1
|
Guan W, Qi W, Sheng XM. Evidence for the contribution of vasopressin V1 B receptors in the pathophysiology of depression. Biochem Pharmacol 2025; 231:116672. [PMID: 39608503 DOI: 10.1016/j.bcp.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Depression is a chronic and recurrent psychiatric condition characterised by depressed mood, loss of interest or pleasure, poor sleep, low appetite, and poor concentration. Research has shown that both heritable and environmental risk factors are involved in the pathogenesis of depression. In addition, several studies have indicated that dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is implicated in the development of depression in adulthood. However, the mechanism underlying the activation of HPA axis-induced depression remains unclear. Arginine vasopressin (AVP), also known as vasopressin (VP), is a hormone synthesised in the hypothalamus that plays important roles in numerous biological functions in mammals, including the regulation of stress and anxiety, and has been implicated in the pathogenesis of many disorders. VP regulates pituitary corticotroph function by binding to the plasma membrane G-protein receptors of the V1B receptor (V1BR), which are coupled to calcium-phospholipid signalling. V1BR, a receptor subtype of VP, plays a pivotal role in HPA axis abnormalities observed in depression. In animals, V1BR antagonists reduce plasma stress hormone levels and have been shown to have antidepressant activity. However, the precise mechanism of V1BR in modulating HPA axis activity remains unclear. We therefore reviewed and integrated the clinical and preclinical literature pertinent to the role of V1BR in depression, while emphasising the effect of V1BR antagonists on attenuating the hyperactivity of the HPA axis. In addition, therapy for depression through the regulation of the HPA axis is briefly discussed. Although effective antidepressants are available, a large proportion of patients do not respond to initial treatment. Therefore, this review describes the exact mechanisms of V1BR in depression and contributes to the development of new therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Nantong University, Nantong 226001, Jiangsu, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Wang Y, Lin D. Stress and parental behaviors. Neurosci Res 2024:S0168-0102(24)00154-8. [PMID: 39674404 DOI: 10.1016/j.neures.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
In nearly all mammalian species, newborn pups are weak and vulnerable, relying heavily on care and protection from parents for survival. Thus, developmentally hardwired neural circuits are in place to ensure the timely expression of parental behaviors. Furthermore, several neurochemical systems, including estrogen, oxytocin, and dopamine, facilitate the emergence and expression of parental behaviors. However, stress can adversely affect these systems, impairing parental behaviors. In this review, we will summarize our current knowledge regarding the impact of stress on pup-directed behavior circuits that lead to infant neglect, abuse, and, in extreme cases, killing. We will discuss various stressors that influence parental behaviors at different life stages and how stress induces changes in the neurochemical systems that support parental care, ultimately leading to its poor performance.
Collapse
Affiliation(s)
- Yifan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Department of Neuroscience and physiology, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Yang Y, Liu J, Wang L, Wu W, Wang Q, Zhao Y, Qian X, Wang Z, Fu N, Wang Y, Qian J. Oxytocin attenuates cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis. Peptides 2024; 182:171323. [PMID: 39613260 DOI: 10.1016/j.peptides.2024.171323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism. METHODS Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits. RESULTS The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation. CONCLUSION OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen Wu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Fu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanqiong Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Nance MG, Sullivan KM, Puglia MH. The impact of the early environment on oxytocin receptor epigenetics and potential therapeutic implications. Pediatr Res 2024:10.1038/s41390-024-03563-z. [PMID: 39548294 DOI: 10.1038/s41390-024-03563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 11/17/2024]
Abstract
Oxytocin research is rapidly evolving and increasingly reveals that epigenetic modifications to the oxytocin receptor gene (OXTR) are functional, plastic, and reliable components of oxytocinergic system function. This review outlines how OXTR epigenetics are shaped by the early life environment, impact social-developmental outcomes, and have strong potential to serve as therapeutic targets. We first establish the malleability of OXTR epigenetics in infancy in both animal models and humans through research demonstrating the impact of the early life environment on OXTR DNA methylation (OXTRm) and subsequent social behavior. Next, we detail how OXTRm serves as a predictive mechanism for neurodevelopmental outcomes in animal models of social behavior such as the prairie vole, and summarize the role of OXTRm in psychiatric disorders, emotional processing, and attachment behavior in humans. We discuss the potential of further OXTRm research to improve oxytocin therapeutics by highlighting how a deeper knowledge of OXTRm could improve the therapeutic potential of exogenous oxytocin, how OXTRm may impact additional cellular mechanisms with therapeutic potential including control of the perinatal GABA switch, and how early life therapies may target the tuning of endogenous OXTRm. Finally, we review limitations of previous oxytocin research and make recommendations for future research. IMPACT: Previous research into oxytocin therapeutics has been hampered by methodological difficulties that may be improved by assay of the oxytocin receptor gene (OXTR) and its methylation (OXTRm) Key sites of OXTRm modification link early life exposures to developmental and behavioral outcomes OXTRm appears to have a critical period of development in early life Epigenetic modification of the oxytocin receptor gene could serve as a powerful target for therapeutic interventions.
