1
|
Du P, Jiang J, Liu Y, Lv H. Correlation between vascular endothelial function and bone mineral density in type 2 diabetes mellitus patients with MAFLD. Acta Cardiol 2025; 80:30-38. [PMID: 39654473 DOI: 10.1080/00015385.2024.2436813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/29/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE The relationship between vascular endothelial function and bone mineral density (BMD) in T2DM patients with metabolic dysfunction associated fatty liver (MAFLD) is still unclear. This study aims to analyse the correlation between vascular endothelial function and BMD or fracture risk in T2DM patients with MAFLD. METHODS A total of 872 T2DM patients aged ≥50 years were enrolled and divided into two groups according to the diagnostic criteria of MAFLD: MAFLD (+) and MAFLD (-). Flow-mediated dilation (FMD) was measured by high-resolution ultrasound to reflect vascular endothelial function. BMD was measured by dual-energy X-ray bone densitometry, and FRAX scores were calculated for 10-year hip fracture risk (HF1) and major osteoporotic fracture risk (MOF). RESULTS After multivariate adjustment, there was no significant correlation between FMD and BMD in MAFLD (-) group (p > 0.05). In MAFLD (+) and FMD < 4% group, FMD was positively correlated with WB, LS, and FN BMD, while FMD was negatively correlated with fracture risk and osteoporotic fracture history, and this correlation was only observed in female patients. However, FMD was not correlated with BMD and fracture risk and osteoporotic fracture history in 4%≤FMD ≤ 7% and FMD > 7% groups. CONCLUSIONS The association of FMD with BMD in T2DM patients with MAFLD varies according to FMD level. The decrease of FMD is associated with reduced BMD and increased fracture risk in female patients with FMD < 4% group. FMD may be an influential factor for the occurrence and development of osteoporosis, and has some clinical value in early diagnosis of osteoporosis in T2DM patients with MAFLD.
Collapse
Affiliation(s)
- Peiyan Du
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jianxiang Jiang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yurong Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
2
|
Liu S, Lu Q, Wang M, Guo H, Wang Y, Nong J, Wang S, Xia H, Xia T, Sun H. S-nitrosoglutathione reductase-dependent p65 denitrosation promotes osteoclastogenesis by facilitating recruitment of p65 to NFATc1 promoter. Bone 2024; 181:117036. [PMID: 38311303 DOI: 10.1016/j.bone.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yiwen Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Nong
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huifang Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Hua P, Liang R, Tu Y, Yin Y, Law MK, Chen M. Reactive oxygen species and nitric oxide scavenging nanoparticles alleviating rheumatoid arthritis through adjusting the seeds and growing soils. Acta Pharm Sin B 2023; 13:5016-5029. [PMID: 38045057 PMCID: PMC10692387 DOI: 10.1016/j.apsb.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 12/05/2023] Open
Abstract
Normalizing inflamed soils including reactive oxygen species (ROS), nitric oxide (NO), cell-free DNA, and regulating inflammation-related seeds such as macrophages, neutrophils, fibroblasts, represent a promising strategy to maintain synovial tissue homeostasis for rheumatoid arthritis (RA) treatment. Herein, ROS scavenging amphiphilic block copolymer PEGylated bilirubin and NO-scavenging PEGylated o-phenylenediamine were fabricated to self-assemble into a dually responsive nanoparticle loaded with JAK inhibitor notopterol (Not@BR/oPDA-PEG, NBOP NPs). The simultaneous ROS and NO depletion combined with JAK-STAT pathway inhibition could not only promote M2 polarization to reduce further ROS and NO generation, but also decrease cytokines and chemokines to prevent immune cell recruitment. Specifically, NBOP NPs responded to high level ROS and NO, and disintegrated to release notopterol in inflamed joints as the hydrophobic heads BR and oPDA were transformed into hydrophilic ones. The released notopterol could inhibit the JAK-STAT pathway of inflammatory cells to reduce the secretion of pro-inflammatory cytokines and chemokines. This strategy represented an effective way to regulate RA soils and seeds through breaking the positive feedback loop of inflammation aggravation, achieving an excellent anti-RA efficacy in a collagen-induced arthritis rat model. Taken together, our work offered a reference to adjust RA soils and seeds for enhanced RA treatment.
Collapse
Affiliation(s)
- Peng Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruifeng Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yuying Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
4
|
Sun J, Wang W, Hu X, Zhang X, Zhu C, Hu J, Ma R. Local delivery of gaseous signaling molecules for orthopedic disease therapy. J Nanobiotechnology 2023; 21:58. [PMID: 36810201 PMCID: PMC9942085 DOI: 10.1186/s12951-023-01813-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Over the past decade, a proliferation of research has used nanoparticles to deliver gaseous signaling molecules for medical purposes. The discovery and revelation of the role of gaseous signaling molecules have been accompanied by nanoparticle therapies for their local delivery. While most of them have been applied in oncology, recent advances have demonstrated their considerable potential in diagnosing and treating orthopedic diseases. Three of the currently recognized gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are highlighted in this review along with their distinctive biological functions and roles in orthopedic diseases. Moreover, this review summarizes the progress in therapeutic development over the past ten years with a deeper discussion of unresolved issues and potential clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Sun
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
5
|
Shiraki M, Kuroda T, Nakano M, Nakamura Y, Saito M, Urano T. Nitric oxide is associated with fracture risk in Japanese women. PLoS One 2023; 18:e0280854. [PMID: 36749766 PMCID: PMC9904477 DOI: 10.1371/journal.pone.0280854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
Although nitric oxide (NO) is a known factor that regulates the bone physiology, few and discordant results have been obtained in human studies evaluating the effect of nitrates on bone health. We investigated for the relationship between serum NOx level and incident osteoporotic fracture rate prospectively in a cohort consisting of Japanese women. A total of 871 subjects (67.5 ± 10.8 y/o) were analyzed. During the observation period (8.8 ± 7.2 yrs), incident osteoporotic fractures occurred in 267 participants (209 vertebral fractures, 57 long-bone fractures, and 1 both types). Hazard ratio, by the Cox proportional hazards model, of serum NOx for incident fracture was 0.64 (95% confidence interval 0.53-0.78, p < 0.001) after adjustment for baseline age (1.13, 1.06-1.21, p < 0.001), lumbar bone mineral density (L-BMD; 0.85, 0.78-0.92, p < 0.001), presence of prevalent fracture (3.27, 2.49-4.32, p < 0.001), and treatment of osteoporosis (0.70, 0.53-0.92, p = 0.010). The relationships between serum level of NOx and bone-related parameters were examined by multiple regression analysis; body mass index (p < 0.001) and L-BMD (p = 0.011) were significantly associated with serum NOx level. These results suggest that the low circulating NOx is one of the independent predictors for osteoporotic fracture occurrence in postmenopausal women.
