1
|
Peiter N, Einert A, Just P, Jannasch F, Najdovska M, Rother M. Defining the methanogenic SECIS element in vivo by targeted mutagenesis. RNA Biol 2025; 22:1-13. [PMID: 40000419 PMCID: PMC11881835 DOI: 10.1080/15476286.2025.2472448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In all domains of life, Archaea, Eukarya and Bacteria, the unusual amino acid selenocysteine (Sec) is co-translationally incorporated into proteins by recoding a UGA stop codon to a sense codon. A secondary structure on the mRNA, the selenocysteine insertion sequence (SECIS), is required, but its position, secondary structure and binding partner(s) are not conserved across the tree of life. Thus far, the nature of archaeal SECIS elements has been derived mainly from sequence analyses. A recently developed in vivo reporter system was used to study the structure-function relationships of SECIS elements in Methanococcus maripaludis. Through targeted mutagenesis, we defined the minimal functional SECIS element, the parts of the SECIS where structure and not the identity of the bases are relevant for function, and identified two conserved -and invariant- adenines that are most likely to interact with the other factor(s) of the Sec recoding machinery. Finally, we demonstrated the functionality of SECIS elements in the 5`-untranslated region of the mRNA and identified a potential mechanism of SECIS repositioning in the vicinity of the UGA for efficient selenocysteine insertion.
Collapse
Affiliation(s)
- Nils Peiter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Anna Einert
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Pauline Just
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Frida Jannasch
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Marija Najdovska
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Kayrouz CM, Seyedsayamdost MR. Enzymatic strategies for selenium incorporation into biological molecules. Curr Opin Chem Biol 2024; 81:102495. [PMID: 38954947 DOI: 10.1016/j.cbpa.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The trace element selenium (Se) is essential to the physiology of most organisms on the planet. The most well documented of Se's biological forms are selenoproteins, where selenocysteine often serves as the catalytic center for crucial redox processes. Se is also found in several other classes of biological molecules, including nucleic acids, sugars, and modified amino acids, although its role in the function of these metabolites is less understood. Despite its prevalence, only a small number of Se-specific biosynthetic pathways have been discovered. Around half of these were first characterized in the past three years, suggesting that the selenometabolome may be more diverse than previously appreciated. Here, we review the recent advances in our understanding of this intriguing biochemical space, and discuss prospects for future discovery efforts.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
3
|
Tijaro-Bulla S, Nyandwi SP, Cui H. Physiological and engineered tRNA aminoacylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1789. [PMID: 37042417 DOI: 10.1002/wrna.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Peiter N, Rother M. In vivo probing of SECIS-dependent selenocysteine translation in Archaea. Life Sci Alliance 2023; 6:6/1/e202201676. [PMID: 36316034 PMCID: PMC9622424 DOI: 10.26508/lsa.202201676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Cotranslational insertion of selenocysteine (Sec) proceeds by recoding UGA to a sense codon. This recoding is governed by the Sec insertion sequence (SECIS) element, an RNA structure on the mRNA, but size, location, structure determinants, and mechanism differ for Bacteria, Eukarya, and Archaea. For Archaea, the structure-function relation of the SECIS is poorly understood, as only rather laborious experimental approaches are established. Furthermore, these methods do not allow for quantitative probing of Sec insertion. In order to overcome these limitations, we engineered bacterial β-lactamase into an archaeal selenoprotein, thereby establishing a reporter system, which correlates enzyme activity to Sec insertion. Using this system, in vivo Sec insertion depending on the availability of selenium and the presence of a SECIS element was assessed in Methanococcus maripaludis Furthermore, a minimal SECIS element required for Sec insertion in M. maripaludis was defined and a conserved structural motif shown to be essential for function. Besides developing a convenient tool for selenium research, converting a bacterial enzyme into an archaeal selenoprotein provides proof of concept that novel selenoproteins can be engineered in Archaea.
Collapse
Affiliation(s)
- Nils Peiter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
6
|
Serrão VHB, Fernandes ADF, Basso LGM, Scortecci JF, Crusca Júnior E, Cornélio ML, de Souza BM, Palma MS, de Oliveira Neto M, Thiemann OH. The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNA Sec Recognition and its Interactions. J Mol Biol 2021; 433:167279. [PMID: 34624294 DOI: 10.1016/j.jmb.2021.167279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Chemistry and Biochemistry, University California - Santa Cruz, 1156 High St., Santa Cruz, CA 95060, United States
| | - Adriano de Freitas Fernandes
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil
| | - Luis Guilherme Mansor Basso
- Physical Sciences Laboratory, State University of Northern Rio de Janeiro Darcy Ribeiro - UENF, Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Faculty of Science, Philosophy and Letters, University of Sao Paulo, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Jéssica Fernandes Scortecci
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Edson Crusca Júnior
- Department of Physical Chemistry, Chemistry Institute of the São Paulo State University - UNESP, CEP 14800-900 Araraquara, SP, Brazil
| | - Marinônio Lopes Cornélio
- Physics Department, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University - UNESP, São Jose do Rio Preto, SP, Brazil
| | - Bibiana Monson de Souza
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mario de Oliveira Neto
- Bioscience Institute of Universidade Estadual Paulista, Rubião Jr., Botucatu, SP CEP 18618-000, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Genetics and Evolution, Federal University of São Carlos - UFSCar, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
8
|
Howard MT, Copeland PR. New Directions for Understanding the Codon Redefinition Required for Selenocysteine Incorporation. Biol Trace Elem Res 2019; 192:18-25. [PMID: 31342342 PMCID: PMC6801069 DOI: 10.1007/s12011-019-01827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
The fact that selenocysteine (Sec) is delivered to the elongating ribosome by a tRNA that recognizes a UGA stop codon makes it unique and a thorn in the side of what was originally thought to be a universal genetic code. The mechanism by which this redefinition occurs has been slowly coming to light over the past 30 years, but key questions remain. This review seeks to highlight the prominent mechanistic questions that will guide the direction of work in the near future. These questions arise from two major aspects of Sec incorporation: (1) novel functions for the Sec insertion sequence (SECIS) that resides in all selenoprotein mRNAs and (2) the myriad of RNA-binding proteins, both known and yet to be discovered, that act in concert to modify the translation elongation process to allow Sec incorporation.
