1
|
Chen YN, Cui YZ, Chen XR, Wang JY, Li BZ, Yuan YJ. Direct cloning strategies for large genomic fragments: A review. Biotechnol Adv 2025; 79:108494. [PMID: 39637950 DOI: 10.1016/j.biotechadv.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
Collapse
Affiliation(s)
- Ya-Nan Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| |
Collapse
|
2
|
Kuznetsova AA, Soloveva MA, Mikushina ES, Gavrilova AA, Bakman AS, Kuznetsov NA. Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri. Life (Basel) 2024; 14:1544. [PMID: 39768253 PMCID: PMC11676844 DOI: 10.3390/life14121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from Thermococcus stetteri. Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from S. solfataricus were obtained and analyzed. It was shown that Tst(wt) could effectively amplify up to 6-kb DNA fragments, whereas TstP36H-Sso7d could amplify DNA fragments up to 15 kb. It was found that TstP36H-Sso7d has superior PCR efficiency compared to the commonly used DNA polymerase PfuV93Q-Sso7d. For the amplification of a 2-kb DNA fragment, TstP36H-Sso7d required less than 10 s of extension time, whereas for PfuV93Q-Sso7d, the extension time was no less than 30 s. Steady-state kinetic assays revealed that the dNTP-binding affinity KdNTPm was the same for TstP36H-Sso7d and PfuV93Q-Sso7d, whereas the maximum rate of dNTP incorporation, kcat, was two orders of magnitude higher for TstP36H-Sso7d. Moreover, the incorporation of incorrect dNTP was not observed for TstP36H-Sso7d up to 56 °C, whereas for PfuV93Q-Sso7d, the extension of primer with incorrect dNTP was observed at 37 °C, supporting higher fidelity of TstP36H-Sso7d. The obtained data suggest that TstP36H-Sso7d may be a good candidate for high-fidelity DNA amplification.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Marina A. Soloveva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Anastasia A. Gavrilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Artemiy S. Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.A.S.); (E.S.M.); (A.A.G.); (A.S.B.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Cormier N, Worsham AE, Rich KA, Hardy DM. SMA20/PMIS2 Is a Rapidly Evolving Sperm Membrane Alloantigen with Possible Species-Divergent Function in Fertilization. Int J Mol Sci 2024; 25:3652. [PMID: 38612464 PMCID: PMC11011635 DOI: 10.3390/ijms25073652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.
Collapse
Affiliation(s)
- Nathaly Cormier
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
| | - Asha E. Worsham
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Kinsey A. Rich
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| |
Collapse
|
4
|
Crawford KE, Hedtke SM, Doyle SR, Kuesel AC, Armoo S, Osei-Atweneboana MY, Grant WN. Genome-based tools for onchocerciasis elimination: utility of the mitochondrial genome for delineating Onchocerca volvulus transmission zones. Int J Parasitol 2024; 54:171-183. [PMID: 37993016 DOI: 10.1016/j.ijpara.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.
Collapse
Affiliation(s)
- Katie E Crawford
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Shannon M Hedtke
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia.
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Samuel Armoo
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Mike Y Osei-Atweneboana
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
5
|
Bertolo A, Valido E, Stoyanov J. Optimized bacterial community characterization through full-length 16S rRNA gene sequencing utilizing MinION nanopore technology. BMC Microbiol 2024; 24:58. [PMID: 38365589 PMCID: PMC10870487 DOI: 10.1186/s12866-024-03208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Accurate identification of bacterial communities is crucial for research applications, diagnostics, and clinical interventions. Although 16S ribosomal RNA (rRNA) gene sequencing is a widely employed technique for bacterial taxonomic classification, it often results in misclassified or unclassified bacterial taxa. This study sought to refine the full-length 16S rRNA gene sequencing protocol using the MinION sequencer, focusing on the V1-V9 regions. Our methodological enquiry examined several factors, including the number of PCR amplification cycles, choice of primers and Taq polymerase, and specific sequence databases and workflows employed. We used a microbial standard comprising eight bacterial strains (five gram-positive and three gram-negative) in known proportions as a validation control. RESULTS Based on the MinION protocol, we employed the microbial standard as the DNA template for the 16S rRNA gene amplicon sequencing procedure. Our analysis showed that an elevated number of PCR amplification cycles introduced PCR bias, and the selection of Taq polymerase and primer sets significantly affected the subsequent analysis. Bacterial identification at genus level demonstrated Pearson correlation coefficients ranging from 0.73 to 0.79 when assessed using BugSeq, Kraken-Silva and EPI2ME-16S workflows. Notably, the EPI2ME-16S workflow exhibited the highest Pearson correlation with the microbial standard, minimised misclassification, and increased alignment accuracy. At the species taxonomic level, the BugSeq workflow was superior, with a Pearson correlation coefficient of 0.92. CONCLUSIONS These findings emphasise the importance of careful selection of PCR settings and a well-structured analytical framework for 16S rRNA full-length gene sequencing. The results showed a robust correlation between the predicted and observed bacterial abundances at both the genus and species taxonomic levels, making these findings applicable across diverse research contexts and with clinical utility for reliable pathogen identification.
Collapse
Affiliation(s)
- Alessandro Bertolo
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Orthopaedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| | - Ezra Valido
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Jivko Stoyanov
- SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland.
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Nuryana I, Laksmi FA, Dewi KS, Akbar FR, Nurhayati, Harmoko R. Codon optimization of a gene encoding DNA polymerase from Pyrococcus furiosus and its expression in Escherichia coli. J Genet Eng Biotechnol 2023; 21:129. [PMID: 37987973 PMCID: PMC10663413 DOI: 10.1186/s43141-023-00605-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DNA polymerase is an essential component in PCR assay for DNA synthesis. Improving DNA polymerase with characteristics indispensable for a powerful assay is crucial because it can be used in wide-range applications. Derived from Pyrococcus furiosus, Pfu DNA polymerase (Pfu pol) is one of the excellent polymerases due to its high fidelity. Therefore, we aimed to develop Pfu pol from a synthetic gene with codon optimization to increase its protein yield in Escherichia coli. RESULTS Recombinant Pfu pol was successfully expressed and purified with a two-step purification process using nickel affinity chromatography, followed by anion exchange chromatography. Subsequently, the purified Pfu pol was confirmed by Western blot analysis, resulting in a molecular weight of approximately 90 kDa. In the final purification process, we successfully obtained a large amount of purified enzyme (26.8 mg/L). Furthermore, the purified Pfu pol showed its functionality and efficiency when tested for DNA amplification using the standard PCR. CONCLUSIONS Overall, a high-level expression of recombinant Pfu pol was achieved by employing our approach in the present study. In the future, our findings will be useful for studies on synthesizing recombinant DNA polymerase in E. coli expression system.
Collapse
Affiliation(s)
- Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia.
| | - Kartika Sari Dewi
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| | - Faiz Raihan Akbar
- Department of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jalan Prof Soedarto, SH, Kampus UNDIP Tembalang, Semarang, 50275, Indonesia
| | - Nurhayati
- Department of Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Jalan Prof Soedarto, SH, Kampus UNDIP Tembalang, Semarang, 50275, Indonesia
| | - Rikno Harmoko
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia
| |
Collapse
|
7
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Ceylan HK. Enhanced Biomass Production of Recombinant Pfu DNA Polymerase Producer Escherichia coli BL21(DE3) by Optimization of Induction Variables Using Response Surface Methodology. Protein J 2023:10.1007/s10930-023-10122-8. [PMID: 37199865 DOI: 10.1007/s10930-023-10122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Pfu DNA polymerase is one of the most preferred molecular enzymes that is isolated from the hyperthermophilic Pyrococcus furiosus and used for high-throughput DNA synthesis by the polymerase chain reaction. Therefore, an efficient Pfu DNA polymerase production method is necessary for molecular techniques. In the present study, Pfu DNA polymerase was expressed in recombinant Escherichia coli BL21(DE3) and significant parameters for the biomass production were optimized using the central composite design which is the most popular method of response surface methodology. Induction conditions including cell density prior induction (OD600nm), post-induction temperature, IPTG concentration, and post-induction time and their interactions on biomass production were investigated. The maximum biomass production (14.1 g/L) in shake flasks was achieved using the following predicted optimal conditions: OD600nm before induction of 0.4 and the induction at 32 °C for 7.7 h, with 0.6 mM IPTG. Optimized culture conditions were implemented to scale up experiments. 22% and 70% increase in biomass production was achieved in 3 L and 10 L bioreactors, respectively as compared to initial biomass production observed in unoptimized conditions. Similary, a 30% increase of Pfu DNA polymerase production was obtained after the optimization. The polymerase activity of the purifed Pfu DNA polymerase was assessed by PCR amplification and determined as 2.9 U/μl by comparison with commercial Pfu DNA polymerase. The findings of this study indicated that the proposed fermentation conditions will contribute to further scale‑up studies to enhance the biomass for the production of other recombinant proteins.