Collapse
Affiliation(s)
- Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, Azumino City, Nagano, Japan
| | | | - Masaki Nakano
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto City, Nagano, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto City, Nagano, Japan
- * E-mail:
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tomohiko Urano
- Department of Geriatric Medicine, International University of Health and Welfare School of Medicine, Narita City, Chiba, Japan
| |
Collapse
|
6
|
Yousefzadeh N, Jeddi S, Kashfi K, Ghasemi A. Long-term inorganic nitrate administration protects against ovariectomy-induced osteoporosis in rats. EXCLI JOURNAL 2022; 21:1151-1166. [PMID: 36320805 PMCID: PMC9618708 DOI: 10.17179/excli2022-5082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
The risk of osteoporotic fractures increases in women after menopause. This study aims at determining the effects of long-term inorganic nitrate administration against ovariectomy-induced osteoporosis in rats. Rats were divided into 4 groups (n=6/group): Control, control+nitrate, ovariectomized (OVX), and OVX+nitrate. Sodium nitrate (100 mg/L in drinking water) was administered for 9 months. Trabecular bone quality in the proximal tibia was measured using a Micro-Computed Tomography (micro-CT) scanner at months 0, 1, 3, and 9. Levels of nitric oxide (NO) metabolites (NOx) and oxidative stress indices, and mRNA expression of endothelial NO synthase (eNOS) were measured at month 9 in the proximal tibia. Compared to controls, OVX rats had lower NOx levels by 47 %, eNOS mRNA expression by 55 %, catalase activity (CAT) by 45 %, total antioxidant capacity (TAC) by 70 %, and higher malondialdehyde (MDA) levels by 327 % in the bone tissue at month 9. OVX rats, compared to controls, had lower bone volume/tissue volume (BV/TV), trabecular number (Tb.N.), and trabecular thickness (Tb.Th.) by 32 %, 58 %, and 17 %, respectively, and higher trabecular separation (Tb.Sp.) by 123 %, at month 9. Nitrate administration to control rats increased TAC by 46 % in the bone tissue at month 9 but did not significantly affect other parameters in serum and bone tissue. Nitrate in OVX rats significantly increased NOx levels by 86 %, eNOS expression by 2.14-fold, CAT activity by 75 %, TAC by 170 %, and decreased MDA levels by 36 % at month 9 in the bone tissue. Nitrate-treated OVX rats at month 9 had higher BV/TV (42 %) and Tb.N. (61 %) and lower Tb.Sp. (15 %). Long-term inorganic nitrate administration at a low dose has protective effects against OVX-induced osteoporosis in rats; this effect is associated with increasing eNOS-derived NO and decreasing oxidative stress in the bone tissue.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*To whom correspondence should be addressed: Asghar Ghasemi, Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box: 19395-4763, Tehran, Iran, E-mail:
| |
Collapse
|
7
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Moderate-Intensity Exercise Preserves Bone Mineral Density and Improves Femoral Trabecular Bone Microarchitecture in Middle-Aged Mice. J Bone Metab 2022; 29:103-111. [PMID: 35718927 PMCID: PMC9208899 DOI: 10.11005/jbm.2022.29.2.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Aging leads to significant bone loss and elevated osteoporosis risk. Exercise slows age-related bone loss; however, the effects of various moderate-intensity exercise training volumes on bone metabolism remain unclear. This study aimed to determine the degree to which different volumes of moderate-intensity aerobic exercise training influence bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone microarchitecture, and cortical bone in middle-aged mice. Methods Twenty middle-aged male C57BL/6 mice were randomly assigned 8 weeks of either (1) non-exercise (CON); (2) moderate-intensity with high-volume exercise (EX_MHV); or (3) moderate-intensity with low-volume exercise (EX_MLV) (N=6–7, respectively). Femoral BMD and BMC were evaluated using dual energy X-ray absorptiometry, and trabecular and cortical bone were measured using micro-computed tomography. Results Femoral BMD in EX_MHV but not EX_MLV was significantly higher (P<0.05) than in CON. The distal femoral fractional trabecular bone volume/tissue volume (BV/TV, %) was significantly higher (P<0.05) in both EX_MHV and EX_MLV than in CON mice. Increased BV/TV was induced by significantly increased trabecular thickness (mm) and tended to be higher (P<0.10) in BV (mm3) and lower in trabecular separation (mm) in EX_MHV and EX_MLV than in CON. The femoral mid-diaphysis cortical bone was stronger in EX_MLV than EX_MHV. Conclusions Long-term moderate-intensity aerobic exercise with low to high volumes can be thought to have a positive effect on hindlimb BMD and attenuate age-associated trabecular bone loss in the femur. Moderate-intensity aerobic exercise may be an effective and applicable exercise regimen to prevent age-related loss of BMD and BV.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University Arizona College of Osteopathic Medicine, Glendale, AZ, USA
| | - Yun-A Shin
- Department of Prescription and Rehabilitation of Exercise, College of Sport Science, Dankook University, Cheonan, Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women’s University, Seoul, Korea
| |
Collapse
|
8
|
Kim T, Suh J, Kim WJ. Polymeric Aggregate-Embodied Hybrid Nitric-Oxide-Scavenging and Sequential Drug-Releasing Hydrogel for Combinatorial Treatment of Rheumatoid Arthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008793. [PMID: 34235789 DOI: 10.1002/adma.202008793] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Selective depletion of overproduced nitric oxide (NO) with nanoscavengers is a promising approach for treating rheumatoid arthritis (RA), preventing both oxidative/nitrosative stress and the upregulation of immune cells. However, its practical applications are limited owing to the minimum time interval between intra-articular injections and unwanted off-target NO depletion. Herein, the rational design of an injectable in situ polymeric aggregate-embodied hybrid NO-scavenging and sequential drug-releasing (M-NO) gel platform for the combinatorial treatment of RA by incorporating a "clickable" NO-cleavable cross-linker (DA-NOCCL) is reported. This network is held together with polymeric aggregates to achieve a self-healing capability for visco-supplementation and on-demand dual drug (both hydrophilic and hydrophobic)-releasing properties, depending on the NO concentration. Moreover, consecutive NO-scavenging action reduces pro-inflammatory cytokine levels in lipopolysaccharides-stimulated macrophage cell lines in vitro. Finally, the intra-articularly injected M-NO gel with anti-inflammatory dexamethasone significantly alleviates the symptoms of RA, with negligible toxicity, in animal models. It is believed that this novel M-NO gel platform will provide a guideline for the combinatorial treatment of RA and various NO-related diseases.
Collapse
Affiliation(s)
- Taejeong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jeeyeon Suh
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Jigok-ro 64, Nam-gu, Pohang, 37666, Republic of Korea
- OmniaMed Co., Ltd, Pohang, 37666, Republic of Korea
| |
Collapse
|
9
|
Hattori H, Takaoka K, Ueta M, Oshitani M, Tamaoka J, Noguchi K, Kishimoto H. Senescent RAW264.7 cells exhibit increased production of nitric oxide and release inducible nitric oxide synthase in exosomes. Mol Med Rep 2021; 24:681. [PMID: 34318909 DOI: 10.3892/mmr.2021.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 11/06/2022] Open
Abstract
Aging cells not only cease growing, but also secrete various proteins such as inflammatory cytokines. This secretory phenomenon is known as the senescence‑associated secretory phenotype (SASP). The aim of the present study was to elucidate the effects of senescence on the differentiation of osteoclast precursors (OCPs) and corresponding SASP. RAW264.7 cells were used as OCPs and were cultured to passage (P)5, P10 and P20. Cell proliferation assays, senescence‑associated β‑galactosidase staining and telomere length quantification were subsequently performed, and it was revealed that replicative senescence was induced at P20. In addition, the level of tartrate‑resistant acid phosphatase activity in P20 cells treated with receptor activator of nuclear factor‑κB ligand was significantly lower than that in P5 and P10 cells. The SASP factors interleukin‑6, tumour necrosis factor‑α and nitric oxide were significantly increased in P20 culture supernatants compared with those in P5 and P10 supernatants. Furthermore, the number of exosomes at P20 was increased compared with that at P5 and P10, and inducible nitric oxide synthase (iNOS) was expressed in exosomes at P20, but not in exosomes at P5. In conclusion, the present study revealed that senescent RAW264.7 cells exhibit increased expression of SASP factors and release iNOS in exosomes.
Collapse
Affiliation(s)
- Hirokazu Hattori
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Kazuki Takaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Miho Ueta
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Masayuki Oshitani
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Joji Tamaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
10
|
Noh S, Lee S, Green S, Prisby R. Myogenic autoregulation in bone marrow arterioles and in vivo intramedullary pressure in femora of conscious, female Long Evans rats. Microcirculation 2021; 28:e12720. [PMID: 34152668 DOI: 10.1111/micc.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The ability to regulate skeletal blood flow is critical for the maintenance of bone. The myogenic response is essential for regulating tissue blood flow. Myogenic responsiveness in bone marrow arterioles has not yet been determined. Furthermore, the literature is disparate regarding intramedullary pressures (IMP) within bone. The purposes of this study were to (1) determine whether bone marrow arterioles have myogenic activity and (2) assess if the autoregulatory zone corresponds with IMP. Also, this study provides detailed methodology on dissecting and isolating bone marrow arterioles for functional assessment. METHODS Experiment 1: Femoral shafts of female Long Evans rats were catheterized to assess in vivo IMP. Experiment 2: Bone marrow arterioles from female Long Evans rats were cannulated. Active and passive myogenic responses were determined. RESULTS In vivo intramedullary pressure averaged 32 ± 3 mmHg, intramedullary pulse pressure averaged 5.28 ± 0.03 mmHg, and the mean maximal diameter and wall thickness of the bone marrow arterioles were 96 ± 7 µm and 18 ± 2 µm, respectively. An active myogenic response was observed and differed (p < .001) from the passive curve. CONCLUSION Bone marrow arterioles have myogenic responsiveness and the autoregulatory zone corresponded with the range of IMP (15-51 mmHg) within the femoral diaphysis of conscious animals.
Collapse
Affiliation(s)
- Sunggi Noh
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Seungyong Lee
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Sophie Green
- Department of Biology, Behavioral Neuroscience and Health Science, Rider University, Lawrenceville, New Jersey, USA
| | - Rhonda Prisby
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
11
|
Yousefzadeh N, Jeddi S, Kashfi K, Ghasemi A. Diabetoporosis: Role of nitric oxide. EXCLI JOURNAL 2021; 20:764-780. [PMID: 34121973 PMCID: PMC8192884 DOI: 10.17179/excli2021-3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Diabetoporosis, diabetic-related decreased bone quality and quantity, is one of the leading causes of osteoporotic fractures in subjects with type 2 diabetes (T2D). This is associated with lower trabecular and cortical bone quality, lower bone turnover rates, lower rates of bone healing, and abnormal posttranslational modifications of collagen. Decreased nitric oxide (NO) bioavailability has been reported within the bones of T2D patients and can be considered as one of the primary mechanisms by which diabetoporosis is manifested. NO donors increase trabecular and cortical bone quality, increase the rate of bone formation, accelerate the bone healing process, delay osteoporosis, and decrease osteoporotic fractures in T2D patients, suggesting the potential therapeutic implication of NO-based interventions. NO is produced in the osteoblast and osteoclast cells by three isoforms of NO synthase (NOS) enzymes. In this review, the roles of NO in bone remodeling in the normal and diabetic states are discussed. Also, the favorable effects of low physiological levels of NO produced by endothelial NOS (eNOS) versus detrimental effects of high pathological levels of NO produced by inducible NOS (iNOS) in diabetoporosis are summarized. Available data indicates decreased bone NO bioavailability in T2D and decreased expression of eNOS, and increased expression and activity of iNOS. NO donors can be considered novel therapeutic agents in diabetoporosis.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
- PhD Program in Biology, City University of New York Graduate Center, New York,NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Naik AA, Narayanan A, Khanchandani P, Sridharan D, Sukumar P, Srimadh Bhagavatam SK, Seshagiri PB, Sivaramakrishnan V. Systems analysis of avascular necrosis of femoral head using integrative data analysis and literature mining delineates pathways associated with disease. Sci Rep 2020; 10:18099. [PMID: 33093559 PMCID: PMC7581770 DOI: 10.1038/s41598-020-75197-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Avascular necrosis of femoral head (AVNFH) is a debilitating disease, which affects the middle aged population. Though the disease is managed using bisphosphonate, it eventually leads to total hip replacement due to collapse of femoral head. Studies regarding the association of single nucleotide polymorphisms with AVNFH, transcriptomics, proteomics, metabolomics, biophysical, ultrastructural and histopathology have been carried out. Functional validation of SNPs was carried out using literature. An integrated systems analysis using the available datasets might help to gain further insights into the disease process. We have carried out an analysis of transcriptomic data from GEO-database, SNPs associated with AVNFH, proteomic and metabolomic data collected from literature. Based on deficiency of vitamins in AVNFH, an enzyme-cofactor network was generated. The datasets are analyzed using ClueGO and the genes are binned into pathways. Metabolomic datasets are analyzed using MetaboAnalyst. Centrality analysis using CytoNCA on the data sets showed cystathionine beta synthase and methylmalonyl-CoA-mutase to be common to 3 out of 4 datasets. Further, the genes common to at least two data sets were analyzed using DisGeNET, which showed their involvement with various diseases, most of which were risk factors associated with AVNFH. Our analysis shows elevated homocysteine, hypoxia, coagulation, Osteoclast differentiation and endochondral ossification as the major pathways associated with disease which correlated with histopathology, IHC, MRI, Micro-Raman spectroscopy etc. The analysis shows AVNFH to be a multi-systemic disease and provides molecular signatures that are characteristic to the disease process.
