1
|
Specialized DNA Structures Act as Genomic Beacons for Integration by Evolutionarily Diverse Retroviruses. Viruses 2023; 15:v15020465. [PMID: 36851678 PMCID: PMC9962126 DOI: 10.3390/v15020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Retroviral integration site targeting is not random and plays a critical role in expression and long-term survival of the integrated provirus. To better understand the genomic environment surrounding retroviral integration sites, we performed a meta-analysis of previously published integration site data from evolutionarily diverse retroviruses, including new experimental data from HIV-1 subtypes A, B, C and D. We show here that evolutionarily divergent retroviruses exhibit distinct integration site profiles with strong preferences for integration near non-canonical B-form DNA (non-B DNA). We also show that in vivo-derived HIV-1 integration sites are significantly more enriched in transcriptionally silent regions and transcription-silencing non-B DNA features of the genome compared to in vitro-derived HIV-1 integration sites. Integration sites from individuals infected with HIV-1 subtype A, B, C or D viruses exhibited different preferences for common genomic and non-B DNA features. In addition, we identified several integration site hotspots shared between different HIV-1 subtypes, all of which were located in the non-B DNA feature slipped DNA. Together, these data show that although evolutionarily divergent retroviruses exhibit distinct integration site profiles, they all target non-B DNA for integration. These findings provide new insight into how retroviruses integrate into genomes for long-term survival.
Collapse
|
2
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Schenkwein D, Afzal S, Nousiainen A, Schmidt M, Ylä-Herttuala S. Efficient Nuclease-Directed Integration of Lentivirus Vectors into the Human Ribosomal DNA Locus. Mol Ther 2020; 28:1858-1875. [PMID: 32504545 PMCID: PMC7403359 DOI: 10.1016/j.ymthe.2020.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/03/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Lentivirus vectors (LVs) are efficient tools for gene transfer, but the non-specific nature of transgene integration by the viral integration machinery carries an inherent risk for genotoxicity. We modified the integration machinery of LVs and harnessed the cellular DNA double-strand break repair machinery to integrate transgenes into ribosomal DNA, a promising genomic safe-harbor site for transgenes. LVs carrying modified I-PpoI-derived homing endonuclease proteins were characterized in detail, and we found that at least 21% of all integration sites localized to ribosomal DNA when LV transduction was coupled to target DNA cleavage. In addition to the primary sequence recognized by the endonuclease, integration was also enriched in chromatin domains topologically associated with nucleoli, which contain the targeted ribosome RNA genes. Targeting of this highly repetitive region for integration was not associated with detectable DNA deletions or negative impacts on cell health in transduced primary human T cells. The modified LVs characterized here have an overall lower risk for insertional mutagenesis than regular LVs and can thus improve the safety of gene and cellular therapy.
Collapse
Affiliation(s)
- Diana Schenkwein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Saira Afzal
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Alisa Nousiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Heart Center and Gene Therapy Unit, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| |
Collapse
|
4
|
Abstract
Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.
Collapse
|
5
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
6
|
McAllister RG, Liu J, Woods MW, Tom SK, Rupar CA, Barr SD. Lentivector integration sites in ependymal cells from a model of metachromatic leukodystrophy: non-B DNA as a new factor influencing integration. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e187. [PMID: 25158091 PMCID: PMC4221599 DOI: 10.1038/mtna.2014.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells.
Collapse
Affiliation(s)
- Robert G McAllister
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Jiahui Liu
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Matthew W Woods
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Sean K Tom
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - C Anthony Rupar
- 1] Department of Biochemistry, Western University, London, Ontario, Canada [2] Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada [3] Department of Pediatrics, Western University, London, Ontario, Canada [4] Children's Health Research Institute, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
8
|
Bushman FD. Engineering the human genome: reflections on the beginning. Hum Gene Ther 2014; 25:395-400. [PMID: 24848314 DOI: 10.1089/hum.2014.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine , Philadelphia, PA 19104-6076
| |
Collapse
|
9
|
Cai Y, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 2014; 3:e01911. [PMID: 24843011 PMCID: PMC3996624 DOI: 10.7554/elife.01911] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in ‘all-in-one’ lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases. DOI:http://dx.doi.org/10.7554/eLife.01911.001 Altering the genetic code of a living organism to produce certain desirable outcomes is the goal of genetic engineering. The field builds on a long history of human attempts to alter genetics, from selective breeding of crops and livestock to genetically modified organisms and gene therapies. Researchers routinely use gene editing to create ‘knock-out’ mice in which a particular gene is turned off: the researchers can learn more about the function of this gene by watching what happens when it is absent. As gene editing techniques have grown more sophisticated, they have become an increasingly promising tool for treating diseases that are caused by gene mutations. The aim of this work is to replace faulty genes with genes that work properly. However, it has been difficult to adapt genetic engineering techniques so that they can be used safely in humans. Scientists have created customized enzymes called nucleases that can remove specific genes, but it has been a challenge to get these nucleases into cells in the first place. A virus can be used to deliver the genes that encode these nucleases into the DNA of a cell, but this approach can lead to the production of too many nucleases and to the removal of more genes than intended. Now Cai et al. have developed a ‘hit-and-run’ method for getting the nucleases into cells and making them active only for a short period of time. This method involves using a virus to deliver two different nucleases to a cell. Once inside the cell, the viruses released the nucleases, which were able to remove up to one-quarter of their gene targets, with relatively few errors, in the time that they were active. Next, Cai et al. added gene patches—new genes to replace those removed by the nucleases—to the viruses. This ‘cut and patch’ strategy was successful in up to 8% of the treated cells. The results also suggest that this approach is safer than other gene-editing techniques. DOI:http://dx.doi.org/10.7554/eLife.01911.002
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
10
|
Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, Cegan R, Hobza R, Vyskot B, Kejnovsky E. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. THE NEW PHYTOLOGIST 2014; 202:662-678. [PMID: 24456522 DOI: 10.1111/nph.12669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed.