Collapse
Affiliation(s)
- Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Paul R Copeland
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Ln, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Abstract
Selenoproteins are the family of proteins that contain the amino acid selenocysteine. Many selenoproteins, including glutathione peroxidases and thioredoxin reductases, play a role in maintaining cellular redox homeostasis. There are a number of examples of homologues of selenoproteins that utilize cysteine residues, raising the question of why selenocysteines are utilized. One hypothesis is that incorporation of selenocysteine protects against irreversible overoxidation, typical of cysteine-containing homologues under high oxidative stress. Studies of selenocysteine function are hampered by challenges both in detection and in recombinant expression of selenoproteins. In fact, about half of the 25 known human selenoproteins remain uncharacterized. Historically, selenoproteins were first detected via labeling with radioactive 75Se or by use of inductively coupled plasma-mass spectrometry to monitor nonradioactive selenium. More recently, tandem mass-spectrometry techniques have been developed to detect selenocysteine-containing peptides. For example, the isotopic distribution of selenium has been used as a unique signature to identify selenium-containing peptides from unenriched proteome samples. Additionally, selenocysteine-containing proteins and peptides were selectively enriched using thiol-reactive electrophiles by exploiting the increased reactivity of selenols relative to thiols, especially under low pH conditions. Importantly, the reactivity-based enrichment of selenoproteins can differentiate between oxidized and reduced selenoproteins, providing insight into the activity state. These mass spectrometry-based selenoprotein detection approaches have enabled (1) production of selenoproteome expression atlases, (2) identification of aging-associated changes in selenoprotein expression, (3) characterization of selenocysteine reactivity across the selenoprotein family, and (4) interrogation of selenoprotein targets of small-molecule drugs. Further investigations of selenoprotein function would benefit from recombinant expression of selenoproteins. However, the endogenous mechanism of selenoprotein production makes recombinant expression challenging. Primarily, selenocysteine is biosynthesized on its own tRNA, is dependent on multiple enzymatic steps, and is highly sensitive to selenium concentrations. Furthermore, selenocysteine is encoded by the stop codon UGA, and suppression of that stop codon requires a selenocysteine insertion sequence element in the selenoprotein mRNA. In order to circumvent the low efficiency of the endogenous machinery, selenoproteins have been produced in vitro through native chemical ligation and expressed protein ligation. Attempts have also been made to engineer the endogenous machinery for increased efficiency, including recoding the selenocysteine codon, and engineering the tRNA and the selenocysteine insertion sequence element. Alternatively, genetic code expansion can be used to generate selenoproteins. This approach allows for selenoprotein production directly within its native cellular environment, while bypassing the endogenous selenocysteine incorporation machinery. Furthermore, by incorporating a caged selenocysteine by genetic code expansion, selenoprotein activity can be spatially and temporally controlled. Genetic code expansion has allowed for the expression and uncaging of human selenoproteins in E. coli and more recently in mammalian cells. Together, advances in selenoprotein detection and expression should enable a better understanding of selenoprotein function and provide insight into the necessity for selenocysteine production.
Collapse
Affiliation(s)
- Jennifer C. Peeler
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
10
|
Abstract
About 50 years ago, research on the biological function of the element selenium was initiated by the report of J. Pinsent that generation of formate dehydrogenase activity by Escherichia coli requires the presence of both selenite and molybdate in the growth medium. In nature, selenium is predominantly associated with sulfur minerals, the Se/S ratios of which vary widely depending on the geological formation. Because of the chemical similarity between the two elements, selenium can intrude into the sulfur pathway at high Se/S ratios and can be statistically incorporated into polypeptides. The central macromolecule for the synthesis and incorporation of selenocysteine is a specialized tRNA, designated tRNASec. It is the product of the selC (previously fdhC) gene. tRNASec fulfils a multitude of functions, which are based on its unique structural properties, compared to canonical elongator RNAs. tRNASec possesses the discriminator base G73 and the identity elements of serine-specific tRNA isoacceptors. The conversion of seryl-tRNASec into selenocysteyl-tRNASec is catalyzed by selenocysteine synthase, the product of the selA gene (previously the fdhA locus, which was later shown to harbor two genes, selA and selB). The crucial element for the regulation is a putative secondary structure at the 5' end of the untranslated region of the selAB mRNA. The generation and analysis of transcriptional and translational reporter gene fusions of selA and selB yield an expression pattern identical to that obtained by measuring the actual amounts of SelA and SelB proteins.
Collapse
|
11
|
Itoh Y, Sekine SI, Yokoyama S. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB. Nucleic Acids Res 2015; 43:9028-38. [PMID: 26304550 PMCID: PMC4605307 DOI: 10.1093/nar/gkv833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 01/23/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid in translation, uses its specific tRNA (tRNASec) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNASec (Sec-tRNASec) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal structures have been reported. In this study, we determined the crystal structure of the full-length SelB from the bacterium Aquifex aeolicus, in complex with a GTP analog, at 3.2-Å resolution. SelB consists of three EF-Tu-like domains (D1–3), followed by four winged-helix domains (WHD1–4). The spacer region, connecting the N- and C-terminal halves, fixes the position of WHD1 relative to D3. The binding site for the Sec moiety of Sec-tRNASec is located on the interface between D1 and D2, where a cysteine molecule from the crystallization solution is coordinated by Arg residues, which may mimic Sec binding. The Sec-binding site is smaller and more exposed than the corresponding site of EF-Tu. Complex models of Sec-tRNASec, SECIS RNA, and the 70S ribosome suggest that the unique secondary structure of tRNASec allows SelB to specifically recognize tRNASec and characteristically place it at the ribosomal A-site.
Collapse
Affiliation(s)
- Yuzuru Itoh
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
12
|
Seeher S, Atassi T, Mahdi Y, Carlson BA, Braun D, Wirth EK, Klein MO, Reix N, Miniard AC, Schomburg L, Hatfield DL, Driscoll DM, Schweizer U. Secisbp2 is essential for embryonic development and enhances selenoprotein expression. Antioxid Redox Signal 2014; 21:835-49. [PMID: 24274065 PMCID: PMC4116110 DOI: 10.1089/ars.2013.5358] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIMS The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. RESULTS Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. INNOVATION We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. CONCLUSION In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered.
Collapse
Affiliation(s)
- Sandra Seeher
- 1 Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schaefer-Ramadan S, Thorpe C, Rozovsky S. Site-specific insertion of selenium into the redox-active disulfide of the flavoprotein augmenter of liver regeneration. Arch Biochem Biophys 2014; 548:60-5. [PMID: 24582598 PMCID: PMC4009370 DOI: 10.1016/j.abb.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Augmenter of liver regeneration (sfALR) is a small disulfide-bridged homodimeric flavoprotein with sulfhydryl oxidase activity. Here, we investigate the catalytic and spectroscopic consequences of selectively replacing C145 by a selenocysteine to complement earlier studies in which random substitution of ∼90% of the 6 cysteine residues per sfALR monomer was achieved growing Escherichia coli on selenite. A selenocysteine insertion sequence (SECIS) element was installed within the gene for human sfALR. SecALR2 showed a spectrum comparable to that of wild-type sfALR. The catalytic efficiency of SecALR2 towards dithiothreitol was 6.8-fold lower than a corresponding construct in which position 145 was returned to a cysteine residue while retaining the additional mutations introduced with the SECIS element. This all-cysteine control enzyme formed a mixed disulfide between C142 and β-mercaptoethanol releasing C145 to form a thiolate-flavin charge transfer absorbance band at ∼530nm. In contrast, SecALR2 showed a prominent long-wavelength absorbance at 585 nm consistent with the expectation that a selenolate would be a better charge-transfer donor to the isoalloxazine ring. These data show the robustness of the ALR protein fold towards the multiple mutations required to insert the SECIS element and provide the first example of a selenolate to flavin charge-transfer complex.
Collapse
Affiliation(s)
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
14
|
Gonzalez-Flores JN, Gupta N, DeMong LW, Copeland PR. The selenocysteine-specific elongation factor contains a novel and multi-functional domain. J Biol Chem 2012; 287:38936-45. [PMID: 22992746 DOI: 10.1074/jbc.m112.415463] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenocysteine (Sec)-specific eukaryotic elongation factor (eEFSec) delivers the aminoacylated selenocysteine-tRNA (Sec-tRNA(Sec)) to the ribosome and suppresses UGA codons that are upstream of Sec insertion sequence (SECIS) elements bound by SECIS-binding protein 2 (SBP2). Multiple studies have highlighted the importance of SBP2 forming a complex with the SECIS element, but it is not clear how this regulates eEFSec during Sec incorporation. Compared with the canonical elongation factor eEF1A, eEFSec has a unique C-terminal extension called Domain IV. To understand the role of Domain IV in Sec incorporation, we examined a series of mutant proteins for all of the known molecular functions for eEFSec: GTP hydrolysis, Sec-tRNA(Sec) binding, and SBP2/SECIS binding. In addition, wild-type and mutant versions of eEFSec were analyzed for Sec incorporation activity in a novel eEFSec-dependent translation extract. We have found that Domain IV is essential for both tRNA and SBP2 binding as well as regulating GTPase activity. We propose a model where the SBP2/SECIS complex activates eEFSec by directing functional interactions between Domain IV and the ribosome to promote Sec-tRNA(Sec) binding and accommodation into the ribosomal A-site.