Collapse
Affiliation(s)
- Ashwin Ashok Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Andhra Pradesh, 515 134, India
| | - Aswath Narayanan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Andhra Pradesh, 515 134, India
| | - Prakash Khanchandani
- Department of Orthopedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Andhra Pradesh, 515 134, India.
| | - Divya Sridharan
- Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bangalore, Bangalore, India
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Sai Krishna Srimadh Bhagavatam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Andhra Pradesh, 515 134, India
| | - Polani B Seshagiri
- Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bangalore, Bangalore, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Andhra Pradesh, 515 134, India.
| |
Collapse
|
13
|
Carminati L, Taraboletti G. Thrombospondins in bone remodeling and metastatic bone disease. Am J Physiol Cell Physiol 2020; 319:C980-C990. [PMID: 32936697 DOI: 10.1152/ajpcell.00383.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondins (TSPs) are a family of five multimeric matricellular proteins. Through a wide range of interactions, TSPs play pleiotropic roles in embryogenesis and in tissue remodeling in adult physiology as well as in pathological conditions, including cancer development and metastasis. TSPs are active in bone remodeling, the process of bone resorption (osteolysis) and deposition (osteogenesis) that maintains bone homeostasis. TSPs are particularly involved in aberrant bone remodeling, including osteolytic and osteoblastic skeletal cancer metastasis, frequent in advanced cancers such as breast and prostate carcinoma. TSPs are major players in the bone metastasis microenvironment, where they finely tune the cross talk between tumor cells and bone resident cells in the metastatic niche. Each TSP family member has different effects on the differentiation and activity of bone cells-including the bone-degrading osteoclasts and the bone-forming osteoblasts-with different outcomes on the development and growth of osteolytic and osteoblastic metastases. Here, we overview the involvement of TSP family members in the bone tissue microenvironment, focusing on their activity on osteoclasts and osteoblasts in bone remodeling, and present the evidence to date of their roles in bone metastasis establishment and growth.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
14
|
Abstract
The skeleton is highly vascularized due to the various roles blood vessels play in the homeostasis of bone and marrow. For example, blood vessels provide nutrients, remove metabolic by-products, deliver systemic hormones, and circulate precursor cells to bone and marrow. In addition to these roles, bone blood vessels participate in a variety of other functions. This article provides an overview of the afferent, exchange and efferent vessels in bone and marrow and presents the morphological layout of these blood vessels regarding blood flow dynamics. In addition, this article discusses how bone blood vessels participate in bone development, maintenance, and repair. Further, mechanical loading-induced bone adaptation is presented regarding interstitial fluid flow and pressure, as regulated by the vascular system. The role of the sympathetic nervous system is discussed in relation to blood vessels and bone. Finally, vascular participation in bone accrual with intermittent parathyroid hormone administration, a medication prescribed to combat age-related bone loss, is described and age- and disease-related impairments in blood vessels are discussed in relation to bone and marrow dysfunction. © 2020 American Physiological Society. Compr Physiol 10:1009-1046, 2020.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
15
|
Whitney DG, Bell S, Etter JP, Prisby RD. The cardiovascular disease burden of non-traumatic fractures for adults with and without cerebral palsy. Bone 2020; 136:115376. [PMID: 32335375 DOI: 10.1016/j.bone.2020.115376] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Individuals with cerebral palsy (CP) are vulnerable to non-trauma fracture (NTFx) and have an elevated burden of cardiovascular disease (CVD) related morbidity and mortality. However, very little is known about the contribution of NTFx to CVD risk among adults with CP. The purpose of this study was to determine if NTFx is a risk factor for CVD among adults with CP and if NTFx exacerbates CVD risk compared to adults without CP. METHODS Data from 2011 to 2016 Optum Clinformatics® Data Mart and a random 20% sample Medicare fee-for-service were used for this retrospective cohort study. Diagnosis codes were used to identify adults (18+ years) with and without CP, NTFx, incident CVD up to 2 years (i.e., ischemic heart disease, heart failure, cerebrovascular disease), and pre-NTFx comorbidities. Crude incidence rates per 100 person years of CVD measures were estimated. Cox regression estimated hazard ratios (HR and 95% confidence interval [CI]) for CVD measures, comparing: (1) CP and NTFx (CP + NTFx; n = 1012); (2) CP without NTFx (CP w/o NTFx; n = 8345); (3) without CP and with NTFx (w/o CP + NTFx; n = 257,355); and (4) without CP and without NTFx (w/o CP w/o NTFx; n = 4.8 M) after adjusting for demographics and pre-NTFx comorbidities. RESULTS The crude incidence rate was elevated for CP + NTFx vs. CP w/o NTFx and w/o CP + NTFx for any CVD and for each CVD subtype. After adjustments, the HR was elevated for CP + NTFx vs. CP w/o NTFx for any CVD (HR = 1.16; 95%CI = 0.98-1.38), heart failure (HR = 1.31; 95%CI = 1.01-1.70), and cerebrovascular disease (HR = 1.23; 95%CI = 0.98-1.55); although, only heart failure was statistically significant. The adjusted HR was elevated for CP + NTFx vs. w/o CP + NTFx for any CVD and for each CVD subtype (all P < .05). Stratified analyses showed a higher CVD risk by NTFx location, <65 year olds, and men when comparing CP + NTFx vs. CP w/o NTFx and w/o CP + NTFx. CONCLUSIONS NTFx increases 2-year CVD risk among adults with CP and compared to adults without CP. Findings suggest that NTFx is a risk factor for CVD among adults with CP.
Collapse
Affiliation(s)
- Daniel G Whitney
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA; Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA.
| | - Sarah Bell
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan P Etter
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Rhonda D Prisby
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
16
|
Kim SM, Taneja C, Perez-Pena H, Ryu V, Gumerova A, Li W, Ahmad N, Zhu LL, Liu P, Mathew M, Korkmaz F, Gera S, Sant D, Hadelia E, Ievleva K, Kuo TC, Miyashita H, Liu L, Tourkova I, Stanley S, Lizneva D, Iqbal J, Sun L, Tamler R, Blair HC, New MI, Haider S, Yuen T, Zaidi M. Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. Proc Natl Acad Sci U S A 2020; 117:14386-14394. [PMID: 32513693 PMCID: PMC7321982 DOI: 10.1073/pnas.2000950117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine β-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Charit Taneja
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Helena Perez-Pena
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Wenliang Li
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom
| | - Naseer Ahmad
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ling-Ling Zhu
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peng Liu
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mehr Mathew
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sakshi Gera
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Damini Sant
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elina Hadelia
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kseniia Ievleva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Reproductive Health, Scientific Center for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russian Federation
| | - Tan-Chun Kuo
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hirotaka Miyashita
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Li Liu
- Department of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Irina Tourkova
- Department of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sarah Stanley
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daria Lizneva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Li Sun
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ronald Tamler
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harry C Blair
- Department of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Maria I New
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom
| | - Tony Yuen
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
17
|
An Implanted Magnetic Microfluidic Pump for In Vivo Bone Remodeling Applications. MICROMACHINES 2020; 11:mi11030300. [PMID: 32182976 PMCID: PMC7143022 DOI: 10.3390/mi11030300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/03/2022]
Abstract
Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat.
Collapse
|
18
|
Associations among Bone Mineral Density, Physical Activity and Nutritional Intake in Middle-Aged Women with High Levels of Arterial Stiffness: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051620. [PMID: 32138200 PMCID: PMC7084750 DOI: 10.3390/ijerph17051620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022]
Abstract
There is little consensus regarding the impacts of physical activity and nutrient intake on bone mineral density (BMD) in subjects with high or low levels of arterial stiffness. This study was performed to investigate whether physical activity and nutrient intake are associated with BMD in middle-aged women with high levels of arterial stiffness. The study population consisted of middle-aged women aged 40–64 years (n = 22). BMD was assessed by dual-energy X-ray absorptiometry. Carotid-femoral pulse wave velocity (cf-PWV) was used as an indicator of arterial stiffness. Subjects were divided into two groups by median cf-PWV. Physical activity in free-living conditions was evaluated using a triaxial accelerometer. Nutrient intake was also measured using the brief-type self-administered diet history questionnaire. In the High-PWV group, BMD showed a significant negative correlation with age. Using a partial correlation model, BMD was associated with the number of steps and unsaturated fatty acid intake in the High-PWV group. These results suggest that BMD in middle-aged women with high levels of arterial stiffness may be associated with both the number of steps and nutritional intake. Recommendations of physical activity and nutritional intake for the prevention of osteopenia should include consideration of arterial stiffness.