Collapse
Affiliation(s)
- Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Ivan Vogel
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Tomas Cermak
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc, 77200, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
11
|
Schenkwein D, Turkki V, Ahlroth MK, Timonen O, Airenne KJ, Ylä-Herttuala S. rDNA-directed integration by an HIV-1 integrase--I-PpoI fusion protein. Nucleic Acids Res 2012; 41:e61. [PMID: 23275537 PMCID: PMC3597653 DOI: 10.1093/nar/gks1438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Integrating viral vectors are efficient gene transfer tools, but their integration patterns have been associated with genotoxicity and oncogenicity. The recent development of highly specific designer nucleases has enabled target DNA modification and site-specific gene insertion at desired genomic loci. However, a lack of consensus exists regarding a perfect genomic safe harbour (GSH) that would allow transgenes to be stably and reliably expressed without adversely affecting endogenous gene structure and function. Ribosomal DNA (rDNA) has many advantages as a GSH, but efficient means to target integration to this locus are currently lacking. We tested whether lentivirus vector integration can be directed to rDNA by using fusion proteins consisting of the Human Immunodeficiency Virus 1 (HIV-1) integrase (IN) and the homing endonuclease I-PpoI, which has natural cleavage sites in the rDNA. A point mutation (N119A) was introduced into I-PpoI to abolish unwanted DNA cleavage by the endonuclease. The vector-incorporated IN-I-PpoIN119A fusion protein targeted integration into rDNA significantly more than unmodified lentivirus vectors, with an efficiency of 2.7%. Our findings show that IN-fusion proteins can be used to modify the integration pattern of lentivirus vectors, and to package site-specific DNA-recognizing proteins into vectors to obtain safer transgene integration.
Collapse
Affiliation(s)
- Diana Schenkwein
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2012; 20:581-8. [PMID: 23171920 DOI: 10.1038/gt.2012.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Replication-deficient retroviruses have been successfully utilized as vectors, offering an efficient, stable method of therapeutic gene delivery. Many examples exist proving this mode of integrative gene transfer is both effective and safe in cultured systems and clinical trials. Along with their success, severe side effects have occurred with early retroviral vectors causing a shift in the approach to vector design before further clinical testing. Several alternative delivery methods are available but lentiviral vectors (LV) are among the most favorable as they are already well understood. LV offer safer integration site selection profiles and a lower degree of genotoxicity, compared with γ-retroviral vectors. Following their introduction, development of the self-inactivating vector configuration was a huge step to this mode of therapy but did not confer full protection against insertional mutagenesis. As a result integration, modeling must be improved to eventually avoid this possibility. The cellular factor LEDGF/p75 seems to play an essential role in the process of LV site selection and its interactions with chromatin are being quickly resolved. LEDGF/p75 is at the center of one example directed integration effort where recombinant products bias the integration event, a step toward fully directed integration into pre-determined benign loci. A more accurate picture of the details of LEDGF/p75 in the natural integration process is emerging, including new binding specificities, chromatin interaction kinetics and additional cellular factors. Together with next-generation sequencing technology and bio-informatics to analyze integration patterns, these advancements will lead to highly focused directed integration, accelerating wide-spread acceptance of LV for gene therapy.
Collapse
|
13
|
Lim KI. Retroviral integration profiles: their determinants and implications for gene therapy. BMB Rep 2012; 45:207-12. [PMID: 22531129 DOI: 10.5483/bmbrep.2012.45.4.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses have often been used for gene therapy because of their capacity for the long-term expression of transgenes via stable integration into the host genome. However, retroviral integration can also result in the transformation of normal cells into cancer cells, as demonstrated by the incidence of leukemia in a recent retroviral gene therapy trial in Europe. This unfortunate outcome has led to the rapid initiation of studies examining various biological and pathological aspects of retroviral integration. This review summarizes recent findings from these studies, including the global integration patterns of various types of retroviruses, viral and cellular determinants of integration, implications of integration for gene therapy and retrovirus-mediated infectious diseases, and strategies to shift integration to safe host genomic loci. A more comprehensive and mechanistic understanding of retroviral integration processes will eventually make it possible to generate safer retroviral vector platforms in the near future.
Collapse
Affiliation(s)
- Kwang-il Lim
- Department of Medical and Pharmaceutical Sciences, College of Science, Sookmyung Women's University, Seoul, Korea.
| |
Collapse
|
14
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 2012; 20:1852-62. [PMID: 22776959 DOI: 10.1038/mt.2012.126] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a nonviral, integrating vector system with proven efficacy in preclinical animal models, and thus holds promise for future clinical applications. However, SB has a close-to-random insertion profile that could lead to genotoxic effects, thereby presenting a potential safety issue. We evaluated zinc finger (ZF) DNA-binding domains (DBDs) for their abilities to introduce a bias into SB's insertion profile. E2C, that binds a unique site in the erbB-2 gene, mediated locus-specific transposon insertions at low frequencies. A novel ZF targeting LINE1 repeats, ZF-B, showed specific binding to an 18-bp site represented by ~12,000 copies in the human genome. We mapped SB insertions using linear-amplification (LAM)-PCR and Illumina sequencing. Targeted insertions with ZF-B peaked at approximately fourfold enrichment of transposition around ZF-B binding sites yielding ~45% overall frequency of insertion into LINE1. A decrease in the ZF-B dataset with respect to transposon insertions in genes was found, suggesting that LINE1 repeats act as a sponge that "soak up" a fraction of SB insertions and thereby redirect them away from genes. Improvements in ZF technology and a careful choice of targeted genomic regions may improve the safety profile of SB for future clinical applications.
Collapse
|
16
|
Knyazhanskaya ES, Kondrashina OV, Gottikh MB. Approaches to site-directed DNA integration based on transposases and retroviral integrases. Mol Biol 2011. [DOI: 10.1134/s0026893311060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Imre A, Olasz F, Nagy B. Site-directed (IS30-FljA) transposon mutagenesis system to produce nonflagellated mutants of Salmonella Enteritidis. FEMS Microbiol Lett 2011; 317:52-9. [PMID: 21219416 DOI: 10.1111/j.1574-6968.2011.02210.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Site-directed integration/mutagenesis systems are used to carry out targeted transpositions on DNA. The well-characterized IS30-element and its transposase have numerous advantages that predestine it to be a good candidate for such applications. In order to generate nonflagellated mutants of Salmonella Enteritidis, a new site-directed mutagenesis system has been developed and applied. The system was constructed based on the assumption that the DNA-binding FljA component of the fusion transposase would bind to its target (the operator of fliC), and as a consequence, insertions could be concentrated in the flagellin operon. The system consists of two components: one expresses the fusion transposase and the other is an integration donor plasmid harbouring the (IS30)(2) reactive structure. The application of this site-directed mutagenesis system on a strain of S. Enteritidis 11 (SE11) resulted in several nonmotile mutants with fliD insertion that could serve as negatively markered vaccine candidates. Analysis of less motile mutants generated by the fusion transposase revealed further hot spot sequences preferred by the fusion construct.