Collapse
Affiliation(s)
- Jonathan N Gonzalez-Flores
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
15
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
16
|
Chiba S, Itoh Y, Sekine SI, Yokoyama S. Structural Basis for the Major Role of O-Phosphoseryl-tRNA Kinase in the UGA-Specific Encoding of Selenocysteine. Mol Cell 2010; 39:410-20. [DOI: 10.1016/j.molcel.2010.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/23/2010] [Accepted: 06/23/2010] [Indexed: 01/23/2023]
|
17
|
Abstract
The co-translational incorporation of selenocysteine (Sec) requires that UGA be recognized as a sense rather than a nonsense codon. This is accomplished by the concerted action of a Sec insertion sequence (SECIS) element, SECIS binding protein 2, and a ternary complex of the Sec specific elongation factor, Sec-tRNA(Sec), and GTP. The mechanism by which they alter the canonical protein synthesis reaction has been elusive. Here we present an overview of the mechanistic perspective on Sec incorporation, highlighting recent advances in the field.
Collapse
Affiliation(s)
- Jesse Donovan
- Department of Microbiology, Molecular Genetics, and Immunology, Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
18
|
Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 2010; 67:677-700. [PMID: 19859661 PMCID: PMC11115722 DOI: 10.1007/s00018-009-0177-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/16/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated decay is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons. However, as we review here, NMD is far from being a simple quality control mechanism; it also regulates the stability of many wild-type transcripts. We summarise the abundance of research that has characterised each of the NMD factors and present a unified model for the recognition of NMD substrates. The contentious issue of how and where NMD occurs is also discussed, particularly with regard to P-bodies and SMG6-driven endonucleolytic degradation. In recent years, the discovery of additional functions played by several of the NMD factors has further complicated the picture. Therefore, we also review the reported roles of UPF1, SMG1 and SMG6 in other cellular processes.
Collapse
Affiliation(s)
- Pamela Nicholson
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Hasmik Yepiskoposyan
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Stefanie Metze
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Rodolfo Zamudio Orozco
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Nicole Kleinschmidt
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Oliver Mühlemann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| |
Collapse
|
19
|
Yoshizawa S, Böck A. The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta Gen Subj 2009; 1790:1404-14. [DOI: 10.1016/j.bbagen.2009.03.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
20
|
Itoh Y, Chiba S, Sekine SI, Yokoyama S. Crystal structure of human selenocysteine tRNA. Nucleic Acids Res 2009; 37:6259-68. [PMID: 19692584 PMCID: PMC2764427 DOI: 10.1093/nar/gkp648] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Selenocysteine (Sec) is the 21st amino acid in translation. Sec tRNA (tRNASec) has an anticodon complementary to the UGA codon. We solved the crystal structure of human tRNASec. tRNASec has a 9-bp acceptor stem and a 4-bp T stem, in contrast with the 7-bp acceptor stem and the 5-bp T stem in the canonical tRNAs. The acceptor stem is kinked between the U6:U67 and G7:C66 base pairs, leading to a bent acceptor-T stem helix. tRNASec has a 6-bp D stem and a 4-nt D loop. The long D stem includes unique A14:U21 and G15:C20a pairs. The D-loop:T-loop interactions include the base pairs G18:U55 and U16:U59, and a unique base triple, U20:G19:C56. The extra arm comprises of a 6-bp stem and a 4-nt loop. Remarkably, the D stem and the extra arm do not form tertiary interactions in tRNASec. Instead, tRNASec has an open cavity, in place of the tertiary core of a canonical tRNA. The linker residues, A8 and U9, connecting the acceptor and D stems, are not involved in tertiary base pairing. Instead, U9 is stacked on the first base pair of the extra arm. These features might allow tRNASec to be the target of the Sec synthesis/incorporation machineries.
Collapse
Affiliation(s)
- Yuzuru Itoh
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
21
|
Squires JE, Berry MJ. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 2008; 60:232-5. [PMID: 18344183 DOI: 10.1002/iub.38] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selenium is an essential micronutrient that has been linked to various aspects of human health. Selenium exerts its biological activity through the incorporation of the amino acid, selenocysteine (Sec), into a unique class of proteins termed selenoproteins. Sec incorporation occurs cotranslationally at UGA codons in archaea, prokaryotes, and eukaryotes. UGA codons specify Sec coding rather than termination by the presence of specific secondary structures in mRNAs termed selenocysteine insertion (SECIS) elements, and trans-acting factors that associate with SECIS elements. Herein, we discuss the various proteins known to function in eukaryotic selenoprotein biosynthesis, including several players whose roles have only been elucidated very recently.
Collapse
Affiliation(s)
- Jeffrey E Squires
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | | |
Collapse
|
22
|
Wessjohann LA, Schneider A, Abbas M, Brandt W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 2008; 388:997-1006. [PMID: 17937613 DOI: 10.1515/bc.2007.138] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
What makes selenoenzymes--seen from a chemist's view--so special that they cannot be substituted by just more analogous or adapted sulfur proteins? This review compiles and compares physicochemical properties of selenium and sulfur, synthetic routes to selenocysteine (Sec) and its peptides, and comparative studies of relevant thiols and selenols and their (mixed) dichalcogens, required to understand the special role of selenium in selenoproteins on the atomic molecular level. The biochemically most relevant differences are the higher polarizability of Se- and the lower pKa of SeH. The latter has a strikingly different pH-dependence than thiols, with selenols being active at much lower pH. Finally, selected typical enzymatic mechanisms which involve selenocysteine are critically discussed, also in view of the authors' own results.
Collapse
Affiliation(s)
- Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany.
| | | | | | | |
Collapse
|
23
|
Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli. Appl Environ Microbiol 2007; 74:1385-93. [PMID: 18165360 DOI: 10.1128/aem.02238-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selenoprotein synthesis in Escherichia coli strictly depends on the presence of a specific selenocysteine insertion sequence (SECIS) following the selenocysteine-encoding UGA codon of the respective mRNA. It is recognized by the selenocysteine-specific elongation factor SelB, leading to cotranslational insertion of selenocysteine into the nascent polypeptide chain. The synthesis of three different selenoproteins from the gram-positive anaerobe Eubacterium acidaminophilum in E. coli was studied. Incorporation of (75)Se into glycine reductase protein B (GrdB1), the peroxiredoxin PrxU, and selenophosphate synthetase (SelD1) was negligible in an E. coli wild-type strain and was fully absent in an E. coli SelB mutant. Selenoprotein synthesis, however, was strongly increased if selB and selC (tRNA(Sec)) from E. acidaminophilum were coexpressed. Putative secondary structures downstream of the UGA codons did not show any sequence similarity to each other or to the E. coli SECIS element. However, mutations in these structures strongly reduced the amount of (75)Se-labeled protein, indicating that they indeed act as SECIS elements. UGA readthrough mediated by the three different SECIS elements was further analyzed using gst-lacZ translational fusions. In the presence of selB and selC from E. acidaminophilum, UGA readthrough was 36 to 64% compared to the respective cysteine-encoding UGC variant. UGA readthrough of SECIS elements present in Desulfomicrobium baculatum (hydV), Treponema denticola (selD), and Campylobacter jejuni (selW-like gene) was also considerably enhanced in the presence of E. acidaminophilum selB and selC. This indicates recognition of these SECIS elements and might open new perspectives for heterologous selenoprotein synthesis in E. coli.
