prokaryotic translation initiation by modulating the interaction between IF3 domains with the 30S platform.
Collapse
Affiliation(s)
- Roberto Chulluncuy
- Centro de Investigación e Innovación, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas-UPC, Lima L-33, Peru.
| | - Carlos Espiche
- Centro de Investigación e Innovación, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas-UPC, Lima L-33, Peru.
| | - Jose Alberto Nakamoto
- Centro de Investigación e Innovación, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas-UPC, Lima L-33, Peru.
- Facultad de Ciencias y Filosofía Alberto Cazorla Talleri, Universidad Peruana Cayetano Heredia-UPCH, Lima L-31, Peru.
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Pohl Milón
- Centro de Investigación e Innovación, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas-UPC, Lima L-33, Peru.
| |
Collapse
|
8
|
Habib S, Vaishya S, Gupta K. Translation in Organelles of Apicomplexan Parasites. Trends Parasitol 2016; 32:939-952. [DOI: 10.1016/j.pt.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
|
9
|
Inhibition of translation initiation complex formation by GE81112 unravels a 16S rRNA structural switch involved in P-site decoding. Proc Natl Acad Sci U S A 2016; 113:E2286-95. [PMID: 27071098 DOI: 10.1073/pnas.1521156113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In prokaryotic systems, the initiation phase of protein synthesis is governed by the presence of initiation factors that guide the transition of the small ribosomal subunit (30S) from an unlocked preinitiation complex (30S preIC) to a locked initiation complex (30SIC) upon the formation of a correct codon-anticodon interaction in the peptidyl (P) site. Biochemical and structural characterization of GE81112, a translational inhibitor specific for the initiation phase, indicates that the main mechanism of action of this antibiotic is to prevent P-site decoding by stabilizing the anticodon stem loop of the initiator tRNA in a distorted conformation. This distortion stalls initiation in the unlocked 30S preIC state characterized by tighter IF3 binding and a reduced association rate for the 50S subunit. At the structural level we observe that in the presence of GE81112 the h44/h45/h24a interface, which is part of the IF3 binding site and forms ribosomal intersubunit bridges, preferentially adopts a disengaged conformation. Accordingly, the findings reveal that the dynamic equilibrium between the disengaged and engaged conformations of the h44/h45/h24a interface regulates the progression of protein synthesis, acting as a molecular switch that senses and couples the 30S P-site decoding step of translation initiation to the transition from an unlocked preIC to a locked 30SIC state.
Collapse
|
10
|
Abstract
Initiation of translation involves the assembly of a ribosome complex with initiator tRNA bound to the peptidyl site and paired to the start codon of the mRNA. In bacteria, this process is kinetically controlled by three initiation factors--IF1, IF2, and IF3. Here, we show that deletion of helix H69 (∆H69) of 23S rRNA allows rapid 50S docking without concomitant IF3 release and virtually eliminates the dependence of subunit joining on start codon identity. Despite this, overall accuracy of start codon selection, based on rates of formation of elongation-competent 70S ribosomes, is largely uncompromised in the absence of H69. Thus, the fidelity function of IF3 stems primarily from its interplay with initiator tRNA rather than its anti-subunit association activity. While retaining fidelity, ∆H69 ribosomes exhibit much slower rates of overall initiation, due to the delay in IF3 release and impedance of an IF3-independent step, presumably initiator tRNA positioning. These findings clarify the roles of H69 and IF3 in the mechanism of translation initiation and explain the dominant lethal phenotype of the ∆H69 mutation.
Collapse
|
11
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
12
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|
13
|
Haider A, Allen SM, Jackson KE, Ralph SA, Habib S. Targeting and function of proteins mediating translation initiation in organelles of Plasmodium falciparum. Mol Microbiol 2015; 96:796-814. [PMID: 25689481 DOI: 10.1111/mmi.12972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 01/13/2023]
Abstract
The malaria parasite Plasmodium falciparum has two translationally active organelles - the apicoplast and mitochondrion, which import nuclear-encoded translation factors to mediate protein synthesis. Initiation of translation is a complex step wherein initiation factors (IFs) act in a regulated manner to form an initiation complex. We identified putative organellar IFs and investigated the targeting, structure and function of IF1, IF2 and IF3 homologues encoded by the parasite nuclear genome. A single PfIF1 is targeted to the apicoplast. Apart from its critical ribosomal interactions, PfIF1 also exhibited nucleic-acid binding and melting activities and mediated transcription anti-termination. This suggests a prominent ancillary function for PfIF1 in destabilisation of DNA and RNA hairpin loops encountered during transcription and translation of the A+T rich apicoplast genome. Of the three putative IF2 homologues, only one (PfIF2a) was an organellar protein with mitochondrial localisation. We additionally identified an IF3 (PfIF3a) that localised exclusively to the mitochondrion and another protein, PfIF3b, that was apicoplast targeted. PfIF3a exhibited ribosome anti-association activity, and monosome splitting by PfIF3a was enhanced by ribosome recycling factor (PfRRF2) and PfEF-G(Mit). These results fill a gap in our understanding of organellar translation in Plasmodium, which is the site of action of several anti-malarial compounds.
Collapse
Affiliation(s)
- Afreen Haider
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Stacey M Allen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
14
|
Wang J, Caban K, Gonzalez RL. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 2015; 427:1819-34. [PMID: 25596426 DOI: 10.1016/j.jmb.2014.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.
Collapse
Affiliation(s)
- Jiangning Wang
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA.
| |
Collapse
|
15
|
Pon CL, Fabbretti A, Brandi L. Antibiotics Targeting Translation Initiation in Prokaryotes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Reannotation of translational start sites in the genome of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2012; 93:18-25. [PMID: 23273318 DOI: 10.1016/j.tube.2012.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022]
Abstract
Identification and correction of incorrect ORF start sites is important for a variety of experimental and analytical purposes, ranging from cloning to inference of operon structure. The genome of the H37Rv reference strain of Mycobacterium tuberculosis (Mtb) was originally annotated when it was first sequenced nearly 15 years ago. While this annotation has served the TB research community well as a standard of reference for over a decade, it has been demonstrated experimentally that the actual start sites for an estimated 5-10% of open reading frames differ from the annotation. In this paper, we present a comprehensive bioinformatic analysis of all 3989 ORFs (open reading frames) in the M. tuberculosis H37Rv genome. Our method combines information from comparative analysis (alignment to start sites of orthologs in other Actinobacteria), sequence conservation, "protein likeness", putative ribosome binding sites, and other data to identify translational start sites. The features are combined in a linear model that is trained on dataset of known start sites verified by mass spectrometry, with a cross-validated accuracy of 94%. The method can be viewed as an augmentation of Hidden Markov Model-based tools such as Glimmer and GeneMark by incorporating more information than just the raw genomic sequence to decide which position is the legitimate translational start site for each ORF. Using this analysis, we identify 269 genes that most likely need to be re-annotated, and identify the best alterative translational start site for each. These revised ORF definitions could be used in the reannotation of the H37Rv genome, as well as to prioritize genes for experimental start-site validation.