Collapse
Affiliation(s)
- Hülya Kuduğ Ceylan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey.
| |
Collapse
|
9
|
Farooqui AK, Ahmad H, Rehmani MU, Husain A. Quick and easy method for extraction and purification of Pfu-Sso7d, a high processivity DNA polymerase. Protein Expr Purif 2023; 208-209:106276. [PMID: 37156451 DOI: 10.1016/j.pep.2023.106276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
The polymerase chain reaction is an extensively used technique with numerous applications in the field of biological sciences. In addition to naturally occurring DNA polymerases with varying processivity and fidelity, genetically engineered recombinant DNA polymerases are also used in PCR. The Pfu-Sso7d, a fusion DNA polymerase, is obtained by the fusion of Sso7d, a small DNA binding protein, to the polymerase domain of the Pfu DNA polymerase. Pfu-Sso7d is known for its high processivity, efficiency, and fidelity. Expensive commercial variants of Pfu-Sso7d are sold under various trade names. Here, we report a quick, cost and time-efficient purification protocol and an optimized buffer system for Pfu-Sso7d. We evaluated precipitation efficiencies of varying concentrations of ethanol and acetone and compared the activities of the precipitated enzyme. Although both the solvents efficiently precipitated Pfu-Sso7d, acetone showed better precipitation efficiency. Purified Pfu-Sso7d showed excellent activities in the PCR of templates with varying lengths and GC contents. We also report a buffer system that works with Pfu-Sso7d as efficiently as commercially available buffers. This quick and efficient purification scheme and buffer system will provide researchers cost-efficient access to fusion polymerases.
Collapse
Affiliation(s)
- Afreen Kamal Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Umar Rehmani
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Akram F, Shah FI, Ibrar R, Fatima T, Haq IU, Naseem W, Gul MA, Tehreem L, Haider G. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications. Anal Biochem 2023; 671:115150. [PMID: 37054862 DOI: 10.1016/j.ab.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; The University of Lahore, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahmood Ayaz Gul
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Tehreem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ghanoor Haider
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
12
|
Cepleanu-Pascu IA, Stan M, Cocioba S, Stoica I. Easy method for six-fragment Golden Gate Assembly of modular vectors. Biotechniques 2023; 74:85-99. [PMID: 36691899 DOI: 10.2144/btn-2022-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Efficient cloning techniques are a requirement for synthetic biology. This study provides a simplified cloning method based on Golden Gate Assembly that can be used for rapid vector construction. The building of multiple expression vectors with customizable modules is achieved in a timely manner with minimal hands-on time by removing unnecessary steps in the workflow. The authors constructed a total of 21 mammalian episomal expression vectors and conducted a fluorescence expression comparison for different regulatory region combinations post-transfection in HEK293T and HEPG2 cells. Screening revealed that using the EF-1α promoter in combination with the bovine growth hormone polyadenylation sequence seemed to perform best in the types of cells tested compared with other variants.
Collapse
Affiliation(s)
| | - Miruna Stan
- Department of Biochemistry & Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
13
|
Abstract
Polymerase chain reaction (PCR) is a laboratory technique used to amplify a targeted region of DNA, demarcated by a set of oligonucleotide primers. Long-range PCR is a form of PCR optimized to facilitate the amplification of large fragments. Using the adapted long-range PCR protocol described in this chapter, we were able to generate PCR products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples. For some of the long PCRs, successful amplification was not possible without the use of PCR enhancers. Thus, we also evaluated the impact of some enhancers on long-range PCR and included the findings as part of this updated chapter.
Collapse
Affiliation(s)
- Ping Siu Kee
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Harsheni Karunanathie
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Simran D S Maggo
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology, Center for Personalized Medicine, Children's Hospital Los Angeles, California, LA, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Hervey JRD, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chem Biol 2022; 3:1209-1215. [PMID: 36320888 PMCID: PMC9533476 DOI: 10.1039/d2cb00035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Functional nucleic acids can be evolved in vitro using cycles of selection and amplification, starting from diverse-sequence libraries, which are typically restricted to natural or partially-modified polymer chemistries. Here, we describe the efficient DNA-templated synthesis and reverse transcription of libraries entirely composed of serum nuclease resistant alternative nucleic acid chemistries validated in nucleic acid therapeutics; locked nucleic acid (LNA), 2'-O-methyl-RNA (2'OMe-RNA), or mixtures of the two. We evaluate yield and diversity of synthesised libraries and measure the aggregate error rate of a selection cycle. We find that in addition to pure 2'-O-methyl-RNA and LNA, several 2'OMe-RNA/LNA blends seem suitable and promising for discovery of biostable functional nucleic acids for biomedical applications.
Collapse
Affiliation(s)
- John R D Hervey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| | - Niklas Freund
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Gillian Houlihan
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Gurpreet Dhaliwal
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge Cambridge CB2 0AW UK
| |
Collapse
|
15
|
Nye DB, Tanner NA. Chimeric DNA byproducts in strand displacement amplification using the T7 replisome. PLoS One 2022; 17:e0273979. [PMID: 36121810 PMCID: PMC9484634 DOI: 10.1371/journal.pone.0273979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Recent advances in next generation sequencing technologies enable reading DNA molecules hundreds of kilobases in length and motivate development of DNA amplification methods capable of producing long amplicons. In vivo, DNA replication is performed not by a single polymerase enzyme, but multiprotein complexes called replisomes. Here, we investigate strand-displacement amplification reactions using the T7 replisome, a macromolecular complex of a helicase, a single-stranded DNA binding protein, and a DNA polymerase. The T7 replisome may initiate processive DNA synthesis from DNA nicks, and the reaction of a 48 kilobase linear double stranded DNA substrate with the T7 replisome and nicking endonucleases is shown to produce discrete DNA amplicons. To gain a mechanistic understanding of this reaction, we utilized Oxford Nanopore long-read sequencing technology. Sequence analysis of the amplicons revealed chimeric DNA reads and uncovered a connection between template switching and polymerase exonuclease activity. Nanopore sequencing provides insight to guide the further development of isothermal amplification methods for long DNA, and our results highlight the need for high-specificity, high-turnover nicking endonucleases to initiate DNA amplification without thermal denaturation.