Collapse
|
24
|
Howard MT, Moyle MW, Aggarwal G, Carlson BA, Anderson CB. A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec. RNA (NEW YORK, N.Y.) 2007; 13:912-20. [PMID: 17456565 PMCID: PMC1869034 DOI: 10.1261/rna.473907] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Selenocysteine insertion during decoding of eukaryotic selenoprotein mRNA requires several trans-acting factors and a cis-acting selenocysteine insertion sequence (SECIS) usually located in the 3' UTR. A second cis-acting selenocysteine codon redefinition element (SRE) has recently been described that resides near the UGA-Sec codon of selenoprotein N (SEPN1). Similar phylogenetically conserved elements can be predicted in a subset of eukaryotic selenoprotein mRNAs. Previous experimental analysis of the SEPN1 SRE revealed it to have a stimulatory effect on readthrough of the UGA-Sec codon, which was not dependent upon the presence of a SECIS element in the 3' UTR; although, as expected, readthrough efficiency was further elevated by inclusion of a SECIS. In order to examine the nature of the redefinition event stimulated by the SEPN1 SRE, we have modified an experimentally tractable in vitro translation system that recapitulates efficient selenocysteine insertion. The results presented here illustrate that the SRE element has a stimulatory effect on decoding of the UGA-Sec codon by both the methylated and unmethylated isoforms of Sec tRNA([Ser]Sec), and confirm that efficient selenocysteine insertion is dependent on the presence of a 3'-UTR SECIS. The variation in recoding elements predicted near UGA-Sec codons implies that these elements may play a differential role in determining the amount of selenoprotein produced by acting as controllers of UGA decoding efficiency.
Collapse
Affiliation(s)
- Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | |
Collapse
|
25
|
Ose T, Soler N, Rasubala L, Kuroki K, Kohda D, Fourmy D, Yoshizawa S, Maenaka K. Structural Basis for Dynamic Interdomain Movement and RNA Recognition of the Selenocysteine-Specific Elongation Factor SelB. Structure 2007; 15:577-86. [PMID: 17502103 DOI: 10.1016/j.str.2007.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 03/15/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Selenocysteine (Sec) is the "21st" amino acid and is genetically encoded by an unusual incorporation system. The stop codon UGA becomes a Sec codon when the selenocysteine insertion sequence (SECIS) exists downstream of UGA. Sec incorporation requires a specific elongation factor, SelB, which recognizes tRNA(Sec) via use of an EF-Tu-like domain and the SECIS mRNA hairpin via use of a C-terminal domain (SelB-C). SelB functions in multiple translational steps: binding to SECIS mRNA and tRNA(Sec), delivery of tRNA(Sec) onto an A site, GTP hydrolysis, and release from tRNA and mRNA. However, this dynamic mechanism remains to be revealed. Here, we report a large domain rearrangement in the structure of SelB-C complexed with RNA. Surprisingly, the interdomain region forms new interactions with the phosphate backbone of a neighboring RNA, distinct from SECIS RNA binding. This SelB-RNA interaction is sequence independent, possibly reflecting SelB-tRNA/-rRNA recognitions. Based on these data, the dynamic SelB-ribosome-mRNA-tRNA interactions will be discussed.
Collapse
Affiliation(s)
- Toyoyuki Ose
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shen Q, Fan L, Newburger PE. Nuclease sensitive element binding protein 1 associates with the selenocysteine insertion sequence and functions in mammalian selenoprotein translation. J Cell Physiol 2006; 207:775-83. [PMID: 16508950 PMCID: PMC3730826 DOI: 10.1002/jcp.20619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosynthesis of selenium-containing proteins requires insertion of the unusual amino acid selenocysteine by alternative translation of a UGA codon, which ordinarily serves as a stop codon. In eukaryotes, selenoprotein translation depends upon one or more selenocysteine insertion sequence (SECIS) elements located in the 3'-untranslated region of the mRNA, as well as several SECIS-binding proteins. Our laboratory has previously identified nuclease sensitive element binding protein 1 (NSEP1) as another SECIS-binding protein, but evidence has been presented both for and against its role in SECIS binding in vivo and in selenoprotein translation. Our current studies sought to resolve this controversy, first by investigating whether NSEP1 interacts closely with SECIS elements within intact cells. After reversible in vivo cross-linking and ribonucleoprotein immunoprecipitation, mRNAs encoding two glutathione peroxidase family members co-precipitated with NSEP1 in both human and rat cell lines. Co-immunoprecipitation of an epitope-tagged GPX1 construct depended upon an intact SECIS element in its 3'-untranslated region. To test the functional importance of this interaction on selenoprotein translation, we used small inhibitory RNAs to reduce the NSEP1 content of tissue culture cells and then examined the effect of that reduction on the activity of a SECIS-dependent luciferase reporter gene for which expression depends upon readthrough of a UGA codon. Co-transfection of small inhibitory RNAs directed against NSEP1 decreased its expression by approximately 50% and significantly reduced luciferase activity. These studies demonstrate that NSEP1 is an authentic SECIS binding protein that is structurally associated with the selenoprotein translation complex and functionally involved in the translation of selenoproteins in mammalian cells.
Collapse
Affiliation(s)
- Qichang Shen
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lin Fan
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Peter E. Newburger
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Correspondence to: Dr. Peter E. Newburger, Department of Pediatrics, LRB 404, 364 Plantation Street, Worcester, Massachusetts 01605.
| |
Collapse
|
27
|
Thanbichler M, Böck A. Purification and characterization of hexahistidine-tagged elongation factor SelB. Protein Expr Purif 2004; 31:265-70. [PMID: 14550646 DOI: 10.1016/s1046-5928(03)00167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cotranslational incorporation of selenocysteine into proteins is mediated by a specialized elongation factor, named SelB. Its amino-terminal three domains show homology to elongation factor EF-Tu and accordingly bind GTP and selenocysteyl-tRNASec. In addition, SelB exhibits a long carboxy-terminal extension that interacts with a secondary structure of selenoprotein mRNAs (SECIS element) positioned immediately downstream of the in-frame UGA codons specifying the sites of selenocysteine insertion. In this report, a fast and efficient method for the purification of large amounts of hexahistidine-tagged SelB is presented. After two chromatographic steps, 10 mg pure protein was isolated from 12 g wet cell pellet. Biochemical analysis of the purified protein showed that the tag does not influence the interaction of SelB with guanine nucleotides, SECIS elements, and selenocysteyl-tRNASec. In addition, the fusion protein is fully functional in mediating UGA read-through in vivo. It therefore represents an excellent model for studying the function of SelB and the mechanisms of selenocysteine incorporation.
Collapse
Affiliation(s)
- Martin Thanbichler
- Department of Biology I, University of Munich, Maria-Ward-Str 1a, 80638 Munich, Germany.
| | | |
Collapse
|
28
|
Abstract
Selenium is an essential trace element that is incorporated into proteins as selenocysteine (Sec), the twenty-first amino acid. Sec is encoded by a UGA codon in the selenoprotein mRNA. The decoding of UGA as Sec requires the reprogramming of translation because UGA is normally read as a stop codon. The translation of selenoprotein mRNAs requires cis-acting sequences in the mRNA and novel trans-acting factors dedicated to Sec incorporation. Selenoprotein synthesis in vivo is highly selenium-dependent, and there is a hierarchy of selenoprotein expression in mammals when selenium is limiting. This review describes emerging themes from studies on the mechanism, kinetics, and efficiency of Sec insertion in prokaryotes. Recent developments that provide mechanistic insight into how the eukaryotic ribosome distinguishes between UGA/Sec and UGA/stop codons are discussed. The efficiency and regulation of mammalian selenoprotein synthesis are considered in the context of current models for Sec insertion.