Collapse
Affiliation(s)
- Ariel Imre
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | |
Collapse
|
18
|
Lim KI, Klimczak R, Yu JH, Schaffer DV. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci U S A 2010; 107:12475-80. [PMID: 20616052 PMCID: PMC2906550 DOI: 10.1073/pnas.1001402107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retroviral vectors offer benefits of efficient delivery and stable gene expression; however, their clinical use raises the concerns of insertional mutagenesis and potential oncogenesis due to genomic integration preferences in transcriptional start sites (TSS). We have shifted the integration preferences of retroviral vectors by generating a library of viral variants with a DNA-binding domain inserted at random positions throughout murine leukemia virus Gag-Pol, then selecting for variants that are viable and exhibit altered integration properties. We found seven permissive zinc finger domain (ZFD) insertion sites throughout Gag-Pol, including within p12, reverse transcriptase, and integrase. Comprehensive genome integration analysis showed that several ZFD insertions yielded retroviral vector variants with shifted integration patterns that did not favor TSS. Furthermore, integration site analysis revealed selective integration for numerous mutants. For example, two retroviral variants with a given ZFD at appropriate positions in Gag-Pol strikingly integrated primarily into four common sites out of 3.1 x 10(9) possible human genome locations (P = 4.6 x 10(-29)). Our findings demonstrate that insertion of DNA-binding motifs into multiple locations in Gag-Pol can make considerable progress toward engineering safer retroviral vectors that integrate into a significantly narrowed pool of sites on human genome and overcome the preference for TSS.
Collapse
Affiliation(s)
- Kwang-il Lim
- Departments of Chemical Engineering and Bioengineering and The Helen Wills Neuroscience Institute, University of California, 278 Stanley Hall, Berkeley, CA 94720-3220
| | - Ryan Klimczak
- Departments of Chemical Engineering and Bioengineering and The Helen Wills Neuroscience Institute, University of California, 278 Stanley Hall, Berkeley, CA 94720-3220
| | - Julie H. Yu
- Departments of Chemical Engineering and Bioengineering and The Helen Wills Neuroscience Institute, University of California, 278 Stanley Hall, Berkeley, CA 94720-3220
| | - David V. Schaffer
- Departments of Chemical Engineering and Bioengineering and The Helen Wills Neuroscience Institute, University of California, 278 Stanley Hall, Berkeley, CA 94720-3220
| |
Collapse
|
19
|
Retroviral integration site selection. Viruses 2010; 2:111-130. [PMID: 21994603 PMCID: PMC3185549 DOI: 10.3390/v2010111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 02/07/2023] Open
Abstract
The stable insertion of a copy of their genome into the host cell genome is an essential step of the life cycle of retroviruses. The site of viral DNA integration, mediated by the viral-encoded integrase enzyme, has important consequences for both the virus and the host cell. The analysis of retroviral integration site distribution was facilitated by the availability of the human genome sequence, revealing the non-random feature of integration site selection and identifying different favored and disfavored genomic locations for individual retroviruses. This review will summarize the current knowledge about retroviral differences in their integration site preferences as well as the mechanisms involved in this process.
Collapse
|
20
|
LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 2010; 18:552-60. [PMID: 20195265 DOI: 10.1038/mt.2010.36] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Correction of genetic diseases requires integration of the therapeutic gene copy into the genome of patient cells. Retroviruses are commonly used as delivery vehicles because of their precise integration mechanism, but their use has led to adverse events in which vector integration activated proto-oncogenes and contributed to leukemogenesis. Here, we show that integration by lentiviral vectors can be targeted away from genes using an artificial tethering factor. During normal lentivirus infection, the host cell-encoded transcriptional coactivator lens epithelium-derived growth factor/p75 (LEDGF/p75) binds lentiviral integrase (IN), thereby targeting integration to active transcription units and increasing the efficiency of infection. We replaced the LEDGF/p75 chromatin interaction-binding domain with CBX1. CBX1 binds histone H3 di- or trimethylated on K9, which is associated with pericentric heterochromatin and intergenic regions. The chimeric protein supported efficient transduction of lentiviral vectors and directed the integration outside of genes, near bound CBX1. Despite integration in regions rich in epigenetic marks associated with gene silencing, lentiviral vector expression remained efficient. Thus, engineered LEDGF/p75 chimeras provide technology for controlling integration site selection by lentiviral vectors.
Collapse
|
21
|
Feng X, Bednarz AL, Colloms SD. Precise targeted integration by a chimaeric transposase zinc-finger fusion protein. Nucleic Acids Res 2009; 38:1204-16. [PMID: 19965773 PMCID: PMC2831304 DOI: 10.1093/nar/gkp1068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer 'Z-transposases' that could deliver transgenic cargoes to chosen genomic locations.
Collapse
Affiliation(s)
- Xiaofeng Feng
- Faculty of Biomedical and Life Sciences, University of Glasgow, Bower Building, University Ave, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
22
|
Müther N, Noske N, Ehrhardt A. Viral hybrid vectors for somatic integration - are they the better solution? Viruses 2009; 1:1295-324. [PMID: 21994594 PMCID: PMC3185507 DOI: 10.3390/v1031295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system.