Collapse
Affiliation(s)
- Dillon B. Nye
- Nucleic Acid Replication Division, New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Nathan A. Tanner
- Nucleic Acid Replication Division, New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bhadra S, Paik I, Torres JA, Fadanka S, Gandini C, Akligoh H, Molloy J, Ellington AD. Preparation and Use of Cellular Reagents: A Low-resource Molecular Biology Reagent Platform. Curr Protoc 2022; 2:e387. [PMID: 35263038 PMCID: PMC9094432 DOI: 10.1002/cpz1.387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein reagents are indispensable for most molecular and synthetic biology procedures. Most conventional protocols rely on highly purified protein reagents that require considerable expertise, time, and infrastructure to produce. In consequence, most proteins are acquired from commercial sources, reagent expense is often high, and accessibility may be hampered by shipping delays, customs barriers, geopolitical constraints, and the need for a constant cold chain. Such limitations to the widespread availability of protein reagents, in turn, limit the expansion and adoption of molecular biology methods in research, education, and technology development and application. Here, we describe protocols for producing a low-resource and locally sustainable reagent delivery system, termed "cellular reagents," in which bacteria engineered to overexpress proteins of interest are dried and can then be used directly as reagent packets in numerous molecular biology reactions, without the need for protein purification or a constant cold chain. As an example of their application, we describe the execution of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) using cellular reagents, detailing how to replace pure protein reagents with optimal amounts of rehydrated cellular reagents. We additionally describe a do-it-yourself fluorescence visualization device for using these cellular reagents in common molecular biology applications. The methods presented in this article can be used for low-cost, on-site production of commonly used molecular biology reagents (including DNA and RNA polymerases, reverse transcriptases, and ligases) with minimal instrumentation and expertise, and without the need for protein purification. Consequently, these methods should generally make molecular biology reagents more affordable and accessible. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cellular reagents Alternate Protocol 1: Preparation of lyophilized cellular reagents Alternate Protocol 2: Evaluation of bacterial culture growth via comparison to McFarland turbidity standards Support Protocol 1: SDS-PAGE for protein expression analysis of cellular reagents Basic Protocol 2: Using Taq DNA polymerase cellular reagents for PCR Basic Protocol 3: Using Br512 DNA polymerase cellular reagents for loop-mediated isothermal amplification (LAMP) Support Protocol 2: Building a fluorescence visualization device.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry Akligoh
- Hive Biolab, Hse 49, SE 29056 Drive, 2nd Turn Behind Mizpah School, Kentinkrono, Kumasi, Ghana
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America,Corresponding authors: ,
| |
Collapse
|
17
|
Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet 2021; 17:e1009204. [PMID: 33411815 PMCID: PMC7790226 DOI: 10.1371/journal.pgen.1009204] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (phages) are being considered as alternative therapeutics for the treatment of multidrug resistant bacterial infections. Considering phages have narrow host-ranges, it is generally accepted that therapeutic phages will have a marginal impact on non-target bacteria. We have discovered that lytic phage infection induces transcription of type VIIb secretion system (T7SS) genes in the pathobiont Enterococcus faecalis. Membrane damage during phage infection induces T7SS gene expression resulting in cell contact dependent antagonism of different Gram positive bystander bacteria. Deletion of essB, a T7SS structural component, abrogates phage-mediated killing of bystanders. A predicted immunity gene confers protection against T7SS mediated inhibition, and disruption of its upstream LXG toxin gene rescues growth of E. faecalis and Staphylococcus aureus bystanders. Phage induction of T7SS gene expression and bystander inhibition requires IreK, a serine/threonine kinase, and OG1RF_11099, a predicted GntR-family transcription factor. Additionally, sub-lethal doses of membrane targeting and DNA damaging antibiotics activated T7SS expression independent of phage infection, triggering T7SS antibacterial activity against bystander bacteria. Our findings highlight how phage infection and antibiotic exposure of a target bacterium can affect non-target bystander bacteria and implies that therapies beyond antibiotics, such as phage therapy, could impose collateral damage to polymicrobial communities. Renewed interest in phages as alternative therapeutics to combat multi-drug resistant bacterial infections, highlights the importance of understanding the consequences of phage-bacteria interactions in the context of microbial communities. Although it is well established that phages are highly specific for their host bacterium, there is no clear consensus on whether or not phage infection (and thus phage therapy) would impose collateral damage to non-target bacteria in polymicrobial communities. Here we provide direct evidence of how phage infection of a clinically relevant pathogen triggers an intrinsic type VII secretion system (T7SS) antibacterial response that consequently restricts the growth of neighboring bacterial cells that are not susceptible to phage infection. Phage induction of T7SS activity is a stress response and in addition to phages, T7SS antagonism can be induced using sub-inhibitory concentrations of antibiotics that facilitate membrane or DNA damage. Together these data show that a bacterial pathogen responds to diverse stressors to induce T7SS activity which manifests through the antagonism of neighboring non-kin bystander bacterial cells.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
18
|
Adikes RC, Kohrman AQ, Martinez MAQ, Palmisano NJ, Smith JJ, Medwig-Kinney TN, Min M, Sallee MD, Ahmed OB, Kim N, Liu S, Morabito RD, Weeks N, Zhao Q, Zhang W, Feldman JL, Barkoulas M, Pani AM, Spencer SL, Martin BL, Matus DQ. Visualizing the metazoan proliferation-quiescence decision in vivo. eLife 2020; 9:e63265. [PMID: 33350383 PMCID: PMC7880687 DOI: 10.7554/elife.63265] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in Caenorhabditis elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell-cycle control in a wide-range of developmental contexts.
Collapse
Affiliation(s)
- Rebecca C Adikes
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Mingwei Min
- Department of Biochemistry and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Maria D Sallee
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Ononnah B Ahmed
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nuri Kim
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Robert D Morabito
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nicholas Weeks
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Qinyun Zhao
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | | | | | - Ariel M Pani
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
19
|
Rolling Circle Amplification (RCA)-Mediated Genome-Wide ihpRNAi Mutant Library Construction in Brassica napus. Int J Mol Sci 2020; 21:ijms21197243. [PMID: 33008068 PMCID: PMC7582411 DOI: 10.3390/ijms21197243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
With the successful completion of genomic sequencing for Brassica napus, identification of novel genes, determination of functions performed by genes, and exploring the molecular mechanisms underlying important agronomic traits were challenged. Mutagenesis-based functional genomics techniques including chemical, physical, and insertional mutagenesis have been used successfully in the functional characterization of genes. However, these techniques had their disadvantages and inherent limitations for allopolyploid Brassica napus, which contained a large number of homologous and redundant genes. Long intron-spliced hairpin RNA (ihpRNA) constructs which contained inverted repeats of the target gene separated by an intron, had been shown to be very effective in triggering RNAi in plants. In the present study, the genome-wide long ihpRNA library of B. napus was constructed with the rolling circle amplification (RCA)-mediated technology. Using the phytoene desaturase (PDS) gene as a target control, it was shown that the RCA-mediated long ihpRNA construct was significantly effective in triggering gene silence in B. napus. Subsequently, the resultant long ihpRNA library was transformed into B. napus to produce corresponding RNAi mutants. Among the obtained transgenic ihpRNA population of B. napus, five ihpRNA lines with observable mutant phenotypes were acquired including alterations in the floral model and the stamen development. The target genes could be quickly identified using specific primers. These results showed that the RCA-mediated ihpRNA construction method was effective for the genome-wide long ihpRNA library of B. napus, therefore providing a platform for study of functional genomics in allopolyploid B. napus.
Collapse
|
20
|
Ishino Y. Studies on DNA-related enzymes to elucidate molecular mechanisms underlying genetic information processing and their application in genetic engineering. Biosci Biotechnol Biochem 2020; 84:1749-1766. [PMID: 32567488 DOI: 10.1080/09168451.2020.1778441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recombinant DNA technology, in which artificially "cut and pasted" DNA in vitro is introduced into living cells, contributed extensively to the rapid development of molecular biology over the past 5 decades since the latter half of the 20th century. Although the original technology required special experiences and skills, the development of polymerase chain reaction (PCR) has greatly eased in vitro genetic manipulation for various experimental methods. The current development of a simple genome-editing technique using CRISPR-Cas9 gave great impetus to molecular biology. Genome editing is a major technique for elucidating the functions of many unknown genes. Genetic manipulation technologies rely on enzymes that act on DNA. It involves artificially synthesizing, cleaving, and ligating DNA strands by making good use of DNA-related enzymes present in organisms to maintain their life activities. In this review, I focus on key enzymes involved in the development of genetic manipulation technologies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
21
|
Carta LK, Li S. Improvement of long segment ribosomal PCR amplification for molecular identification of Litylenchus crenatae mccannii associated with beech leaf disease. J Nematol 2020; 52:1-15. [PMID: 32180377 PMCID: PMC7266022 DOI: 10.21307/jofnem-2020-016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/11/2022] Open
Abstract
Generating DNA markers for microscopic plant parasitic nematodes can be especially difficult if only a few valuable, tiny specimens are available. Providing a reliable maximum amount of unambiguous genetic information from single nematodes is especially important when identifying damaging, regulated nematodes of importance to trade where a few nucleotide differences in diagnostic markers are significant. There are many possible reasons for difficulty amplifying unpurified nematode DNA for long range PCR followed by direct sequencing. Specimen age, proofreading errors and reagent compatibility during PCR are among those problems. While unsuccessful direct amplification of difficult samples may sometimes be overcome by cloning, a more expensive and time-consuming process. Therefore, long segment PCR of a large 3.5 kb segment of ribosomal DNA was optimized for individual difficult-to-amplify young Litylenchus crenatae mccannii (Anguinidae) nematodes by systematically testing thermostable polymerases, proofreading enzymes and buffers. The combination of thermostable DreamTaq™, proofreading Pfu polymerase, and PicoMaxx™ buffer provided the best results. These nematodes are the subject of surveys currently active at many sites in the northeastern United States. This new, optimized PCR protocol will be useful for diagnostic labs associated with the surveys. Generating DNA markers for microscopic plant parasitic nematodes can be especially difficult if only a few valuable, tiny specimens are available. Providing a reliable maximum amount of unambiguous genetic information from single nematodes is especially important when identifying damaging, regulated nematodes of importance to trade where a few nucleotide differences in diagnostic markers are significant. There are many possible reasons for difficulty amplifying unpurified nematode DNA for long range PCR followed by direct sequencing. Specimen age, proofreading errors and reagent compatibility during PCR are among those problems. While unsuccessful direct amplification of difficult samples may sometimes be overcome by cloning, a more expensive and time-consuming process. Therefore, long segment PCR of a large 3.5 kb segment of ribosomal DNA was optimized for individual difficult-to-amplify young Litylenchus crenatae mccannii (Anguinidae) nematodes by systematically testing thermostable polymerases, proofreading enzymes and buffers. The combination of thermostable DreamTaq™, proofreading Pfu polymerase, and PicoMaxx™ buffer provided the best results. These nematodes are the subject of surveys currently active at many sites in the northeastern United States. This new, optimized PCR protocol will be useful for diagnostic labs associated with the surveys.