Collapse
|
17
|
Fabbretti A, Brandi L, Petrelli D, Pon CL, Castañedo NR, Medina R, Gualerzi CO. The antibiotic Furvina® targets the P-site of 30S ribosomal subunits and inhibits translation initiation displaying start codon bias. Nucleic Acids Res 2012; 40:10366-74. [PMID: 22941660 PMCID: PMC3488254 DOI: 10.1093/nar/gks822] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Furvina®, also denominated G1 (MW 297), is a synthetic nitrovinylfuran [2-bromo-5-(2-bromo-2-nitrovinyl)-furan] antibiotic with a broad antimicrobial spectrum. An ointment (Dermofural®) containing G1 as the only active principle is currently marketed in Cuba and successfully used to treat dermatological infections. Here we describe the molecular target and mechanism of action of G1 in bacteria and demonstrate that in vivo G1 preferentially inhibits protein synthesis over RNA, DNA and cell wall synthesis. Furthermore, we demonstrate that G1 targets the small ribosomal subunit, binds at or near the P-decoding site and inhibits its function interfering with the ribosomal binding of fMet-tRNA during 30S initiation complex (IC) formation ultimately inhibiting translation. Notably, this G1 inhibition displays a bias for the nature (purine vs. pyrimidine) of the 3′-base of the codon, occurring efficiently only when the mRNA directing 30S IC formation and translation contains the canonical AUG initiation triplet or the rarely found AUA triplet, but hardly occurs when the mRNA start codon is either one of the non-canonical triplets AUU or AUC. This codon discrimination by G1 is reminiscent, though of opposite type of that displayed by IF3 in its fidelity function, and remarkably does not occur in the absence of this factor.
Collapse
Affiliation(s)
- Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences & Biotechnology, University of Camerino, 62032 Camerino, MC, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Translation initiation is a crucial step of protein synthesis which largely defines how the composition of the cellular transcriptome is converted to the proteome and controls the response and adaptation to environmental stimuli. The efficiency of translation of individual mRNAs, and hence the basal shape of the proteome, is defined by the structures of the mRNA translation initiation regions. Initiation efficiency can be regulated by small molecules, proteins, or antisense RNAs, underscoring its importance in translational control. Although initiation has been studied in bacteria for decades, many aspects remain poorly understood. Recent evidence has suggested an unexpected diversity of pathways by which mRNAs can be recruited to the bacterial ribosome, the importance of structural dynamics of initiation intermediates, and the complexity of checkpoints for mRNA selection. In this review, we discuss how the ribosome shapes the landscape of translation initiation by non-linear kinetic processing of the transcriptome information. We summarize the major pathways by which mRNAs enter the ribosome depending on the structure of their 5' untranslated regions, the assembly and the structure of initiation intermediates, the individual and synergistic roles of initiation factors, and the mechanisms of mRNA and initiator tRNA selection.
Collapse
Affiliation(s)
- Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
19
|
Qin D, Liu Q, Devaraj A, Fredrick K. Role of helix 44 of 16S rRNA in the fidelity of translation initiation. RNA (NEW YORK, N.Y.) 2012; 18:485-95. [PMID: 22279149 PMCID: PMC3285936 DOI: 10.1261/rna.031203.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 05/30/2023]
Abstract
The molecular mechanisms that govern translation initiation to ensure accuracy remain unclear. Here, we provide evidence that the subunit-joining step of initiation is controlled in part by a conformational change in the 1408 region of helix h44. First, chemical probing of 30S initiation complexes formed with either a cognate (AUG) or near-cognate (AUC) start codon shows that an IF1-dependent enhancement at A1408 is reduced in the presence of AUG. This change in reactivity is due to a conformational change rather than loss of IF1, because other portions of the IF1 footprint are unchanged and high concentrations of IF1 fail to diminish the reactivity difference seen at A1408. Second, mutations in h44 such as A1413C stimulate 50S docking and cause reduced reactivity at A1408. Third, streptomycin, which has been shown by Rodnina and coworkers to stimulate 50S docking by reversing the inhibitory effects of IF1, also causes reduced reactivity at A1408. Collectively, these data support a model in which IF1 alters the A1408 region of h44 in a way that makes 50S docking unfavorable, and canonical codon-anticodon pairing in the P site restores h44 to a docking-favorable conformation. We also find that, in the absence of factors, the cognate 30S•AUG•fMet-tRNA ternary complex is >1000-fold more stable than the near-cognate 30S•AUC•fMet-tRNA complex. Hence, the selectivity of ternary complex formation is inherently high, exceeding that of initiation in vivo by more than 10-fold.
Collapse
MESH Headings
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/drug effects
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Streptomycin/pharmacology
Collapse
Affiliation(s)
- Daoming Qin
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi Liu
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Aishwarya Devaraj
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
20
|
Quality control of mRNA decoding on the bacterial ribosome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:95-128. [PMID: 22243582 DOI: 10.1016/b978-0-12-386497-0.00003-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ribosome is a major player in providing accurate gene expression in the cell. The fidelity of substrate selection is tightly controlled throughout the translation process, including the initiation, elongation, and termination phases. Although each phase of translation involves different players, that is, translation factors and tRNAs, the general principles of selection appear surprisingly similar for very different substrates. At essentially every step of translation, differences in complex stabilities as well as induced fit are sources of selectivity. A view starts to emerge of how the ribosome uses local and global conformational switches to govern induced-fit mechanisms that ensure fidelity. This review describes the mechanisms of tRNA and mRNA selection at all phases of protein synthesis in bacteria.