Collapse
Affiliation(s)
- Madelyn G Nance
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Kelsey M Sullivan
- Department of Pediatrics, Division of Neonatology, University of Virginia, Charlottesville, VA, USA.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Florea T, Palimariciuc M, Cristofor AC, Dobrin I, Chiriță R, Bîrsan M, Dobrin RP, Pădurariu M. Oxytocin: Narrative Expert Review of Current Perspectives on the Relationship with Other Neurotransmitters and the Impact on the Main Psychiatric Disorders. Medicina (B Aires) 2022; 58:medicina58070923. [PMID: 35888641 PMCID: PMC9318841 DOI: 10.3390/medicina58070923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Is a cyclic neuropeptide produced primarily in the hypothalamus and plays an important neuromodulatory role for other neurotransmitter systems, with an impact on behavior, response to danger, stress, and complex social interactions, such as pair bonding and child care. This narrative expert review examines the literature on oxytocin as a brain hormone. We focused on oxytocin structure, distribution, genetics, and the oxytocin receptor system, as well as the relationship of oxytocin with other neurotransmitters and the resulting impacts on the main psychiatric disorders. Oxytocin levels have been correlated over time with mental illness, with numerous studies focusing on oxytocin and the pathophysiology of the main psychiatric disorders, such as autism, schizophrenia, personality disorders, mood, and eating disorders. We highlight the role oxytocin plays in improving symptoms such as anxiety, depression, and social behavior, as the literature suggests. Risk factors and causes for psychiatric disorders range from genetic to environmental and social factors. Oxytocin could impact the latter, being linked with other neurotransmitter systems that are responsible for integrating different situations during the development phases of individuals. Also, these systems have an important role in how the body responds to stressors or bonding with others, helping with the creation of social support groups that could speed up recovery in many situations. Oxytocin has the potential to become a key therapeutic agent for future treatment and prevention strategies concerning the main psychiatric disorders.
Collapse
Affiliation(s)
- Tudor Florea
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania; (T.F.); (M.P.); (A.C.C.); (I.D.); (R.C.)
| | - Matei Palimariciuc
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania; (T.F.); (M.P.); (A.C.C.); (I.D.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania;
| | - Ana Caterina Cristofor
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania; (T.F.); (M.P.); (A.C.C.); (I.D.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania;
| | - Irina Dobrin
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania; (T.F.); (M.P.); (A.C.C.); (I.D.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania;
| | - Roxana Chiriță
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania; (T.F.); (M.P.); (A.C.C.); (I.D.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania;
| | - Magdalena Bîrsan
- Department of Drug Industry and Pharmaceutical Biotechnology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iaşi, 16 Universităţii Street, 700115 Iaşi, Romania;
| | - Romeo Petru Dobrin
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania; (T.F.); (M.P.); (A.C.C.); (I.D.); (R.C.)
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania;
- Correspondence:
| | - Manuela Pădurariu
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania;
| |
Collapse
|
6
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
7
|
Reiss AB, Glass DS, Lam E, Glass AD, De Leon J, Kasselman LJ. Oxytocin: Potential to mitigate cardiovascular risk. Peptides 2019; 117:170089. [PMID: 31112739 DOI: 10.1016/j.peptides.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, despite multiple treatment options. In addition to elevated lipid levels, oxidative stress and inflammation are key factors driving atherogenesis and CVD. New strategies are required to mitigate risk and most urgently for statin-intolerant patients. The neuropeptide hormone oxytocin, synthesized in the brain hypothalamus, is worthy of consideration as a CVD ancillary treatment because it moderates factors directly linked to atherosclerotic CVD such as inflammation, weight gain, food intake and insulin resistance. Though initially studied for its contribution to parturition and lactation, oxytocin participates in social attachment and bonding, associative learning, memory and stress responses. Oxytocin has shown promise in animal models of atherosclerosis and in some human studies as well. A number of properties of oxytocin make it a candidate CVD treatment. Oxytocin not only lowers fat mass and cytokine levels, but also improves glucose tolerance, lowers blood pressure and relieves anxiety. Further, it has an important role in communication in the gut-brain axis that makes it a promising treatment for obesity and type 2 diabetes. Oxytocin acts through its receptor which is a class I G-protein-coupled receptor present in cells of the vascular system including the heart and arteries. While oxytocin is not used for heart disease at present, residual CVD risk remains in a substantial portion of patients despite multidrug regimens, leaving open the possibility of using the endogenous nonapeptide as an adjunct therapy. This review discusses the possible role for oxytocin in human CVD prevention and treatment.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA.
