1
|
Huynh NV, Mendoza LD, Nguyen H, Rehage C, Saurage EB, Davis P, Hyndman KA. Lysine acetylation of aquaporin-3 promotes water permeability but is not essential for urine concentrating ability. Am J Physiol Renal Physiol 2025; 328:F517-F529. [PMID: 40062363 DOI: 10.1152/ajprenal.00037.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Aquaporin-3 (AQP3) mediates basolateral water transport in the kidney principal cells contributing to urine concentration. We previously identified the acetylation of lysine 282 (K282) in the C-terminus of AQP3, which we hypothesized as a positive regulator of AQP3 water permeability. AQP3 acetylation (K282Q or Q) or deacetylation (K282R or R) mimetic mutant mice models were created using CRISPR/Cas9. Male and female wild-type (WT) and mutant mice were assigned to hydrating diets and water deprivation protocols. Urine and plasma osmolality in response to acute vasopressin receptor-2 activation with desmopressin (dDAVP) or inhibition by tolvaptan were determined. In vitro water permeability of murine principal kidney cortical collecting duct (mpkCCD) cells stably expressing AQP3 WT, Q, or R was measured. Acetylated AQP3 was prominent in the cortical to inner medullary collecting ducts of dehydrated versus hydrated mice. At baseline, the mutations did not affect the kidney transcriptome, AQP3 abundance, or subcellular localization. Urine osmolality of the mutant mice was within the normal range. With dehydration, all mice excreted concentrated urine; however, the female Q mutants exhibited significantly greater 24-h urine osmolality than WT, suggesting greater water reabsorption. In response to acute dDAVP, all mice produced concentrated urine; however, female Q mutants had a more dilute plasma than WT, further suggesting greater water retention. mpkCCD Q mutant cells exhibited greater water permeability than WT and R cells. We conclude that AQP3 K282 acetylation promotes principal cell water permeability in a sex-dependent manner; however, it is not essential for urine concentration.NEW & NOTEWORTHY The water channel, AQP3, is lysine 282 acetylated (acAQP3) in rodents and humans. When dehydrated, mouse cortical to inner medullary collecting ducts express acAQP3, suggesting that it promotes water reabsorption. acAQP3 expressing principal cells have high water permeability, and in vivo acute desmopressin resulted in a dilute plasma in female acAQP3 mice. However, all mice produced concentrated urine during water deprivation. Thus, acAQP3 promotes water permeability but is not essential for urine concentration during antidiuresis.
Collapse
Affiliation(s)
- Nha V Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Luciano D Mendoza
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hung Nguyen
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elizabeth B Saurage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Parker Davis
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Yanagisawa K, Miyamoto K, Wakayama Y, Arata S, Suzuki K, Nakamura M, Yamaga H, Miyazaki T, Honda K, Dohi K, Ohtaki H. Exacerbation of Hepatic Damage in Endothelial Aquaporin 1 Transgenic Mice after Experimental Heatstroke. Biomedicines 2024; 12:2057. [PMID: 39335570 PMCID: PMC11429390 DOI: 10.3390/biomedicines12092057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Heatstroke induces fluid loss and electrolyte abnormalities owing to high ambient temperature (AT) and relative humidity (RH). Aquaporin 1 (AQP1) is a key protein for water homeostasis; however, its role in heatstroke remains unclear. This study examines endothelial AQP1 in Tie2-Cre/LNL-AQP1 double transgenic (dTG) mice with upregulated Aqp1 in endothelial cells. For experimental heatstroke, mice were exposed to 41 °C AT and >99% RH. Blood, brain, kidney, and liver samples were collected 24 h later. Blood was analyzed for electrolytes and tissue damage markers, and organs were examined using morphological and immunohistological staining for 3-nitrotyrosine (3-NT), AQP1, and Iba-1. No difference in Aqp1 expression was observed in the whole brain; however, it was detected in dTG mice after capillary deprivation. AQP1 immunostaining revealed immunoreaction in blood vessels. After heat exposure, wild-type and dTG mice showed electrolyte abnormalities compared with non-heatstroke wild-type mice. Hepatic damage markers were significantly higher in dTG mice than in wild-type mice. Hematoxylin-eosin staining and 3-NT immunoreactivity in the liver indicated hepatic damage. The number of Iba-1-positive cells adherent to hepatic vasculature was significantly higher in dTG mice than in wild-type mice. This study is the first to suggest that endothelial AQP1 contributes to hepatic damage after heatstroke.
Collapse
Affiliation(s)
- Kaoru Yanagisawa
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Department of Emergency, Critical Care and Disaster Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Kazuyuki Miyamoto
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Department of Emergency, Critical Care and Disaster Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Yoshihiro Wakayama
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Wakayama Clinic, 2-3-18 Kanai, Machida, Tokyo 195-0072, Japan
| | - Satoru Arata
- Department of Biochemistry, Faculty of Arts and Sciences, Showa University, 4562 Kamiyoshida, Fujiyoshida 403-0005, Japan;
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Keisuke Suzuki
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Department of Emergency, Critical Care and Disaster Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Motoyasu Nakamura
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Department of Emergency, Critical Care and Disaster Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Hiroki Yamaga
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Department of Emergency, Critical Care and Disaster Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Takuro Miyazaki
- Department of Biochemistry, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Kazuho Honda
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
| | - Kenji Dohi
- Department of Emergency, Critical Care and Disaster Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Hirokazu Ohtaki
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; (K.Y.); (Y.W.); (K.S.); (M.N.); (H.Y.); (K.H.)
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
3
|
Chauvigné F, Castro-Arnau J, López-Fortún N, Sánchez-Chardi A, Rützler M, Calamita G, Finn RN, Cerdà J. Aquaporin-3a Dysfunction Impairs Osmoadaptation in Post-Activated Marine Fish Spermatozoa. Int J Mol Sci 2024; 25:9604. [PMID: 39273548 PMCID: PMC11395232 DOI: 10.3390/ijms25179604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Spermatozoon volume regulation is an essential determinant of male fertility competence in mammals and oviparous fishes. In mammals, aquaporin water channels (AQP3, -7 and -8) have been suggested to play a role in spermatozoon cell volume regulatory responses in the hypotonic female oviduct. In contrast, the ejaculated spermatozoa of marine teleosts, such as the gilthead seabream (Sparus aurata), experience a high hypertonic shock in seawater, initially resulting in an Aqp1aa-mediated water efflux, cell shrinkage and the activation of motility. Further regulatory recovery of cell volume in post-activated spermatozoa is mediated by Aqp4a in cooperation with the Trpv4 Ca2+ channel and other ion channels and transporters. Using a paralog-specific antibody, here, we show that seabream spermatozoa also express the aquaglyceroporin AQP3 ortholog Aqp3a, which is highly accumulated in the mid posterior region of the spermatozoon flagella, in a similar pattern to that described in mouse and human sperm. To investigate the role of Aqp3a in seabream sperm motility, we used a recently developed AQP3 antagonist (DFP00173), as well as the seabream Aqp3a-specific antibody (α-SaAqp3a), both of which specifically inhibit Aqp3a-mediated water conductance when the channel was heterologously expressed in Xenopus laevis oocytes. Inhibition with either DFP00173 or α-SaAqp3a did not affect sperm motility activation but did impair the spermatozoon motion kinetics at 30 s post activation in a dose-dependent manner. Interestingly, in close resemblance to the phenotypes of AQP3-deficient murine sperm, electron microscopy image analysis revealed that both Aqp3a inhibitors induce abnormal sperm tail morphologies, including swelling and angulation of the tail, with complete coiling of the flagella in some cases. These findings suggest a conserved role of Aqp3a as an osmosensor that regulates cell volume in fish spermatozoa under a high hypertonic stress, thereby controlling the efflux of water and/or solutes in the post-activated spermatozoon.