Collapse
Affiliation(s)
- L K Carta
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Henry A. Wallace Beltsville Agricultural Research Center, Bldg. 010 A, Room 110, Beltsville, MD 20705-2350
| | - S Li
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Henry A. Wallace Beltsville Agricultural Research Center, Bldg. 010 A, Room 110, Beltsville, MD 20705-2350
| |
Collapse
|
22
|
Alkam D, Jenjaroenpun P, Wongsurawat T, Udaondo Z, Patumcharoenpol P, Robeson M, Haselow D, Mason W, Nookaew I, Ussery D, Jun SR. Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:103965. [PMID: 31319177 PMCID: PMC6832845 DOI: 10.1016/j.meegid.2019.103965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
In 2016, a year-long large-scale mumps outbreak occurred in Arkansas among a highly-vaccinated population. A total of 2954 mumps cases were identified during this outbreak. The majority of cases (1676 (57%)) were school-aged children (5-17 years), 1536 (92%) of these children had completed the mumps vaccination schedule. To weigh the possibility that the mumps virus evaded vaccine-induced immunity in the affected Arkansas population, we established a pipeline for genomic characterization of the outbreak strains. Our pipeline produces whole-genome sequences along with phylogenetic analysis of the outbreak mumps virus strains. We collected buccal swab samples of patients who tested positive for the mumps virus during the 2016 Arkansas outbreak, and used the portable Oxford Nanopore Technology to sequence the extracted strains. Our pipeline identified the genotype of the Arkansas mumps strains as genotype G and presented a genome-based phylogenetic tree with superior resolution to a standard small hydrophobic (SH) gene-based tree. We phylogenetically compared the Arkansas whole-genome sequences to all publicly available mumps strains. While these analyses show that the Arkansas mumps strains are evolutionarily distinct from the vaccine strains, we observed no correlation between vaccination history and phylogenetic grouping. Furthermore, we predicted potential B-cell epitopes encoded by the Arkansas mumps strains using a random forest prediction model trained on antibody-antigen protein structures. Over half of the predicted epitopes of the Jeryl-Lynn vaccine strains in the Hemagglutinin-Neuraminidase (HN) surface glycoprotein (a major target of neutralizing antibodies) region are missing in the Arkansas mumps strains. In-silico analyses of potential epitopes may indicate that the Arkansas mumps strains display antigens with reduced immunogenicity, which may contribute to reduced vaccine effectiveness. However, our in-silico findings should be assessed by robust experiments such as cross neutralization assays. Metadata analysis showed that vaccination history had no effect on the evolution of the Arkansas mumps strains during this outbreak. We conclude that the driving force behind the spread of the mumps virus in the 2016 Arkansas outbreak remains undetermined.
Collapse
Affiliation(s)
- Duah Alkam
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Michael Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Dirk Haselow
- Arkansas Department of Health, 4815 W Markham St, Little Rock, AR 72205, USA.
| | - William Mason
- Arkansas Department of Health, 4815 W Markham St, Little Rock, AR 72205, USA.
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| |
Collapse
|
23
|
Fahnøe U, Bukh J. Full-Length Open Reading Frame Amplification of Hepatitis C Virus. Methods Mol Biol 2019; 1911:85-91. [PMID: 30593619 DOI: 10.1007/978-1-4939-8976-8_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose of this method is to amplify the full coding sequence of hepatitis C virus (HCV) by a single round reverse transcriptase-polymerase chain reaction (RT-PCR) approach. Our method relies on a highly robust and sensitive RNA extraction procedure and cutting-edge RT-PCR enzymes, all of which have been rigorously tested and optimized. This will not only allow for robust amplification of the entire open reading frame (ORF) of HCV for sequencing by Sanger or next-generation sequencing (NGS), but can also be used for cloning of the ORF of uncharacterized samples and for linkage analysis of mutations on individual genomes spanning the entire ORF. The method has been validated on a variety of samples, including sera from HCV patients and cell-culture supernatants.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark. .,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Green MR, Sambrook J. Polymerase Chain Reaction. Cold Spring Harb Protoc 2019; 2019:2019/6/pdb.top095109. [PMID: 31160389 DOI: 10.1101/pdb.top095109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The polymerase chain reaction (PCR) underlies almost all of modern molecular cloning. Using PCR, a defined target sequence that occurs once within a DNA of high complexity and large size-an entire mammalian genome, for example-can be rapidly and selectively amplified in a quasi-exponential chain reaction that generates millions of copies. The reaction is simple to set up, cheap, and undemanding, the only requirement being some knowledge of the nucleotide sequences of the target. In addition to its simplicity, PCR is robust, speedy, flexible, and sensitive.
Collapse
|
25
|
Green MR, Sambrook J. Amplification of cDNA Generated by Reverse Transcription of mRNA: Two-Step Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Cold Spring Harb Protoc 2019; 2019:2019/5/pdb.prot095190. [PMID: 31043555 DOI: 10.1101/pdb.prot095190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reverse transcription-polymerase chain reaction (RT-PCR) is a powerful method to detect and synthesize cDNA copies of low-copy-number mRNAs. Two enzymes are used: reverse transcriptase to produce single-stranded cDNA copies, which are then used as templates in an amplification reaction catalyzed by a thermostable DNA polymerase. For this reason, the method is known as "two-step RT-PCR." This protocol describes the traditional method of RT-PCR in which the two synthetic reactions are performed separately and sequentially.
Collapse
|
26
|
Effect of emulsifier on rheological, textural and microstructure properties of walnut butter. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-9991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Green MR, Sambrook J. Long and Accurate Polymerase Chain Reaction (LA PCR). Cold Spring Harb Protoc 2019; 2019:2019/3/pdb.prot095158. [PMID: 30824616 DOI: 10.1101/pdb.prot095158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The standard polymerase chain reaction (PCR) is easily capable of amplifying segments of DNA smaller than ∼3 kb in length-sufficient for most purposes, but not enough to amplify an entire mammalian gene, nor even a cDNA of average dimensions. Instead of full-length products, standard PCR amplification of longer templates generates variously sized truncated molecules that appear as unattractive smears on a gel. Long and accurate PCR (LA PCR) addresses the issue in part by using a mixture of two different thermostable DNA polymerases to catalyze the amplification reaction. The first polymerase is an efficient but error-prone workhorse (e.g., Taq), whereas the second, used in much smaller amounts, provides a proofreading 3' → 5' exonuclease function that resects mismatched 3' ends. These improvements generate high yields and accurate copies of long targets.