| | - Daniel S Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Eric Lam
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Amy D Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| |
Collapse
|
8
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Affiliation(s)
- B. F. Mitchell
- Perinatal Research Centre, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Birgit Schmid
- Perinatal Research Centre, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Yi KJ, So KH, Hata Y, Suzuki Y, Kato D, Watanabe K, Aso H, Kasahara Y, Nishimori K, Chen C, Katoh K, Roh SG. The regulation of oxytocin receptor gene expression during adipogenesis. J Neuroendocrinol 2015; 27:335-42. [PMID: 25702774 DOI: 10.1111/jne.12268] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 01/27/2015] [Accepted: 02/17/2015] [Indexed: 01/02/2023]
Abstract
Although it has been reported that oxytocin stimulates lipolysis in adipocytes, changes in the expression of oxytocin receptor (OTR) mRNA in adipogenesis are still unknown. The present study aimed to investigate the expression of OTR mRNA during adipocyte differentiation and fat accumulation in adipocytes. OTR mRNA was highly expressed in adipocytes prepared from mouse adipose tissues compared to stromal-vascular cells. OTR mRNA expression was increased during the adipocyte differentiation of 3T3-L1 cells. OTR expression levels were higher in subcutaneous and epididymal adipose tissues of 14-week-old male mice compared to 7-week-old male mice. Levels of OTR mRNA expression were higher in adipose tissues at four different sites of mice fed a high-fat diet than in those of mice fed a normal diet. The OTR expression level was also increased by refeeding for 4 h after fasting for 16 h. Oxytocin significantly induced lipolysis in 3T3-L1 adipocytes. In conclusion, a new regulatory mechanism is demonstrated for oxytocin to control the differentiation and fat accumulation in adipocytes via activation of OTR as a part of the hypothalamic-pituitary-adipose axis.
Collapse
Affiliation(s)
- K J Yi
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Štefánik P, Olexová L, Kršková L. Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol Biochem Behav 2015; 131:42-50. [DOI: 10.1016/j.pbb.2015.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
|
13
|
Martins R, Vieira FA, Power DM. Calcitonin receptor family evolution and fishing for function using in silico promoter analysis. Gen Comp Endocrinol 2014; 209:61-73. [PMID: 24815885 DOI: 10.1016/j.ygcen.2014.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/27/2014] [Indexed: 11/30/2022]
Abstract
In the present study the calcitonin receptor (CTR) sub-family of family B G-protein coupled receptors (GPCRs) in teleosts is evaluated and put in the context of the families overall evolution from echinodermates to vertebrates. Echinodermates, hemichordates, cephalochordates and tunicates have a single gene that encodes a receptor that bears similarity to the vertebrate calcitonin receptor (CTR) and calcitonin-like receptor (CTR/CLR). In tetrapods one gene encodes the calcitonin receptor (CALCR) and another gene the calcitonin receptor-like receptor (CALCRL). The evolution of CALCR has been under strong conservative pressure and a single copy is also found in fishes and high conservation of gene organisation and synteny exits from teleosts to human. A teleost specific CTR innovation that occurred after their divergence from holostei is the presence of several HBDs in the N-terminus. CALCRL had a different evolutionary trajectory from CALCR and although a single gene copy is present in tetrapods the sarcopterygii fish, the coelacanth, has 1 copy of CALCRL but also a fish specific form CALCRL3. The ray-finned fish, the spotted gar, has 1 copy of CALCRL and 1 of CALCRL3 but the teleost specific whole genome duplication has resulted in a CALCRL1 and CALCRL2 in addition to the fish specific CALCRL3. Strong conservation of CALCRL gene structure exists from human to fish. Promoter analysis in silico reveals that the duplicated CALCRL genes in the teleosts, zebrafish, takifugu, tetraodon and medaka, have divergent promoters and different putative co-regulated gene partners suggesting their function is different.
Collapse
Affiliation(s)
- Rute Martins
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Flobela A Vieira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
14
|
Valsalan R, Manoj N. Evolutionary history of the neuropeptide S receptor/neuropeptide S system. Gen Comp Endocrinol 2014; 209:11-20. [PMID: 24859256 DOI: 10.1016/j.ygcen.2014.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
The neuropeptide S receptor (NPSR) belongs to the G protein-coupled receptor (GPCR) superfamily and is activated by the neuropeptide S (NPS). Although recently discovered, the vertebrate NPSR-NPS system has been established as an important signaling system in the central nervous system and is involved in physiological processes such as locomotor activity, wakefulness, asthma pathogenesis, anxiety and food intake. The availability of a large number of genome sequences from multiple bilaterian lineages has provided an opportunity to establish the evolutionary history of the system. This review describes the origin and the molecular evolution of the NPSR-NPS system using data derived primarily from comparative genomic analyses. These analyses indicate that the NPSR-NPS system and the vasopressin-like receptor-vasopressin/oxytocin peptide (VPR-VP/OT) system originated from a single system in an ancestral bilaterian. Multiple duplications of this ancestral system gave rise to the bilaterian VPR-VP/OT system and to the protostomian cardioacceleratory peptide receptor-cardioacceleratory peptide (CCAPR-CCAP) system and to the NPSR-NPS system in the deuterostomes. Gene structure features of the receptors were consistent with the orthology annotations derived from phylogenetic analyses. The orthology of the peptide precursors closely paralleled that of the receptors suggesting an ancient coevolution of the receptor-peptide pair. An important challenge for the coevolution hypothesis will be to establish the molecular and structural basis of the divergence between orthologous receptor-ligand pairs in this system.