Collapse
|
21
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
22
|
Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons. Mol Cell Biol 2011; 31:4814-31. [PMID: 21930786 DOI: 10.1128/mcb.05819-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast eIF1 inhibits initiation at non-AUG triplets, but it was unknown whether it also discriminates against AUGs in suboptimal context. As in other eukaryotes, the yeast gene encoding eIF1 (SUI1) contains an AUG in poor context, which could underlie translational autoregulation. Previously, eIF1 mutations were identified that increase initiation at UUG codons (Sui(-) phenotype), and we obtained mutations with the opposite phenotype of suppressing UUG initiation (Ssu(-) phenotype). Remarkably, Sui(-) mutations in eukaryotic translation initiation factor 1 (eIF1), eIF1A, and eIF2β all increase SUI1 expression in a manner diminished by introducing the optimal context at the SUI1 AUG, whereas Ssu(-) mutations in eIF1 and eIF1A decrease SUI1 expression with the native, but not optimal, context present. Therefore, discrimination against weak context depends on specific residues in eIFs 1, 1A, and 2β that also impede selection of non-AUGs, suggesting that context nucleotides and AUG act coordinately to stabilize the preinitiation complex. Although eIF1 autoregulates by discriminating against poor context in yeast and mammals, this mechanism does not prevent eIF1 overproduction in yeast, accounting for the hyperaccuracy phenotype afforded by SUI1 overexpression.
Collapse
|
23
|
Gualerzi C, Fabbretti A, Brandi L, Milon P, Pon C. Role of the Initiation Factors in mRNA Start Site Selection and fMet-tRNA Recruitment by Bacterial Ribosomes. Isr J Chem 2010. [DOI: 10.1002/ijch.201000006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Qin H, Grigoriadou C, Cooperman BS. Interaction of IF2 with the ribosomal GTPase-associated center during 70S initiation complex formation. Biochemistry 2009; 48:4699-706. [PMID: 19366171 PMCID: PMC3084514 DOI: 10.1021/bi900222e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Addition of an Escherichia coli 50S subunit (50S(Cy5)) containing a Cy5-labeled L11 N-terminal domain (L11-NTD) within the GTPase-associated center (GAC) to an E. coli 30S initiation complex (30SIC(Cy3)) containing Cy3-labeled initiation factor 2 complexed with GTP leads to rapid development of a FRET signal during formation of the 70S initiation complex (70SIC). Initiation factor 2 (IF2) and elongation factor G (EF-G) induce similar changes in ribosome structure. Here we show that such similarities are maintained on a dynamic level as well. Thus, movement of IF2 toward L11-NTD after initial 70S ribosome formation follows GTP hydrolysis and precedes P(i) release, paralleling movement of EF-G following its binding to the ribosome [Seo, H., et al. (2006) Biochemistry 45, 2504-2514], and in both cases, the rate of such movement is slowed if GTP hydrolysis is prevented. The 30SIC(Cy3):50S(Cy5) FRET signal also provides a sensitive probe of the ability of initiation factor 3 to discriminate between a canonical and a noncanonical initiation codon during 70SIC formation. We employ Bacillus stearothermophilus IF2 as a substitute for E. coli IF2 to take advantage of the higher stability of the complexes it forms with E. coli ribosomes. While Bst-IF2 is fully functional in formation of E. coli 70SIC, relative reactivities toward dipeptide formation of 70SICs formed with the two IF2s suggest that the Bst-IF2.GDP complex is more difficult to displace from the GAC than the E. coli IF2.GDP complex.
Collapse
Affiliation(s)
- Haiou Qin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA 19104-6323
| | | | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA 19104-6323
| |
Collapse
|
25
|
Qin D, Fredrick K. Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol Microbiol 2009; 71:1239-49. [PMID: 19154330 DOI: 10.1111/j.1365-2958.2009.06598.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Initiation of translation involves recognition of the start codon by the initiator tRNA in the 30S subunit. To investigate the role of ribosomal RNA (rRNA) in this process, we isolated a number of 16S rRNA mutations that increase translation from the non-canonical start codon AUC. These mutations cluster to distinct regions that overlap remarkably well with previously identified class III protection sites and implicate both IF1 and IF3 in start codon selection. Two mutations map to the 790 loop and presumably act by inhibiting IF3 binding. Another cluster of mutations surrounds the conserved A1413(o)G1487 base pair of helix 44 in a region known to be distorted by IF1 and IF3. Site-directed mutagenesis in this region confirmed that this factor-induced rearrangement of helix 44 helps regulate initiation fidelity. A third cluster of mutations maps to the neck of the 30S subunit, suggesting that the dynamics of the head domain influences translation initiation. In addition to identifying mutations that decrease fidelity, we found that many P-site mutations increase the stringency of start codon selection. These data provide evidence that the interaction between the initiator tRNA and the 30S P site is tuned to balance efficiency and accuracy during initiation.
Collapse
Affiliation(s)
- Daoming Qin
- Ohio State Biochemistry Program, The OhioState University, OH 43210, USA
| | | |
Collapse
|
26
|
Haque ME, Spremulli LL. Roles of the N- and C-terminal domains of mammalian mitochondrial initiation factor 3 in protein biosynthesis. J Mol Biol 2008; 384:929-40. [PMID: 18930736 PMCID: PMC2645338 DOI: 10.1016/j.jmb.2008.09.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/26/2008] [Accepted: 09/27/2008] [Indexed: 11/27/2022]
Abstract
Bacterial initiation factor 3 (IF3) is organized into N- and C-domains separated by a linker. Mitochondrial IF3 (IF3(mt)) has a similar domain organization, although both domains have extensions not found in the bacterial factors. Constructs of the N- and C-domains of IF3(mt) with and without the connecting linker were prepared. The K(d) values for the binding of full-length IF3(mt) and its C-domain with and without the linker to mitochondrial 28S subunits are 30, 60, and 95 nM, respectively, indicating that much of the ribosome binding interactions are mediated by the C-domain. However, the N-domain binds to 28S subunits with only a 10-fold lower affinity than full-length IF3(mt). This observation indicates that the N-domain of IF3(mt) has significant contacts with the protein-rich small subunit of mammalian mitochondrial ribosomes. The linker also plays a role in modulating the interactions between the 28S subunit and the factor; it is not just a physical connector between the two domains. The presence of the two domains and the linker may optimize the overall affinity of IF3(mt) for the ribosome. These results are in sharp contrast to observations with Escherichia coli IF3. Removal of the N-domain drastically reduces the activity of IF3(mt) in the dissociation of mitochondrial 55S ribosomes, although the C-domain itself retains some activity. This residual activity depends significantly on the linker region. The N-domain alone has no effect on the dissociation of ribosomes. Full-length IF3(mt) reduces the binding of fMet-tRNA to the 28S subunit in the absence of mRNA. Both the C-terminal extension and the linker are required for this effect. IF3(mt) promotes the formation of a binary complex between IF2(mt) and fMet-tRNA that may play an important role in mitochondrial protein synthesis. Both domains play a role promoting the formation of this complex.