Collapse
Affiliation(s)
- François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Júlia Castro-Arnau
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noelia López-Fortún
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Michael Rützler
- Apoglyx AB, c/o Anyo AB, Ideon Science Park, 22370 Lund, Sweden
- Department of Biochemistry and Structural Biology, Lund University, 22184 Lund, Sweden
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Roderick Nigel Finn
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Joan Cerdà
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
5
|
Ghasemi S, Mojbafan M, Talebi S, Hooman N, Hoseini R. Genetic analysis of nephrogenic diabetes insipidus patients: A study on the Iranian population. Mol Genet Genomic Med 2024; 12:e2421. [PMID: 38622833 PMCID: PMC11019120 DOI: 10.1002/mgg3.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION Nephrogenic diabetes insipidus (NDI) is a rare genetic disease that causes water imbalance. The kidneys play a crucial role in regulating body fluids by controlling water balance through urine excretion. This highlights their essential function in managing the body's water levels, but individuals with NDI may have excess urine production (polyuria), that leads to excessive thirst (polydipsia). Untreated affected individuals may exhibit poor feeding and failure to thrive. This disease is caused by mutations in the AVPR2 and the AQP2 genes which have the X-linked and autosomal recessive/dominant inheritance, respectively. Both of these genes are expressed in the kidney. METHODS Twelve Iranian patients from 10 consanguineous families were studied in this project. DNA was extracted from the whole blood samples of the patients and their parents. All coding exons and exon-intron boundaries of the AVPR2 and AQP2 genes were sequenced in the affected individuals, and the identified variants were investigated in the parents. All variants were analyzed according to the ACMG (American College of Medical Genetics and Genomics) guidelines. RESULTS In this study, 6 different mutations were identified in the patients, including 5 in the AQP2 gene (c.439G>A, c.538G>A, c.140C>T, c.450T>A, and the novel c.668T>C) and 1 in the AVPR2 gene (c.337C>T) in the present study. DISCUSSION As expected, all the detected mutations in this study were missense. According to the ACMG guideline, the identified mutations were categorized as pathogenic or likely pathogenic. Unlike previous studies which showed more than 90% of mutations were in the AVPR2 gene, and only less than 10% of the mutations were in the AQP2 gene, it was found that more than 90% of our identified mutations located in the AQP2 gene, and only one mutation was observed in the AVPR2 gene, which seems it may be a result of the high rate of consanguineous marriages in the Iranian population. We observed genotype-phenotype correlation in some of our affected individuals, and some of the mutations were observed in unrelated families from same ethnicity which could be suggestive of a founder mutation.
Collapse
Affiliation(s)
- Saeed Ghasemi
- Department of Medical GeneticsSchool of Medicine, Iran University of Medical Sciences (IUMS)TehranIran
| | - Marzieh Mojbafan
- Department of Medical GeneticsSchool of Medicine, Iran University of Medical Sciences (IUMS)TehranIran
- Department of Medical GeneticsAli‐Asghar Children's HospitalTehranIran
| | - Saeed Talebi
- Department of Medical GeneticsSchool of Medicine, Iran University of Medical Sciences (IUMS)TehranIran
- Department of Medical GeneticsAli‐Asghar Children's HospitalTehranIran
| | - Nakysa Hooman
- Department of Pediatric NephrologyAli‐Asghar Children's HospitalTehranIran
- Clinical Research Development CenterIran University of Medical SciencesTehranIran
| | - Rozita Hoseini
- Department of Pediatric NephrologyAli‐Asghar Children's HospitalTehranIran
| |
Collapse
|
6
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Chen J, Yue K, Shen L, Zheng C, Zhu Y, Han K, Kai L. Aquaporins and CO 2 diffusion across biological membrane. Front Physiol 2023; 14:1205290. [PMID: 37383148 PMCID: PMC10293838 DOI: 10.3389/fphys.2023.1205290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Despite the physiological significance of effective CO2 diffusion across biological membranes, the underlying mechanism behind this process is not yet resolved. Particularly debatable is the existence of CO2-permeable aquaporins. The lipophilic characteristic of CO2 should, according to Overton's rule, result in a rapid flux across lipid bilayers. However, experimental evidence of limited membrane permeability poses a challenge to this idea of free diffusion. In this review, we summarized recent progress with regard to CO2 diffusion, and discussed the physiological effects of altered aquaporin expression, the molecular mechanisms of CO2 transport via aquaporins, and the function of sterols and other membrane proteins in CO2 permeability. In addition, we highlight the existing limits in measuring CO2 permeability and end up with perspectives on resolving such argument either by determining the atomic resolution structure of CO2 permeable aquaporins or by developing new methods for measuring permeability.
Collapse
Affiliation(s)
- Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Chuncui Zheng
- Hangzhou Institute of Test and Calibration for Quality and Technology Supervision, Hangzhou, China
| | - Yiyong Zhu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Kun Han
- Jiangsu Keybio Co., Ltd, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
8
|
Henderson SW, Nakayama Y, Whitelaw ML, Bruning JB, Anderson PA, Tyerman SD, Ramesh SA, Martinac B, Yool AJ. Proteoliposomes reconstituted with human aquaporin-1 reveal novel single-ion-channel properties. BIOPHYSICAL REPORTS 2023; 3:100100. [PMID: 36949749 PMCID: PMC10025285 DOI: 10.1016/j.bpr.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Human aquaporin 1 (hAQP1) forms homotetrameric channels that facilitate fluxes of water and small solutes across cell membranes. In addition to water channel activity, hAQP1 displays non-selective monovalent cation-channel activity gated by intracellular cyclic GMP. Dual water and ion-channel activity of hAQP1, thought to regulate cell shape and volume, could offer a target for novel therapeutics relevant to controlling cancer cell invasiveness. This study probed properties of hAQP1 ion channels using proteoliposomes, which, unlike conventional cell-based systems such as Xenopus laevis oocytes, are relatively free of background ion channels. Histidine-tagged recombinant hAQP1 protein was synthesized and purified from the methylotrophic yeast, Pichia pastoris, and reconstituted into proteoliposomes for biophysical analyses. Osmotic water channel activity confirmed correct folding and channel assembly. Ion-channel activity of hAQP1-Myc-His6 was recorded by patch-clamp electrophysiology with excised patches. In symmetrical potassium, the hAQP1-Myc-His6 channels displayed coordinated gating, a single-channel conductance of approximately 75 pS, and multiple subconductance states. Applicability of this method for structure-function analyses was tested using hAQP1-Myc-His6 D48A/D185A channels modified by site-directed mutations of charged Asp residues estimated to be adjacent to the central ion-conducting pore of the tetramer. No differences in conductance were detected between mutant and wild-type constructs, suggesting the open-state conformation could differ substantially from expectations based on crystal structures. Nonetheless, the method pioneered here for AQP1 demonstrates feasibility for future work defining structure-function relationships, screening pharmacological inhibitors, and testing other classes in the broad family of aquaporins for previously undiscovered ion-conducting capabilities.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yoshitaka Nakayama
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW Australia
| | - Murray L. Whitelaw
- Institute of Photonics and Advanced Sensing, The School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing, The School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Peter A. Anderson
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Sunita A. Ramesh
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Aquaporins Display a Diversity in their Substrates. J Membr Biol 2023; 256:1-23. [PMID: 35986775 DOI: 10.1007/s00232-022-00257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Aquaporins constitute a family of transmembrane proteins that function to transport water and other small solutes across the cell membrane. Aquaporins family members are found in diverse life forms. Aquaporins share the common structural fold consisting of six transmembrane alpha helices with a central water-transporting channel. Four such monomers assemble together to form tetramers as their biological unit. Initially, aquaporins were discovered as water-transporting channels, but several studies supported their involvement in mediating the facilitated diffusion of different solutes. The so-called water channel is able to transport a variety of substrates ranging from a neutral molecule to a charged molecule or a small molecule to a bulky molecule or even a gas molecule. This article gives an overview of a diverse range of substrates conducted by aquaporin family members. Prime focus is on human aquaporins where aquaporins show a wide tissue distribution and substrate specificity leading to various physiological functions. This review also highlights the structural mechanisms leading to the transport of water and glycerol. More research is needed to understand how one common fold enables the aquaporins to transport an array of solutes.