Collapse
Affiliation(s)
- Ravisankar Valsalan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
15
|
Lozić M, Greenwood M, Šarenac O, Martin A, Hindmarch C, Tasić T, Paton J, Murphy D, Japundžić-Žigon N. Overexpression of oxytocin receptors in the hypothalamic PVN increases baroreceptor reflex sensitivity and buffers BP variability in conscious rats. Br J Pharmacol 2014; 171:4385-98. [PMID: 24834854 DOI: 10.1111/bph.12776] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/24/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The paraventricular nucleus (PVN) of the hypothalamus is an important integrative site for neuroendocrine control of the circulation. We investigated the role of oxytocin receptors (OT receptors) in PVN in cardiovascular homeostasis. EXPERIMENTAL APPROACH Experiments were performed in conscious male Wistar rats equipped with a radiotelemetric device. The PVN was unilaterally co-transfected with an adenoviral vector (Ad), engineered to overexpress OT receptors, and an enhanced green fluorescent protein (eGFP) tag. Control groups: PVN was transfected with an Ad expressing eGFP alone or untransfected, sham rats (Wt). Recordings were obtained without and with selective blockade of OT receptors (OTX), during both baseline and stressful conditions. Baroreceptor reflex sensitivity (BRS) and cardiovascular short-term variability were evaluated using the sequence method and spectral methodology respectively. KEY RESULTS Under baseline conditions, rats overexpressing OT receptors (OTR) exhibited enhanced BRS and reduced BP variability compared to control groups. Exposure to stress increased BP, BP variability and HR in all rats. In control groups, but not in OTR rats, BRS decreased during stress. Pretreatment of OTR rats with OTX reduced BRS and enhanced BP and HR variability under baseline and stressful conditions. Pretreatment of Wt rats with OTX, reduced BRS and increased BP variability under baseline and stressful conditions, but only increased HR variability during stress. CONCLUSIONS AND IMPLICATIONS OT receptors in PVN are involved in tonic neural control of BRS and cardiovascular short-term variability. The failure of this mechanism could critically contribute to the loss of autonomic control in cardiovascular disease.
Collapse
Affiliation(s)
- Maja Lozić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
17
|
Molecular analysis of parturition via oxytocin receptor expression. Taiwan J Obstet Gynecol 2013; 52:165-70. [DOI: 10.1016/j.tjog.2013.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2013] [Indexed: 11/20/2022] Open
|
18
|
Abstract
The complex mechanisms controlling human parturition involves mother, fetus, and placenta, and stress is a key element activating a series of physiological adaptive responses. Preterm birth is a clinical syndrome that shares several characteristics with term birth. A major role for the neuroendocrine mechanisms has been proposed, and placenta/membranes are sources for neurohormones and peptides. Oxytocin (OT) is the neurohormone whose major target is uterine contractility and placenta represents a novel source that contributes to the mechanisms of parturition. The CRH/urocortin (Ucn) family is another important neuroendocrine pathway involved in term and preterm birth. The CRH/Ucn family consists of four ligands: CRH, Ucn, Ucn2, and Ucn3. These peptides have a pleyotropic function and are expressed by human placenta and fetal membranes. Uterine contractility, blood vessel tone, and immune function are influenced by CRH/Ucns during pregnancy and undergo major changes at parturition. Among the others, neurohormones, relaxin, parathyroid hormone-related protein, opioids, neurosteroids, and monoamines are expressed and secreted from placental tissues at parturition. Preterm birth is the consequence of a premature and sustained activation of endocrine and immune responses. A preterm birth evidence for a premature activation of OT secretion as well as increased maternal plasma CRH levels suggests a pathogenic role of these neurohormones. A decrease of maternal serum CRH-binding protein is a concurrent event. At midgestation, placental hypersecretion of CRH or Ucn has been proposed as a predictive marker of subsequent preterm delivery. While placenta represents the major source for CRH, fetus abundantly secretes Ucn and adrenal dehydroepiandrosterone in women with preterm birth. The relevant role of neuroendocrine mechanisms in preterm birth is sustained by basic and clinic implications.