Collapse
Affiliation(s)
- Nadine Müther
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Nadja Noske
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| |
Collapse
|
23
|
Claeys Bouuaert C, Chalmers RM. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 2009; 138:473-84. [PMID: 19649713 DOI: 10.1007/s10709-009-9391-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy applications require efficient tools for the stable delivery of genetic information into eukaryotic genomes. Most current gene delivery strategies are based on viral vectors. However, a number of drawbacks, such as the limited cargo capacity, host immune response and mutational risks, highlight the need for alternative gene delivery tools. A comprehensive gene therapy tool kit should contain a range of vectors and techniques that can be adapted to different targets and purposes. Transposons provide a potentially powerful approach. However, transposons encompass a large number of different molecular mechanisms, some of which are better suited to gene delivery applications than others. Here, we consider the range and potentials of the various mechanisms, focusing on the cut-and-paste transposons as one of the more promising avenues towards gene therapy applications. Several cut-and-paste transposition systems are currently under development. We will first consider the mechanisms of piggyBac and the hAT family elements Tol1 and Tol2, before focusing on the mariner family elements including Mos1, Himar1 and Hsmar1.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
24
|
Knyazhanskaya ES, Smolov MA, Kondrashina OV, Gottikh MB. Relative Comparison of Catalytic Characteristics of Human Foamy Virus and HIV-1 Integrases. Acta Naturae 2009; 1:78-80. [PMID: 22649606 PMCID: PMC3347520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Due to their ability to integrate into the host cell's genome, retroviruses represent an optimal basis for the creation of gene therapy vectors. The integration reaction is carried out by a viral enzyme integrase: thus, a detailed research of this enzyme is required. In this work, the catalytic properties of human foamy virus integrase were studied. This virus belongs to the Retroviridae family. The dissociation constant was determined, together with the kinetics of integrase catalytic activity. The data obtained were compared to those for the human immunodeficiency virus integrase and a considerable similarity in the activity of the two enzymes was observed.
Collapse
Affiliation(s)
| | - M. A. Smolov
- Department of Bioengineering and Bioinformatics of MSU;
| | | | - M. B. Gottikh
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
| |
Collapse
|
25
|
Guynet C, Achard A, Hoang BT, Barabas O, Hickman AB, Dyda F, Chandler M. Resetting the site: redirecting integration of an insertion sequence in a predictable way. Mol Cell 2009; 34:612-9. [PMID: 19524540 PMCID: PMC3654794 DOI: 10.1016/j.molcel.2009.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/12/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Target site choice is a complex and poorly understood aspect of DNA transposition despite its importance in rational transposon-mediated gene delivery. Though most transposons choose target sites essentially randomly or with some slight sequence or structural preferences, insertion sequence IS608 from Helicobacter pylori, which transposes using single-stranded DNA, always inserts just 3' of a TTAC tetranucleotide. Our results from studies on the IS608 transposition mechanism demonstrated that the transposase recognizes its target site by co-opting an internal segment of transposon DNA and utilizes it for specific recognition of the target sites through base-pairing. This suggested a way to redirect IS608 transposition to novel target sites. As we demonstrate here, we can now direct insertions in a predictable way into a variety of different chosen target sequences, both in vitro and in vivo.
Collapse
Affiliation(s)
- Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | - Adeline Achard
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | - Orsolya Barabas
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frederick Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| |
Collapse
|
26
|
Human immunodeficiency virus integration efficiency and site selection in quiescent CD4+ T cells. J Virol 2009; 83:6222-33. [PMID: 19369341 DOI: 10.1128/jvi.00356-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Until very recently, quiescent CD4(+) T cells were thought to be resistant to human immunodeficiency virus (HIV) infection. Subsequent studies, attempting to fully elucidate the mechanisms of resistance, showed that quiescent cells could become infected by HIV at low efficiency and form a latently infected population. In this study, we set out to identify the sites of viral integration and to assess the efficiency of the overall integration process in quiescent cells. Based on our results, HIV integration in quiescent CD4(+) T cells occurs in sites similar to those of their prestimulated counterparts. While site selections are similar, the integration process in quiescent cells is plagued by the formation of high levels of incorrectly processed viral ends and abortive two-long-terminal-repeat circles.
Collapse
|
27
|
Ciuffi A, Ronen K, Brady T, Malani N, Wang G, Berry CC, Bushman FD. Methods for integration site distribution analyses in animal cell genomes. Methods 2009; 47:261-8. [PMID: 19038346 PMCID: PMC4104535 DOI: 10.1016/j.ymeth.2008.10.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/24/2008] [Accepted: 10/29/2008] [Indexed: 12/20/2022] Open
Abstract
The question of where retroviral DNA becomes integrated in chromosomes is important for understanding (i) the mechanisms of viral growth, (ii) devising new anti-retroviral therapy, (iii) understanding how genomes evolve, and (iv) developing safer methods for gene therapy. With the completion of genome sequences for many organisms, it has become possible to study integration targeting by cloning and sequencing large numbers of host-virus DNA junctions, then mapping the host DNA segments back onto the genomic sequence. This allows statistical analysis of the distribution of integration sites relative to the myriad types of genomic features that are also being mapped onto the sequence scaffold. Here we present methods for recovering and analyzing integration site sequences.