Collapse
Affiliation(s)
- Md. Emdadul Haque
- Department of Chemistry, Campus Box 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 U.S.A
| | - Linda L Spremulli
- Department of Chemistry, Campus Box 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 U.S.A
| |
Collapse
|
27
|
Milon P, Konevega AL, Gualerzi CO, Rodnina MV. Kinetic checkpoint at a late step in translation initiation. Mol Cell 2008; 30:712-20. [PMID: 18570874 DOI: 10.1016/j.molcel.2008.04.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/07/2007] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
Abstract
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.
Collapse
Affiliation(s)
- Pohl Milon
- Department of Biology MCA, Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | | | | | | |
Collapse
|
28
|
Johansson M, Bouakaz E, Lovmar M, Ehrenberg M. The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 2008; 30:589-98. [PMID: 18538657 DOI: 10.1016/j.molcel.2008.04.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 01/04/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
The speed of protein synthesis determines the growth rate of bacteria. Current biochemical estimates of the rate of protein elongation are small and incompatible with the rate of protein elongation in the living cell. With a cell-free system for protein synthesis, optimized for speed and accuracy, we have estimated the rate of peptidyl transfer from a peptidyl-tRNA in P site to a cognate aminoacyl-tRNA in A site at various temperatures. We have found these rates to be much larger than previously measured and fully compatible with the speed of protein elongation for E. coli cells growing in rich medium. We have found large activation enthalpy and small activation entropy for peptidyl transfer, similar to experimental estimates of these parameters for A site analogs of aminoacyl-tRNA. Our work has opened a useful kinetic window for biochemical studies of protein synthesis, bridging the gap between in vitro and in vivo data on ribosome function.
Collapse
Affiliation(s)
- Magnus Johansson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J 2008; 27:1706-17. [PMID: 18497739 DOI: 10.1038/emboj.2008.99] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/28/2008] [Indexed: 11/09/2022] Open
Abstract
We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine-Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-G.
Collapse
|
30
|
Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO, Cooperman BS. A quantitative kinetic scheme for 70 S translation initiation complex formation. J Mol Biol 2007; 373:562-72. [PMID: 17868692 PMCID: PMC2083556 DOI: 10.1016/j.jmb.2007.07.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
Association of the 30 S initiation complex (30SIC) and the 50 S ribosomal subunit, leading to formation of the 70 S initiation complex (70SIC), is a critical step of the translation initiation pathway. The 70SIC contains initiator tRNA, fMet-tRNA(fMet), bound in the P (peptidyl)-site in response to the AUG start codon. We have formulated a quantitative kinetic scheme for the formation of an active 70SIC from 30SIC and 50 S subunits on the basis of parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in fluorescence intensities of fluorophore-labeled IF2 and fMet-tRNA(f)(Met). According to this scheme, an initially formed labile 70 S complex, which promotes rapid IF2-dependent GTP hydrolysis, either dissociates reversibly into 30 S and 50 S subunits or is converted to a more stable form, leading to 70SIC formation. The latter process takes place with intervening conformational changes of ribosome-bound IF2 and fMet-tRNA(fMet), which are monitored by spectral changes of fluorescent derivatives of IF2 and fMet-tRNA(fMet). The availability of such a scheme provides a useful framework for precisely elucidating the mechanisms by which substituting the non-hydrolyzable analog GDPCP for GTP or adding thiostrepton inhibit formation of a productive 70SIC. GDPCP does not affect stable 70 S formation, but perturbs fMet-tRNA(fMet) positioning in the P-site. In contrast, thiostrepton severely retards stable 70 S formation, but allows normal binding of fMet-tRNA(fMet)(prf20) to the P-site.
Collapse
Affiliation(s)
- Christina Grigoriadou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stanislas Kirillov
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, Russia
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Grigoriadou C, Marzi S, Pan D, Gualerzi CO, Cooperman BS. The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J Mol Biol 2007; 373:551-61. [PMID: 17868695 PMCID: PMC2083563 DOI: 10.1016/j.jmb.2007.07.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
IF3 has a fidelity function in the initiation of translation, inducing the dissociation of fMet-tRNA(fMet) from the 30 S initiation complexes (30SIC) containing a non-canonical initiation triplet (e.g. AUU) in place of a canonical initiation triplet (e.g., AUG). IF2 has a complementary role, selectively promoting initiator tRNA binding to the ribosome. Here, we used parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in intensities of fluorophore-labeled IF2 and fMet-tRNA(fMet) to determine the effects on both 30SIC formation and 30SIC conversion to 70 S initiation complexes (70SIC) of (a) substituting AUG with AUU, and/or (b) omitting IF3, and/or (c) replacing GTP with the non-hydrolyzable analog GDPCP. We demonstrate that the presence or absence of IF3 has, at most, minor effects on the rate of 30SIC formation using either AUG or AUU as the initiation codon, and conclude that the high affinity of IF2 for both 30 S subunit and initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a dramatic reduction in the rate of 70SIC formation from 30SIC upon addition of 50 S subunits. Interpreting our results in the framework of a quantitative kinetic scheme leads to the conclusion that, within the overall process of 70SIC formation, the step most affected by substituting AUU for AUG involves the conversion of an initially labile 70 S ribosome into a more stable complex. In the absence of IF3, the difference between AUG and AUU largely disappears, with each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is the rate of IF3 dissociation from the 70 S ribosome during IC70S formation that is critical to its fidelity function.