Collapse
Affiliation(s)
- Felice Petraglia
- University of Siena, Policlinico, Division of Obstetrics and Gynecology, Department of Pediatrics, Obstetrics, and Reproductive Medicine, Viale Bracci, 53100 Siena, Italy.
| | | | | |
Collapse
|
19
|
Srivastava R, Chaturvedi CM. Effect of estrogen and tamoxifen on the shell gland AVT and VT3R of scotosensitive and scotorefractory Japanese quail. Gen Comp Endocrinol 2010; 167:104-12. [PMID: 20170655 DOI: 10.1016/j.ygcen.2010.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 01/17/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
The neurohypophyseal hormone arginine vasotocin (AVT) found in most vertebrate species is known to modulate different aspects of reproduction in quail. AVT system is sensitive to gonadal steroids. Previous studies have shown that estradiol benzoate stimulates the proliferation of shell gland and increases the AVT and the vasotocin 3 receptor (VT3R) in long day length. This study was undertaken to investigate the effect of estrogen and tamoxifen on AVT as well as its receptor VT3 under the short day condition (6L:18D). Estradiol benzoate (EB) was administered daily in sexually quiescent (scotosensitive) condition for 15days. After the initial period of sexual quiescence, the quail of control group exhibited sexual development (scotorefractory condition). Thereafter, scotorefractory quail were administered with anti-estrogen tamoxifen, which eliminated the reoccurrence of scotosensitivity. Immunohistochemical and in-situ hybridization studies indicate the expression of AVT and VT3R transcripts in both scotosensitive as well as scotorefractory conditions. Administration of EB to scotosensitive female quail produced an increase in AVT and VT3 while tamoxifen suppressed them in scotorefractory quail. The results indicate that in quail myometrium the expression of VT3R is upregulated by estrogen when kept under short day condition.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
20
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
21
|
Higa-Taniguchi KT, Felix JVC, Michelini LC. Brainstem oxytocinergic modulation of heart rate control in rats: effects of hypertension and exercise training. Exp Physiol 2009; 94:1103-13. [DOI: 10.1113/expphysiol.2009.049262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Lee HJ, Macbeth AH, Pagani JH, Young WS. Oxytocin: the great facilitator of life. Prog Neurobiol 2009; 88:127-51. [PMID: 19482229 DOI: 10.1016/j.pneurobio.2009.04.001] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/24/2009] [Accepted: 04/02/2009] [Indexed: 01/01/2023]
Abstract
Oxytocin (Oxt) is a nonapeptide hormone best known for its role in lactation and parturition. Since 1906 when its uterine-contracting properties were described until 50 years later when its sequence was elucidated, research has focused on its peripheral roles in reproduction. Only over the past several decades have researchers focused on what functions Oxt might have in the brain, the subject of this review. Immunohistochemical studies revealed that magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei are the neurons of origin for the Oxt released from the posterior pituitary. Smaller cells in various parts of the brain, as well as release from magnocellular dendrites, provide the Oxt responsible for modulating various behaviors at its only identified receptor. Although Oxt is implicated in a variety of "non-social" behaviors, such as learning, anxiety, feeding and pain perception, it is Oxt's roles in various social behaviors that have come to the fore recently. Oxt is important for social memory and attachment, sexual and maternal behavior, and aggression. Recent work implicates Oxt in human bonding and trust as well. Human disorders characterized by aberrant social interactions, such as autism and schizophrenia, may also involve Oxt expression. Many, if not most, of Oxt's functions, from social interactions (affiliation, aggression) and sexual behavior to eventual parturition, lactation and maternal behavior, may be viewed as specifically facilitating species propagation.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Section on Neural Gene Expression, NIMH, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
23
|
Ndiaye K, Poole DH, Pate JL. Expression and regulation of functional oxytocin receptors in bovine T lymphocytes. Biol Reprod 2007; 78:786-93. [PMID: 18094352 DOI: 10.1095/biolreprod.107.065938] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The corpus luteum (CL) produces oxytocin (OXT), which has been proposed to regulate the pulsatile release of prostaglandin F2alpha during luteolysis in ruminants. This action of OXT is mediated via oxytocin receptors (OXTRs) present on uterine epithelial cells. It is hypothesized that luteal OXT acts as a paracrine regulator of resident immune cells. In the present study, OXTR mRNA expression in bovine lymphocytes was analyzed, as well as its regulation during the estrous cycle. OXTR transcripts were observed in freshly purified bovine peripheral blood mononuclear cells and T lymphocytes. OXTR mRNA in bovine lymphocytes on Day 3 was numerically greater than but not significantly different from that of Day 19 of the estrous cycle (P=0.091). In cultured T cells, estradiol (E2) treatment significantly increased the steady-state concentrations of OXTR mRNA, but the stimulatory effect of E2 was inhibited by the addition of progesterone (P4). Each of the major T cell subsets (CD4+, CD8+, and gamma delta+) expressed OXTR mRNA, with no significant difference in expression among them. Western blot analyses demonstrated the presence of the bovine OXTR protein at about 45 kDa in lymphocytes, as well as expression of the 14-kDa precursor of OXT. When lymphocytes were treated with OXT, intracellular concentrations of calcium ([Ca2+]i) were rapidly and dramatically increased. This study demonstrated that bovine lymphocytes express OXTRs and that this expression can be regulated in a steroid-dependent manner. Furthermore, OXT elicited a functional [Ca2+]i response in T lymphocytes, supporting the possibility that OXT within the CL could act as a paracrine or autocrine regulator of resident T lymphocytes.