Collapse
Affiliation(s)
- Donna M Driscoll
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
29
|
Sandman KE, Tardiff DF, Neely LA, Noren CJ. Revised Escherichia coli selenocysteine insertion requirements determined by in vivo screening of combinatorial libraries of SECIS variants. Nucleic Acids Res 2003; 31:2234-41. [PMID: 12682374 PMCID: PMC153732 DOI: 10.1093/nar/gkg304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Revised: 01/19/2003] [Accepted: 02/12/2003] [Indexed: 11/14/2022] Open
Abstract
To investigate the stringency of the Escherichia coli selenocysteine insertion sequence (SECIS) requirements, libraries of SECIS variants were screened via a novel method in which suppression of the selenocysteine (Sec) opal codon was coupled to bacteriophage plaque formation. The SECIS variant libraries were designed with a mostly paired lower stem, so that randomization could be focused on the upper stem and loop regions. We identified 19 functional non-native SECIS sequences that violated the expected pairing requirements for the SECIS upper stem. All of the SECIS variants were shown to permit Sec insertion in phage (by chemical modification of the Sec residue) and fused to lacZalpha (by beta-galactosidase assay). The diminished pairing of the upper stem appears to be mitigated by the overall stem stability; a given upper stem variant has significantly higher readthrough in the context of a paired, rather than unpaired, lower stem. These results suggest an unexpected downstream sequence flexibility in prokaryotic selenoprotein expression.
Collapse
|
30
|
Zavacki AM, Mansell JB, Chung M, Klimovitsky B, Harney JW, Berry MJ. Coupled tRNA(Sec)-dependent assembly of the selenocysteine decoding apparatus. Mol Cell 2003; 11:773-81. [PMID: 12667458 DOI: 10.1016/s1097-2765(03)00064-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SECIS elements recode UGA codons from "stop" to "sense." These RNA secondary structures, present in eukaryotic selenoprotein mRNA 3' untranslated regions, recruit a SECIS binding protein, which recruits a selenocysteine-specific elongation factor-tRNA complex. Elucidation of the assembly of this multicomponent complex is crucial to understanding the mechanism of selenocysteine incorporation. Coprecipitation studies identified the C-terminal 64 amino acids of the elongation factor as sufficient for interaction with the SECIS binding protein. Selenocysteyl-tRNA is required for this interaction; the two factors do not coprecipitate in its absence. Finally, through promoting this interaction, selenocysteyl-tRNA stabilizes the C-terminal domain of the elongation factor. We suggest that the coupling effect is critical to preventing nonproductive decoding attempts and hence forms a basis for effective selenoprotein synthesis.
Collapse
Affiliation(s)
- Ann Marie Zavacki
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
31
|
Thanbichler M, Böck A. The function of SECIS RNA in translational control of gene expression in Escherichia coli. EMBO J 2002; 21:6925-34. [PMID: 12486013 PMCID: PMC139081 DOI: 10.1093/emboj/cdf673] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incorporation of selenocysteine into proteins is directed by specific UGA codons and mRNA secondary structures, designated SECIS elements. In bacteria, these elements are positioned within the reading frame of selenoprotein mRNAs immediately downstream of the triplet coding for selenocysteine, and they tether a complex of the selenocysteine-specific elongation factor SelB, GTP and selenocysteyl-tRNA(Sec) to the site of UGA decoding. A SECIS-like structure was identified in the 5' non-translated region of the selAB transcript, encoding selenocysteine synthase and SelB. It specifically binds to SelB and the formation of a SelB.GTP.selenocysteyl-tRNA(Sec) complex on the SECIS-like element represses expression of the downstream gene. This effect is abolished by mutations preventing formation of the complex. The regulatory pattern observed correlated with the levels of sel gene products. As quaternary complex formation on the SECIS-like element did not influence the transcription rate and only slightly reduced the level of selAB mRNA, it was concluded that the structure is involved in regulating translation initiation efficiency, thereby coupling selenocysteine biosynthesis to the availability of the trace element selenium.
Collapse
Affiliation(s)
| | - August Böck
- Department of Biology I, Microbiology, University of Munich, Maria-Ward-Straße 1a, D-80638 Munich, Germany
Corresponding author e-mail:
| |
Collapse
|
32
|
Abstract
The biochemistry of selenium-containing natural products, including selenoproteins, is reviewed up to May 2002. Particular emphasis is placed on the assimilation of selenium from inorganic and organic selenium sources for selenoprotein synthesis, the catalytic role of selenium in enzymes, and medical implications of an unbalanced selenium supply. The review contains 393 references on key discoveries and recent progress.
Collapse
Affiliation(s)
- Marc Birringer
- Dept. of Vitamins and Atherosclerosis, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | | | |
Collapse
|
33
|
Abstract
My undergraduate education at Cornell University was followed by graduate studies on methane fermentations under the guidance of H.A. Barker at the University of California, Berkeley. My Ph.D. degree was granted in June 1949. Two anaerobic microorganisms isolated from the mud flats of San Francisco Bay served as sources of biochemical research material for later studies at the National Institutes of Health in Bethesda. These organisms, Methanococcus vannielii and Clostridium sticklandii, proved to be especially rich sources of selenium-dependent enzymes and seleno-tRNAs. New B12 coenzyme-dependent enzymes that catalyzed intermediate steps in the anaerobic conversion of lysine to fatty acids and ammonia were isolated from C. sticklandii and characterized. My research efforts since 1970 have dealt primarily with various aspects of selenium biochemistry. We have shown that selenium is an essential constituent of several enzymes in prokaryotes. Se is present in these either as a selenocysteine residue in the protein or alternatively, in a few molybdoenzymes, as a component of a bound cofactor. Recent studies with a human adenocarcinoma cell line led to the unexpected discovery that selenocysteine occurs in mammalian thioredoxin reductase. The selenium located in a redox center of this enzyme is essential for catalytic activity.
Collapse
Affiliation(s)
- Thressa Campbell Stadtman
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA.
| |
Collapse
|
34
|
Fourmy D, Guittet E, Yoshizawa S. Structure of prokaryotic SECIS mRNA hairpin and its interaction with elongation factor SelB. J Mol Biol 2002; 324:137-50. [PMID: 12421564 DOI: 10.1016/s0022-2836(02)01030-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In prokaryotes, the recoding of a UGA stop codon as a selenocysteine codon requires a special elongation factor (EF) SelB and a stem-loop structure within the mRNA called a selenocysteine insertion sequence (SECIS). Here, we used NMR spectroscopy to determine the solution structure of the SECIS mRNA hairpin and characterized its interaction with the mRNA-binding domain of SelB. Our structural and biochemical data identified the conserved structural features important for binding to EF SelB within different SECIS RNA sequences. In the free SECIS mRNA structure, conserved nucleotides are strongly exposed for recognition by SelB. Binding of the C-terminal domain of SelB stabilizes the RNA secondary structure. In the protein-RNA complex, a Watson-Crick loop base-pair leaves a GpU sequence accessible for SelB recognition. This GpU sequence at the tip of the capping tetraloop and a bulge uracil five Watson-Crick base-pairs apart from the GpU are essential for interaction with SelB.