Collapse
|
10
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
11
|
Olde Hanhof CJA, Dilmen E, Yousef Yengej FA, Latta F, Ammerlaan CME, Schreurs J, Hooijmaijers L, Jansen J, Rookmaaker MB, Orhon I, Verhaar MC, Hoenderop JG. Differentiated mouse kidney tubuloids as a novel in vitro model to study collecting duct physiology. Front Cell Dev Biol 2023; 11:1086823. [PMID: 36760360 PMCID: PMC9905633 DOI: 10.3389/fcell.2023.1086823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Kidney tubuloids are cell models that are derived from human or mouse renal epithelial cells and show high similarities with their in vivo counterparts. Tubuloids grow polarized in 3D, allow for long-term expansion, and represent multiple segments of the nephron, as shown by their gene expression pattern. In addition, human tubuloids form tight, functional barriers and have been succesfully used for drug testing. Our knowledge of mouse tubuloids, on the other hand, is only minimal. In this study, we further characterized mouse tubuloids and differentiated them towards the collecting duct, which led to a significant upregulation of collecting duct-specific mRNAs of genes and protein expression, including the water channel AQP2 and the sodium channel ENaC. Differentiation resulted in polarized expression of collecting duct water channels AQP2 and AQP3. Also, a physiological response to desmopressin and forskolin stimulation by translocation of AQP2 to the apical membrane was demonstrated. Furthermore, amiloride-sensitive ENaC-mediated sodium uptake was shown in differentiated tubuloids using radioactive tracer sodium. This study demonstrates that mouse tubuloids can be differentiated towards the collecting duct and exhibit collecting duct-specific function. This illustrates the potential use of mouse kidney tubuloids as novel in vitro models to study (patho)physiology of kidney diseases.
Collapse
Affiliation(s)
- C. J. A. Olde Hanhof
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - E. Dilmen
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - F. A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - F. Latta
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C. M. E. Ammerlaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Schreurs
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - L. Hooijmaijers
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J. Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, Netherlands,Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - M. B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. Orhon
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - M. C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. G. Hoenderop
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: J. G. Hoenderop,
| |
Collapse
|
12
|
Aslesh T, Al-aghbari A, Yokota T. Assessing the Role of Aquaporin 4 in Skeletal Muscle Function. Int J Mol Sci 2023; 24:ijms24021489. [PMID: 36675000 PMCID: PMC9865462 DOI: 10.3390/ijms24021489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Water transport across the biological membranes is mediated by aquaporins (AQPs). AQP4 and AQP1 are the predominantly expressed AQPs in the skeletal muscle. Since the discovery of AQP4, several studies have highlighted reduced AQP4 levels in Duchenne muscular dystrophy (DMD) patients and mouse models, and other neuromuscular disorders (NMDs) such as sarcoglycanopathies and dysferlinopathies. AQP4 loss is attributed to the destabilizing dystrophin-associated protein complex (DAPC) in DMD leading to compromised water permeability in the skeletal muscle fibers. However, AQP4 knockout (KO) mice appear phenotypically normal. AQP4 ablation does not impair physical activity in mice but limits them from achieving the performance demonstrated by wild-type mice. AQP1 levels were found to be upregulated in DMD models and are thought to compensate for AQP4 loss. Several groups investigated the expression of other AQPs in the skeletal muscle; however, these findings remain controversial. In this review, we summarize the role of AQP4 with respect to skeletal muscle function and findings in NMDs as well as the implications from a clinical perspective.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
| | - Ammar Al-aghbari
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton, AB T6G 2H7, Canada
- Correspondence: ; Tel.: +1-(780)-492-1102
| |
Collapse
|
13
|
Geng X, Shao G, Jiang T, Yang B. Transport Characteristics of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:53-64. [PMID: 36717486 DOI: 10.1007/978-981-19-7415-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQP) are a class of the integral membrane proteins. The main physiological function of AQPs is to facilitate the water transport across plasma membrane of cells. However, the transport of various kinds of small molecules by AQPs is an interesting topic. Studies using in vitro cell models have found that AQPs mediated transport of small molecules, including glycerol, urea, carbamides, polyols, purines, pyrimidines and monocarboxylates, and gases such as CO2, NO, NH3, H2O2 and O2, although the high intrinsic membrane permeabilities for these gases make aquaporin-facilitated transport not dominant in physiological mechanism. AQPs are also considered to transport silicon, antimonite, arsenite and some ions; however, most data about transport characteristics of AQPs are derived from in vitro experiments. The physiological significance of AQPs that are permeable to various small molecules is necessary to be determined by in vivo experiments. This chapter will provide information about the transport characteristics of AQPs.