Collapse
Affiliation(s)
- Kalidou Ndiaye
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | |
Collapse
|
24
|
Farina MG, Billi S, Leguizamón G, Weissmann C, Guadagnoli T, Ribeiro ML, Franchi AM. Secretory and cytosolic phospholipase A2 activities and expression are regulated by oxytocin and estradiol during labor. Reproduction 2007; 134:355-64. [PMID: 17660244 DOI: 10.1530/rep-07-0078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The release of arachidonic acid from membrane glycerophospholipids through the action of phospholipases (PLs) is the first step in the biosynthesis of prostaglandins (PGs). In reproductive tissues, the most important PLs are cytosolic PLA2(cPLA2) and types IIA and V of the secretory isoform (sPLA2). The aim of this work was to investigate the role of ovarian steroid hormones and oxytocin (OT) in the regulation of rat uterine PLA2activity and expression during pregnancy and labor. The activity of sPLA2increased near labor, whereas cPLA2activity augmented towards the end of gestation. The levels of sPLA2IIA and cPLA2mRNA showed an increase before labor (P<0.05, day 21), whereas sPLA2V mRNA was not regulated during pregnancy. The administration of atosiban (synthetic OT antagonist) together with tamoxifen (antagonist of estrogen receptors) was able to decrease cytosolic and secretory PLA2activities, diminish the expression of sPLA2IIA and cPLA2, as well as decrease PGF2αproduction before the onset of labor (P<0.01). The ovarian steroid did not affect PLA2during pregnancy. Collectively, these findings indicate that in the rat uterus, both 17β-estradiol and OT could be regulating the activity and the expression of the secretory and the cytosolic isoforms of PLA2, thus controlling PGF2αsynthesis prior to the onset of labor.
Collapse
Affiliation(s)
- Mariana Gabriela Farina
- Laboratory of Physiopathology of Pregnancy and Labor, School of Medicine, Center for Pharmacological and Botanical Studies, (CEFYBO, CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kinsey CG, Bussolati G, Bosco M, Kimura T, Pizzorno MC, Chernin MI, Cassoni P, Novak JF. Constitutive and ligand-induced nuclear localization of oxytocin receptor. J Cell Mol Med 2007; 11:96-110. [PMID: 17367504 PMCID: PMC4401223 DOI: 10.1111/j.1582-4934.2007.00015.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxytocin receptor (OTR) is a membrane protein known to mediate oxytocin (OT) effects, in both normal and neoplastic cells. We report here that human osteosarcoma (U2OS, MG63, OS15 and SaOS2), breast cancer (MCF7), and primary human fibroblastic cells (HFF) all exhibit OTR not only on the cell membrane, but also in the various nuclear compartments including the nucleolus. Both an OTR-GFP fusion protein and the native OTR appear to be localized to the nucleus as detected by transfection and/or confocal immunofluorescence, respectively. Treatment with oxytocin causes internalization of OTR and the resulting vesicles accumulate in the vicinity of the nucleus and some of the perinuclear OTR enters the nucleus. Western blots indicate that OTR in the nucleus and on the plasma membrane are likely to be the same biochemical and immunological entities. It appears that OTR is first visible in the nucleoli and subsequently disperses within the nucleus into 4–20 spots while some of the OTR diffuses throughout the nucleoplasm.The behaviour and kinetics of OTR-GFP and OTR are different, indicating interference by GFP in both OTR entrance into the nucleus and subsequent relocalization of OTR within the nucleus. There are important differences among the tested cells, such as the requirement of a ligand for transfer of OTR in nuclei. A constitutive internalization of OTR was found only in osteosarcoma cells, while the nuclear localization in all other tested cells was dependent on ligand binding. The amount of OTR-positive material within and in the vicinity of the nucleus increased following a treatment with oxytocin in both constitutive and ligand-dependent type of cells. The evidence of OTR compartmentalization at the cell nucleus (either ligand-dependent or constitutive) in different cell types suggests still unknown biological functions of this protein or its ligand and adds this G-protein-coupled receptor to other heptahelical receptors displaying this atypical and unexpected nuclear localization.