Collapse
Affiliation(s)
- Dominique Fourmy
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
35
|
Rother M, Resch A, Gardner WL, Whitman WB, Böck A. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Mol Microbiol 2001; 40:900-8. [PMID: 11401697 DOI: 10.1046/j.1365-2958.2001.02433.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous in silico analysis of selenoprotein genes in Archaea revealed that the selenocysteine insertion (SECIS) motif necessary to recode UGA with selenocysteine was not adjacent to the UGA codon as is found in Bacteria. Rather, paralogous stem-loop structures are located in the 3' untranslated region (3' UTR), reminiscent of the situation in Eukarya. To assess the function of such putative SECIS elements, the Methanococcus jannaschii MJ0029 (fruA, which encodes the A subunit of the coenzyme F420-reducing hydrogenase) mRNA was mapped in vivo and probed enzymatically in vitro. It was shown that the SECIS element is indeed transcribed as part of the respective mRNA and that its secondary structure corresponds to that predicted by RNA folding programs. Its ability to direct selenocysteine insertion in vivo was demonstrated by the heterologous expression of MJ0029 in Methanococcus maripaludis, resulting in the synthesis of an additional selenoprotein, as analysed by 75Se labelling. The selective advantage of moving the SECIS element in the untranslated region may confer the ability to insert more than one selenocysteine into a single polypeptide. Evidence for this assumption was provided by the finding that the M. maripaludis genome contains an open reading frame with two in frame TGA codons, followed by a stem-loop structure in the 3' UTR of the mRNA that corresponds to the archaeal SECIS element.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
36
|
Engelberg-Kulka H, Liu Z, Li C, Reches M. An extended Escherichia coli "selenocysteine insertion sequence" (SECIS) as a multifunctional RNA structure. Biofactors 2001; 14:61-8. [PMID: 11568441 DOI: 10.1002/biof.5520140109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genetic code, once thought to be rigid, has been found to permit several alternatives in its reading. Interesting alternative relates to the function of the UGA codon. Usually, it acts as a stop codon, but it can also direct the incorporation of the amino acid selenocysteine into a polypeptide. UGA-directed selenocysteine incorporation requires a cis-acting mRNA element called the "selenocysteine insertion sequence" (SECIS) that can form a stem-loop RNA structure. Here we discuss our investigation on the E. coli SECIS. This includes the follows: 1) The nature of the minimal E. coli SECIS. We found that in E. coli only the upper-stem and loop of 17 nucleotides of the SECIS is necessary for selenocysteine incorporation on the condition that it is located in the proper distance from the UGA [34]; 2) The upper stem and loop structure carries a bulged U residue that is required for selenocysteine incorporation [34] because of its interaction with SelB; and 3) We described an extended fdhF SECIS that includes the information for an additional function: The prevention of UGA readthrough under conditions of selenium deficiency [35]. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Finally, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium the SECIS enables one of two alternatives for the translational machinery: Either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.
Collapse
Affiliation(s)
- H Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
37
|
Abstract
Since the discovery of selenocysteine as the 21st amino acid considerable progress has been made in elucidating the system responsible for its insertion into proteins. Elongation factor SELB, whose amino-terminal part shows homology to EF-Tu, was found to be the key component mediating delivery of selenocysteyl-tRNA(Sec) to the ribosomal A site. It exhibits a distinct tertiary structure comprising binding sites for guanosine nucleotides, the cognate tRNA, an mRNA secondary structure (SECIS element) and presumably ribosomal components. The kinetics of interaction of SELB with its ligands have been studied in detail. GDP was found to bind with about 20-fold lower affinity than GTP and to be in rapid exchange, which obviates the need for a guanosine nucleotide exchange factor. The affinity of SELB for the SECIS element is in the range of 1 nM and further increases upon binding of selenocysteyl-tRNA(Sec) to the protein. This supports the model that SELB forms a tight quaternary complex on the SECIS element which is loosened after insertion of the tRNA into the ribosomal A site and the concomitant hydrolysis of GTP.
Collapse
Affiliation(s)
- M Thanbichler
- Institute of Genetics and Microbiology, University of Munich, Maria-Ward-Str. 1a, 80638 Munich, Germany.
| | | |
Collapse
|
38
|
Li C, Reches M, Engelberg-Kulka H. The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: a genetic approach. J Bacteriol 2000; 182:6302-7. [PMID: 11053373 PMCID: PMC94775 DOI: 10.1128/jb.182.22.6302-6307.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UGA codon, which usually acts as a stop codon, can also direct the incorporation into a protein of the amino acid selenocysteine. This UGA decoding process requires a cis-acting mRNA element called the selenocysteine insertion sequence (SECIS), which can form a stem-loop structure. In Escherichia coli, selenocysteine incorporation requires only the 17-nucleotide-long upper stem-loop structure of the fdhF SECIS. This structure carries a bulged nucleotide U at position 17. Here we asked whether the single bulged nucleotide located in the upper stem-loop structure of the E. coli fdhF SECIS is involved in the in vivo interaction with SelB. We used a genetic approach, generating and characterizing selB mutations that suppress mutations of the bulged nucleotide in the SECIS. All the selB suppressor mutations isolated were clustered in a region corresponding to 28 amino acids in the SelB C-terminal subdomain 4b. These selB suppressor mutations were also found to suppress mutations in either the loop or the upper stem of the E. coli SECIS. Thus, the E. coli SECIS upper stem-loop structure can be considered a "single suppressible unit," suggesting that there is some flexibility to the nature of the interaction between this element and SelB.
Collapse
Affiliation(s)
- C Li
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
39
|
Fletcher JE, Copeland PR, Driscoll DM. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon. RNA (NEW YORK, N.Y.) 2000; 6:1573-1584. [PMID: 11105757 PMCID: PMC1370027 DOI: 10.1017/s1355838200000625] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The translation of mammalian selenoprotein mRNAs requires the 3' untranslated region that contains a selenocysteine insertion sequence (SECIS) element necessary for decoding an in-frame UGA codon as selenocysteine (Sec). Selenoprotein biosynthesis is inefficient, which may be due to competition between Sec insertion and termination at the UGA/Sec codon. We analyzed the polysome distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, a member of the glutathione peroxidase family of selenoproteins, in rat hepatoma cell and mouse liver extracts. In linear sucrose gradients, the sedimentation velocity of PHGPx mRNA was impeded compared to CuZn superoxide dismutase (SOD) mRNA, which has a coding region of similar size. Selenium supplementation increased the loading of ribosomes onto PHGPx mRNA, but not CuZn SOD mRNA. To determine whether the slow sedimentation velocity of PHGPx mRNA is due to a block in elongation, we analyzed the polysome distribution of wild-type and mutant mRNAs translated in vitro. Mutation of the UGA/Sec codon to UGU/cysteine increased ribosome loading and protein synthesis. When UGA/Sec was replaced with UAA or when the SECIS element core was deleted, the distribution of the mutant mRNAs was similar to the wild-type mRNA. Addition of SECIS-binding protein SBP2, which is essential for Sec insertion, increased ribosome loading and translation of wild-type PHGPx mRNA, but had no effect on the mutant mRNAs. These results suggest that elongation is impeded at UGA/Sec, and that selenium and SBP2 alleviate this block by promoting Sec incorporation instead of termination.