Collapse
|
28
|
Carta LK, Li S. PCR amplification of a long rDNA segment with one primer pair in agriculturally important nematodes. J Nematol 2019; 51:1-8. [PMID: 31157959 PMCID: PMC6929650 DOI: 10.21307/jofnem-2019-026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 11/11/2022] Open
Abstract
Ribosomal DNA has been a reliable source of taxonomic and phylogenetic markers due to its high copy number in the genome and stable variation with few polymorphisms due to the homogenizing effect of concerted evolution. Typically specific regions are amplified through polymerase chain reaction (PCR) with multiple primer pairs that generate often incomplete and overlapping regions between adjacent segments of 18S, ITS1, 5.8S, ITS2, and 28S rDNA nucleotide sequences when combined in tandem. To improve the efficiency of this effort, a strategy for generating all these molecular sequences at once through PCR amplification of a large ribosomal 3.3 to 4.2 kb DNA target was developed using primer 18S-CL-F3 paired with D3B or a new alternative 28S PCR primer (28S-CL-R) and other well-positioned and ribosomal-specific sequencing primers (including novel primers 18S-CL-F7, 18S-CL-R6, 18S-CL-R7, 18S-CL-F8, 5.8S-CL-F1, 5.8S-CL-R1, 28S-CL-F1, 28S-CL-R3, 28S-CL-F3, 28S-CL-R1, and 28S-CL-F2). The D1 region between ITS2 and 28S boundaries and the flanking sequence between 18S and ITS1 boundaries were fully revealed in this large nucleotide segment. To demonstrate the value of this strategy, the long rDNA segment was amplified and directly sequenced in 17 agriculturally important nematodes from the Tylenchida, Aphelenchida, and Dorylaimida. The primers and their positions may be employed with traditional Sanger sequencing and with next-generation sequencing reagents and protocols.
Collapse
Affiliation(s)
- L K Carta
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Henry A. Wallace Beltsville Agricultural Research Center , Bldg. 010A, Room 110, Beltsville, MD, 20705-2350
| | - S Li
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Henry A. Wallace Beltsville Agricultural Research Center , Bldg. 010A, Room 110, Beltsville, MD, 20705-2350
| |
Collapse
|
29
|
Wang J, Lu A, Liu J, Huang W, Wang J, Cai Z, Zhao G. iCatch: a new strategy for capturing large DNA fragments using homing endonucleases. Acta Biochim Biophys Sin (Shanghai) 2019; 51:97-103. [PMID: 30452545 DOI: 10.1093/abbs/gmy139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/21/2018] [Indexed: 11/15/2022] Open
Abstract
Natural genetic materials contain many biosynthetic gene clusters encoding potentially valuable natural products, many of which can be used directly without codon optimization or other manipulations. With the development of synthetic biology, several DNA assembly standards have been proposed, conveniently facilitating the reuse of natural materials. Among these standards, the iBrick assembly standard was developed by our laboratory to manipulate large DNA fragments, employing two homing endonucleases. Considering the difficulty of cloning large iBrick parts using conventional endonuclease-mediated restriction and ligation methods, we herein present a new method, known as iCatch, which readily captures biosynthetic gene clusters. As the clusters cloned by iCatch have the prefix and suffix of the iBrick standard, they serve as new iBrick parts and are therefore conducive to further editing and assembly with the iBrick standard. iCatch employs the natural homologous recombination system to flank the region of interest with I-SceI and PI-PspI recognition sites, after which the genome is digested with I-SceI or PI-PspI and the fragments are then self-ligated to clone the target DNA fragments. We used this method to successfully capture the actinorhodin biosynthetic cluster from Streptomyces coelicolor and then heterologously expressed this cluster in a thermophilic Streptomyces strain. We propose that iCatch can be used for the cloning of DNA sequences that are dozens of kilobases in length, facilitating the heterologous expression of microbial natural products. Moreover, this cloning methodology can be a complementary tool for the iBrick standard, especially in applications requiring the manipulation of large DNA fragments.
Collapse
Affiliation(s)
- Jingman Wang
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Anrui Lu
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiakun Liu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiren Huang
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology, Urogenital Tumors, Shenzhen, China
| | - Jin Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zhiming Cai
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology, Urogenital Tumors, Shenzhen, China
| | - Guoping Zhao
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
30
|
Venzac B, Diakité ML, Herthnek D, Cissé I, Bockelmann U, Descroix S, Malaquin L, Viovy JL. On-chip conductometric detection of short DNA sequences via electro-hydrodynamic aggregation. Analyst 2018; 143:190-199. [PMID: 29171594 DOI: 10.1039/c7an00798a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence measurement is the main technology for post-amplification DNA detection in automated systems. Direct electrical reading of DNA concentration in solution could be an interesting alternative to go toward more miniaturized or less expensive devices, in particular in the pathogen detection field. Here we present the detection of short bacterial biomarkers with a direct impedancemetric measurement, within solutions of amplified and elongated DNA sequences in a microchannel. This technology relies on the electrohydrodynamic instability occurring in solutions of long charged macromolecules in a strong electric field. This instability specifically induces the aggregation of long DNAs and triggers conductivity variations that can be monitored by on-contact conductometry. An innovative isothermal amplification and elongation strategy was developed, combining SDA and HRCA reactions, in order to yield long DNAs suitable to be detected by the above principle, from a dilute initial DNA target. In contrast with previous label-free detection methods, this new strategy is very robust to matrix effects, thanks to the unique molecular weight dependence of the instability, coupled with this specific DNA amplification strategy. We demonstrate the detection of a 1 pM gene sequence specific to Staphylococcus aureus, in a portable system.
Collapse
Affiliation(s)
- B Venzac
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Castillo SO, Xiao Q, Kostrouch Z, Dozin B, Nikodem VM. A divergent role of COOH-terminal domains in Nurr1 and Nur77 transactivation. Gene Expr 2018; 7:1-12. [PMID: 9572393 PMCID: PMC6151941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orphan nuclear receptors such as Nurr1 and Nur77 have conserved amino acid sequences in the zinc finger DNA binding domains and similar COOH-terminal regions, but have no known ligands. These receptors can bind DNA sequences (response elements) as monomers and can also heterodimerize with the retinoid X receptor to activate transcription. We report here the identification and initial characterization of a novel COOH-terminal truncated isoform of Nurr1, Nurr1a. Internal splicing of Nurr1 generates a frameshift such that a stop codon is prematurely encoded resulting in a naturally occurring COOH-terminal truncation. Embryonic and postnatal mouse brain showed both Nurr1 and Nurr1a mRNAs expressed during development. To characterize essential COOH-terminal elements that may be deleted from Nurr1a and determine function in putative ligand binding, we created COOH-terminal deletion mutants. Nurr1, Nur77, and 3'-truncated mutants bind in gel mobility shift assays to the monomeric Nur77 response element (B1A-RE). However, in transient transfection assays, a truncation of as little as 15 Nurr1 COOH-terminal amino acids diminished transcriptional activation of B1A-thymidine kinase-chloramphenicol acetyltransferase reporter. This result was not seen for a similar Nur77 deletion mutant, Nur77-586. Unlike full-length Nurr1 and Nur77, transactivation by Nur77-586 was not augmented in response to the presence of retinoid-like receptor and 9-cis-retinoic acid. Thus, the interaction of putative ligand binding and transactivation for Nurr1 and Nur77 may function differently.
Collapse
MESH Headings
- 3T3 Cells
- Alitretinoin
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Chromosome Mapping
- Cloning, Molecular
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mice
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Receptors, Cytoplasmic and Nuclear
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Retinoid X Receptors
- Structure-Activity Relationship
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Tretinoin/metabolism
Collapse
Affiliation(s)
- S O Castillo
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Genetics and Biochemistry Branch, Mechanisms of Gene Regulation Section, Bethesda, MD 20892-1766, USA
| | | | | | | | | |
Collapse
|
32
|
Bhadra S, Pothukuchy A, Shroff R, Cole AW, Byrom M, Ellefson JW, Gollihar JD, Ellington AD. Cellular reagents for diagnostics and synthetic biology. PLoS One 2018; 13:e0201681. [PMID: 30110361 PMCID: PMC6093680 DOI: 10.1371/journal.pone.0201681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022] Open
Abstract
We have found that the overproduction of enzymes in bacteria followed by their lyophilization leads to 'cellular reagents' that can be directly used to carry out numerous molecular biology reactions. We demonstrate the use of cellular reagents in a variety of molecular diagnostics, such as TaqMan qPCR with no diminution in sensitivity, and in synthetic biology cornerstones such as the Gibson assembly of DNA fragments, where new plasmids can be constructed solely based on adding cellular reagents. Cellular reagents have significantly reduced complexity and cost of production, storage and implementation, features that should facilitate accessibility and use in resource-poor conditions.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Arti Pothukuchy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Raghav Shroff
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Austin W. Cole
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Michelle Byrom
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jared W. Ellefson
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jimmy D. Gollihar
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|
33
|
Preimplantation High-Resolution HLA Sequencing Using Next Generation Sequencing. Biol Blood Marrow Transplant 2018; 24:1575-1580. [DOI: 10.1016/j.bbmt.2018.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
|
34
|
Arbeithuber B, Heissl A, Tiemann-Boege I. Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR. Methods Mol Biol 2018; 1551:3-22. [PMID: 28138838 DOI: 10.1007/978-1-4939-6750-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
To study meiotic recombination products, cis- or trans-association of disease polymorphisms, or allele-specific expression patterns, it is necessary to phase heterozygous polymorphisms separated by several kilobases. Haplotyping using long-range polymerase chain reaction (PCR) is a powerful, cost-effective method to directly obtain the phase of multiple heterozygous sites with standard laboratory equipment in a handful of loci for many samples. The method is based on the amplification of large genomic DNA regions (up to ~40 kb) with a reaction mixture that combines a proofreading polymerase with allele-specific primer pairs that preferentially amplify matched templates. The analysis of two heterozygous SNPs requires four reactions, each containing one of the four possible allele-specific primer combinations (two forward and two reverse primers), with the mismatches occurring at the 3' ends of the primers. The two correct primer combinations will more efficiently elongate the matching alleles than the alternative alleles, and the difference in amplification efficiency can be monitored with real-time PCR.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria.