Collapse
Affiliation(s)
- Christina Grigoriadou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stefano Marzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Dongli Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Betteridge T, Liu H, Gamper H, Kirillov S, Cooperman BS, Hou YM. Fluorescent labeling of tRNAs for dynamics experiments. RNA (NEW YORK, N.Y.) 2007; 13:1594-601. [PMID: 17652134 PMCID: PMC1950756 DOI: 10.1261/rna.475407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Transfer RNAs (tRNAs) are substrates for complex enzymes, such as aminoacyl-tRNA synthetases and ribosomes, and play an essential role in translation of genetic information into protein sequences. Here we describe a general method for labeling tRNAs with fluorescent dyes, so that the activities and dynamics of the labeled tRNAs can be directly monitored by fluorescence during the ribosomal decoding process. This method makes use of the previously reported fluorescent labeling of natural tRNAs at dihydrouridine (D) positions, but extends the previous method to synthetic tRNAs by preparing tRNA transcripts and introducing D residues into transcripts with the yeast enzyme Dus1p dihydrouridine synthase. Using the unmodified transcript of Escherichia coli tRNAPro as an example, which has U17 and U17a in the D loop, we show that Dus1p catalyzes conversion of one of these Us (mostly U17a) to D, and that the modified tRNA can be labeled with the fluorophores proflavin and rhodamine 110, with overall labeling yields comparable to those obtained with the native yeast tRNAPhe. Further, the transcript of yeast tRNAPhe, modified by Dus1p and labeled with proflavin, translocates on the ribosome at a rate similar to that of the proflavin-labeled native yeast tRNAPhe. These results demonstrate that synthetic tRNA transcripts, which may be designed to contain mutations not found in nature, can be labeled and studied. Such labeled tRNAs should have broad utility in research that involves studies of tRNA maturation, aminoacylation, and tRNA-ribosome interactions.
Collapse
Affiliation(s)
- Thu Betteridge
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
33
|
Giuliodori AM, Brandi A, Giangrossi M, Gualerzi CO, Pon CL. Cold-stress-induced de novo expression of infC and role of IF3 in cold-shock translational bias. RNA (NEW YORK, N.Y.) 2007; 13:1355-65. [PMID: 17592046 PMCID: PMC1924895 DOI: 10.1261/rna.455607] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Expression of Escherichia coli infC, which encodes translation initiation factor IF3 and belongs to a transcriptional unit containing several promoters and terminators, is enhanced after cold shock, causing a transient increase of the IF3/ribosomes ratio. Here we show that after cold shock the two less used promoters (P(T) and P(I1)) remain active and/or are activated, resulting in de novo infC transcription and IF3 synthesis. These two events are partly responsible for the stoichiometric imbalance of the IF3/ribosomes ratio that contributes to establishing the cold-shock translational bias whereby cold-shock mRNAs are preferentially translated by cold-stressed cells while bulk mRNAs are discriminated against. Analysis of the IF3 functions at low temperature sheds light on the molecular mechanism by which IF3 contributes to the cold-shock translational bias. IF3 was found to cause a strong rate increase of fMet-tRNA binding to ribosomes programmed with cold-shock mRNA, an activity essential for the rapid formation of "30S initiation complexes" at low temperature. The increased IF3/ribosome ratio occurring during cold adaptation was also essential to overcome the higher stability of 70S monomers at low temperature so as to provide a sufficient pool of dissociated 30S subunits capable of "70S initiation complex" formation. Finally, at low temperature IF3 was shown to be endowed with the capacity of discriminating against translation of non-cold-shock mRNAs by a cold-shock-specific "fidelity" function operating with a mechanism different from those previously described, insofar as IF3 does not interfere with formation of 30S initiation complex containing these mRNAs, but induces the formation of nonproductive 70S initiation complexes.
Collapse
Affiliation(s)
- Anna Maria Giuliodori
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino, Italy
| | | | | | | | | |
Collapse
|
34
|
Maone E, Di Stefano M, Berardi A, Benelli D, Marzi S, La Teana A, Londei P. Functional analysis of the translation factor aIF2/5B in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2007; 65:700-13. [PMID: 17608795 PMCID: PMC1976387 DOI: 10.1111/j.1365-2958.2007.05820.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The protein IF2/eIF5B is one of the few translation initiation factors shared by all three primary domains of life (bacteria, archaea, eukarya). Despite its phylogenetic conservation, the factor is known to present marked functional divergences in the bacteria and the eukarya. In this work, the function in translation of the archaeal homologue (aIF2/5B) has been analysed in detail for the first time using a variety of in vitro assays. The results revealed that the protein is a ribosome-dependent GTPase which strongly stimulates the binding of initiator tRNA to the ribosomes even in the absence of other factors. In agreement with this finding, aIF2/5B enhances the translation of both leadered and leaderless mRNAs when expressed in a cell-free protein-synthesizing system. Moreover, the degree of functional conservation of the IF2-like factors in the archaeal and bacterial lineages was investigated by analysing the behaviour of 'chimeric' proteins produced by swapping domains between the Sulfolobus solfataricus aIF2/5B factor and the IF2 protein of the thermophilic bacterium Bacillus stearothermophilus. Beside evidencing similarities and differences between the archaeal and bacterial factors, these experiments have provided insight into the common role played by the IF2/5B proteins in all extant cells.
Collapse
Affiliation(s)
- Enzo Maone
- Dpt. of Biotecnologie Cellulari ed Ematologia, Università di Roma SapienzaViale Regina Elena 324 Roma, Italy.
| | - Michele Di Stefano
- Istituto di Biochimica, Università Politecnica delle MarcheVia Ranieri Ancona, Italy.
| | - Alessandra Berardi
- Dpt. of Biotecnologie Cellulari ed Ematologia, Università di Roma SapienzaViale Regina Elena 324 Roma, Italy.
| | - Dario Benelli
- DIBIFIM, Università di Bari, Piazzale Giulio CesareBari, Italy.
| | - Stefano Marzi
- Institut for de Biologie Moleculaire et Cellulare CNRS67084 Strasbourg Cedex, France.
| | - Anna La Teana
- Istituto di Biochimica, Università Politecnica delle MarcheVia Ranieri Ancona, Italy.
| | - Paola Londei
- Dpt. of Biotecnologie Cellulari ed Ematologia, Università di Roma SapienzaViale Regina Elena 324 Roma, Italy.
- DIBIFIM, Università di Bari, Piazzale Giulio CesareBari, Italy.