Collapse
Affiliation(s)
- J E Fletcher
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
40
|
Köhrl J, Brigelius-Flohé R, Böck A, Gärtner R, Meyer O, Flohé L. Selenium in biology: facts and medical perspectives. Biol Chem 2000; 381:849-64. [PMID: 11076017 DOI: 10.1515/bc.2000.107] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several decades after the discovery of selenium as an essential trace element in vertebrates approximately 20 eukaryotic and more than 15 prokaryotic selenoproteins containing the 21st proteinogenic amino acid, selenocysteine, have been identified, partially characterized or cloned from several species. Many of these proteins are involved in redox reactions with selenocysteine acting as an essential component of the catalytic cycle. Enzyme activities have been assigned to the glutathione peroxidase family, to the thioredoxin reductases, which were recently identified as selenoproteins, to the iodothyronine deiodinases, which metabolize thyroid hormones, and to the selenophosphate synthetase 2, which is involved in selenoprotein biosynthesis. Prokaryotic selenoproteins catalyze redox reactions and formation of selenoethers in (stress-induced) metabolism and energy production of E. coli, of the clostridial cluster XI and of other prokaryotes. Apart from the specific and complex biosynthesis of selenocysteine, selenium also reversibly binds to proteins, is incorporated into selenomethionine in bacteria, yeast and higher plants, or posttranslationally modifies a catalytically essential cysteine residue of CO dehydrogenase. Expression of individual eukaryotic selenoproteins exhibits high tissue specificity, depends on selenium availability, in some cases is regulated by hormones, and if impaired contributes to several pathological conditions. Disturbance of selenoprotein expression or function is associated with deficiency syndromes (Keshan and Kashin-Beck disease), might contribute to tumorigenesis and atherosclerosis, is altered in several bacterial and viral infections, and leads to infertility in male rodents.
Collapse
Affiliation(s)
- J Köhrl
- University of Würzburg, Division Molecular Internal Medicine, Medizinische Poliklinik, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Thanbichler M, Bock A, Goody RS. Kinetics of the interaction of translation factor SelB from Escherichia coli with guanosine nucleotides and selenocysteine insertion sequence RNA. J Biol Chem 2000; 275:20458-66. [PMID: 10781605 DOI: 10.1074/jbc.m002496200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of the interaction of GTP and GDP with SelB, the specific translation factor for the incorporation of selenocysteine into proteins, have been investigated using the stopped-flow method. Useful signals were obtained using intrinsic (i.e. tryptophan) fluorescence, the fluorescence of methylanthraniloyl derivatives of nucleotides, or fluorescence resonance energy transfer from tryptophan to the methylanthraniloyl group. The affinities of SelB for GTP (K(d) = 0.74 micrometer) and GDP (K(d) = 13.4 micrometer) were considerably lower than those of other translation factors. Of functional significance is the fact that the rate constant for GDP release from its complex with SelB (15 s(-)(1)) is many orders of magnitude larger than for elongation factor Tu, explaining why a GDP/GTP exchange factor is not required for the action of SelB. In contrast, the rate of release of GTP is 2 orders of magnitude slower and not significantly faster than for elongation factor Tu. Using a fluorescently labeled 17-nucleotide RNA minihelix that represents a binding site for the protein and that is part of the fdhF selenocysteine insertion sequence element positioned immediately downstream of the UGA triplet coding for selenocysteine incorporation, the kinetics of the interaction were studied. The high affinity of the interaction (K(d) approximately 1 nm) appeared to be increased even further when selenocysteyl-tRNA(Sec) was bound to SelB, but to be independent of the presence or nature of the guanosine nucleotide at the active site. These results suggest that the affinity of SelB for its RNA binding site is maximized when charged tRNA is bound and decreases to allow dissociation and reading of codons downstream of the selenocysteine codon after selenocysteine peptide bond formation.
Collapse
Affiliation(s)
- M Thanbichler
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, 80638 München, Germany
| | | | | |
Collapse
|
42
|
Rother M, Wilting R, Commans S, Böck A. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. J Mol Biol 2000; 299:351-8. [PMID: 10860743 DOI: 10.1006/jmbi.2000.3756] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenocysteine insertion into archaeal selenopolypeptides is directed through an mRNA structure (the SECIS element) situated in the 3' non-translated region like in eukaryotes. To elucidate the mechanism how this element affects decoding of an in-frame UGA with selenocysteine the open reading frames of the genome of Methanococcus jannaschii were searched for the existence of a homolog to the bacterial specialized translation factor SelB. The product of the open reading frame MJ0495 was identified as the archaeal SelB homolog on the basis of the following characteristics: (1) MJ0495 possesses sequence features characteristic of bacterial SelB; (2) purified MJ0495 displays guanine nucleotide binding properties like SelB; and (3) it preferentially binds selenocysteyl-tRNA(Sec). In contrast to bacterial SelB, however, no binding of MJ0495 protein to the SECIS element of the mRNA was found under the experimental conditions employed which correlates with the fact that MJ0495 lacks the C-terminal domain of the bacterial SelB protein known to bind the SECIS element. It is speculated that in Archaea the functions of bacterial SelB are distributed over at least two proteins, one, serving as the specific translation factor, like MJ0495, and another one, binding to the SECIS which interacts with the ribosome and primes it to decode UGA.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/isolation & purification
- Archaeal Proteins/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Cloning, Molecular
- Genes, Archaeal/genetics
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/metabolism
- Methanococcus/genetics
- Models, Biological
- Molecular Sequence Data
- Open Reading Frames/genetics
- Protein Binding
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Homology
- Thermodynamics
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, München, D-80638, Germany
| | | | | | | |
Collapse
|
43
|
Nasim MT, Jaenecke S, Belduz A, Kollmus H, Flohé L, McCarthy JE. Eukaryotic selenocysteine incorporation follows a nonprocessive mechanism that competes with translational termination. J Biol Chem 2000; 275:14846-52. [PMID: 10809727 DOI: 10.1074/jbc.275.20.14846] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of eukaryotic selenoproteins involves the recoding of an internal UGA codon as a site for selenocysteine incorporation. This recoding event is directed by a selenocysteine insertion sequence in the 3'-untranslated region. Because UGA also functions as a signal for peptidyl-tRNA hydrolysis, we have investigated how the rates of translational termination and selenocysteine incorporation relate to cis-acting elements in the mRNA as well as to trans-acting factors in the cytoplasm. We used cis-elements from the phospholipid glutathione peroxidase gene as the basis for this work because of its relatively high efficiency of selenocysteine incorporation. The last two codons preceding the UGA were found to exert a far greater influence on selenocysteine incorporation than nucleotides downstream of it. The efficiency of selenocysteine incorporation was generally much less than 100% but could be partially enhanced by concomitant overexpression of the tRNA(Sec) gene. The combination of two or three UGA codons in one reading frame led to a dramatic reduction in the yield of full-length protein. It is therefore unlikely that multiple incorporations of selenocysteine are processive with respect to the mode of action of the ribosomal complex binding to the UGA site. These observations are discussed in terms of the mechanism of selenoprotein synthesis and its ability to compete with termination at UGA codons.
Collapse
Affiliation(s)
- M T Nasim
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Prokaryotic and eukaryotic cells cotranslationally incorporate the unusual amino acid selenocysteine at a UGA codon, which conventionally serves as a termination signal. Translation of selenoprotein gene transcripts in eukaryotes depends upon a "selenocysteine insertion sequence" in the 3'-untranslated region. We have previously shown that DNA-binding protein B specifically binds this sequence element. We now report the identification of nucleolin as a partner in the selenoprotein translation complex. In RNA electromobility shift assays, nucleolin binds the selenocysteine insertion sequence from the human cellular glutathione peroxidase gene, competes with binding activity from COS cells, and shows diminished affinity for probes with mutations in functionally important, conserved sequence elements. Antibody to nucleolin interferes with the gel shift activity of COS cell extract. Antibody to DNA-binding protein B co-extracts nucleolin from HeLa cell cytosol, and the two proteins co-sediment in glycerol gradient fractions of ribosomal high salt extracts. Thus, nucleolin appears to join DNA-binding protein B and possibly other partners to form a large complex that links the selenocysteine insertion sequence in the 3'-untranslated region to other elements in the coding region and ribosome to translate the UGA "stop" codon as selenocysteine.