Collapse
Affiliation(s)
- Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Sun M, Li L. Identification of Biomarkers Associated with Heart Failure Caused by Idiopathic Dilated Cardiomyopathy Using WGCNA and Machine Learning Algorithms. Int J Genomics 2023; 2023:2250772. [PMID: 37143707 PMCID: PMC10154102 DOI: 10.1155/2023/2250772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Background The genetic factors and pathogenesis of idiopathic dilated cardiomyopathy-induced heart failure (IDCM-HF) have not been understood thoroughly; there is a lack of specific diagnostic markers and treatment methods for the disease. Hence, we aimed to identify the mechanisms of action at the molecular level and potential molecular markers for this disease. Methods Gene expression profiles of IDCM-HF and non-heart failure (NF) specimens were acquired from the database of Gene Expression Omnibus (GEO). We then identified the differentially expressed genes (DEGs) and analyzed their functions and related pathways by using "Metascape". Weighted gene co-expression network analysis (WGCNA) was utilized to search for key module genes. Candidate genes were identified by intersecting the key module genes identified via WGCNA with DEGs and further screened via the support vector machine-recursive feature elimination (SVM-RFE) method and the least absolute shrinkage and selection operator (LASSO) algorithm. At last, the biomarkers were validated and evaluated the diagnostic efficacy by the area under curve (AUC) value and further confirmed the differential expression in the IDCM-HF and NF groups using an external database. Results We detected 490 genes exhibiting differential expression between IDCM-HF and NF specimens from the GSE57338 dataset, with most of them being concentrated in the extracellular matrix (ECM) of cells related to biological processes and pathways. After screening, 13 candidate genes were identified. Aquaporin 3 (AQP3) and cytochrome P450 2J2 (CYP2J2) showed high diagnostic efficacy in the GSE57338 and GSE6406 datasets, respectively. In comparison to the NF group, AQP3 was significantly down-regulated in the IDCM-HF group, while CYP2J2 was significantly up-regulated. Conclusion As far as we know, this is the first study that combines WGCNA and machine learning algorithms to screen for potential biomarkers of IDCM-HF. Our findings suggest that AQP3 and CYP2J2 could be used as novel diagnostic markers and treatment targets of IDCM-HF.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Clinical Laboratory, Jining First People′s Hospital, Jining, Shandong, China
| | - Linping Li
- Institute of Cardiovascular Diseases of Jining Medical Research Academy, Jining First People′s Hospital, Jining, Shandong, China
| |
Collapse
|
15
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
16
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
17
|
Zhong C, Long R, Stewart GS. The role of rumen epithelial urea transport proteins in urea nitrogen salvage: A review. ANIMAL NUTRITION 2022; 9:304-313. [PMID: 35600543 PMCID: PMC9097623 DOI: 10.1016/j.aninu.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
|
18
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
19
|
Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 2022; 14:181-198. [PMID: 35340612 PMCID: PMC8921385 DOI: 10.1007/s12551-021-00925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042 Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
20
|
Cutler CP, Murray D, Ojo T, Harmon S, MacIver B, Cramb G, Zeidel ML. Aquaporin (AQP) channels in the spiny dogfish, Squalus acanthias I: Characterization of AQP3 and AQP15 function and expression, and localization of the proteins in gill and spiral valve intestine. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110702. [PMID: 34856346 DOI: 10.1016/j.cbpb.2021.110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/27/2023]
Abstract
Complementary DNAs (cDNAs) for two aquaporin water channel genes (AQP3 and AQP15) were amplified cloned and sequenced to initiate this study. Northern blot analysis was carried out to confirm the mRNA sizes of these AQP genes with AQP3 mRNA bands exhibiting sizes of 1.2 and 1.6 k bases and AQP15 had a mRNA band of 2.1 k bases. Northern blot analysis was also performed on kidney and esophagus total RNA samples from fish acclimated to 75%, 100% or 120% seawater (SW). The level of AQP15 mRNA expression was shown to significantly decrease following salinity acclimation from 100 to 120% SW. An opposite but non-significantly different trend was observed for AQP3 mRNA levels. Full length cDNAs were then used to generate AQP3 and AQP15 mRNAs for microinjection into Xenopus oocytes. Both AQP3- and AQP15- microinjected oocytes exhibited significantly elevated apparent water permeability compared to control oocytes at neutral pH. The apparent water permeability was mercury-inhibitable, significantly so in the case of AQP3. AQP3 microinjected oocytes showed pH sensitivity in their apparent water permeability, showing a lack of permeability at acidic pH values. The Carboxyl-terminal derived amino acid sequences of AQP3 and AQP15 were used to generate rabbit affinity-purified polyclonal antibodies. Western blots with the antibodies showed a band of 31.3 kDa for AQP3 in the kidney, with minor bands at 26, 24 and 21 kDa. For AQP15 a band of 26 kDa was seen in gill and kidney. Fainter bands at 28 and 24 kDa were also seen in the kidney. There was also some higher molecular weight banding. None of the bands were seen when the antibodies were pre- blocked with their peptide antigens. Immunohistochemical localization studies were also performed in the gill and spiral valve intestine. In the gill, AQP15 antibody staining was seen sporadically in the membranes of surface epithelial cells of the secondary lamellae. Tyramide amplification of signals was employed in the spiral valve intestine. Tyramide-amplified AQP3 antibody staining was observed in the basal membrane of the invaginated epithelial cell layer of secondary intestinal folds in luminal surface of either the side wall of the spiral valve intestine or in internal valve tissue 'flaps'. For the AQP15 antibody, tyramide-amplified staining was instead found on the apical and to a lesser extent the lateral membranes of the same invaginated epithelial cell layer. The localization of AQP3 and AQP15 in the spiral valve intestine suggests that a trans-cellular water absorption pathway may exist in this tissue.
Collapse
Affiliation(s)
- Christopher P Cutler
- Department of Biology, Georgia Southern University, Statesboro, GA, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA.
| | - Debra Murray
- Department of Biology, Georgia Southern University, Statesboro, GA, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Tolulope Ojo
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Sheena Harmon
- Department of Biology, Georgia Southern University, Statesboro, GA, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Bryce MacIver
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gordon Cramb
- School of Medicine, University of St Andrews, Fife, Scotland, UK
| | - Mark L Zeidel
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Expression and Significance of AQP3 in Cutaneous Lesions. ACTA ACUST UNITED AC 2021; 2021:7866471. [PMID: 34745849 PMCID: PMC8564211 DOI: 10.1155/2021/7866471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Aquaporin 3 (AQP3) is the membrane channel of water and involved in fluid homeostasis. The aim of this study was to reveal the expression and significance of AQP3 in cutaneous lesions. We analyzed AQP3 mRNA levels using RT-PCR in 311 cutaneous lesions and confirmed AQP3 expression in these lesions by immunohistochemistry. AQP3 mRNA was detected in normal epidermis, seborrheic keratosis, solar keratosis, Bowen's disease, squamous cell carcinoma, eccrine poroma, apocrine carcinoma, and sebaceoma; however, AQP3 mRNA was absent in basal cell carcinoma, nevocellular nevus, or malignant melanoma. By immunohistochemistry, diffuse AQP3 expression was seen in all keratotic lesions including seborrheic keratosis, verruca vulgaris, molluscum contagiosum, solar keratosis, Bowen's disease, and squamous cell carcinoma. Diffuse AQP3 expression was also present in all extramammary Paget's disease. No AQP3 staining was obtained in basal cell carcinoma. Positive AQP3 staining was seen in sweat gland tumors including hidradenoma, eccrine poroma, and apocrine carcinoma. Among sebaceous tumors, AQP3 expressed diffusely in all sebaceous hyperplasia and sebaceous adenoma, but not in sebaceous carcinomas. Only focal AQP3 staining was seen in nevocellular nevus and no AQP3 staining in melanoma. Our findings indicate the function of AQP3 maintained in most skin tumors. AQP3 may be used for differential diagnosis in skin tumors.