- For correspondence. E-mail ; Tel. (+39) 06 4462891; Fax (+39) 06 4462891
| |
Collapse
|
35
|
Fabbretti A, Pon CL, Hennelly SP, Hill WE, Lodmell JS, Gualerzi CO. The real-time path of translation factor IF3 onto and off the ribosome. Mol Cell 2007; 25:285-96. [PMID: 17244535 DOI: 10.1016/j.molcel.2006.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/21/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022]
Abstract
Translation initiation factor IF3 is an essential bacterial protein, consisting of two domains (IF3C and IF3N) separated by a linker, which interferes with ribosomal subunit association, promotes codon-anticodon interaction in the P site, and ensures translation initiation fidelity. Using time-resolved chemical probing, we followed the dynamic binding path of IF3 on the 30S subunit and its release upon 30S-50S association. During binding, IF3 first contacts the platform (near G700) of the 30S subunit with the C domain and then the P-decoding region (near A790) with its N domain. At equilibrium, attained within less than a second, both sites are protected, but before reaching binding equilibrium, IF3 causes additional transient perturbations of both the platform edge and the solvent side of the subunit. Upon 30S-50S association, IF3 dissociates concomitantly with the establishment of the 30S-50S bridges, following the reverse path of its binding with the IF3N-A790 interaction being lost before the IF3C-G700 interaction.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Prokaryotic Initiation Factor-3/chemistry
- Prokaryotic Initiation Factor-3/genetics
- Prokaryotic Initiation Factor-3/metabolism
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Attilio Fabbretti
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino, MC, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Brandi L, Fabbretti A, Milon P, Carotti M, Pon CL, Gualerzi CO. Methods for identifying compounds that specifically target translation. Methods Enzymol 2007; 431:229-67. [PMID: 17923238 DOI: 10.1016/s0076-6879(07)31012-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter presents methods and protocols suitable for the identification and characterization of inhibitors of the prokaryotic and/or eukaryotic translational apparatus as a whole or targeting specific, underexploited targets of the bacterial protein synthetic machinery such as translation initiation and aminoacylation. Some of the methods described have been used successfully for the high-throughput screening of libraries of natural or synthetic compounds and make use of model "universal" mRNAs that can be translated with similar efficiency by cellfree extracts of bacterial, yeast, and HeLa cells. Other methods presented here are suitable for secondary screening tests aimed at identifying a specific target of an antibiotic within the translational pathway of prokaryotic cells.
Collapse
|
37
|
Milon P, Konevega AL, Peske F, Fabbretti A, Gualerzi CO, Rodnina MV. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. Methods Enzymol 2007; 430:1-30. [PMID: 17913632 DOI: 10.1016/s0076-6879(07)30001-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Initiation of mRNA translation in prokaryotes requires the small ribosomal subunit (30S), initiator fMet-tRNA(fMet), three initiation factors, IF1, IF2, and IF3, and the large ribosomal subunit (50S). During initiation, the 30S subunit, in a complex with IF3, binds mRNA, IF1, IF2.GTP, and fMet-tRNA(fMet) to form a 30S initiation complex which then recruits the 50S subunit to yield a 70S initiation complex, while the initiation factors are released. Here we describe a transient kinetic approach to study the timing of elemental steps of 30S initiation complex formation, 50S subunit joining, and the dissociation of the initiation factors from the 70S initiation complex. Labeling of ribosomal subunits, fMet-tRNA(fMet), mRNA, and initiation factors with fluorescent reporter groups allows for the direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer (FRET) between two fluorophores. Subunit joining was monitored by light scattering or by FRET between dyes attached to the ribosomal subunits. The kinetics of chemical steps, that is, GTP hydrolysis by IF2 and peptide bond formation following the binding of aminoacyl-tRNA to the 70S initiation complex, were measured by the quench-flow technique. The methods described here are based on results obtained with initiation components from Escherichia coli but can be adopted for mechanistic studies of initiation in other prokaryotic or eukaryotic systems.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Fluorescence Resonance Energy Transfer
- GTP Phosphohydrolases/metabolism
- Models, Molecular
- Prokaryotic Initiation Factors/chemistry
- Prokaryotic Initiation Factors/genetics
- Prokaryotic Initiation Factors/metabolism
- Protein Biosynthesis
- Protein Structure, Quaternary
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Pohl Milon
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Milon P, Tischenko E, Tomšic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci U S A 2006; 103:13962-7. [PMID: 16968770 PMCID: PMC1599896 DOI: 10.1073/pnas.0606384103] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Indexed: 11/18/2022] Open
Abstract
Translational initiation factor 2 (IF2) is a guanine nucleotide-binding protein that can bind guanosine 3',5'-(bis) diphosphate (ppGpp), an alarmone involved in stringent response in bacteria. In cells growing under optimal conditions, the GTP concentration is very high, and that of ppGpp very low. However, under stress conditions, the GTP concentration may decline by as much as 50%, and that of ppGpp can attain levels comparable to those of GTP. Here we show that IF2 binds ppGpp at the same nucleotide-binding site and with similar affinity as GTP. Thus, GTP and the alarmone ppGpp can be considered two alternative physiologically relevant IF2 ligands. ppGpp interferes with IF2-dependent initiation complex formation, severely inhibits initiation dipeptide formation, and blocks the initiation step of translation. Our data suggest that IF2 has the properties of a cellular metabolic sensor and regulator that oscillates between an active GTP-bound form under conditions allowing active protein syntheses and an inactive ppGpp-bound form when shortage of nutrients would be detrimental, if not accompanied by slackening of this synthesis.
Collapse
Affiliation(s)
- Pohl Milon
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | - Eugene Tischenko
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jerneja Tomšic
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- Institute of Biochemistry, Polytechnic University of “The Marche,” 60131 Ancona, Italy; and
| | - Enrico Caserta
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- Institute of Biochemistry, Polytechnic University of “The Marche,” 60131 Ancona, Italy; and
| | - Gert Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Anna La Teana
- Institute of Biochemistry, Polytechnic University of “The Marche,” 60131 Ancona, Italy; and
| | - Marina V. Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | - Cynthia L. Pon
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Claudio O. Gualerzi
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
39
|
Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO. Translation initiation factor IF2 interacts with the 30 S ribosomal subunit via two separate binding sites. J Mol Biol 2006; 362:787-99. [PMID: 16935296 DOI: 10.1016/j.jmb.2006.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
40
|
Brandi L, Fabbretti A, Di Stefano M, Lazzarini A, Abbondi M, Gualerzi CO. Characterization of GE82832, a peptide inhibitor of translocation interacting with bacterial 30S ribosomal subunits. RNA (NEW YORK, N.Y.) 2006; 12:1262-70. [PMID: 16699167 PMCID: PMC1484444 DOI: 10.1261/rna.61206] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
GE82832, a secondary metabolite produced by Streptosporangium cinnabarinum (strain GE82832), has been identified as a translational inhibitor by in vitro screening of a library of natural products. Secondary functional tests specific for individual steps of the translational pathway demonstrated that translocation is the specific target of GE82832. Chemical probing in situ demonstrated that this antibiotic protects bases A1324 and A1333 and exposes C1336 of 16S rRNA, thereby indicating that its binding site is located on the head of the 30S ribosomal subunit. The ribosomal location of GE82832, near ribosomal protein S13 and G1338, two elements of the small subunit that are part of or close to the B1a intrasubunit bridge, suggests that translocation inhibition results from an altered dynamics of 30S-50S ribosomal subunit interaction.