Collapse
|
19
|
H. M. Nascimento M, T. Pelegrino M, C. Pieretti J, B. Seabra A. How can nitric oxide help osteogenesis? AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
Amano H, Iwaki F, Oki M, Aoki K, Ohba S. An osteogenic helioxanthin derivative suppresses the formation of bone-resorbing osteoclasts. Regen Ther 2019; 11:290-296. [PMID: 31667208 PMCID: PMC6813560 DOI: 10.1016/j.reth.2019.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Objective The helioxanthin derivative 4-(4-methoxyphenyl)thieno[2,3-b:5,4-c′]dipyridine-2-carboxamide (TH) is a low-molecular-weight compound that was identified through screening for osteogenic compounds that enhance the activity of mouse preosteoblastic MC3T3-E1 cells. In the present study, we found that TH suppressed osteoclast differentiation. Methods Using the hematopoietic stem cells of ddY mice, TH was added to the culture in the experimental group, and the number of osteoclasts was measured with rhodamine phalloidin staining and TRAP staining. In osteo assay, bone resorption area was compared by the von Kossa staining. Results Specifically, TH inhibited the cyclic guanosine monophosphate (cGMP)-degrading activity of phosphodiesterase (PDE), promoted nitric oxide (NO) production, and dose-dependently suppressed osteoclast differentiation in an osteoclast formation culture of mouse bone marrow cells. The NO-competitive guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) attenuated the suppressive activity of TH on osteoclast differentiation. Conclusion: Given the previously reported suppressive action of cGMP on osteoclastogenesis, our data suggest that TH negatively impacts osteoclast differentiation at least to some extent by stimulating NO production and inhibiting PDE activity, both of which lead to the upregulation of intracellular cGMP. This study supports the potential use of TH as a novel antiosteoporotic reagent that not only stimulates bone formation but also inhibits bone resorption.
Collapse
Affiliation(s)
- Hitoshi Amano
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Futoshi Iwaki
- Department of Oral and Maxillofacial Surgery, Kobe City Nishi-Kobe Medical Center, 5-7-1, Koujidai Nishi-ku, Kobe, 651-2273, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
21
|
Angireddy R, Kazmi HR, Srinivasan S, Sun L, Iqbal J, Fuchs SY, Guha M, Kijima T, Yuen T, Zaidi M, Avadhani NG. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages. FASEB J 2019; 33:9167-9181. [PMID: 31063702 PMCID: PMC6662975 DOI: 10.1096/fj.201900010rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
The mitochondria-to-nucleus retrograde signaling (MtRS) pathway aids in cellular adaptation to stress. We earlier reported that the Ca2+- and calcineurin-dependent MtRS induces macrophage differentiation to bone-resorbing osteoclasts. However, mechanisms through which macrophages sense and respond to cellular stress remain unclear. Here, we induced mitochondrial stress in macrophages by knockdown (KD) of subunits IVi1 or Vb of cytochrome c oxidase (CcO). Whereas both IVi1 and Vb KD impair CcO activity, IVi1 KD cells produced higher levels of cellular and mitochondrial reactive oxygen species with increased glycolysis. Additionally, IVi1 KD induced the activation of MtRS factors NF-κB, NFAT2, and C/EBPδ as well as inflammatory cytokines, NOS 2, increased phagocytic activity, and a greater osteoclast differentiation potential at suboptimal RANK-L concentrations. The osteoclastogenesis in IVi1 KD cells was reversed fully with an IL-6 inhibitor LMT-28, whereas there was minimal rescue of the enhanced phagocytosis in these cells. In agreement with our findings in cultured macrophages, primary bone marrow-derived macrophages from MPV17-/- mice, a model for mitochondrial dysfunction, also showed higher propensity for osteoclast formation. This is the first report showing that CcO dysfunction affects inflammatory pathways, phagocytic function, and osteoclastogenesis.-Angireddy, R., Kazmi, H. R., Srinivasan, S., Sun, L., Iqbal, J., Fuchs, S. Y., Guha, M., Kijima, T., Yuen, T., Zaidi, M., Avadhani, N. G. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hasan Raza Kazmi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takashi Kijima
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
|
23
|
Koduru SV, Sun BH, Walker JM, Zhu M, Simpson C, Dhodapkar M, Insogna KL. The contribution of cross-talk between the cell-surface proteins CD36 and CD47-TSP-1 in osteoclast formation and function. J Biol Chem 2018; 293:15055-15069. [PMID: 30082316 DOI: 10.1074/jbc.ra117.000633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 07/27/2018] [Indexed: 01/16/2023] Open
Abstract
Antibody-mediated blockade of cluster of differentiation 47 (CD47)-thrombospondin-1 (TSP-1) interactions blocks osteoclast formation in vitro and attenuates parathyroid hormone (PTH)-induced hypercalcemia in vivo in mice. Hypercalcemia in this model reflects increased bone resorption. TSP-1 has two cell-associated binding partners, CD47 and CD36. The roles of these two molecules in mediating the effects of TSP1 in osteoclasts are unclear. Osteoclast formation was attenuated but not absent when preosteoclasts isolated from CD47-/- mice were cocultured with WT osteoblasts. Suppressing CD36 in osteoclast progenitors also attenuated osteoclast formation. The hypercalcemic response to a PTH infusion was blunted in CD47-/-/CD36-/- (double knockout (DKO)) female mice but not CD47-/- mice or CD36-/- animals, supporting a role for both CD47 and CD36 in mediating this effect. Consistent with this, DKO osteoclasts had impaired resorptive activity when analyzed in vitro Inhibition of nitric oxide (NO) signaling is known to promote osteoclastogenesis, and TSP-1 suppresses NO production and signaling. An anti-TSP-1 antibody increased NO production in osteoclasts, and the inhibitory effect of anti-TSP-1 on osteoclastogenesis was completely rescued by l-nitroarginine methyl ester (l-NAME), a competitive NO synthase inhibitor. Supportive of an important role for CD36 in mediating the pro-osteoclastogenic effects of TSP-1, engaging CD36 with a synthetic agonist, p907, suppressed NO production in anti-TSP-1-treated cultures, allowing osteoclast maturation to occur. These results establish that CD36 and CD47 both participate in mediating the actions of TSP-1 in osteoclasts and establish a physiologically relevant cross-talk in bone tissue between these two molecules.
Collapse
Affiliation(s)
| | - Ben-Hua Sun
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Joanne M Walker
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Meiling Zhu
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Christine Simpson
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| | - Madhav Dhodapkar
- From the Departments of Medicine (Hematology) and Immunobiology and
| | - Karl L Insogna
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
24
|
Reis MVP, de Souza GL, Moura CCG, da Silva MV, Souza MA, Soares PBF, Soares CJ. Effects of Lectin (ScLL) on osteoclast-like multinucleated giant cells' maturation-A preliminary in vitro study. Dent Traumatol 2018; 34:329-335. [PMID: 29856524 DOI: 10.1111/edt.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIM Lectin (ScLL) has been recently evaluated in the oral cavity due to its anti-inflammatory activities. ScLL could be a promising agent for blocking osteoclast activity and preventing root resorption. The aim of this study was to evaluate the effect of ScLL on the viability of the RAW 264.7 macrophage lineage, osteoclast-like maturation and the release of TNF-α and nitric oxide (NO). MATERIALS AND METHODS The viability of RAW 264.7 cells was determined by MTT and Alamar Blue assays after ScLL treatment for 24 hours. ScLL effects on RANKL-induced osteoclast-like maturation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F-actin ring formation. The supernatant was collected to detect the release of TNF-α using ELISA and NO using a nitrite assay. RESULTS ScLL suppressed osteoclast-like maturation by decreasing TRAP activity as well as F-actin ring formation. ScLL at 10 μg/mL showed the highest values of NO release compared with all other groups (P < .05). Lower levels of TNF-α were found for the negative control. CONCLUSIONS ScLL at 5 μg/mL suppressed osteoclast-like maturation in vitro and had no cytotoxic effect on RAW cell cultures.