Collapse
|
22
|
Zhang L, Yao D, Xia Y, Zhou F, Zhang Q, Wang Q, Qin A, Zhao J, Li D, Li Y, Zhou L, Cao Y. The structural basis for glycerol permeation by human AQP7. Sci Bull (Beijing) 2021; 66:1550-1558. [PMID: 36654284 DOI: 10.1016/j.scib.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023]
Abstract
Human glycerol channel aquaporin 7 (AQP7) conducts glycerol release from adipocyte and enters the cells in pancreatic islets, muscles, and kidney tubules, and thus regulates glycerol metabolism in those tissues. Compared with other human aquaglyceroporins, AQP7 shows a less conserved "NPA" motif in the center cavity and a pair of aromatic residues at Ar/R selectivity filter. To understand the structural basis for the glycerol conductance, we crystallized the human AQP7 and determined the structure at 3.7 Å. A substrate binding pocket was found near the Ar/R filter where a glycerol molecule is bound and stabilized by R229. Glycerol uptake assay on human AQP7 as well as AQP3 and AQP10 demonstrated strong glycerol transportation activities at the physiological condition. The human AQP7 structure, in combination with the molecular dynamics simulation thereon, reveals a fully closed conformation with its permeation pathway strictly confined by the Ar/R filter at the exoplasmic side and the gate at the cytoplasmic side, and the binding of glycerol at the Ar/R filter plays a critical role in controlling the glycerol flux by driving the dislocation of the residues at narrowest parts of glycerol pathway in AQP7.
Collapse
Affiliation(s)
- Li Zhang
- CAS Center for Excellence on Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Deqiang Yao
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ying Xia
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fu Zhou
- CAS Center for Excellence on Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Qing Zhang
- CAS Center for Excellence on Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Qian Wang
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dianfan Li
- CAS Center for Excellence on Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200433, China.
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200433, China.
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
23
|
Sylvester K, Maher SP, Posfai D, Tran MK, Crawford MC, Vantaux A, Witkowski B, Kyle DE, Derbyshire ER. Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. Front Cell Infect Microbiol 2021; 11:687019. [PMID: 34195101 PMCID: PMC8236947 DOI: 10.3389/fcimb.2021.687019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.
Collapse
Affiliation(s)
- Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Dora Posfai
- Chemistry Department, Duke University, Durham, NC, United States
| | - Michael K Tran
- Chemistry Department, Duke University, Durham, NC, United States
| | | | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States.,Chemistry Department, Duke University, Durham, NC, United States
| |
Collapse
|
24
|
Yde J, Keely SJ, Moeller HB. Expression, regulation and function of Aquaporin-3 in colonic epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183619. [PMID: 33811845 DOI: 10.1016/j.bbamem.2021.183619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The human colon balances water and electrolyte absorption and secretion while also forming a barrier protecting the body from the entry of harmful components. Aquaporin-3 (AQP3) is a water, glycerol and H2O2 transporting channel expressed in colonic epithelia. Although expression of colonic epithelial AQP3 is altered in several intestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, the regulation and specific roles of AQP3 remain to be fully defined. In this mini-review, we summarize the current understanding of the expression, regulation, and biological functions of AQP3 protein in colonic epithelia concerning intestinal absorption, secretion and barrier function.
Collapse
Affiliation(s)
- Jonathan Yde
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Stephen J Keely
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.
| |
Collapse
|
25
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
26
|
Targeting Aquaporins in Novel Therapies for Male and Female Breast and Reproductive Cancers. Cells 2021; 10:cells10020215. [PMID: 33499000 PMCID: PMC7911300 DOI: 10.3390/cells10020215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aquaporins are membrane channels in the broad family of major intrinsic proteins (MIPs), with 13 classes showing tissue-specific distributions in humans. As key physiological modulators of water and solute homeostasis, mutations, and dysfunctions involving aquaporins have been associated with pathologies in all major organs. Increases in aquaporin expression are associated with greater severity of many cancers, particularly in augmenting motility and invasiveness for example in colon cancers and glioblastoma. However, potential roles of altered aquaporin (AQP) function in reproductive cancers have been understudied to date. Published work reviewed here shows distinct classes aquaporin have differential roles in mediating cancer metastasis, angiogenesis, and resistance to apoptosis. Known mechanisms of action of AQPs in other tissues are proving relevant to understanding reproductive cancers. Emerging patterns show AQPs 1, 3, and 5 in particular are highly expressed in breast, endometrial, and ovarian cancers, consistent with their gene regulation by estrogen response elements, and AQPs 3 and 9 in particular are linked with prostate cancer. Continuing work is defining avenues for pharmacological targeting of aquaporins as potential therapies to reduce female and male reproductive cancer cell growth and invasiveness.
Collapse
|
27
|
Nosaka M, Ishida Y, Kuninaka Y, Ishigami A, Taruya A, Shimada E, Hashizume Y, Yamamoto H, Kimura A, Furukawa F, Kondo T. Intrathrombotic appearances of AQP-1 and AQP-3 in relation to thrombus age in murine deep vein thrombosis model. Int J Legal Med 2021; 135:547-553. [PMID: 33410924 PMCID: PMC7788166 DOI: 10.1007/s00414-020-02482-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022]
Abstract
Aquaporins (AQPs) are membrane-bound proteins for water transportation and are useful for diagnosing drowning and wound vitality in forensic pathology. Here, we examined intrathrombotic expression of AQP-1 and AQP-3 using deep vein thrombosis models in mice. To perform immunohistochemical analyses, we used anti-AQP-1 and anti-AQP-3 antibodies. In thrombus samples with the post-ligation intervals of 1 to 5 days, AQP-1+ areas were over 70%. At 7 days after the IVC ligation, AQP-1+ areas became less than 50%, eventually decreasing to 11% at 21 days. At 3 days after the IVC ligation, AQP-3+ cells started to appear from the peripheral area. Thereafter, the positive cell number progressively increased and reached to a peak at 10 days after the IVC ligation. When the intrathrombotic AQP-1+ area was as large as the intrathrombotic collagen area or smaller, it would indicate a thrombus age of ≥ 10 days. AQP-3+ cell number of > 30 would indicate a thrombus age of 10–14 days. Collectively, our study implied that the detection of AQP-1 and AQP-3 would be useful for the determination of thrombus age.