| |
Collapse
|
35
|
Abstract
Polymerase chain reaction (PCR) is an oft-used preparatory technique in amplifying specific DNA regions for downstream analysis. The size of an amplicon was initially limited by errors in nucleotide polymerization and template deterioration during thermal cycling. A variant of PCR, designated long-range PCR, was devised to counter these drawbacks and enable the amplification of large fragments exceeding a few kb. In this chapter we describe a protocol for long-range PCR, which we have adopted to obtain products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples.
Collapse
Affiliation(s)
- Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| | - Simran Maggo
- Department of Pathology and Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| |
Collapse
|
36
|
Frisina RD, Ding B, Zhu X, Walton JP. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons. Aging (Albany NY) 2017; 8:2081-2099. [PMID: 27667674 PMCID: PMC5076453 DOI: 10.18632/aging.101045] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL.
Collapse
Affiliation(s)
- Robert D Frisina
- Department Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA.,Department Chemical and Biomedical Engineering, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| | - Bo Ding
- Department Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| | - Xiaoxia Zhu
- Department Chemical and Biomedical Engineering, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| | - Joseph P Walton
- Department Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA.,Department Chemical and Biomedical Engineering, Global Center for Hearing and Speech Research, University of South Florida, Tampa FL, 33612, USA
| |
Collapse
|
37
|
Kumar V, Dickey AM, Seal DR, Shatters RG, Osborne LS, McKenzie CL. Unexpected High Intragenomic Variation in Two of Three Major Pest Thrips Species Does Not Affect Ribosomal Internal Transcribed Spacer 2 (ITS2) Utility for Thrips Identification. Int J Mol Sci 2017; 18:ijms18102100. [PMID: 28984819 PMCID: PMC5666782 DOI: 10.3390/ijms18102100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial cytochrome oxidase I gene (mtCO1) and the ribosomal internal transcribed spacer 2 region (ITS2) are among the most widely used molecular markers for insect taxonomic characterization. Three economically important species of thrips, Scirtothripsdorsalis, Thripspalmi, and Frankliniellaoccidentalis were selected to examine the extent of intragenomic variation within these two marker regions in the family Thripidae, and determine if this variation would affect the utility of markers in thrips molecular diagnostics. For each species, intragenomic (within individual) variation and intergenomic (among individuals) variation was assessed by cloning and sequencing PCR-amplified copies. Intergenomic variation was generally higher than intragenomic variation except in cases where intergenomic variation was very low, as in mtCO1 from S.dorsalis and F.occidentalis. Intragenomic variation was detected in both markers in all three of the thrips species, however, 2-3 times more intragenomic variation was observed for ITS2 than mtCO1 in both S.dorsalis and T.palmi. Furthermore, levels of intragenomic variation were low for both of the genes in F.occidentalis. In all of the three thrips species, no sex-based clustering of haplotypes was observed in either marker. Unexpected high intragenomic variation in ITS2 for two of three thrips species did not interfere with thrips diagnostics. However, caution should be taken in applying ITS2 to certain studies of S.dorsalis and T.palmi when high levels of intragenomic variation could be problematic or confounding. In such studies, mtCO1 may be a preferable marker. Possible reasons for discrepancies in intragenomic variation among genomic regions are discussed.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA; (A.M.D.); (L.S.O.)
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
- Department of Entomology and Nematology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA;
- Correspondence: ; Tel.: +1-772-462-5978
| | - Aaron M. Dickey
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA; (A.M.D.); (L.S.O.)
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
- Present Address: U.S. Meat Animal Research Center, USDA-ARS, Clay Center, NE 68933, USA
| | - Dakshina R. Seal
- Department of Entomology and Nematology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA;
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
| | - Lance S. Osborne
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA; (A.M.D.); (L.S.O.)
| | - Cindy L. McKenzie
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
| |
Collapse
|
38
|
Proskorovski-Ohayon R, Kadir R, Michalowski A, Flusser H, Perez Y, Hershkovitz E, Sivan S, Birk OS. PAX7mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay. Hum Mutat 2017; 38:1671-1683. [DOI: 10.1002/humu.23310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/16/2017] [Accepted: 07/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Regina Proskorovski-Ohayon
- The Morris Kahn Laboratory of Human Genetics; National Institute for Biotechnology in the Negev and Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics; National Institute for Biotechnology in the Negev and Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Analia Michalowski
- Zussman Child Development Center; Division of Pediatrics; Soroka University Medical Center; Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Hagit Flusser
- Zussman Child Development Center; Division of Pediatrics; Soroka University Medical Center; Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics; National Institute for Biotechnology in the Negev and Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Eli Hershkovitz
- Pediatric Endocrinology and Metabolism Unit; Division of Pediatrics; Soroka University Medical Center; Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Sara Sivan
- The Morris Kahn Laboratory of Human Genetics; National Institute for Biotechnology in the Negev and Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
| | - Ohad S. Birk
- The Morris Kahn Laboratory of Human Genetics; National Institute for Biotechnology in the Negev and Faculty of Health Sciences; Ben Gurion University of the Negev; Beer Sheva Israel
- Genetics Institute; Soroka University Medical Center; affiliated to Ben Gurion University of the Negev; Beer Sheva Israel
| |
Collapse
|
39
|
Fiete D, Mi Y, Beranek M, Baenziger NL, Baenziger JU. The glycan-specific sulfotransferase (R77W)GalNAc-4-ST1 putatively responsible for peeling skin syndrome has normal properties consistent with a simple sequence polymorphisim. Glycobiology 2017; 27:450-456. [PMID: 28204496 PMCID: PMC5444257 DOI: 10.1093/glycob/cwx018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/10/2017] [Indexed: 11/14/2022] Open
Abstract
Expanded access to DNA sequencing now fosters ready detection of site-specific human genome alterations whose actual significance requires in-depth functional study to rule in or out disease-causing mutations. This is a particular concern for genomic sequence differences in glycosyltransferases, whose implications are often difficult to assess. A recent whole-exome sequencing study identifies (c.229 C > T) in the GalNAc-4-ST1 glycosyltransferase (CHST8) as a disease-causing missense R77W mutation yielding the genodermatosis peeling skin syndrome (PSS) when homozygous. Cabral et al. (Genomics. 2012;99:202-208) cite this sequence change as reducing keratinocyte GalNAc-4-ST1 activity, thus decreasing glycosaminoglycan sulfation, as the mechanism for this blistering disorder. Such an identification could point toward potential clinical and/or prenatal diagnosis of a harmful medical condition. However, GalNAc-4-ST1 has minimal activity toward glycosaminoglycans, instead modifying terminal β1,4-linked GalNAc on N- and O-linked oligosaccharides on specific glycoproteins. We find expression, processing and catalytic activity of GalNAc-4-ST1 completely equivalent between wild type and (R77W) sulfotransferases. Moreover, keratinocytes have little or no GalNAc-4-ST1 mRNA, indicating that they do not express GalNAc-4-ST1. In addition, loss-of-function of GalNAc-4-ST1 primarily presents as reproductive system aberrations rather than skin effects. These findings, an allele frequency of 0.004357, and a 10-fold difference in prevalence of CHST8 (c.299 C > T, R77W) across different ethnic groups, suggest that this sequence represents a "passenger" distributed polymorphism, a simple sequence variant form of the enzyme having normal activity, rather than a "driver" disease-causing mutation that accounts for PSS. This study presents an example for guiding biomedical research initiatives, as well as medical and personal/family perspectives, regarding newly-identified genomic sequence differences.