Collapse
Affiliation(s)
- Letizia Brandi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Gromadski KB, Daviter T, Rodnina MV. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol Cell 2006; 21:369-77. [PMID: 16455492 DOI: 10.1016/j.molcel.2005.12.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/20/2005] [Accepted: 12/27/2005] [Indexed: 11/28/2022]
Abstract
Ribosomes take an active part in aminoacyl-tRNA selection by distinguishing correct and incorrect codon-anticodon pairs. Correct codon-anticodon complexes are recognized by a network of ribosome contacts that are specific for each position of the codon-anticodon duplex and involve A-minor RNA interactions. Here, we show by kinetic analysis that single mismatches at any position of the codon-anticodon complex result in slower forward reactions and a uniformly 1000-fold faster dissociation of the tRNA from the ribosome. This suggests that high-fidelity tRNA selection is achieved by a conformational switch of the decoding site between accepting and rejecting modes, regardless of the thermodynamic stability of the respective codon-anticodon complexes or their docking partners at the decoding site. The forward reactions on mismatched codons were particularly sensitive to the disruption of the A-minor interactions with 16S rRNA and determined the variations in the misreading efficiency of near-cognate codons.
Collapse
Affiliation(s)
- Kirill B Gromadski
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | |
Collapse
|
42
|
Brandi L, Fabbretti A, La Teana A, Abbondi M, Losi D, Donadio S, Gualerzi CO. Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. Proc Natl Acad Sci U S A 2005; 103:39-44. [PMID: 16380421 PMCID: PMC1324990 DOI: 10.1073/pnas.0507740102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many known antibiotics target the translational apparatus, but none of them can selectively inhibit initiation of protein synthesis and/or is prokaryotic-specific. This article describes the properties of GE81112, an effective and prokaryotic-specific initiation inhibitor. GE81112 is a natural tetrapeptide produced by a Streptomyces sp. identified by an in vitro high-throughput screening test developed to find inhibitors of the prokaryotic translational apparatus preferentially acting on steps other than elongation. In vivo GE81112 inhibits protein synthesis but not other cell functions such as DNA duplication, transcription, and cell wall synthesis. In vitro GE81112 was found to target the 30S ribosomal subunit and to interfere with both coded and noncoded P-site binding of fMet-tRNA, thereby selectively inhibiting formation of the 30S initiation complex.
Collapse
Affiliation(s)
- Letizia Brandi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill WE, Gualerzi CO, Stephen Lodmell J. The translation initiation functions of IF2: targets for thiostrepton inhibition. J Mol Biol 2004; 335:881-94. [PMID: 14698286 DOI: 10.1016/j.jmb.2003.10.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial translation initiation factor IF2 was localized on the ribosome by rRNA cleavage using free Cu(II):1,10-orthophenanthroline. The results indicated proximity of IF2 to helix 89, to the sarcin-ricin loop and to helices 43 and 44, which constitute the "L11/thiostrepton" stem-loops of 23S rRNA. These findings prompted an investigation of the L11 contribution to IF2 activity and a re-examination of the controversial issue of the effect on IF2 functions of thiostrepton, a peptide antibiotic known primarily as a powerful inhibitor of translocation. Ribosomes lacking L11 were found to have wild-type capacity to bind IF2 but a strongly reduced ability to elicit its GTPase activity. We found that thiostrepton caused a faster recycling of this factor on and off the 70S ribosomes and 50S subunits, which in turn resulted in an increased rate of the multiple turnover IF2-dependent GTPase. Although thiostrepton did not inhibit the P-site binding of fMet-tRNA, the A-site binding of the EF-Tu-GTP-Phe-tRNA or the activity of the ribosomal peptidyl transferase center (as measured by the formation of fMet-puromycin), it severely inhibited IF2-dependent initiation dipeptide formation. This inhibition can probably be traced back to a thiostrepton-induced distortion of the ribosomal-binding site of IF2, which leads to a non-productive interaction between the ribosome and the aminoacyl-tRNA substrates of the peptidyl transferase reaction. Overall, our data indicate that the translation initiation function of IF2 is as sensitive as the translocation function of EF-G to thiostrepton inhibition.
Collapse
Affiliation(s)
- Letizia Brandi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Petrelli D, Garofalo C, Lammi M, Spurio R, Pon CL, Gualerzi CO, La Teana A. Mapping the active sites of bacterial translation initiation factor IF3. J Mol Biol 2003; 331:541-56. [PMID: 12899827 DOI: 10.1016/s0022-2836(03)00731-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.
Collapse
Affiliation(s)
- Dezemona Petrelli
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Gualerzi CO, Giuliodori AM, Pon CL. Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 2003; 331:527-39. [PMID: 12899826 DOI: 10.1016/s0022-2836(03)00732-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mesophile like Escherichia coli responds to abrupt temperature downshifts (e.g. from 37 degrees C to 10 degrees C) with an adaptive response that allows cell survival and eventually resumption of growth under the new unfavorable environmental conditions. During this response, bulk transcription and translation slow or come to an almost complete stop, while a set of about 26 cold-shock genes is preferentially and transiently expressed. At least some of the proteins encoded by these genes are essential for survival in the cold, but none plays an exclusive role in cold adaptation, not even the "major cold-shock protein" CspA and none is induced de novo. The majority of these proteins binds nucleic acids and are involved in fundamental functions (DNA packaging, transcription, RNA degradation, translation, ribosome assembly, etc.). Although cold-induced activation of specific promoters has been implicated in upregulating some cold-shock genes, post-transcriptional mechanisms play a major role in cold adaptation; cold stress-induced changes of the RNA degradosome determine a drastic stabilization of the cold-shock transcripts and cold shock-induced modifications of the translational apparatus determine their preferential translation in the cold. This preferential translation at low temperature is due to cis elements present in the 5' untranslated region of at least some cold-shock mRNAs and to trans-acting factors whose levels are increased substantially by cold stress. Protein CspA and the three translation initiation factors (IF3 in particular), whose stoichiometry relative to the ribosomes is more than doubled during the acclimation period, are among the trans elements found to selectively stimulate cold-shock mRNA translation in the cold.