Collapse
Affiliation(s)
- Manuella V P Reis
- Biomechanics Research Group, Department of Operative Dentistry and Dental Materials, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gabriela L de Souza
- Biomechanics Research Group, Department of Endodontics, Federal University of Uberlândia, Uberlândia, Brazil
| | - Camilla C G Moura
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcus V da Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Maria A Souza
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscilla B F Soares
- Department of Oral and Maxillofacial Surgery and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Carlos J Soares
- Biomechanics Research Group, Department of Operative Dentistry and Dental Materials, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
25
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
26
|
Prisby RD. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J Endocrinol 2017; 235:R77-R100. [PMID: 28814440 PMCID: PMC5611884 DOI: 10.1530/joe-16-0666] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022]
Abstract
Bone tissue is highly vascularized due to the various roles bone blood vessels play in bone and bone marrow function. For example, the vascular system is critical for bone development, maintenance and repair and provides O2, nutrients, waste elimination, systemic hormones and precursor cells for bone remodeling. Further, bone blood vessels serve as egress and ingress routes for blood and immune cells to and from the bone marrow. It is becoming increasingly clear that the vascular and skeletal systems are intimately linked in metabolic regulation and physiological and pathological processes. This review examines how agents such as mechanical loading, parathyroid hormone, estrogen, vitamin D and calcitonin, all considered anabolic for bone, have tremendous impacts on the bone vasculature. In fact, these agents influence bone blood vessels prior to influencing bone. Further, data reveal strong associations between vasodilator capacity of bone blood vessels and trabecular bone volume, and poor associations between estrogen status and uterine mass and trabecular bone volume. Additionally, this review highlights the importance of the bone microcirculation, particularly the vascular endothelium and NO-mediated signaling, in the regulation of bone blood flow, bone interstitial fluid flow and pressure and the paracrine signaling of bone cells. Finally, the vascular endothelium as a mediator of bone health and disease is considered.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of KinesiologyUniversity of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
27
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
28
|
Misra D, Peloquin C, Kiel DP, Neogi T, Lu N, Zhang Y. Intermittent Nitrate Use and Risk of Hip Fracture. Am J Med 2017; 130:229.e15-229.e20. [PMID: 27720852 PMCID: PMC5262534 DOI: 10.1016/j.amjmed.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/16/2016] [Accepted: 09/03/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Nitrates, commonly used antianginal medications, also have a beneficial effect on bone remodeling and bone density, particularly with intermittent use. However, their effect on fracture risk is not clear. We examined the relation of short-acting nitrate use (proxy for intermittent use) with the risk of hip fracture in a large cohort of older adults with ischemic heart disease. METHODS Participants aged 60 years or more with ischemic heart disease and without a history of hip fracture from The Health Improvement Network, an electronic medical records database in the United Kingdom, were included. The association of incident (new) use of short-acting nitrate formulations (nitroglycerin sublingual/spray/ointment or isosorbide dinitrate injection/sprays) with incident (new-onset) hip fracture risk was examined by plotting Kaplan-Maier curves and calculating hazard ratios using Cox proportional hazards regression models. Competing risk by death was analyzed in separate analyses. RESULTS Among 14,451 pairs of matched nitrate users and nonusers (mean age, 72 ± 7.6 years, 41% women for each cohort), 573 fractures occurred during follow-up (257 nitrate users; 316 nonusers). Hip fracture risk was 33% lower among short-acting nitrate users compared with nonusers (hazard ratio, 0.67; 95% confidence interval, 0.53-0.85; P = .0008). Competing risk analysis by death did not change effect estimates. CONCLUSIONS In this large population-based cohort of older adults with ischemic heart disease, we found a significant reduction in hip fracture risk with the use of short-acting nitrates (intermittent use). Future studies are warranted given the potential for nitrates to be potent, inexpensive, and readily available antiosteoporotic agents.
Collapse
Affiliation(s)
| | | | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass
| | | | - Na Lu
- Boston University School of Medicine, Mass; Massachusetts General Hospital, Boston
| | | |
Collapse
|
29
|
Liu C, Liu Y, Zhang W, Liu X. Screening for potential genes associated with bone overgrowth after mid-shaft femur fracture in a rat model. J Orthop Surg Res 2017; 12:8. [PMID: 28095896 PMCID: PMC5240322 DOI: 10.1186/s13018-017-0510-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/30/2016] [Indexed: 01/15/2023] Open
Abstract
Background We investigated the underlying molecular mechanisms of bone overgrowth after femoral fracture by using high-throughput bioinformatics approaches. Methods The gene expression profile of GSE3298 (accession number) was obtained from the Gene Expression Omnibus database. Sixteen femoral growth plate samples, including nine samples without fracture and seven fracture samples for seven time points, were used for analysis. The Limma package was applied to identify differentially expressed genes (DEGs) between fractured and intact samples. The DAVID online tool was used for Gene ontology functional and pathway enrichment analysis. A protein-protein interaction (PPI) network established by String software was used to identify interactions between significant DEGs, and network modules were detected using plug-in MCODE. Additionally, a transcription regulatory network was constructed based on the ENCODE Project and PPI network. Results A total of 680 DEGs were screened in fractured femoral growth plate samples compared with controls, including 238 up- and 442 down-regulated genes. These DEGs were significantly involved in the calcium signaling pathway and cancer pathway. A PPI network was constructed with 167 nodes and 233 edges, and module analysis demonstrated that CCL2, CSF2, NOS2, and DLC1 may stimulate bone overgrowth after femoral fracture via anti-apoptosis-related functions. A transcription regulatory network was constructed with 387 interacting pairs, and overlapping nodes were significantly enriched in intracellular signaling cascade and regulation of cell proliferation, among others. Conclusions Bone overgrowth was associated with changes in the expression of identified DEGs such as CCL2, NOS2, CSF2, and DLC1 in the femoral head. They may be important in regulating bone overgrowth via the anti-apoptosis of osteoblasts. Electronic supplementary material The online version of this article (doi:10.1186/s13018-017-0510-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chibing Liu
- The Second Hospital of Jilin University, Ziqiang St 218 Nan Guan District, Changchun, 130041, China
| | | | - Weizhong Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Xiuxin Liu
- The Six Affiliated Hospital of Xinjiang Medical University Medical Examination Center, Autonomous Region, Five Star South Road, No. 39, Urumqi City, Xinjiang Uygur, 830002, China.
| |
Collapse
|
30
|
Nicorandil inhibits osteoclast differentiation in vitro. Eur J Pharmacol 2016; 793:14-20. [DOI: 10.1016/j.ejphar.2016.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/03/2023]
|
31
|
Bozkurt O, Bilgin MD, Evis Z, Pleshko N, Severcan F. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study. APPLIED SPECTROSCOPY 2016; 70:2005-2015. [PMID: 27680083 DOI: 10.1177/0003702816671059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Alterations in microstructure and mineral features can affect the mechanical and chemical properties of bones and their capacity to resist mechanical forces. Controversial results on diabetic bone mineral content have been reported and little is known about the structural alterations in collagen, maturation of apatite crystals, and carbonate content in diabetic bone. This current study is the first to report the mineral and organic properties of cortical, trabecular, and growth plate regions of diabetic rat femurs using Fourier transform infrared (FT-IR) microspectroscopy and the Vickers microhardness test. Femurs of type I diabetic rats were embedded into polymethylmethacrylate blocks, which were used for FT-IR imaging and microhardness studies. A lower mineral content and microhardness, a higher carbonate content especially labile type carbonate content, and an increase in size and maturation of hydroxyapatite crystals were observed in diabetic femurs, which indicate that diabetes has detrimental effects on bone just like osteoporosis. There was a decrease in the level of collagen maturity in diabetic femurs, implying a decrease in bone collagen quality that may contribute to the decrease in tensile strength and bone fragility. Taken together, the findings revealed alterations in structure and composition of mineral and matrix components, and an altered quality and mechanical strength of rat femurs in an early stage of type I diabetes. The results contribute to the knowledge of structure-function relationship of mineral and matrix components in diabetic bone disorder and can further be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Ozlem Bozkurt
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
32
|
Ghosh P, Stabley JN, Behnke BJ, Allen MR, Delp MD. Effects of spaceflight on the murine mandible: Possible factors mediating skeletal changes in non-weight bearing bones of the head. Bone 2016; 83:156-161. [PMID: 26545335 DOI: 10.1016/j.bone.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC). Upon landing, mandibles were collected and analyzed via micro-computed tomography for tissue mineralization, bone volume (BV/TV), and distance from the cemento-enamel junction to the alveolar crest (CEJ-AC). Mandibular mineralization was not different between spaceflight (SF) and GC mice for either the STS-131 or STS-135 missions. Mandibular BV/TV (combined cortical and trabecular bone) was lower in mandibles from SF mice on the STS-131 mission (80.7±0.8%) relative to that of GC (n=8) animals (84.2±1.2%), whereas BV/TV from STS-135 mice was not different from GC animals (n=7). The CEJ-AC distance was shorter in mandibles from STS-131 mice (0.217±0.004mm) compared to GC animals (0.283±0.009mm), indicating an anabolic (or anti-catabolic) effect of spaceflight, while CEJ-AC distance was similar between STS-135 and GC mice. These findings demonstrate that mandibular bones undergo skeletal changes during spaceflight and are susceptible to the effects of weightlessness. However, adaptation of the mandible to spaceflight is dissimilar to that of the cranium, at least in terms of changes in BV/TV.
Collapse
Affiliation(s)
- Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
| | - John N Stabley
- Sanford-Burnham Medical Research Institute, Orlando, FL 3282, USA
| | - Bradley J Behnke
- Department of Kinesiology and Johnson Cancer Research Center, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Dursun M, Özbek E, Otunctemur A, Cakir SS. Possible Association between Erectile Dysfunction and Osteoporosis in Men. Prague Med Rep 2015; 116:24-30. [DOI: 10.14712/23362936.2015.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Sexual dysfunction in general and erectile dysfunction (ED) in particular significantly affect men’s quality of life. Some patients who have ED, also develop osteoporosis. So, in this study we investigated the relationship between erectile dysfunction and osteoporosis in men. 95 men with erectile dysfunction and 82 men with normal sexual function were included in the study. The men’s sexual functions were evaluated by International Index of Erectile Function-5 items (IIEF-5). All men received a Dual Energy X-ray Absorptiometry (DEXA; Hologic) scan to measure bone mineral density (BMD) for osteoporosis. Chi-square test was used for statistical analysis. Mean age was 53.5 (38–69) in ED group and 50.1 (31–69) in control group. In ED group the men have lower T score levels than those of the control group. In conclusion, the men who have erectile dysfunction were at more risk for osteoporosis. The results of the present study demonstrate that the men with erectile dysfunction have low bone mineral density and they are at higher risk for osteoporosis. Because of easy and noninvasive evaluation of osteoporosis, patients with ED should be checked for bone mineral density and osteoporotic male subjects should be evaluated for ED.