Collapse
Affiliation(s)
- Angela Ciuffi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, 402 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Troy Brady
- Department of Microbiology, University of Pennsylvania School of Medicine, 402 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, 402 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Gary Wang
- Department of Microbiology, University of Pennsylvania School of Medicine, 402 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Charles C. Berry
- Department of Family/Preventive Medicine, University of California, San Diego School of Medicine, San Diego, CA 9209, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 402 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| |
Collapse
|
28
|
Engelman A. Mechanistic and pharmacological analyses of HIV-1 integration. Methods 2009; 47:225-8. [PMID: 19389610 PMCID: PMC2709961 DOI: 10.1016/j.ymeth.2009.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/16/2009] [Indexed: 11/30/2022] Open
Abstract
Significant advances have transpired in the human immunodeficiency virus type 1 (HIV-1) integration field in recent years. Considering its essential nature, integrase has long been a target of interest for antiviral drug development. The most significant advance was the approval of the Merck compound raltegravir, the first licensed integrase inhibitor, in October 2007. Another milestone was the identification and characterization of specific nucleoprotein complexes that mediate integrase 3' processing and DNA strand transfer activities in vitro. Genome-wide distribution analyses have furthermore revealed that different retroviruses differentially target distinctive regions of chromatin during integration. For examples, lentiviruses favor actively transcribed genes whereas gammaretroviruses such as Moloney murine leukemia virus prefer transcriptional start sites. Though the underlying mechanisms are unknown for most retroviruses, the lentiviral preference is in large part guided through the interaction with the integrase binding protein lens epithelium-derived growth factor (LEDGF)/p75. Experimental methods that formed the foundations for each of these advances, as well as other techniques topical to the study of HIV-1 integration, are described in this issue of Methods.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, CLSB-1010, Boston, MA 02115, USA, Email address: , Tel: +1 617 632 4361, Fax: +1 617 632 4338
| |
Collapse
|
29
|
Su K, Wang D, Ye J, Kim YC, Chow SA. Site-specific integration of retroviral DNA in human cells using fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc-finger protein E2C. Methods 2009; 47:269-76. [PMID: 19186211 PMCID: PMC2695809 DOI: 10.1016/j.ymeth.2009.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/31/2008] [Accepted: 01/03/2009] [Indexed: 02/03/2023] Open
Abstract
During the life cycle of retroviruses, establishment of a productive infection requires stable joining of a DNA copy of the viral RNA genome into host cell chromosomes. Retroviruses are thus promising vectors for the efficient and stable delivery of genes in therapeutic protocols. Integration of retroviral DNA is catalyzed by the viral enzyme integrase (IN), and one salient feature of retroviral DNA integration is its lack of specificity, as many chromosomal sites can serve as targets for integration. Despite the promise for success in the clinic, one major drawback of the retrovirus-based vector is that any unintended insertion events from the therapy can potentially lead to deleterious effects in patients, as demonstrated by the development of malignancies in both animal and human studies. One approach to directing integration into predetermined DNA sites is fusing IN to a sequence-specific DNA-binding protein, which results in a bias of integration near the recognition site of the fusion partner. Encouraging results have been generated in vitro and in vivo using fusion protein constructs of human immunodeficiency virus type 1 IN and E2C, a designed polydactyl zinc-finger protein that specifically recognizes an 18-base pair DNA sequence. This review focuses on the method for preparing infectious virions containing the IN fusion proteins and on the quantitative PCR assays for determining integration site specificity. Efforts to engineer IN to recognize specific target DNA sequences within the genome may lead to development of effective retroviral vectors that can safely deliver gene-based therapeutics in a clinical setting.
Collapse
Affiliation(s)
- Kunkai Su
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Ye
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun C. Kim
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA 90095
| | - Samson A. Chow
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
30
|
Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med (Berl) 2008; 86:1205-19. [PMID: 18607557 DOI: 10.1007/s00109-008-0381-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Collapse
Affiliation(s)
- Katrin Voigt
- Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092, Berlin, Germany
| | | | | |
Collapse
|
31
|
Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster. Genetics 2008; 180:1367-78. [PMID: 18791225 DOI: 10.1534/genetics.108.094318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The gypsy retrovirus of Drosophila is quite unique among retroviruses in that it shows a strong preference for integration into specific sites in the genome. In particular, gypsy integrates with a frequency of > 10% into the regulatory region of the ovo gene. We have used in vivo transgenic assays to dissect the role of Ovo proteins and the gypsy insulator during the process of gypsy site-specific integration. Here we show that DNA containing binding sites for the Ovo protein is required to promote site-specific gypsy integration into the regulatory region of the ovo gene. Using a synthetic sequence, we find that Ovo binding sites alone are also sufficient to promote gypsy site-specific integration into transgenes. These results indicate that Ovo proteins can determine the specificity of gypsy insertion. In addition, we find that interactions between a gypsy provirus and the gypsy preintegration complex may also participate in the process leading to the selection of gypsy integration sites. Finally, the results suggest that the relative orientation of two integrated gypsy sequences has an important role in the enhancer-blocking activity of the gypsy insulator.
Collapse
|
32
|
Daniel R, Smith JA. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther 2008; 19:557-68. [PMID: 18533894 DOI: 10.1089/hum.2007.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retroviral DNA integration into the host cell genome is an essential feature of the retroviral life cycle. The ability to integrate their DNA into the DNA of infected cells also makes retroviruses attractive vectors for delivery of therapeutic genes into the genome of cells carrying adverse mutations in their cellular DNA. Sequencing of the entire human genome has enabled identification of integration site preferences of both replication-competent retroviruses and retroviral vectors. These results, together with the unfortunate outcome of a gene therapy trial, in which integration of a retroviral vector in the vicinity of a protooncogene was associated with the development of leukemia, have stimulated efforts to elucidate the molecular mechanism underlying integration site selection by retroviral vectors, as well as the development of methods to direct integration to specific DNA sequences and chromosomal regions. This review outlines our current knowledge of the mechanism of integration site selection by retroviruses in vitro, in cultured cells, and in vivo; the outcome of several of the more recent gene therapy trials, which employed these vectors; and the efforts of several laboratories to develop vectors that integrate at predetermined sites in the human genome.
Collapse
Affiliation(s)
- René Daniel
- Division of Infectious Diseases, Center for Human Virology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
33
|
Hackett CS, Geurts AM, Hackett PB. Predicting preferential DNA vector insertion sites: implications for functional genomics and gene therapy. Genome Biol 2007; 8 Suppl 1:S12. [PMID: 18047689 PMCID: PMC2106846 DOI: 10.1186/gb-2007-8-s1-s12] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Viral and transposon vectors have been employed in gene therapy as well as functional genomics studies. However, the goals of gene therapy and functional genomics are entirely different; gene therapists hope to avoid altering endogenous gene expression (especially the activation of oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of either outcome depend on a vector's preference to integrate into genes or control regions, and these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors over viral vectors, and review methods to overcome barriers to delivery inherent to DNA vectors. We also review the tendencies of several classes of retroviral and transposon vectors to target DNA sequences, genes, and genetic elements with respect to the balance between insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect integration for various vectors will allow researchers to choose the vector with the most utility for their specific purposes. The three principle benefits from elucidating factors that affect preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe adverse effects years after treatment; in genomic studies, it allows one to discern random from selected integration events; and in gene therapy as well as functional genomics, it facilitates design of vectors that are better targeted to specific sequences, which would be a significant advance in the art of transgenesis.