Collapse
Affiliation(s)
- Claudio O Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy.
| | | | | |
Collapse
|
46
|
Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. Ribosomal localization of translation initiation factor IF2. RNA (NEW YORK, N.Y.) 2003; 9:958-69. [PMID: 12869707 PMCID: PMC1370462 DOI: 10.1261/rna.2116303] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 05/15/2003] [Indexed: 05/22/2023]
Abstract
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.
Collapse
Affiliation(s)
- Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC) Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Garofalo C, Trinko R, Kramer G, Appling DR, Hardesty B. Purification and characterization of yeast mitochondrial initiation factor 2. Arch Biochem Biophys 2003; 413:243-52. [PMID: 12729623 DOI: 10.1016/s0003-9861(03)00119-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.
Collapse
Affiliation(s)
- Cristiana Garofalo
- Department of Chemistry & Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
48
|
Binns N, Masters M. Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol 2002; 44:1287-98. [PMID: 12068810 DOI: 10.1046/j.1365-2958.2002.02945.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the gene pcnB, encoding the dispensable Escherichia coli poly(A) polymerase (PAPI), which is toxic when overproduced, was investigated. Its promoter was identified and found to be moderately strong when used to express a beta-galactosidase reporter. Expression levels were not affected by increasing or decreasing PcnB concentration. Translation of pcnB was found to initiate from the non-canonical initiation codon AUU. The only other coli gene reported to use AUU as initiation codon is infC, which encodes the initiation factor IF-3. AUU, in common with other rarely used initiation codons, is discriminated against by IF-3, resulting in the aborting of most AUU-promoted initiation events. This enables AUU to form part of an autoregulatory circuit controlling IF-3 production. We show that InfC discrimination reduces PcnB production fivefold. This is the first instance of this mechanism being used to limit severely the production of a potentially toxic product.
Collapse
Affiliation(s)
- Nigel Binns
- Institute of Cell and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
49
|
Mawn MV, Fournier MJ, Tirrell DA, Mason TL. Depletion of free 30S ribosomal subunits in Escherichia coli by expression of RNA containing Shine-Dalgarno-like sequences. J Bacteriol 2002; 184:494-502. [PMID: 11751827 PMCID: PMC139575 DOI: 10.1128/jb.184.2.494-502.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed synthetic coding sequences for the expression of poly(alpha,L-glutamic acid) (PLGA) as fusion proteins with dihydrofolate reductase (DHFR) in Escherichia coli. These PLGA coding sequences use both GAA and GAG codons for glutamic acid and contain sequence elements (5'-GAGGAGG-3') that resemble the consensus Shine-Dalgarno (SD) sequence found at translation initiation sites in bacterial mRNAs. An unusual feature of DHFR-PLGA expression is that accumulation of the protein is inversely related to the level of induction of its mRNA. Cellular protein synthesis was inhibited >95% by induction of constructs for either translatable or untranslatable PLGA RNAs. Induction of PLGA RNA resulted in the depletion of free 30S ribosomal subunits and the appearance of new complexes in the polyribosome region of the gradient. Unlike normal polyribosomes, these complexes were resistant to breakdown in the presence of puromycin. The novel complexes contained 16S rRNA, 23S rRNA, and PLGA RNA. We conclude that multiple noninitiator SD-like sequences in the PLGA RNA inhibit cellular protein synthesis by sequestering 30S small ribosomal subunits and 70S ribosomes in nonfunctional complexes on the PLGA mRNA.
Collapse
Affiliation(s)
- Mary V Mawn
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
50
|
Petrelli D, LaTeana A, Garofalo C, Spurio R, Pon CL, Gualerzi CO. Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J 2001; 20:4560-9. [PMID: 11500382 PMCID: PMC125572 DOI: 10.1093/emboj/20.16.4560] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Initiation factor IF3 contains two domains separated by a flexible linker. While the isolated N-domain displayed neither affinity for ribosomes nor a detectable function, the isolated C-domain, added in amounts compensating for its reduced affinity for 30S subunits, performed all activities of intact IF3, namely: (i) dissociation of 70S ribosomes; (ii) shift of 30S-bound mRNA from 'stand-by' to 'P-decoding' site; (iii) dissociation of 30S-poly(U)-NacPhe-tRNA pseudo- initiation complexes; (iv) dissociation of fMet-tRNA from initiation complexes containing mRNA with the non-canonical initiation triplet AUU (AUUmRNA); (v) stimulation of mRNA translation regardless of its start codon and inhibition of AUUmRNA translation at high IF3C/ribosome ratios. These results indicate that while IF3 performs all its functions through a C-domain-30S interaction, the N-domain function is to provide additional binding energy so that its fluctuating interaction with the 30S subunit can modulate the thermodynamic stability of the 30S-IF3 complex and IF3 recycling. The localization of IF3C far away from the decoding site and anticodon stem-loop of P-site-bound tRNA indicates that the IF3 fidelity function does not entail its direct contact with these structures.
Collapse
Affiliation(s)
- Dezemona Petrelli
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, I-62032 Camerino (MC) and Institute of Biochemistry, University of Ancona, I-60131 Ancona, Italy Corresponding author e-mail
| | - Anna LaTeana
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, I-62032 Camerino (MC) and Institute of Biochemistry, University of Ancona, I-60131 Ancona, Italy Corresponding author e-mail
| | - Cristiana Garofalo
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, I-62032 Camerino (MC) and Institute of Biochemistry, University of Ancona, I-60131 Ancona, Italy Corresponding author e-mail
| | - Roberto Spurio
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, I-62032 Camerino (MC) and Institute of Biochemistry, University of Ancona, I-60131 Ancona, Italy Corresponding author e-mail
| | - Cynthia L. Pon
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, I-62032 Camerino (MC) and Institute of Biochemistry, University of Ancona, I-60131 Ancona, Italy Corresponding author e-mail
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, I-62032 Camerino (MC) and Institute of Biochemistry, University of Ancona, I-60131 Ancona, Italy Corresponding author e-mail
| |
Collapse
|