Collapse
Affiliation(s)
- Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Emi Shimada
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumiko Hashizume
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.,Takatsuki Red Cross Hospital , 1-1-1 Abuno, Takatsuki, Osaka, 569-1096, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
28
|
Kowsar R, Mansouri A, Sadeghi N, Abadi MHA, Ghoreishi SM, Sadeghi K, Miyamoto A. A multilevel analysis identifies the different relationships between amino acids and the competence of oocytes matured individually or in groups. Sci Rep 2020; 10:16082. [PMID: 32999417 PMCID: PMC7528030 DOI: 10.1038/s41598-020-73225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/11/2020] [Indexed: 11/03/2022] Open
Abstract
High-protein diets contribute to an increase in urea follicular concentrations associated with decreased fertility. Urea has been shown to interfere with the epidermal growth factor (EGF)/EGFR system, which has been shown to have a beneficial effect during in vitro maturation (IVM) of oocytes. Of note, the number of cumulus-oocyte complexes (COCs) in the maturation medium can change the maturation and the developmental competence of COCs. Therefore, it was hypothesized that, the presence of urea and EGF may have a differential effect on the depletion/appearance of AAs and competence of COCs matured individually (I-IVM system) or in groups (G-IVM system). In the G-IVM system, COCs increased consumption (depletion) of AAs compared with other groups in the presence of high-level urea (40 mg/dl) + EGF (10 ng/ml). In the I-IVM system, the non-cleaved COCs depleted more AAs than the cleaved COCs, in particular in the presence of urea. The combination of urea and EGF increased the depletion of AAs in the G-IVM system. However, the EGF abrogated the urea-induced depletion of AAs by the I-IVM COCs. The use of N-acetyl-L-cysteine as an EGFR inhibitor canceled urea-induced depletion of AAs. This shows the inhibiting effect of urea over the EGF/EGFR system. In the presence of urea + EGF, COCs had a lower degree of developmental competence than control in both I- and G-IVM systems. Arginine had the best predictive power to identify highly competent COCs in the G-IVM system, while glutamine was the best predictor of the cleavage in the I-IVM system. In conclusion, this multi-level study shows that COCs matured individually or in groups may have different association with AAs metabolism. These findings provide new insights into the relationships between AA metabolism and the subsequent developmental competence of COCs.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran. .,Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Nima Sadeghi
- FKA, Animal Husbandry and Agriculture Co, Isfahan, Iran
| | - Mohammad Heidaran Ali Abadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Seyed Mehdi Ghoreishi
- Department of Animal Sciences, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Khaled Sadeghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
29
|
Rodriguez RA, Chan R, Liang H, Chen LY. Quantitative study of unsaturated transport of glycerol through aquaglyceroporin that has high affinity for glycerol. RSC Adv 2020; 10:34203-34214. [PMID: 32944226 PMCID: PMC7494219 DOI: 10.1039/d0ra05262k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
The structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator's affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an in silico-in vitro research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes. We conducted 2.1 μs in silico simulations of AQP3 embedded in a model erythrocyte membrane with intracellular-extracellular asymmetries in leaflet lipid compositions and compartment salt ions. From the equilibrium molecular dynamics (MD) simulations, we elucidated the mechanism of glycerol transport at high substrate concentrations. From the steered MD simulations, we computed the Gibbs free-energy profile throughout the AQP3 channel. From the free-energy profile, we quantified the kinetics of glycerol transport that is unsaturated due to glycerol-glycerol interactions mediated by AQP3 resulting in the concerted movement of two glycerol molecules for the transport of one glycerol molecule across the cell membrane. We conducted in vitro experiments on glycerol uptake into human erythrocytes for a wide range of substrate concentrations and various temperatures. The experimental data quantitatively validated our theoretical-computational conclusions on the unsaturated glycerol transport through AQP3 that has high affinity for glycerol.
Collapse
Affiliation(s)
- Roberto A. Rodriguez
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
- Department of Pharmacology, The University of Texas Health Science Center at San AntonioSan AntonioTexas 78229USA
| | - Liao Y. Chen
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|
30
|
Zhang M, Li T, Zhu J, Tuo B, Liu X. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med 2020; 24:9486-9494. [PMID: 32662230 PMCID: PMC7520301 DOI: 10.1111/jcmm.15600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer has increased annually, and the pathogenesis of this disease requires further investigation. In normal colorectal tissues, ion channels and transporters maintain the water-electrolyte balance and acid/base homeostasis. However, dysfunction of these ion channels and transporters leads to the development and progression of colorectal cancer. Therefore, this review focuses on the progress in understanding the roles of ion channels and transporters in the colorectum and in colorectal cancer, including aquaporins (AQPs), Cl- channels, Cl- / HCO 3 - exchangers, Na+ / HCO 3 - transporters and Na+ /H+ exchangers. The goal of this review is to promote the identification of new targets for the treatment and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Taolang Li
- Department of Thyroid and Breast SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jiaxing Zhu
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Biguang Tuo
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Xuemei Liu
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| |
Collapse
|
31
|
Lin YH, Wang YC, Wu MS, Lu KC, Lin HY, Kuo HS, Chang GD, Lin CM, Hsiao C. The study of isotopic enrichment of water in human plasma and erythrocyte. FASEB J 2020; 34:13049-13062. [PMID: 32779304 DOI: 10.1096/fj.202000388rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/11/2022]
Abstract
Life does not sustain without water. For water, there is a natural abundance of stable isotope hydrogen and oxygen. Water molecules get across cell membranes through a plasma membrane protein, named aquaporin. Moreover, the kidney is the main organ to maintain water homeostasis. Here, we study the stable isotopic ratios of hydrogen and oxygen in human blood plasma and erythrocyte corresponding to kidney functions. We extract waters from human plasma and erythrocyte, collected from 110 participants, including 51 clinically stable outpatients with end-stage renal disease (ESRD) and 59 subjects with normal renal function (NRF). We observed that (i) both extracellular (blood plasma) and intracellular (erythrocyte) biology waters are isotopic differences between the ESRD and NRF participants, (ii) the natural abundance of isotopic waters of ESRD is hypo-isotopic, and (iii) the isotopic enrichment of water between erythrocyte and blood plasma are distinct. In addition, we introduce an empirical formula using entropy transformation to describe isotopic water enrichment for biology. Accordingly, the natural abundance of stable isotope water of blood plasma and erythrocyte may be possibly put in practice a new sign for assessments of kidney dysfunctions.
Collapse
Affiliation(s)
- Yuan-Hau Lin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chi Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mai-Szu Wu
- College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hsin-Yi Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Shou Kuo
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Mao Lin
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiaolong Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Ishida-Ishihara S, Akiyama M, Furusawa K, Naguro I, Ryuno H, Sushida T, Ishihara S, Haga H. Osmotic gradients induce stable dome morphogenesis on extracellular matrix. J Cell Sci 2020; 133:jcs.243865. [PMID: 32576662 DOI: 10.1242/jcs.243865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental processes in morphogenesis is dome formation, but many of the mechanisms involved are unexplored. Previous in vitro studies showed that an osmotic gradient is the driving factor of dome formation. However, these investigations were performed without extracellular matrix (ECM), which provides structural support to morphogenesis. With the use of ECM, we observed that basal hypertonic stress induced stable domes in vitro that have not been seen in previous studies. These domes developed as a result of ECM swelling via aquaporin water transport activity. Based on computer simulation, uneven swelling, with a positive feedback between cell stretching and enhanced water transport, was a cause of dome formation. These results indicate that osmotic gradients induce dome morphogenesis via both enhanced water transport activity and subsequent ECM swelling.
Collapse
Affiliation(s)
- Sumire Ishida-Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masakazu Akiyama
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano 4-21-1, Nakano-ku, Tokyo 164-8525, Japan
| | - Kazuya Furusawa
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan.,Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen 3-6-1, Fukui 910-8505, Japan
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Ryuno
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takamichi Sushida
- Department of Computer Science and Technology, Salesian Polytechnic, Oyamagaoka 4-6-8, Machida City, Tokyo 194-0215, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan.,Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan .,Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
33
|
Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells 2020; 9:cells9071663. [PMID: 32664262 PMCID: PMC7408487 DOI: 10.3390/cells9071663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Transmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids. Currently, gene copy numbers and BLAST are poor predictors of orthologous relationships due to asymmetric glp gene evolution in the different lineages. Such asymmetries can impact estimations of divergence times by millions of years. Experimental investigations of the salmonid channels demonstrated that approximately half of the 20 ancestral paralogs are functional, with neofunctionalization occurring at the transcriptional level rather than the protein transport properties. The combined findings resolve the origins and diversification of glps over >800 million years old and thus form the novel basis for proposing a pandeuterostome glp gene nomenclature.