Collapse
Affiliation(s)
- Christopher S Hackett
- Biomedical Sciences Graduate Program and Department of Neurology, University of California San Francisco, Room U441K, Parnassus Ave, San Francisco, California 94143-0663, USA
| | | | | |
Collapse
|
34
|
Ivics Z, Katzer A, Stüwe EE, Fiedler D, Knespel S, Izsvák Z. Targeted Sleeping Beauty transposition in human cells. Mol Ther 2007; 15:1137-44. [PMID: 17426709 DOI: 10.1038/sj.mt.6300169] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transposons are natural gene delivery vehicles. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in the cells of vertebrates including humans. SB transposition into chromosomal DNA occurs in a fairly random manner. This is clearly not desirable in human gene therapeutic applications because there are potential genotoxic effects associated with transposon integration. In this study we set out to manipulate the selection of SB's target sites for targeted transposition into predetermined chromosomal regions. We evaluated experimental strategies based on engineered proteins composed of DNA-binding domains fused to (i) the transposase; (ii) another protein that binds to a specific DNA sequence within the transposable element; and (iii) another protein that interacts with the transposase. We demonstrated targeted transposition into endogenous matrix attachment regions (MARs) and a chromosomally integrated tetracycline response element (TRE) in cultured human cells, using targeting proteins that bind to the transposon DNA. An approach based on interactions between the transposase and a targeting protein containing the N-terminal protein interaction domain of SB was found to enable an approximately 10(7)-fold enrichment of transgene insertion at a desired locus. Our experiments provide proof-of-principle for targeted chromosomal transposition of an otherwise randomly integrating transposon. Targeted transposition can be a powerful technology for safe transgene integration in human therapeutic applications.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Yant SR, Huang Y, Akache B, Kay MA. Site-directed transposon integration in human cells. Nucleic Acids Res 2007; 35:e50. [PMID: 17344320 PMCID: PMC1874657 DOI: 10.1093/nar/gkm089] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.
Collapse
Affiliation(s)
| | | | | | - Mark A. Kay
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5208, USA
| |
Collapse
|
36
|
Ciuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD. Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor. Hum Gene Ther 2006; 17:960-7. [PMID: 16972764 DOI: 10.1089/hum.2006.17.960] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms controlling retroviral integration have been the topic of intense interest, in part because of adverse clinical events that occurred during retrovirus-mediated human gene therapy. Here we investigate the use of artificial tethering interactions to constrain retroviral integration site selection in an in vitro model. During normal infection, HIV DNA integration is favored in active cellular transcription units. One component of the targeting mechanism is the cellular LEDGF/p75 protein. LEDGF/p75 binds tightly to HIV integrase (IN) protein, and depletion of LEDGF/p75 from target cells results in reduced integration in transcription units, suggesting integration targeting by a tethering mechanism. We constructed and analyzed fusions of LEDGF/p75 or its IN-binding domain (IBD) to the DNA-binding domain of phage lambda repressor protein (lambdaR). In the presence of the lambdaR-LEDGF/p75 fusions, increased strand transfer by IN was seen in target DNA near lambdaR-binding sites in vitro . These data support the idea that a direct interaction between LEDGF/p75 and IN can mediate targeting via a tethering mechanism, and provide proof of concept for the idea that protein-protein interactions might be engineered to constrain integration site selection during human gene therapy.
Collapse
Affiliation(s)
- Angela Ciuffi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | |
Collapse
|
37
|
Puglia J, Wang T, Smith-Snyder C, Cote M, Scher M, Pelletier JN, John S, Jonsson CB, Roth MJ. Revealing domain structure through linker-scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins. J Virol 2006; 80:9497-510. [PMID: 16973554 PMCID: PMC1617218 DOI: 10.1128/jvi.00856-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/07/2006] [Indexed: 11/20/2022] Open
Abstract
Linker-scanning libraries were generated within the 3' terminus of the Moloney murine leukemia virus (M-MuLV) pol gene encoding the connection-RNase H domains of reverse transcriptase (RT) as well as the structurally related M-MuLV and human immunodeficiency virus type 1 (HIV-1) integrase (IN) proteins. Mutations within the M-MuLV proviral vectors were Tn7 based and resulted in 15-bp insertions. Mutations within an HIV-1 IN bacterial expression vector were based on Tn5 and resulted in 57-bp insertions. The effects of the insertions were examined in vivo (M-MuLV) and in vitro (HIV-1). A total of 178 individual M-MuLV constructs were analyzed; 40 in-frame insertions within RT connection-RNase H, 108 in-frame insertions within IN, 13 insertions encoding stop codons within RNase H, and 17 insertions encoding stop codons within IN. For HIV-1 IN, 56 mutants were analyzed. In both M-MuLV and HIV-1 IN, regions are identified which functionally tolerate multiple-linker insertions. For MuLV, these correspond to the RT-IN proteolytic junction, the junction between the IN core and C terminus, and the C terminus of IN. For HIV-1 IN, in addition to the junction between the IN core and C terminus and the C terminus of IN, insertions between the N terminus and core domains maintained integration and disintegration activity. Of the 40 in-frame insertions within the M-MuLV RT connection-RNase H domains, only the three C-terminal insertions mapping to the RT-IN proteolytic junction were viable. These results correlate with deletion studies mapping the domain and subdomain boundaries of RT and IN. Importantly, these genetic footprints provide a means to identify nonessential regions within RT and IN for targeted gene therapy applications.