Collapse
|
34
|
Zhang J, He F, Zhang W, Zhang M, Yang H, Luo ZP. Mechanical force enhanced bony formation in defect implanted with calcium sulphate cement. Bone Res 2015; 3:14048. [PMID: 26273532 PMCID: PMC4472145 DOI: 10.1038/boneres.2014.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/24/2014] [Accepted: 10/25/2014] [Indexed: 11/13/2022] Open
Abstract
To improve the osteogenic property of bone repairing materials and to accelerate bone healing are major tasks in bone biomaterials research. The objective of this study was to investigate if the mechanical force could be used to accelerate bone formation in a bony defect in vivo. The calcium sulfate cement was implanted into the left distal femoral epiphyses surgically in 16 rats. The half of rats were subjected to external mechanical force via treadmill exercise, the exercise started at day 7 postoperatively for 30 consecutive days and at a constant speed 8 m·min−1 for 45 min·day−1, while the rest served as a control. The rats were scanned four times longitudinally after surgery using microcomputed tomography and newly formed bone was evaluated. After sacrificing, the femurs had biomechanical test of three-point bending and histological analysis. The results showed that bone healing under mechanical force were better than the control with residual defect areas of 0.64±0.19 mm2 and 1.78±0.39 mm2 (P<0.001), and the ultimate loads to failure under mechanical force were 69.56±4.74 N, stronger than the control with ultimate loads to failure of 59.17±7.48 N (P=0.039). This suggests that the mechanical force might be used to improve new bone formation and potentially offer a clinical strategy to accelerate bone healing.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedic Surgery, the 1st Affiliated Hospital, and Orthopedic Institute, Soochow University , Suzhou, China
| | - Fan He
- Department of Orthopedic Surgery, the 1st Affiliated Hospital, and Orthopedic Institute, Soochow University , Suzhou, China
| | - Wen Zhang
- Department of Orthopedic Surgery, the 1st Affiliated Hospital, and Orthopedic Institute, Soochow University , Suzhou, China
| | - Meng Zhang
- Department of Orthopedic Surgery, the 1st Affiliated Hospital, and Orthopedic Institute, Soochow University , Suzhou, China
| | - Huilin Yang
- Department of Orthopedic Surgery, the 1st Affiliated Hospital, and Orthopedic Institute, Soochow University , Suzhou, China
| | - Zong-Ping Luo
- Department of Orthopedic Surgery, the 1st Affiliated Hospital, and Orthopedic Institute, Soochow University , Suzhou, China
| |
Collapse
|
35
|
Tsutsui M, Tanimoto A, Tamura M, Mukae H, Yanagihara N, Shimokawa H, Otsuji Y. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice. J Pharmacol Sci 2014; 127:42-52. [PMID: 25704017 DOI: 10.1016/j.jphs.2014.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs), all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling), lung abnormalities (accelerated pulmonary fibrosis), and bone abnormalities (increased bone mineral density and bone turnover). These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.
Collapse
Affiliation(s)
- Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Masahito Tamura
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Nobuyuki Yanagihara
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| |
Collapse
|
36
|
Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, Panton L. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle 2014; 5:183-92. [PMID: 24740742 PMCID: PMC4159494 DOI: 10.1007/s13539-014-0146-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/26/2014] [Indexed: 12/20/2022] Open
Abstract
Osteopenia/osteoporosis, sarcopenia, and obesity are commonly observed in the process of aging, and recent evidence suggests a potential interconnection of these syndromes with common pathophysiology. The term osteosarcopenic obesity has been coined to describe the concurrent appearance of obesity in individuals with low bone and muscle mass. Although our understanding of osteosarcopenic obesity's etiology, prevalence, and consequences is extremely limited, it is reasonable to infer its negative impact in a population that is aging in an obesogenic environment. It is likely that these individuals will present with poorer clinical outcomes caused by the cascade of metabolic abnormalities associated with these changes in body composition. Clinical outcomes include but are not limited to increased risk of fractures, impaired functional status (including activities of daily living), physical disability, insulin resistance, increased risk of infections, increased length of hospital stay, and reduced survival. These health outcomes are likely to be worse when compared to individuals with obesity, sarcopenia, or osteopenia/osteoporosis alone. Interventions that utilize resistance training exercise in conjunction with increased protein intake appear to be promising in their ability to counteract osteosarcopenic obesity.
Collapse
Affiliation(s)
- Michael J Ormsbee
- Department of Nutrition, Food and Exercise Sciences, The Florida State University, 120 Convocation Way, Tallahassee, FL, 32306-1493, USA,
| | | | | | | | | | | | | |
Collapse
|
37
|
Homer BL, Morton D, Bagi CM, Warneke JA, Andresen CJ, Whiteley LO, Morris DL, Tones MA. Oral administration of soluble guanylate cyclase agonists to rats results in osteoclastic bone resorption and remodeling with new bone formation in the appendicular and axial skeleton. Toxicol Pathol 2014; 43:411-23. [PMID: 25142129 DOI: 10.1177/0192623314546559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Orally administered small molecule agonists of soluble guanylate cyclase (sGC) induced increased numbers of osteoclasts, multifocal bone resorption, increased porosity, and new bone formation in the appendicular and axial skeleton of Sprague-Dawley rats. Similar histopathological bone changes were observed in both young (7- to 9-week-old) and aged (42- to 46-week-old) rats when dosed by oral gavage with 3 different heme-dependent sGC agonist (sGCa) compounds or 1 structurally distinct heme-independent sGCa compound. In a 7-day time course study in 7- to 9-week-old rats, bone changes were observed as early as 2 to 3 days following once daily compound administration. Bone changes were mostly reversed following a 14-day recovery period, with complete reversal after 35 days. The mechanism responsible for the bone changes was investigated in the thyroparathyroidectomized rat model that creates a low state of bone modeling and remodeling due to deprivation of thyroid hormone, calcitonin (CT), and parathyroid hormone (PTH). The sGCa compounds tested increased both bone resorption and formation, thereby increasing bone remodeling independent of calciotropic hormones PTH and CT. Based on these studies, we conclude that the bone changes in rats were likely caused by increased sGC activity.
Collapse
Affiliation(s)
- Bruce L Homer
- Pfizer, Worldwide Research & Development, Andover, Massachusetts, USA
| | - Daniel Morton
- Pfizer, Worldwide Research & Development, Andover, Massachusetts, USA
| | - Cedo M Bagi
- Pfizer, Worldwide Research & Development, Groton, Connecticut, USA
| | - James A Warneke
- Pfizer, Worldwide Research & Development, Andover, Massachusetts, USA
| | | | | | - Dale L Morris
- Pfizer, Worldwide Research & Development, Andover, Massachusetts, USA
| | - Michael A Tones
- Pfizer, Worldwide Research & Development, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Prisby RD. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone. Bone 2014; 64:195-203. [PMID: 24680721 PMCID: PMC4051408 DOI: 10.1016/j.bone.2014.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/08/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
39
|
Maria SM, Prukner C, Sheikh Z, Mueller F, Barralet JE, Komarova SV. Reproducible quantification of osteoclastic activity: characterization of a biomimetic calcium phosphate assay. J Biomed Mater Res B Appl Biomater 2013; 102:903-12. [PMID: 24259122 DOI: 10.1002/jbm.b.33071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/31/2013] [Accepted: 10/13/2013] [Indexed: 11/12/2022]
Abstract
Osteoclasts are responsible for bone and joint destruction in rheumatoid arthritis, periodontitis, and osteoporosis. Animal tusk slice assays are standard for evaluating the effect of therapeutics on these cells. However, in addition to batch-to-batch variability inherent to animal tusks, their use is clearly not sustainable. Our objective was to develop and characterize a biomimetic calcium phosphate assay based on the use of phase pure hydroxyapatite coated as a thin film on the surface of culture plates, to facilitate the reproducible quantification of osteoclast resorptive activity. Osteoclasts were formed from RAW 264.7 mouse monocyte cell line using a pro-resorptive cytokine RANKL (50 ng/mL). No change in substrate appearance was noted after culture with media without cells, or undifferentiated monocytes. Only in the presence of osteoclasts localized areas of calcium phosphate dissolution were observed. The total area resorbed positively correlated with the osteoclast numbers (R(2) = 0.99). The resorbed area was significantly increased by the addition of RANKL, and decreased after application of known inhibitors of osteoclast resorptive activity, calcitonin (10 μM), or alendronate (100 μM). Thus, calcium phosphate coated substrates allow reliable monitoring of osteoclast resorptive activity and offer an alternative to animal tusk slice assays.