Collapse
|
34
|
Chan R, Falato M, Liang H, Chen LY. In silico simulations of erythrocyte aquaporins with quantitative in vitro validation. RSC Adv 2020; 10:21283-21291. [PMID: 32612811 PMCID: PMC7328926 DOI: 10.1039/d0ra03456h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modelling water and membrane lipids is an essential element in the computational research of biophysical/biochemical processes such as water transport across the cell membrane. In this study, we examined the accuracies of two popular water models, TIP3P and TIP4P, in the molecular dynamics simulations of erythrocyte aquaporins (AQP1 and AQP3). We modelled the erythrocyte membrane as an asymmetric lipid bilayer with appropriate lipid compositions of its inner and outer leaflet, in comparison with a symmetric lipid bilayer of a single lipid type. We computed the AQP1/3 permeabilities with the transition state theory with full correction for recrossing events. We also conducted cell swelling assays for water transport across the erythrocyte membrane. The experimental results agree with the TIP3P water–erythrocyte membrane model, in confirmation of the expected accuracy of the erythrocyte membrane model, the TIP3P water model, and the CHARMM parameters for water–protein interactions. Quantitatively predictive study of aquaporins in model erythrocyte membrane validated with cellular experiments.![]()
Collapse
Affiliation(s)
- Ruth Chan
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Michael Falato
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA.,Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| | - Liao Y Chen
- Department of Physics, The University of Texas at San Antonio, San Antonio, Texas 78249 USA
| |
Collapse
|
35
|
Yılmaz H, Özdemir Fİ, Ergenekon P, Özkan M. Affinity tag effect on the salt rejection potential of Halomonas elongata aquaporin incorporated in thin film nanocomposite membrane. Protein Expr Purif 2020; 173:105664. [PMID: 32380098 DOI: 10.1016/j.pep.2020.105664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022]
Abstract
In this study, effect of affinity tags, Histidine (His) and Glutathione-S-Transferase (GST), on the activity of halophilic aquaporin was analyzed. The gene coding for H. elongata aquaporin was cloned into pET28a vector and expressed in E. coli BL21 successfully. Stopped flow light scattering measurements showed that His-tagged aquaporin is functional. The difference in the filtration parameters caused by affinity tags were determined by using thin film composite nano-filtration (NFC) membranes prepared with the aquaporins. At 100 mM salt concentration, water permeability (L/m2.h) and the % salt rejection of NFC membranes produced with the His-tagged aquaporin was found to be higher than that of the membrane with GST-tagged aquaporin. Salt rejection of His-tagged aquaporin-membrane was found to be 53% with a lower solute permeability value (B). Use of short affinity tag (His tag) for cloning resulted in higher solute rejection ability of TFC membranes prepared with H. elongata aquaporins.
Collapse
Affiliation(s)
- Hilal Yılmaz
- Gebze Technical University, Department of Environmental Engineering, 41400, Gebze Kocaeli, Turkey
| | - Fatma İnci Özdemir
- Gebze Technical University, Department of Molecular Biology and Genetics, 41400, Gebze Kocaeli, Turkey
| | - Pınar Ergenekon
- Gebze Technical University, Department of Environmental Engineering, 41400, Gebze Kocaeli, Turkey
| | - Melek Özkan
- Gebze Technical University, Department of Environmental Engineering, 41400, Gebze Kocaeli, Turkey.
| |
Collapse
|
36
|
Posfai D, Maher SP, Roesch C, Vantaux A, Sylvester K, Péneau J, Popovici J, Kyle DE, Witkowski B, Derbyshire ER. Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. Cell Chem Biol 2020; 27:719-727.e5. [PMID: 32330444 PMCID: PMC7303948 DOI: 10.1016/j.chembiol.2020.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Plasmodium vivax infects hepatocytes to form schizonts that cause blood infection, or dormant hypnozoites that can persist for months in the liver before leading to relapsing blood infections. The molecular processes that drive P. vivax schizont and hypnozoite survival remain largely unknown, but they likely involve a rich network of host-pathogen interactions, including those occurring at the host-parasite interface, the parasitophorous vacuole membrane (PVM). Using a recently developed P. vivax liver-stage model system we demonstrate that host aquaporin-3 (AQP3) localizes to the PVM of schizonts and hypnozoites within 5 days after invasion. This recruitment is also observed in P. vivax-infected reticulocytes. Chemical treatment with the AQP3 inhibitor auphen reduces P. vivax liver hypnozoite and schizont burden, and inhibits P. vivax asexual blood-stage growth. These findings reveal a role for AQP3 in P. vivax liver and blood stages and suggest that the protein may be targeted for therapeutic treatment. Host aquaporin-3 (AQP3) is recruited to P. vivax hypnozoites and schizonts The AQP3 inhibitor auphen inhibits P. vivax hypnozoites and schizonts Host AQP3 is recruited to P. vivax-infected erythrocytes derived from patient samples Auphen inhibits blood stages of clinical P. vivax isolates
Collapse
Affiliation(s)
- Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr, ste 370, Athens, GE 30602, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Julie Péneau
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr, ste 370, Athens, GE 30602, USA
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia.
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA; Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
37
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
38
|
Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie MA, Wang H, Lai ZW, Lane EA, Christiano R, Danial NN, Farese RV, Walther TC. Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression. Mol Cell 2020; 77:1251-1264.e9. [PMID: 32023484 PMCID: PMC7397554 DOI: 10.1016/j.molcel.2020.01.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marie-Aude Guie
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huajin Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Abstract
Aquaporin (AQP) water channels are important in the function of the kidney. Constitutively expressed AQP1 in the proximal tubule and descending limb is important in normal fluid absorption and in the counter-current multiplication system. The vasopressin-regulated shuttling of AQP2 is essential in antidiuresis and the regulation of water balance. Genetic damage to AQPs, or pathological changes in expression or function, impair renal water handling. The most striking examples of this involve disruption of AQP2 function, which can result in profound nephrogenic diabetes insipidus. Aquaporin 1 is present in capillaries and venules and appears to be important in peritoneal dialysis, where it appears to represent the “ultrasmall pores” of the three-pore model. Decreased expression or function of AQP1 may be responsible for some cases of ultrafiltration failure, but further evidence will be required to establish whether this is the case.
Collapse
Affiliation(s)
- David Marples
- School of Biomedical Science, University of Leeds, United Kingdom
| |
Collapse
|
40
|
Nielsen S. Aquaporin Water Channels in the Kidney: Localization and Regulation. Perit Dial Int 2020. [DOI: 10.1177/089686089601601s03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Søren Nielsen
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
41
|
Affiliation(s)
| | - Raymond T. Krediet
- Renal Unit Academic Medical Center University of Amsterdam Amsterdam, the Netherlands
| |
Collapse
|
42
|
Kitchen P, Salman MM, Pickel SU, Jennings J, Törnroth-Horsefield S, Conner MT, Bill RM, Conner AC. Water channel pore size determines exclusion properties but not solute selectivity. Sci Rep 2019; 9:20369. [PMID: 31889130 PMCID: PMC6937295 DOI: 10.1038/s41598-019-56814-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.