Collapse
Affiliation(s)
- Jennifer Puglia
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ciuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD. Modulating Target Site Selection During Human Immunodeficiency Virus DNA Integration In Vitrowith an Engineered Tethering Factor. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Aronoff R, Petersen CCH. Controlled and localized genetic manipulation in the brain. J Cell Mol Med 2006; 10:333-52. [PMID: 16796803 PMCID: PMC3933125 DOI: 10.1111/j.1582-4934.2006.tb00403.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/26/2006] [Indexed: 12/28/2022] Open
Abstract
Brain structure and function are determined in part through experience and in part through our inherited genes. A powerful approach for unravelling the balance between activity-dependent neuronal plasticity and genetic programs is to directly manipulate the genome. Such molecular genetic studies have been greatly aided by the remarkable progress of large-scale genome sequencing efforts. Sophisticated mouse genetic manipulations allow targeted point-mutations, deletions and additions to the mouse genome. These can be regulated through inducible promoters expressing in genetically specified neuronal cell types. However, despite significant progress it remains difficult to target specific brain regions through transgenesis alone. Recent work suggests that transduction vectors, like lentiviruses and adeno-associated viruses, may provide suitable additional tools for localized and controlled genetic manipulation. Furthermore, studies with such vectors may aid the development of human genetic therapies for brain diseases.
Collapse
Affiliation(s)
- Rachel Aronoff
- Laboratory of Sensory Processing, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - C C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
40
|
Diamond TL, Bushman FD. Division of labor within human immunodeficiency virus integrase complexes: determinants of catalysis and target DNA capture. J Virol 2006; 79:15376-87. [PMID: 16306609 PMCID: PMC1316026 DOI: 10.1128/jvi.79.24.15376-15387.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the completion of reverse transcription, the human immunodeficiency virus integrase (IN) enzyme covalently links the viral cDNA to a host cell chromosome. An IN multimer carries out this reaction, but the roles of individual monomers within the complex are mostly unknown. Here we analyzed the distribution of functions for target DNA capture and catalysis within the IN multimer. We used forced complementation between pairs of IN deletion derivatives in vitro as a tool for probing cis-trans relationships and analyzed amino acid substitutions affecting either catalysis or target site selection within these complementing complexes. This allowed the demonstration that the IN variant contributing the active catalytic domain was also responsible for recognition of the integration target DNA. We were further able to establish that a single monomer is responsible for both functions by use of assay mixtures containing three different IN genotypes. These data specify the ligands bound at the catalytically relevant IN monomer and allow more-specific modeling of the mechanism of inhibitors that also bind this surface of IN.
Collapse
Affiliation(s)
- Tracy L Diamond
- University of Pennsylvania School of Medicine, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
41
|
Tan W, Dong Z, Wilkinson TA, Barbas CF, Chow SA. Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J Virol 2006; 80:1939-48. [PMID: 16439549 PMCID: PMC1367172 DOI: 10.1128/jvi.80.4.1939-1948.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 12/01/2005] [Indexed: 12/31/2022] Open
Abstract
In vitro studies using fusion proteins consisting of human immunodeficiency virus type 1 integrase (IN) and a synthetic polydactyl zinc finger protein E2C, a sequence-specific DNA-binding protein, showed that integration of retroviral DNA can be biased towards a contiguous 18-bp E2C-recognition site. To determine whether the fusion protein strategy can achieve site-specific integration in vivo, viruses were prepared by cotransfection and various IN-E2C fusion proteins were packaged in trans into virions. The resulting viruses incorporated with the IN-E2C fusion proteins were functional and capable of performing integration at a level ranging from 1 to 24% of that of viruses containing wild-type (WT) IN. Two of the more infectious viruses, which contained E2C fused to either the N (E2C/IN) or to the C (IN/E2C) terminus of IN, were tested for their ability to direct integration into a unique E2C-binding site present within the 5' untranslated region of erbB-2 gene on human chromosome 17. The copy number of proviral DNA was measured using a quantitative real-time nested-PCR assay, and the specificity of directed integration was determined by comparing the number of proviruses within the vicinity of the E2C-binding site to that in the whole genome. Viruses containing IN/E2C fusion proteins had sevenfold higher preference for integrating near the E2C-binding site than those viruses containing WT IN, whereas viruses containing E2C/IN had 10-fold higher preference. The results indicated that the IN-E2C fusion protein strategy is capable of directing integration of retroviral DNA into a predetermined chromosomal region in the human genome.
Collapse
Affiliation(s)
- Wenjie Tan
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C. Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 2006; 3:848-58. [PMID: 16175173 DOI: 10.1038/nrmicro1263] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retroviral vectors are often used to introduce therapeutic sequences into patients' cells. In recent years, gene therapy with retroviral vectors has had impressive therapeutic successes, but has also resulted in three cases of leukaemia caused by insertional mutagenesis, which has focused attention on the molecular determinants of retroviral-integration target-site selection. Here, we review retroviral DNA integration, with emphasis on recent genome-wide studies of targeting and on the status of efforts to modulate target-site selection.
Collapse
Affiliation(s)
- Frederic Bushman
- University of Pennsylvania School of Medicine, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sorrell DA, Kolb AF. Targeted modification of mammalian genomes. Biotechnol Adv 2005; 23:431-69. [PMID: 15925473 DOI: 10.1016/j.biotechadv.2005.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 12/22/2022]
Abstract
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination. Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or PhiC31 integrase) are usually 30-50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.
Collapse
Affiliation(s)
- David A Sorrell
- Molecular Recognition Group, Hannah Research Institute, Ayr, KA6 5HL, UK
| | | |
Collapse
|
44
|
Kolb AF, Coates CJ, Kaminski JM, Summers JB, Miller AD, Segal DJ. Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 2005; 23:399-406. [PMID: 15982766 DOI: 10.1016/j.tibtech.2005.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 05/04/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity.
Collapse
Affiliation(s)
- Andreas F Kolb
- Hannah Research Institute, Hannah Research Park, Ayr, UK, KA6 5HL
| | | | | | | | | | | |
Collapse
|
45
|
Coates CJ, Kaminski JM, Summers JB, Segal DJ, Miller AD, Kolb AF. Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol 2005; 23:407-19. [PMID: 15993503 DOI: 10.1016/j.tibtech.2005.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 04/14/2005] [Accepted: 06/14/2005] [Indexed: 01/11/2023]
Abstract
The modification of mammalian genomes is an important goal in gene therapy and animal transgenesis. To generate stable genetic and biochemical changes, the therapeutic genes or transgenes need to be incorporated into the host genome. Ideally, the integration of the foreign gene should occur at sites that ensure their continual expression in the absence of any unwanted side effects on cellular metabolism. In this article, we discuss the opportunities provided by natural DNA-modifying enzymes, such as transposases, recombinases and integrases, to mediate the stable integration of foreign genes into host genomes. In addition, we discuss the approaches that have been taken to improve the efficiency and to modify the site-specificity of these enzymes.