Collapse
Affiliation(s)
- R Wu
- Department of Pediatrics, University of Massachusetts Medical School, and the University of Massachusetts Cancer Center, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
45
|
Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 2000; 19:306-14. [PMID: 10637234 PMCID: PMC305564 DOI: 10.1093/emboj/19.2.306] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termination. By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo. Using (75)Se-labeled Sec-tRNA(Sec), we developed an in vitro system for analyzing Sec incorporation in which the translation of a selenoprotein mRNA was both SBP2 and SECIS element dependent. Immunodepletion of SBP2 from the lysates abolished Sec insertion, which was restored when recombinant SBP2 was added to the reaction. These results establish that SBP2 is essential for the co-translational insertion of Sec into selenoproteins. We hypothesize that the binding activity of SBP2 may be involved in preventing termination at the UGA/Sec codon.
Collapse
Affiliation(s)
- P R Copeland
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue #NC-10, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
46
|
Liu Z, Reches M, Engelberg-Kulka H. A sequence in the Escherichia coli fdhF "selenocysteine insertion Sequence" (SECIS) operates in the absence of selenium. J Mol Biol 1999; 294:1073-86. [PMID: 10600367 DOI: 10.1006/jmbi.1999.3307] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UGA codon context of the Escherichia coli fdhF mRNA includes an element called the selenocysteine insertion sequence (SECIS) that is responsible for the UGA-directed incorporation of the amino acid selenocysteine into a protein. Here, we describe an extended fdhF SECIS that includes the information for an additional function: the prevention of UGA readthrough under conditions of selenium deficiency. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively, and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Here, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium, the SECIS enables one of two alternatives for the translational machinery: either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.
Collapse
Affiliation(s)
- Z Liu
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | | | | |
Collapse
|
47
|
Copeland PR, Driscoll DM. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J Biol Chem 1999; 274:25447-54. [PMID: 10464275 DOI: 10.1074/jbc.274.36.25447] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian selenoprotein mRNAs, the highly structured 3' UTR contains selenocysteine insertion sequence (SECIS) elements that are required for the recognition of UGA as the selenocysteine codon. Our previous work demonstrated a tight correlation between codon-specific translational read-through and the activity of a 120-kDa RNA-binding protein that interacted specifically with the SECIS element in the phospholipid hydroperoxide glutathione peroxidase mRNA. This study reports the RNA binding and biochemical properties of this protein, SECIS-binding protein 2 (SBP2). We detected SBP2 binding activity in liver, hepatoma cell, and testis extracts from which SBP2 has been purified by anion exchange and RNA affinity chromatography. This scheme has allowed us to identify a 120-kDa polypeptide that co-elutes with SBP2 binding activity from wild-type but not mutant RNA affinity columns. A characterization of SBP2 biochemical properties reveals that SBP2 binding is sensitive to oxidation and the presence of heparin, rRNA, and poly(G). SBP2 activity elutes with a molecular mass of approximately 500 kDa during gel filtration chromatography, suggesting the existence of a large functional complex. Direct cross-linking and competition experiments demonstrate that the minimal phospholipid hydroperoxide glutathione peroxidase 3' UTR binding site is between 82 and 102 nucleotides, which correlates with the minimal sequence necessary for translational read-through. SBP2 also interacts specifically with the minimally functional 3' UTR of another selenoprotein mRNA, deiodinase 1.
Collapse
Affiliation(s)
- P R Copeland
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
48
|
Klug SJ, Hüttenhofer A, Famulok M. In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus. RNA (NEW YORK, N.Y.) 1999; 5:1180-90. [PMID: 10496219 PMCID: PMC1369841 DOI: 10.1017/s135583829999088x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The SelB protein of Escherichia coli is a special elongation factor required for the cotranslational incorporation of the uncommon amino acid selenocysteine into proteins such as formiate dehydrogenases. To do this, SelB binds simultaneously to selenocysteyl-tRNA(Sec) and to an RNA hairpin structure in the mRNA of formiate dehydrogenases located directly 3' of the selenocysteine opal (UGA) codon. The protein is also thought to contain binding sites allowing its interaction with ribosomal proteins and/or rRNA. SelB thus includes specific binding sites for a variety of different RNA molecules. We used an in vitro selection approach with a pool completely randomized at 40 nt to isolate new high-affinity SelB-binding RNA motifs. Our main objective was to investigate which of the various RNA-binding domains in SelB would turn out to be prime targets for aptamer interaction. The resulting sequences were compared with those from a previous SELEX experiment using a degenerate pool of the wild-type formiate dehydrogenase H (fdhF) hairpin sequence (Klug SJ et al., 1997, Proc. Natl. Acad. Sci. USA 94:6676-6681). In four selection cycles an enriched pool of tight SelB-binding aptamers was obtained; sequencing revealed that all aptamers were different in their primary sequence and most bore no recognizable consensus to known RNA motifs. Domain mapping for SelB-binding aptamers showed that despite the different RNA-binding sites in the protein, the vast majority of aptamers bound to the ultimate C-terminus of SelB, the domain responsible for mRNA hairpin binding.
Collapse
Affiliation(s)
- S J Klug
- Institut für Biochemie der Universität München, Germany
| | | | | |
Collapse
|
49
|
Suppmann S, Persson BC, Böck A. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome. EMBO J 1999; 18:2284-93. [PMID: 10205181 PMCID: PMC1171311 DOI: 10.1093/emboj/18.8.2284] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kinetics and efficiency of decoding of the UGA of a bacterial selenoprotein mRNA with selenocysteine has been studied in vivo. A gst-lacZ fusion, with the fdhF SECIS element ligated between the two fusion partners, gave an efficiency of read-through of 4-5%; overproduction of the selenocysteine insertion machinery increased it to 7-10%. This low efficiency is caused by termination at the UGA and not by translational barriers at the SECIS. When the selenocysteine UGA codon was replaced by UCA, and tRNASec with anticodon UGA was allowed to compete with seryl-tRNASer1 for this codon, selenocysteine was found in 7% of the protein produced. When a non-cognate SelB-tRNASec complex competed with EF-Tu for a sense codon, no effects were seen, whereas a non-cognate SelB-tRNASec competing with EF-Tu-mediated Su7-tRNA nonsense suppression of UGA interfered strongly with suppression. The induction kinetics of beta-galactosidase synthesis from fdhF'-'lacZ gene fusions in the absence or presence of SelB and/or the SECIS element, showed that there was a translational pause in the fusion containing the SECIS when SelB was present. The results show that decoding of UGA is an inefficient process and that using the third dimension of the mRNA to accommodate an additional amino acid is accompanied by considerable quantitative and kinetic costs.
Collapse
Affiliation(s)
- S Suppmann
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | |
Collapse
|
50
|
Wagner M, Sonntag D, Grimm R, Pich A, Eckerskorn C, Söhling B, Andreesen JR. Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Biochemical and molecular analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:38-49. [PMID: 10091582 DOI: 10.1046/j.1432-1327.1999.00107.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The substrate-specific selenoprotein B of glycine reductase (PBglycine) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (alpha), 25 (beta) and 47 kDa (gamma), probably in an alpha 2 beta 2 gamma 2 composition. PBglycine purified from cells grown in the presence of [75Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (alpha) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine. A DNA fragment was isolated and sequenced which encoded beta and alpha subunits of PBglycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the gamma subunit of PBglycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdBl-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (gamma) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (beta) subunit and a 22-kDa (alpha) subunit of PBglycine. Cleavage most probably occurred at an -Asn-Cys- site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the alpha subunit.
Collapse
Affiliation(s)
- M Wagner
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | | | | | | | | | | | |
Collapse
|