Collapse
Affiliation(s)
- Conan G Kinsey
- Department of Biology, Bucknell University, Lewisburg, PA, USA
- Present address: University of Rochester Medical School, Rochester, NY, USA
- *Correspondence to: Gianni BUSSOLATI Department of Biomedical Science and Human Oncology, University of Torino, Via Santena 7, 10126 Turin, Italy. E-mail:
| | - Gianni Bussolati
- Department of Biomedical Sciences and Oncology, University of Torino, Torino, Italy
- *Correspondence to: Gianni BUSSOLATI Department of Biomedical Science and Human Oncology, University of Torino, Via Santena 7, 10126 Turin, Italy. E-mail:
| | - Martino Bosco
- Department of Biomedical Sciences and Oncology, University of Torino, Torino, Italy
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | - Paola Cassoni
- Department of Biomedical Sciences and Oncology, University of Torino, Torino, Italy
| | - Josef F Novak
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| |
Collapse
|
26
|
Uchida S, Fuke S, Tsukahara T. Upregulations of Gata4 and oxytocin receptor are important in cardiomyocyte differentiation processes of P19CL6 cells. J Cell Biochem 2007; 100:629-41. [PMID: 16960874 DOI: 10.1002/jcb.21094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxytocin induces P19 cells to differentiate into cardiomyocytes possibly through the oxytocin/oxytocin receptor system. We added oxytocin to the growth medium of P19CL6, a subline of P19, but they did not differentiate into cardiomyocytes as indicated by RT-PCR and Western blotting results. During the cardiac commitment time of P19CL6 cells, the mRNA expression levels of the oxytocin receptor were upregulated by the addition of oxytocin as well as DMSO, but an upregulation of Gata4 expression levels was only observed for the cells induced by DMSO. The in silico analysis of the upstream sequence of the oxytocin receptor predicted putative binding sites for Gata4 and Nkx2.5. These results suggest that upregulations of the oxytocin receptor and Gata4 are important for cardiomyocyte differentiation processes.
Collapse
Affiliation(s)
- Shizuka Uchida
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | |
Collapse
|
27
|
Laenen K, Haegeman G, Vanhoenacker P. Structure of the human 5-HT7 receptor gene and characterization of its promoter region. Gene 2007; 391:252-63. [PMID: 17321075 DOI: 10.1016/j.gene.2007.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
The molecular mechanism regulating serotonin 5-HT(7) receptor expression is still unclear. In this study we provide evidence that transcription of the 5-HT(7) gene is at least partly regulated by Sp1 and Sp3. We isolated and sequenced >3000 bp of the upstream sequences and identified by RACE a number of transcriptional initiation sites over a region of 300 bp upstream of the coding region. This region has a high GC content, but contains no obvious TATA or a CAAT box. Besides a Sp1/Sp3 consensus motif, regulatory elements for AP2, Egr-1 and MAZ are also present. Transient transfection assays using deletion variants indicated that the GC-rich region is essential for full promoter activity. The role of Sp1 in this was confirmed by transient overexpression of both wild type Sp1 or dominant-negative forms. By gel shift and supershift analyses, targeting the Sp1 consensus sequence and the GC-rich region just upstream of the transcription initiation sites, binding of Sp1 and Sp3 was demonstrated. Both in vitro as well as in vivo experiments, using a cell line which endogenously expresses the 5-HT(7) receptor, indicated that mithramycin A, an inhibitor of Sp1/3 transcription factor binding, was able to inhibit 5-HT(7) promoter activity. Taken together these results support the essential role of Sp factors in regulating 5-HT(7) promoter activity.
Collapse
Affiliation(s)
- Koen Laenen
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, UGent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
28
|
Nakamoto T, Yasuda K, Yasuhara M, Nakajima T, Mizokami T, Okada H, Kanzaki H. Cigarette smoke extract enhances oxytocin-induced rhythmic contractions of rat and human preterm myometrium. Reproduction 2006; 132:343-53. [PMID: 16885542 DOI: 10.1530/rep.1.00908] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although smoking during pregnancy is a major risk factor for preterm delivery, the underlying mechanism by which smoking stimulates uterine contractions is still poorly understood. In the present study, we tried to clarify the effects of smoking on myometrial contractility induced by oxytocin (OT) using cigarette smoke extract (CSE). Myometrial strips, which were taken from the rat on day 16 of pregnancy, and from human preterm and term delivery groups, were incubated overnight with several doses of CSE at 37 degrees C under non-hormonal conditions. The uterine contractile sensitivity and activity (force and frequency) upon exposure to OT were investigated. Furthermore, the expression levels of oxytocin receptor (OTR) mRNA in the myometrial strips were investigated by real-time PCR. Contractile sensitivity to OT in the rat CSE (10(-7) pieces/ml) group was found to be significantly higher than in the control group (P < 0.05). Contractile activity did not differ between the CSE and control groups. The expression levels of rat OTR mRNA in the CSE (10(-7) pieces/ml) group were significantly higher than in the control group (P < 0.01). Similarly, in preterm myometrial strips, the expression levels of human OTR mRNA in the CSE (10(-7) pieces/ml) group were significantly higher than in the control group (P < 0.05). These findings suggest that CSE directly increases the contractile sensitivity of preterm myometrium in response to OT by upregulating the expression of OTR mRNA and thereby increases the risk of preterm delivery in women, who smoke during pregnancy.