Collapse
Affiliation(s)
- Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Simone U Pickel
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Jordan Jennings
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Matthew T Conner
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wulfruna St, Wolverhampton, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
43
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
44
|
Jung HJ, Kwon TH. New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus. Kidney Res Clin Pract 2019; 38:145-158. [PMID: 31189221 PMCID: PMC6577206 DOI: 10.23876/j.krcp.19.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
The kidney collecting duct (CD) is a tubular segment of the kidney where the osmolality and final flow rate of urine are established, enabling urine concentration and body water homeostasis. Water reabsorption in the CD depends on the action of arginine vasopressin (AVP) and a transepithelial osmotic gradient between the luminal fluid and surrounding interstitium. AVP induces transcellular water reabsorption across CD principal cells through associated signaling pathways after binding to arginine vasopressin receptor 2 (AVPR2). This signaling cascade regulates the water channel protein aquaporin-2 (AQP2). AQP2 is exclusively localized in kidney connecting tubules and CDs. Specifically, AVP stimulates the intracellular translocation of AQP2-containing vesicles to the apical plasma membrane, increasing the osmotic water permeability of CD cells. Moreover, AVP induces transcription of the Aqp2 gene, increasing AQP2 protein abundance. This review provides new insights into the transcriptional regulation of the Aqp2 gene in the kidney CD with an overview of AVP and AQP2. It summarizes current therapeutic approaches for X-linked nephrogenic diabetes insipidus caused by AVPR2 gene mutations.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
45
|
LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology 2019; 534:87-95. [PMID: 31220652 DOI: 10.1016/j.virol.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a unique type of gastric carcinomas that promoter hypermethylation of tumor-related genes is extremely frequent to be found. Aquaporin 3 (AQP3) is a small membrane transport protein that plays a crucial role in cancer progression and metastasis. However, there is no experimental study on the expression of AQP3 in EBVaGC and the regulation mechanism of EBV on AQP3. In this study, the loss of AQP3 was contributed by the hypermethylation status of AQP3 promoter in EBVaGC which was caused by elevated expression of DNMT3a. In addition, stable and transient transfection system in SGC7901 showed that viral latent membrane protein 2A (LMP2A) activated phosphorylated ERK and up-regulated DNMT3a. Taken together, LMP2A induced the phosphorylation of ERK, which activated DNMT3a transcription and caused AQP3 expression loss through CpG island methylation of AQP3 promoter in EBVaGC.
Collapse
|
46
|
Wragg D, de Almeida A, Casini A, Leoni S. Unveiling the Mechanisms of Aquaglyceroporin‐3 Water and Glycerol Permeation by Metadynamics. Chemistry 2019; 25:8713-8718. [DOI: 10.1002/chem.201902121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Darren Wragg
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Andreia de Almeida
- Tumour Micro Environment Group, Division of Cancer and GeneticsSchool of MedicineCardiff University Tenovus Building Cardiff CF14 4XN UK
| | - Angela Casini
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Stefano Leoni
- School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| |
Collapse
|
47
|
Rodriguez RA, Liang H, Chen LY, Plascencia-Villa G, Perry G. Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:768-775. [PMID: 30659792 PMCID: PMC6382548 DOI: 10.1016/j.bbamem.2019.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
Abstract
For its fundamental relevance, transport of water and glycerol across the erythrocyte membrane has long been investigated before and after the discovery of aquaporins (AQPs), the membrane proteins responsible for water and glycerol transport. AQP1 is abundantly expressed in the human erythrocyte for maintaining its hydrohomeostasis where AQP3 is also expressed (at a level ~30-folds lower than AQP1) facilitating glycerol transport. This research is focused on two of the remaining questions: How permeable is AQP3 to water? What is the glycerol-AQP3 affinity under near-physiological conditions? Through atomistic modelling and large-scale simulations, we found that AQP3 is two to three times more permeable to water than AQP1 and that the glycerol-AQP3 affinity is approximately 500/M. Using these computed values along with the data from the latest literature on AQP1 and on erythrocyte proteomics, we estimated the water and glycerol transport rates across the membrane of an entire erythrocyte. We used these rates to predict the time courses of erythrocyte swelling-shrinking in response to inward and outward osmotic gradients. Experimentally, we monitored the time course of human erythrocytes when subject to an osmotic or glycerol gradient with light scattering in a stopped-flow spectrometer. We observed close agreement between the experimentally measured and the computationally predicted time courses of erythrocytes, which corroborated our computational conclusions on the AQP3 water-permeability and the glycerol-AQP3 affinity.
Collapse
Affiliation(s)
- Roberto A Rodriguez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Huiyun Liang
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Liao Y Chen
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America.
| | - Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| |
Collapse
|
48
|
Abir-Awan M, Kitchen P, Salman MM, Conner MT, Conner AC, Bill RM. Inhibitors of Mammalian Aquaporin Water Channels. Int J Mol Sci 2019; 20:ijms20071589. [PMID: 30934923 PMCID: PMC6480248 DOI: 10.3390/ijms20071589] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
Collapse
Affiliation(s)
- Mohammed Abir-Awan
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Matthew T Conner
- Research Institute of Health Sciences, School of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
49
|
Sonntag Y, Gena P, Maggio A, Singh T, Artner I, Oklinski MK, Johanson U, Kjellbom P, Nieland JD, Nielsen S, Calamita G, Rützler M. Identification and characterization of potent and selective aquaporin-3 and aquaporin-7 inhibitors. J Biol Chem 2019; 294:7377-7387. [PMID: 30862673 DOI: 10.1074/jbc.ra118.006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/04/2019] [Indexed: 01/21/2023] Open
Abstract
The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 μm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 μm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 μm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.
Collapse
Affiliation(s)
- Yonathan Sonntag
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Patrizia Gena
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Anna Maggio
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Tania Singh
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Isabella Artner
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Michal K Oklinski
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Urban Johanson
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Per Kjellbom
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - John Dirk Nieland
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Søren Nielsen
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Giuseppe Calamita
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Michael Rützler
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
50
|
Rojas V, Ortiz YY, Rodríguez S, Araque V, Rodríguez-Acosta A, Figarella K, Uzcátegui NL. Rhinella marina oocytes: a suitable alternative expression system for functional characterization of aquaglyceroporins. Sci Rep 2019; 9:18. [PMID: 30631140 PMCID: PMC6328568 DOI: 10.1038/s41598-018-37069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Amphibian oocytes have been extensively used for heterologous expression of membrane proteins for studying their biochemical and biophysical properties. So far, Xenopus laevis is the main amphibian used as oocytes source to express aquaglyceroporins in order to assess water and solutes permeability. However, this well-established amphibian model represents a threat to the biodiversity in many countries, especially in those from tropical regions. For that reason, the import of Xenopus laevis is subjected to strict control, which essentially has restricted its use in these regions. Therefore, a wider variety of expression systems for aquaglyceroporins is needed. Rhinella marina is extensively distributed in the Americas and its native range spreads from South America to Texas, US. Here we report the use of Rhinella marina oocytes as an alternative expression system for aquaglyceroporins and demonstrated its suitability to determine the permeability to water and non-ionic solutes. Rhinella marina oocytes were able to functionally express channels from human and the protozoan pathogen Trypanosoma brucei, two very distant organisms on the evolutionary scale. Permeability values obtained from Rhinella marina oocytes expressing members of aquaporin family were similar and comparable to those values reported in the literature for the same channels expressed in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Vania Rojas
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Yulexi Y Ortiz
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Sheridan Rodríguez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Vladimir Araque
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Néstor L Uzcátegui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|