Collapse
Affiliation(s)
- Craig J Coates
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 2005; 25:2085-94. [PMID: 15743807 PMCID: PMC1061620 DOI: 10.1128/mcb.25.6.2085-2094.2005] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is an emerging tool for transgenesis, gene discovery, and therapeutic gene delivery in mammals. Here we studied 1,336 SB insertions in primary and cultured mammalian cells in order to better understand its target site preferences. We report that, although widely distributed, SB integration recurrently targets certain genomic regions and shows a small but significant bias toward genes and their upstream regulatory sequences. Compared to those of most integrating viruses, however, the regional preferences associated with SB-mediated integration were much less pronounced and were not significantly influenced by transcriptional activity. Insertions were also distinctly nonrandom with respect to intergenic sequences, including a strong bias toward microsatellite repeats, which are predominantly enriched in noncoding DNA. Although we detected a consensus sequence consistent with a twofold dyad symmetry at the target site, the most widely used sites did not match this consensus. In conjunction with an observed SB integration preference for bent DNA, these results suggest that physical properties may be the major determining factor in SB target site selection. These findings provide basic insights into the transposition process and reveal important distinctions between transposon- and virus-based integrating vectors.
Collapse
Affiliation(s)
- Stephen R Yant
- Stanford University School of Medicine, Department of Pediatrics, 300 Pasteur Dr., Room G-305, Stanford, CA 94305-5208, USA
| | | | | | | | | | | |
Collapse
|
47
|
Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 2005; 6:299-310. [PMID: 15761468 DOI: 10.1038/nrg1577] [Citation(s) in RCA: 427] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential dangers of using viruses to deliver and integrate DNA into host cells in gene therapy have been poignantly highlighted in recent clinical trials. Safer, non-viral gene delivery approaches have been largely ignored in the past because of their inefficient delivery and the resulting transient transgene expression. However, recent advances indicate that efficient, long-term gene expression can be achieved by non-viral means. In particular, integration of DNA can be targeted to specific genomic sites without deleterious consequences and it is possible to maintain transgenes as small episomal plasmids or artificial chromosomes. The application of these approaches to human gene therapy is gradually becoming a reality.
Collapse
Affiliation(s)
- Dominic J Glover
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
48
|
Lewinski MK, Bushman FD. Retroviral DNA integration--mechanism and consequences. ADVANCES IN GENETICS 2005; 55:147-81. [PMID: 16291214 DOI: 10.1016/s0065-2660(05)55005-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integration of retroviral cDNA into the host cell chromosome is an essential step in its replication. This process is catalyzed by the retroviral integrase protein, which is conserved among retroviruses and retrotransposons. Integrase binds viral and host DNA in a complex, called the preintegration complex (PIC), with other viral and cellular proteins. While the PIC is capable of directing integration of the viral DNA into any chromosomal location, different retroviruses have clear preferences for integration in or near particular chromosomal features. The determinants of integration site selection are under investigation but may include retrovirus-specific interactions between integrase and tethering factors bound to the host cell chromosomes. Research into the mechanisms of retroviral integration site selection has shed light on the phenomena of insertional mutagenesis and viral latency.
Collapse
Affiliation(s)
- Mary K Lewinski
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92186, USA
| | | |
Collapse
|
49
|
Kulkarni A, Pavithra L, Rampalli S, Mogare D, Babu K, Shiekh G, Ghosh S, Chattopadhyay S. HIV-1 integration sites are flanked by potential MARs that alone can act as promoters. Biochem Biophys Res Commun 2004; 322:672-7. [PMID: 15325282 DOI: 10.1016/j.bbrc.2004.07.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 10/26/2022]
Abstract
Matrix attachment regions (MARs) are cis regulatory elements that modulate gene expression in a tissue and cell stage specific manner. Recent reports show that viral integration within the genome takes place at nonrandom active genes. We have checked for the presence of MARs in the vicinity of the reported 524 HIV-1 integration sites. Our studies show that in 92.5% cases, MARs flank the integration sites. Similarly, for adeno-associated virus, two potential MARs were present next to the integration site on the human chromosome. Earlier we have shown that short MAR sequences present upstream of HIV-1 LTR promote processive transcription at a distance. Here, using a well-studied IgH-MAR and another potential MAR from p53 promoter, we demonstrate that MARs alone can act as promoters. Thus, we propose that MAR elements near the HIV-1 integration sites can act as potential promoters, which may facilitate proviral integration and transcription.
Collapse
Affiliation(s)
- Asavari Kulkarni
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune-411 007, India
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2:E234. [PMID: 15314653 PMCID: PMC509299 DOI: 10.1371/journal.pbio.0020234] [Citation(s) in RCA: 729] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/24/2004] [Indexed: 12/31/2022] Open
Abstract
The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection. Retroviruses have potential for gene therapy only if they do not activate endogenous genes. Of three tested retroviral vectors, ASLV showed no preference for integration into human transcription start regions
Collapse
Affiliation(s)
- Rick S Mitchell
- 1Department of Microbiology, University of Pennsylvania School of MedicinePhiladelphia, Pennsylvania, United States of America
| | - Brett F Beitzel
- 1Department of Microbiology, University of Pennsylvania School of MedicinePhiladelphia, Pennsylvania, United States of America
| | | | - Paul Shinn
- 3Genomic Analysis Laboratory, The Salk InstituteLa Jolla, California, United States of America
| | - Huaming Chen
- 3Genomic Analysis Laboratory, The Salk InstituteLa Jolla, California, United States of America
| | - Charles C Berry
- 4Department of Family/Preventive Medicine, University of California at San Diego School of MedicineSan Diego, CaliforniaUnited States of America
| | - Joseph R Ecker
- 3Genomic Analysis Laboratory, The Salk InstituteLa Jolla, California, United States of America
| | - Frederic D Bushman
- 1Department of Microbiology, University of Pennsylvania School of MedicinePhiladelphia, Pennsylvania, United States of America
| |
Collapse
|