Collapse
Affiliation(s)
- Dorothy Fiete
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Yiling Mi
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Mary Beranek
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Nancy L Baenziger
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jacques U Baenziger
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
40
|
DNA polymerases and biotechnological applications. Curr Opin Biotechnol 2017; 48:187-195. [PMID: 28618333 DOI: 10.1016/j.copbio.2017.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023]
Abstract
A multitude of biotechnological techniques used in basic research as well as in clinical diagnostics on an everyday basis depend on DNA polymerases and their intrinsic capability to replicate DNA strands with astoundingly high fidelity. Applications with fundamental importance to modern molecular biology, including the polymerase chain reaction and DNA sequencing, would not be feasible without the advances made in characterizing these enzymes over the course of the last 60 years. Nonetheless, the still growing application scope of DNA polymerases necessitates the identification of novel enzymes with tailor-made properties. In the recent past, DNA polymerases optimized for diverse PCR and sequencing applications as well as enzymes that accept a variety of unnatural substrates for the synthesis and reverse transcription of modified nucleic acids have been developed.
Collapse
|
41
|
Joseph RM, Sun JS, Tam E, Carlson JR. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife 2017; 6. [PMID: 28332980 PMCID: PMC5388533 DOI: 10.7554/elife.24992] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/19/2017] [Indexed: 11/23/2022] Open
Abstract
The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila. Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca2+ imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants. An automated analysis of feeding behavior in freely moving flies shows that IR60b limits the duration of individual feeding bouts. This receptor and neuron provide the molecular and cellular underpinnings of a new element in the circuit logic of feeding regulation. We propose a dynamic model in which sucrose acts via IR60b to activate a circuit that inhibits feeding and prevents overconsumption. DOI:http://dx.doi.org/10.7554/eLife.24992.001 All animals – from the fruit fly to mammals like humans – must control their dietary intake of nutrients to survive and stay healthy. Taste receptors that sense high-calorie sugars are essential to this process. Typically, when food tastes sweet, it signals that the food contains nutrients and promotes consumption. However, eating too much sugar can be detrimental because the animal wastes time and energy eating food that it does not need, and could eventually lead to obesity and other metabolic diseases. This raised the question: are there any taste receptors that, once they detect sugars, cause animals to eat less? Joseph et al. worked with the fruit fly Drosophila melanogaster and identified one such taste receptor called IR60b. The experiments showed that this taste receptor responds selectively to sucrose (a high-calorie sugar), and that it activates nerve cells that cause fruit flies to eat less food, rather than more. When the receptor was experimentally inactivated, the fruit flies ate for longer and ate too much sucrose. This indicates that the flies need this receptor to control their sugar intake. A next step will be to see if mammals similarly use sweet-sensing taste receptors to limit the amount of food they eat. A better insight into how mammals can control what they eat could provide a deeper understanding of how to tackle major health issues, such as obesity, in humans. DOI:http://dx.doi.org/10.7554/eLife.24992.002
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Edric Tam
- Department of Biomedical Engineering, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
42
|
ThermoAlign: a genome-aware primer design tool for tiled amplicon resequencing. Sci Rep 2017; 7:44437. [PMID: 28300202 PMCID: PMC5353602 DOI: 10.1038/srep44437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
Isolating and sequencing specific regions in a genome is a cornerstone of molecular biology. This has been facilitated by computationally encoding the thermodynamics of DNA hybridization for automated design of hybridization and priming oligonucleotides. However, the repetitive composition of genomes challenges the identification of target-specific oligonucleotides, which limits genetics and genomics research on many species. Here, a tool called ThermoAlign was developed that ensures the design of target-specific primer pairs for DNA amplification. This is achieved by evaluating the thermodynamics of hybridization for full-length oligonucleotide-template alignments — thermoalignments — across the genome to identify primers predicted to bind specifically to the target site. For amplification-based resequencing of regions that cannot be amplified by a single primer pair, a directed graph analysis method is used to identify minimum amplicon tiling paths. Laboratory validation by standard and long-range polymerase chain reaction and amplicon resequencing with maize, one of the most repetitive genomes sequenced to date (≈85% repeat content), demonstrated the specificity-by-design functionality of ThermoAlign. ThermoAlign is released under an open source license and bundled in a dependency-free container for wide distribution. It is anticipated that this tool will facilitate multiple applications in genetics and genomics and be useful in the workflow of high-throughput targeted resequencing studies.
Collapse
|
43
|
Delventhal R, Menuz K, Joseph R, Park J, Sun JS, Carlson JR. The taste response to ammonia in Drosophila. Sci Rep 2017; 7:43754. [PMID: 28262698 PMCID: PMC5338342 DOI: 10.1038/srep43754] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 01/12/2023] Open
Abstract
Ammonia is both a building block and a breakdown product of amino acids and is found widely in the environment. The odor of ammonia is attractive to many insects, including insect vectors of disease. The olfactory response of Drosophila to ammonia has been studied in some detail, but the taste response has received remarkably little attention. Here, we show that ammonia is a taste cue for Drosophila. Nearly all sensilla of the major taste organ of the Drosophila head house a neuron that responds to neutral solutions of ammonia. Ammonia is toxic at high levels to many organisms, and we find that it has a negative valence in two paradigms of taste behavior, one operating over hours and the other over seconds. Physiological and behavioral responses to ammonia depend at least in part on Gr66a+ bitter-sensing taste neurons, which activate a circuit that deters feeding. The Amt transporter, a critical component of olfactory responses to ammonia, is widely expressed in taste neurons but is not required for taste responses. This work establishes ammonia as an ecologically important taste cue in Drosophila, and shows that it can activate circuits that promote opposite behavioral outcomes via different sensory systems.