Collapse
Affiliation(s)
- Salwa M Maria
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Bucur RC, Reid LS, Hamilton CJ, Cummings SR, Jamal SA. Nitrates and bone turnover (NABT) - trial to select the best nitrate preparation: study protocol for a randomized controlled trial. Trials 2013; 14:284. [PMID: 24010992 PMCID: PMC3847792 DOI: 10.1186/1745-6215-14-284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 08/21/2013] [Indexed: 12/15/2022] Open
Abstract
Background Organic nitrates uncouple bone turnover, improve bone mineral density, and improve trabecular and cortical components of bone. These changes in turnover, strength and geometry may translate into an important reduction in fractures. However, before proceeding with a large fracture trial, there is a need to identify the nitrate formulation that has both the greatest efficacy (with regards to bone turnover markers) and gives the fewest headaches. Ascertaining which nitrate formulation this may be is the purpose of the current study. Methods and design This will be an open-label randomized, controlled trial conducted at Women’s College Hospital comparing five formulations of nitrates for their effects on bone turnover markers and headache. We will recruit postmenopausal women age 50 years or older with no contraindications to nitroglycerin. Our trial will consist of a run-in phase and a treatment phase. We will enroll 420 women in the run-in phase, each to receive all of the 5 potential treatments in random order for 2 days, each with a 2-day washout period between treatments. Those who tolerate all formulations will enter the 12-week treatment phase and be randomly assigned to one of five groups: 0.3 mg sublingual nitroglycerin tablet, 0.6 mg of the sublingual tablet, a 20 mg tablet of isosorbide mononitrate, a 160 mg nitroglycerin transdermal patch (used for 8 h), and 15 mg of nitroglycerin ointment as used in a previous trial by our group. We will continue enrolment until we have randomized 210 women or 35 women per group. Concentrations of bone formation (bone-specific alkaline phosphatase and procollagen type I N-terminal propeptide) and bone resorption (C-telopeptides of collagen crosslinks and N-terminal crosslinks of collagen) agents will be measured in samples taken at study entry (the start of the run in phase) and 12 weeks. Subjects will record the frequency and severity of headaches daily during the run-in phase and then monthly after that. We will use the ‘multiple comparisons with the best’ approach for data analyses, as this strategy allows practical considerations of ease of use and tolerability to guide selection of the preparation for future studies. Discussion Data from this protocol will be used to develop a randomized, controlled trial of nitrates to prevent osteoporotic fractures. Trial registration ClinicalTrials.gov Identifier: NCT01387672. Controlled-Trials.com: ISRCTN08860742.
Collapse
Affiliation(s)
- Roxana C Bucur
- Women's College Research Institute and Department of Medicine, Women's College Hospital, The University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
41
|
Page NA, Fung HL. Organic nitrate metabolism and action: toward a unifying hypothesis and the future-a dedication to Professor Leslie Z. Benet. J Pharm Sci 2013; 102:3070-81. [PMID: 23670666 DOI: 10.1002/jps.23550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes the major advances that had been reported since the outstanding contributions that Professor Benet and his group had made in the 1980s and 1990s concerning the metabolism and pharmacologic action of organic nitrates (ORNs). Several pivotal studies have now enhanced our understanding of the metabolism and the bioactivation of ORNs, resulting in the identification of a host of cysteine-containing enzymes that can carry out this function. Three isoforms of aldehyde dehydrogenase, all of which with active catalytic cysteine sites, are now known to metabolize, somewhat selectively, various members of the ORN family. The existence of a long-proposed but unstable thionitrate intermediate from ORN metabolism has now been experimentally observed. ORN-induced thiol oxidation in multiple proteins, called the "thionitrate oxidation hypothesis," can be used not only to explain the phenomenon of nitrate tolerance, but also the various consequences of chronic nitrate therapy, namely, rebound vasoconstriction, and increased morbidity and mortality. Thus, a unifying biochemical hypothesis can account for the myriad of pharmacological events resulting from nitrate therapy. Optimization of the future uses of ORN in cardiology and other diseases could benefit from further elaboration of this unifying hypothesis.
Collapse
Affiliation(s)
- Nathaniel A Page
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
42
|
Prisby R, Menezes T, Campbell J. Vasodilation to PTH (1-84) in bone arteries is dependent upon the vascular endothelium and is mediated partially via VEGF signaling. Bone 2013; 54:68-75. [PMID: 23356989 DOI: 10.1016/j.bone.2013.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Intermittent PTH administration directly stimulates osteoblasts; however, mechanisms of bone accrual that are independent of the direct actions on osteoblasts may be under-appreciated. Our aims were to decipher (1) whether PTH 1-84 augments vasodilation of the femoral principal nutrient artery (PNA), (2) whether 15 days of intermittent PTH 1-84 augments endothelium-dependent and/or -independent vasodilation of the femoral PNA, and (3) the signaling mechanisms involved. METHODS Experiment 1: Femoral PNAs from male Wistar rats were exposed to cumulative doses of PTH 1-84 with and without an anti-vascular endothelial growth factor antibody and/or the endothelial NO synthase inhibitor l-NAME. Experiment 2: Male Wistar rats were administered PTH and/or the anti-VEGF antibody for 2 weeks. Subsequently, endothelium-dependent vasodilation to acetylcholine and endothelium-independent vasodilation to sodium nitroprusside were assessed. In addition, endothelium-dependent signaling pathways were analyzed by use of l-NAME and/or and the cyclooxygenase inhibitor indomethacin. RESULTS Cumulative doses of PTH 1-84 induced vasodilation of the femoral PNA, which was reduced by 38% and 87% with the anti-VEGF antibody and l-NAME, respectively. Secondly, 2 weeks of intermittent PTH 1-84 administration doubled trabecular bone volume, augmented bone formation parameters and reduced osteoclast activity. In addition, PTH enhanced endothelium-dependent vasodilation via up-regulation of NO. Co-administration of the anti-VEGF antibody (1) inhibited the PTH-induced increase in bone volume and remodeling parameters and (2) blunted the augmented vasodilator responsiveness of the PNA. Finally, endothelium-dependent vasodilation in PTH-treated rats was highly correlated with trabecular bone volume. CONCLUSION As hypothesized, PTH enhanced endothelium-dependent vasodilation of the femoral PNA via augmented NO production and was mediated partially through VEGF signaling. Further, vasodilation to PTH appears independent of vascular smooth muscle cell participation. More importantly, the strong association between vasodilation and bone volume suggests that bone arteriolar function is critical for PTH-induced bone anabolism.
Collapse
Affiliation(s)
- Rhonda Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
43
|
Jamal SA, Reid LS, Hamilton CJ. The effects of organic nitrates on osteoporosis: a systematic review. Osteoporos Int 2013; 24:763-70. [PMID: 23306823 DOI: 10.1007/s00198-012-2262-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Current treatments for osteoporosis are limited by lack of effect on cortical bone, side effects, and, in some cases, cost. Organic nitrates, which act as nitric oxide donors, may be a potential alternative. This systematic review summarizes the clinical data that reports on the effects of organic nitrates and bone. Organic nitrates, which act as nitric oxide donors, are novel agents that have several advantages over the currently available treatments for osteoporosis. This systematic review summarizes the clinical data that reports on the effects of organic nitrates on bone. We searched Medline (1966 to November 2012), EMBASE (1980 to November 2012), and the Cochrane Central Register of Controlled Trials (Issue 11, 2012). Keywords included nitrates, osteoporosis, bone mineral density (BMD), and fractures. We identified 200 citations. Of these, a total of 29 were retrieved for more detailed evaluation and we excluded 19 manuscripts: 15 because they did not present original data and four because they did not provide data on the intervention or outcome of interest. As such, we included ten studies in literature review. Of these ten studies two were observational cohort studies reporting nitrate use was associated with increased BMD; two were case control studies reporting that use of nitrates were associated with lower risk of hip fracture; two were randomized controlled trials (RCT) comparing alendronate to organic nitrates for treatment of postmenopausal women and demonstrating that both agents increased lumbar spine BMD. The two largest RCT with the longest follow-up, both of which compared effects of organic nitrates to placebo on BMD in women without osteoporosis, reported conflicting results. Headaches were the most common adverse event among women taking nitrates. No studies have reported on fracture efficacy. Further research is needed before recommending organic nitrates for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- S A Jamal
- Women's College Research Institute, 790 Bay Street, 7th Floor, Toronto, Ontario M5G 1N8, Canada.
| | | | | |
Collapse
|
44
|
Hamilton CJ, Reid LS, Jamal SA. Organic nitrates for osteoporosis: an update. BONEKEY REPORTS 2013; 2:259. [PMID: 24422039 DOI: 10.1038/bonekey.2012.259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 12/15/2022]
Abstract
The number of osteoporotic fractures is increasing worldwide as populations age. An inexpensive and widely available treatment is necessary to alleviate this increase in fractures. Current treatments decrease fractures at trabecular bone sites (spine) but have limited effects at cortical sites (hip, legs, forearm and upper arm)-the most common sites of osteoporotic fracture. Treatments are also limited by costs, side effects and lack of availability. Nitric oxide (NO) is a novel agent that has the potential to influence cortical bone, is inexpensive, widely available and has limited side effects. In this review, we will evaluate the in vitro and in vivo data that support the concept that NO is important in bone cell function, review the observational, case control and randomized trial data on organic nitrates and the effects of these agents on bone turnover, geometry and strength.