Collapse
Affiliation(s)
- R. Delventhal
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103 New Haven, CT 06520-8103, USA
| | - K. Menuz
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103 New Haven, CT 06520-8103, USA
| | - R. Joseph
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103 New Haven, CT 06520-8103, USA
| | - J. Park
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103 New Haven, CT 06520-8103, USA
| | - J. S. Sun
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103 New Haven, CT 06520-8103, USA
| | - J. R. Carlson
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, P.O. Box 208103 New Haven, CT 06520-8103, USA
| |
Collapse
|
44
|
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife 2016; 5. [PMID: 27845621 PMCID: PMC5127637 DOI: 10.7554/elife.20242] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/14/2016] [Indexed: 01/03/2023] Open
Abstract
Odorant binding proteins (Obps) are remarkable in their number, diversity, and abundance, yet their role in olfactory coding remains unclear. They are widely believed to be required for transporting hydrophobic odorants through an aqueous lymph to odorant receptors. We construct a map of the Drosophila antenna, in which the abundant Obps are mapped to olfactory sensilla with defined functions. The results lay a foundation for an incisive analysis of Obp function. The map identifies a sensillum type that contains a single abundant Obp, Obp28a. Surprisingly, deletion of the sole abundant Obp in these sensilla does not reduce the magnitude of their olfactory responses. The results suggest that this Obp is not required for odorant transport and that this sensillum does not require an abundant Obp. The results further suggest a novel role for this Obp in buffering changes in the odor environment, perhaps providing a molecular form of gain control. DOI:http://dx.doi.org/10.7554/eLife.20242.001 Insects use their sense of smell to find mates, to find food and – in the case of insects that transmit diseases such as malaria and Zika – to find us. If we can understand how insect scent detection works at the molecular and cellular level, we may be able to devise new ways of manipulating the insects’ sense of smell and prevent them from finding us. Insects contain a family of proteins called odorant binding proteins that are intriguing in several ways. They are numerous (there are 52 kinds in the fruit fly Drosophila), they are diverse and some are made in remarkably large amounts in the antennae. Fine hair-like structures known as olfactory sensilla protrude from the surface of the antennae. Odorant binding proteins are widely believed to carry odorant molecules through the fluid inside the sensilla to olfactory neurons, which then send signals that trigger the insect’s response to the scent. Larter et al. have now mapped the most abundant odorant binding proteins to the various olfactory sensilla of Drosophila. This revealed that a type of sensillum known as ab8 contained only one abundant odorant binding protein, called Obp28a. Unexpectedly, Larter et al. found that ab8 sensilla that are deprived of this protein respond strongly to odorant molecules. This result suggests that Obp28a is not required to transport odorants to the neurons in ab8; indeed, it appears that these neurons do not require an abundant odorant binding protein in order to respond to a scent. Instead, Obp28a helps to moderate the effects of sudden changes in the level of an odorant in the environment, so that concentrated odors do not trigger too large a response from the olfactory neurons. The details of the role that Obp28a plays in olfactory sensilla remain to be investigated in future studies, and the map created by Larter et al. also lays a foundation for studying the roles of other odorant binding proteins. The discovery that Obp28a is not needed to transport odorant molecules also raises questions about how insects are able to detect smells. Many odorant molecules repel water, so how do these molecules travel through the fluid in the sensilla if odorant binding proteins are not needed to transport them? DOI:http://dx.doi.org/10.7554/eLife.20242.002
Collapse
Affiliation(s)
- Nikki K Larter
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
45
|
Yamagoshi R, Yamamoto T, Hashimoto M, Sugahara R, Shiotsuki T, Miyoshi H, Terada H, Shinohara Y. Identification of amino acid residues of mammalian mitochondrial phosphate carrier important for its functional expression in yeast cells, as achieved by PCR-mediated random mutation and gap-repair cloning. Mitochondrion 2016; 32:1-9. [PMID: 27836624 DOI: 10.1016/j.mito.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022]
Abstract
The mitochondrial phosphate carrier (PiC) of mammals, but not the yeast one, is synthesized with a presequence. The deletion of this presequence of the mammalian PiC was reported to facilitate the import of the carrier into yeast mitochondria, but the question as to whether or not mammalian PiC could be functionally expressed in yeast mitochondria was not addressed. In the present study, we first examined whether the defective growth on a glycerol plate of yeast cells lacking the yeast PiC gene could be reversed by the introduction of expression vectors of rat PiCs. The introduction of expression vectors encoding full-length rat PiC (rPiC) or rPiC lacking the presequence (ΔNrPiC) was ineffective in restoring growth on the glycerol plates. When we examined the expression levels of individual rPiCs in yeast mitochondria, ΔNrPiC was expressed at a level similar to that of yeast PiC, but that of rPiC was very low. These results indicated that ΔNrPiC expressed in yeast mitochondria is inert. Next, we sought to isolate "revertants" viable on the glycerol plate by expressing randomly mutated ΔNrPiC, and obtained two clones. These clones carried either of two mutations, F267S or F282S; and these mutations restored the transport function of ΔNrPiC in yeast mitochondria. These two Phe residues were conserved in human carrier (hPiC), and the transport function of ΔNhPiC expressed in yeast mitochondria was also markedly improved by their substitutions. Thus, substitution of F267S or F282S was concluded to be important for functional expression of mammalian PiCs in yeast mitochondria.
Collapse
Affiliation(s)
- Ryohei Yamagoshi
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan
| | - Mitsuru Hashimoto
- Faculty of Pharmaceutical Science, Matsuyama University, Bunkyocho-4, Matsuyama 790-8578, Japan
| | - Ryohei Sugahara
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Terada
- Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima 770-8505, Japan.
| |
Collapse
|
46
|
Fish RN, Bostick M, Lehman A, Farmer A. Transcriptome Analysis at the Single-Cell Level Using SMART Technology. ACTA ACUST UNITED AC 2016; 116:4.26.1-4.26.24. [PMID: 27723086 DOI: 10.1002/cpmb.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Rachel N Fish
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California
| | - Magnolia Bostick
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California
| | - Alisa Lehman
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California.,Current affiliation: 23andMe, Mountain View, California
| | - Andrew Farmer
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California
| |
Collapse
|
47
|
Divate NR, Chen GH, Wang PM, Ou BR, Chung YC. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Bioengineered 2016; 7:445-458. [PMID: 27484300 DOI: 10.1080/21655979.2016.1207019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.
Collapse
Affiliation(s)
- Nileema R Divate
- a Department of Food and Nutrition , Providence University , Taichung , Republic of China (Taiwan)
| | - Gen-Hung Chen
- b Department of Cosmetic Science , Providence University , Taichung , Republic of China (Taiwan)
| | - Pei-Ming Wang
- a Department of Food and Nutrition , Providence University , Taichung , Republic of China (Taiwan)
| | - Bor-Rung Ou
- c Department of Animal Science and Biotechnology , Tunghai University , Taichung , Republic of China (Taiwan)
| | - Yun-Chin Chung
- a Department of Food and Nutrition , Providence University , Taichung , Republic of China (Taiwan)
| |
Collapse
|
48
|
Fruiting Body Formation in Volvariella volvacea Can Occur Independently of Its MAT-A-Controlled Bipolar Mating System, Enabling Homothallic and Heterothallic Life Cycles. G3-GENES GENOMES GENETICS 2016; 6:2135-46. [PMID: 27194800 PMCID: PMC4938666 DOI: 10.1534/g3.116.030700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Volvariella volvacea is an important crop in Southeast Asia, but erratic fruiting presents a serious challenge for its production and breeding. Efforts to explain inconsistent fruiting have been complicated by the multinucleate nature, typical lack of clamp connections, and an incompletely identified sexual reproductive system. In this study, we addressed the life cycle of V. volvacea using whole genome sequencing, cloning of MAT loci, karyotyping of spores, and fruiting assays. Microscopy analysis of spores had previously indicated the possible coexistence of heterothallic and homothallic life cycles. Our analysis of the MAT loci showed that only MAT-A, and not MAT-B, controlled heterokaryotization. Thus, the heterothallic life cycle was bipolar. Karyotyping of single spore isolates (SSIs) using molecular markers supported the existence of heterokaryotic spores. However, most SSIs were clearly not heterokaryotic, yet contained structural variation (SV) markers relating to both alleles of both parents. Heterokaryons from crossed, self-sterile homokaryons could produce fruiting bodies, agreeing with bipolar heterothallism. Meanwhile, some SSIs with two different MAT-A loci also produced fruiting bodies, which supported secondary homothallism. Next, SSIs that clearly contained only one MAT-A locus (homothallism) were also able to fruit, demonstrating that self-fertile SSIs were not, per definition, secondary homothallic, and that a third life cycle or genetic mechanism must exist. Finally, recombination between SV markers was normal, yet 10 out of 24 SV markers showed 1:2 or 1:3 distributions in the spores, and large numbers of SSIs contained doubled SV markers. This indicated selfish genes, and possibly partial aneuploidy.
Collapse
|
49
|
Zhu XJ, Sun S, Xie B, Hu X, Zhang Z, Qiu M, Dai ZM. Guanine-rich sequences inhibit proofreading DNA polymerases. Sci Rep 2016; 6:28769. [PMID: 27349576 PMCID: PMC4923904 DOI: 10.1038/srep28769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/10/2016] [Indexed: 11/12/2022] Open
Abstract
DNA polymerases with proofreading activity are important for accurate amplification of target DNA. Despite numerous efforts have been made to improve the proofreading DNA polymerases, they are more susceptible to be failed in PCR than non-proofreading DNA polymerases. Here we showed that proofreading DNA polymerases can be inhibited by certain primers. Further analysis showed that G-rich sequences such as GGGGG and GGGGHGG can cause PCR failure using proofreading DNA polymerases but not Taq DNA polymerase. The inhibitory effect of these G-rich sequences is caused by G-quadruplex and is dose dependent. G-rich inhibitory sequence-containing primers can be used in PCR at a lower concentration to amplify its target DNA fragment.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Shuhui Sun
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Binghua Xie
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Xuemei Hu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY40292, USA
| | - Zunyi Zhang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY40292, USA
| | - Zhong-Min Dai
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| |
Collapse
|
50
|
Kwon KM, Kang SG, Sokolova TG, Cho SS, Kim YJ, Kim CH, Kwon ST. Characterization of a family B DNA polymerase from Thermococcus barophilus Ch5 and its application for long and accurate PCR. Enzyme Microb Technol 2016; 86:117-26. [PMID: 26992800 DOI: 10.1016/j.enzmictec.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|