Collapse
Affiliation(s)
- Celeste J Hamilton
- Multidisciplinary Osteoporosis Research Program, Women's College Hospital, University of Toronto , Toronto, Ontario, Canada ; Department of Exercise Sciences, University of Toronto, Women's College Research Institute , Toronto, Ontario, Canada
| | - Lauren S Reid
- Multidisciplinary Osteoporosis Research Program, Women's College Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Sophie A Jamal
- Multidisciplinary Osteoporosis Research Program, Women's College Hospital, University of Toronto , Toronto, Ontario, Canada ; Department of Medicine, University of Toronto, Women's College Research Institute , Toronto, Ontario, Canada
| |
Collapse
|
45
|
Organic nitrate maintains bone marrow blood perfusion in ovariectomized female rats: a dynamic, contrast-enhanced magnetic resonance imaging (MRI) study. Pharmaceutics 2012; 5:23-35. [PMID: 24300395 PMCID: PMC3834938 DOI: 10.3390/pharmaceutics5010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effects of nitrate on bone mineral density (BMD) and bone marrow perfusion in ovariectomized (OVX) female rats, and also the effects of nitrate on in vitro osteoblastic activity and osteoclastic differentiation of murine monocyte/macrophage RAW 264.7 cells. Female Sprague–Dawley rats were divided into OVX + nitrate group (isosorbide-5-mononitrate, ISM, 150 mg/kg/ day b.i.d), OVX + vehicle group, and control group. Lumbar spine CT bone densitometry and perfusion MRI were performed on the rats at baseline and week 8 post-OVX. The OVX rats’ BMD decreased by 22.5% ± 5.7% at week 8 (p < 0.001); while the OVX + ISM rats’ BMD decreased by 13.1% ± 2.7% (p < 0.001). The BMD loss difference between the two groups of rats was significant (p = 0.018). The OVX rats’ lumbar vertebral perfusion MRI maximum enhancement (Emax) decreased by 10.3% ± 5.0% at week 8 (p < 0.005), while in OVX + ISM rats, the Emax increased by 5.5% ± 6.9% (p > 0.05). The proliferation of osteoblast-like UMR-106 cells increased significantly with ISM treatment at 0.78 µM to 50 μM. Treatment of UMR-106 cells with ISM also stimulated the BrdU uptake. After the RAW 264.7 cells were co-treated with osteoclastogenesis inducer RANKL and 6.25 μM ~ 100 μM of ISM for 3 days, a trend of dose-dependent increase of osteoclast number was noted.
Collapse
|
46
|
Prisby RD, Dominguez JM, Muller-Delp J, Allen MR, Delp MD. Aging and estrogen status: a possible endothelium-dependent vascular coupling mechanism in bone remodeling. PLoS One 2012. [PMID: 23185266 PMCID: PMC3502426 DOI: 10.1371/journal.pone.0048564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone loss with aging and menopause may be linked to vascular endothelial dysfunction. The purpose of the study was to determine whether putative modifications in endothelium-dependent vasodilation of the principal nutrient artery (PNA) of the femur are associated with changes in trabecular bone volume (BV/TV) with altered estrogen status in young (6 mon) and old (24 mon) female Fischer-344 rats. Animals were divided into 6 groups: 1) young intact, 2) old intact, 3) young ovariectomized (OVX), 4) old OVX, 5) young OVX plus estrogen replacement (OVX+E2), and 6) old OVX+E2. PNA endothelium-dependent vasodilation was assessed in vitro using acetylcholine. Trabecular bone volume of the distal femoral metaphysis was determined by microCT. In young rats, vasodilation was diminished by OVX and restored with estrogen replacement (intact, 82±7; OVX, 61±9; OVX+E2, 90±4%), which corresponded with similar modifications in BV/TV (intact, 28.7±1.6; OVX, 16.3±0.9; OVX+E2, 25.7±1.4%). In old animals, vasodilation was unaffected by OVX but enhanced with estrogen replacement (intact, 55±8; OVX, 59±7; OVX+E2, 92±4%). Likewise, modifications in BV/TV followed the same pattern (intact, 33.1±1.6; OVX, 34.4±3.7; OVX+E2, 42.4±2.1%). Furthermore, in old animals with low endogenous estrogen (i.e., intact and old OVX), vasodilation was correlated with BV/TV (R2 = 0.630; P<0.001). These data demonstrate parallel effects of estrogen on vascular endothelial function and BV/TV, and provide for a possible coupling mechanism linking endothelium-dependent vasodilation to bone remodeling.
Collapse
Affiliation(s)
- Rhonda D. Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
| | - James M. Dominguez
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida, United States of America
| | - Judy Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Michael D. Delp
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
47
|
No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr 2012; 66:1315-22. [PMID: 23093337 DOI: 10.1038/ejcn.2012.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES In vitro studies demonstrate that bone is degraded in an acidic environment due to chemical reactions and through effects on bone cells. Clinical evidence is insufficient to unequivocally resolve whether the diet net acid or base load bone affects breakdown in humans. Increasing dietary salt (sodium chloride, NaCl) mildly increases blood acidity in humans and in rats with increased sensitivity to the blood pressure effects of salt, whereas increased potassium (K) intake can decrease blood pressure. Blood pressure responses to NaCl or K may potentially be a marker for increased bone turnover or lower bone mineral density (BMD) in women at higher risk for osteoporosis and fracture. SUBJECTS/METHODS We retrospectively analysed data from two data sets (California and NE Scotland) of postmenopausal women (n=266) enrolled in long-term randomized, placebo-controlled studies of the effects of administration of low- or high-dose dietary K alkali supplementation on bone turnover in relation to sodium or chloride excretion (a marker of dietary salt intake). Mean arterial pressure (MAP) was calculated from blood pressure measures, MAP was divided into tertiles and its influence on the effect of dietary NaCl and K alkali supplementation on deoxypyridinoline markers of bone resorption and BMD by DEXA was tested. Data was analysed for each data set separately and then combined. RESULTS Percentage change in BMD after 24 months was less for California compared with North East Scotland (hip: -0.6 ± 2.8% and -1.5 ± 2.4%, respectively (P=0.027); spine: -0.5 ± 3.4% and -2.6 ± 3.5%, (P<0.001). We found no effect of dietary alkali treatment on BMD change or bone resorption for either centre. Adjusting for the possible calcium- or potassium-lowering effects on blood pressure did not alter the results. CONCLUSIONS Blood pressure responses to Na, Cl or K intake did not help predict a BMD response to diet alkali therapy.
Collapse
|
48
|
Hu M, Cheng J, Qin YX. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone 2012; 51:819-25. [PMID: 22820398 PMCID: PMC3437383 DOI: 10.1016/j.bone.2012.06.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
Abstract
Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generators to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS+static loading, and 5) HLS+DHS. Hydraulic flow stimulation was carried out daily on a "10 min on-5 min off-10 min on" loading regime, 5 days/week, for a total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using μCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of 26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the μCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis.
Collapse
Affiliation(s)
| | | | - Yi-Xian Qin
- Corresponding Author: Yi-Xian Qin, Ph.D., Dept. of Biomedical Engineering, Stony Brook University, Bioengineering Bldg., Rm 215, Stony Brook, NY 11794-5281, Phone: 631-632-1481, Fax: 631-632-8577,
| |
Collapse
|
49
|
Abstract
The number of osteoporotic fractures is increasing worldwide as populations age. An inexpensive and widely available treatment is necessary to alleviate this increase in fractures. Current treatments decrease fractures at trabecular bone sites (spine) but have limited effects at cortical sites (hip, legs, forearm, and upper arm)-the most common sites of osteoporotic fracture. Treatments are also limited by costs, side effects, and lack of availability. Nitric oxide is a novel agent that has the potential to influence cortical bone, is inexpensive, is widely available, and has limited side effects. In this review we evaluate the in vitro and in vivo data which support the concept that nitric oxide is important in bone cell function, review the observational and case-control studies reporting on subjects taking organic nitrates that act as nitric oxide donors, and review the effects of nitrates on bone mineral density measurements and fracture risk.
Collapse
Affiliation(s)
- Sophie A Jamal
- Multidisciplinary Osteoporosis Research Program, Women's College Hospital, 790 Bay Street, 7th Floor, Toronto, ON M5G 1N8, Canada.
| | | |
Collapse
|
50
|
Huang Z, Hoffmann FW, Fay JD, Hashimoto AC, Chapagain ML, Kaufusi PH, Hoffmann PR. Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase. J Biol Chem 2011; 287:4492-502. [PMID: 22205701 DOI: 10.1074/jbc.m111.315598] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune complexes composed of IgG-opsonized pathogens, particles, or proteins are phagocytosed by macrophages through Fcγ receptors (FcγRs). Macrophages primed with IFNγ or other pro-inflammatory mediators respond to FcγR engagement by secreting high levels of cytokines and nitric oxide (NO). We found that unprimed macrophages produced lower levels of NO, which required efficient calcium (Ca(2+)) flux as demonstrated by using macrophages lacking selenoprotein K, which is required for FcγR-induced Ca(2+) flux. Thus, we further investigated the signaling pathways involved in low output NO and its functional significance. Evaluation of inducible, endothelial, and neuronal nitric-oxide synthases (iNOS, eNOS, and nNOS) revealed that FcγR stimulation in unprimed macrophages caused a marked Ca(2+)-dependent increase in both total and phosphorylated nNOS and slightly elevated levels of phosphorylated eNOS. Also activated were three MAP kinases, ERK, JNK, and p38, of which ERK activation was highly dependent on Ca(2+) flux. Inhibition of ERK reduced both nNOS activation and NO secretion. Finally, Transwell experiments showed that FcγR-induced NO functioned to increase the phagocytic capacity of other macrophages and required both NOS and ERK activity. The production of NO by macrophages is conventionally attributed to iNOS, but we have revealed an iNOS-independent receptor/enzyme system in unprimed macrophages that produces low output NO. Under these conditions, FcγR engagement relies on Ca(2+)-dependent ERK phosphorylation, which in turn increases nNOS and, to a lesser extent, eNOS, both of which produce low levels of NO that function to promote phagocytosis.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | |
Collapse
|