Collapse
Affiliation(s)
- Tsuyoshi Nakamoto
- Department of Obstetrics and Gynecology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Nephrogenic diabetes insipidus which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine-vasopressine (AVP). Polyuria, with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. Hypercalcemia, hypokaliemia, lithium administration and chronic renal failure are the principal causes of acquired nephrogenic diabetes insipidus. About 90 percent of patients with congenital nephrogenic diabetes insipidus are males with X-linked recessive nephrogenic diabetes insipidus who have mutations in the arginine-vasopressin receptor 2 (AVPR2) gene that codes for the vasopressin V2 receptor. The gene is located in chromosome region Xq28. In about 10 percent of the families studied, congenital nephrogenic diabetes insipidus has an autosomal recessive or autosomal dominant mode of inheritance. In these cases, mutations have been identified in the aquaporin-2 gene (AQP2), which is located in chromosome region 12q13 and codes for the vasopressin-sensitive water channel. Other inherited disorders with mild, moderate or severe inability to concentrate urine include Bartter's syndrome and Cystinosis. Identification of the molecular defect underlying congenital nephrogenic diabetes insipidus is of immediate clinical significance because early diagnosis and treatment of affected infants can avert the physical and mental retardation associated with episodes of dehydration.
Collapse
Affiliation(s)
- Daniel Georges Bichet
- Génétique des maladies rénales, service de néphrologie, départements de médecine et de physiologie, centre de recherche, hôpital du Sacré-Coeur de Montréal, université de Montréal, Montréal (Québec), Canada.
| |
Collapse
|
30
|
Goff AK, Jamshidi AA, Kombé A. Inhibition of prostaglandin F2alpha synthesis and oxytocin receptor by progesterone antagonists in bovine endometrial cells in vitro. Steroids 2006; 71:785-91. [PMID: 16797624 DOI: 10.1016/j.steroids.2006.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/10/2006] [Accepted: 05/15/2006] [Indexed: 11/29/2022]
Abstract
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. In vitro studies to determine the mechanism of action are hindered because OTR spontaneously upregulates in vitro and it is impossible to alter expression with P4 or estradiol. During recent studies examining the effect of P4 and an antagonist (mifepristone) on PG secretion, we found that mifepristone attenuated OT-stimulated PG secretion from endometrial epithelial cells. The objective of the present study was to determine, whether this effect of mifepristone was due to changes in prostaglandin synthesis and/or OTR. A time-course showed that mifepristone (5 microM) had no significant effect after 24 h but by 72 h it decreased PGF(2alpha) secretion (P<0.01) and abolished the response of the cells to OT (P<0.01). The presence or absence of P4 did not affect the response to mifepristone. To determine the site of action of mifepristone, cells were cultured for 72 h with or without mifepristone and then COX-1 and COX-2 were measured by Western blotting and OTR was measured by saturation analysis. The results showed that mifepristone did not affect basal or PMA-stimulated expression of either COX-1 or COX-2 but did, however, decrease OTR number (P<0.05). These data demonstrate that OTR and the response to OT can be downregulated in endometrial epithelial cells in vitro via a mechanism involving the P4 receptor.
Collapse
Affiliation(s)
- Alan K Goff
- Centre de Recherche en Reproduction Animale, Faculté de médecine vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Québec J2S 7C6, Canada.
| | | | | |
Collapse
|
31
|
Fleming JGW, Spencer TE, Safe SH, Bazer FW. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 2006; 147:899-911. [PMID: 16254027 DOI: 10.1210/en.2005-1120] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Establishment of pregnancy in ruminants results from paracrine signaling by interferon tau (IFNT) from the conceptus to uterine endometrial luminal epithelia (LE) that prevents release of luteolytic prostaglandin F(2alpha) pulses. In cyclic and pregnant ewes, progesterone down-regulates progesterone receptor (PGR) gene expression in LE. In cyclic ewes, loss of PGR allows for increases in estrogen receptor alpha (ESR1) and then oxytocin receptor (OXTR) gene expression followed by oxytocin-induced prostaglandin F(2alpha) pulses. In pregnant ewes, IFNT inhibits transcription of the ESR1 gene, which presumably inhibits OXTR gene transcription. Alternatively, IFNT may directly inhibit OXTR gene transcription. The 5' promoter/enhancer region of the ovine OXTR gene was cloned and found to contain predicted binding sites for activator protein 1, SP1, and PGR, but not for ESR1. Deletion analysis showed that the basal promoter activity was dependent on the region from -144 to -4 bp that contained only SP1 sites. IFNT did not affect activity of the OXTR promoter. In cells transfected with ESR1, E2, and ICI 182,780 increased promoter activity due to GC-rich SP1 binding sites at positions -104 and -64. Mutation analyses showed that the proximal SP1 sites mediated ESR1 action as well as basal activity of the promoter. In response to progesterone, progesterone receptor B also increased OXTR promoter activity. SP1 protein was constitutively expressed and abundant in the LE of the ovine uterus. These results support the hypothesis that the antiluteolytic effects of IFNT are mediated by direct inhibition or silencing of ESR1 gene transcription, thereby precluding ESR1/SP1 from stimulating OXTR gene transcription.
Collapse
Affiliation(s)
- Joann G W Fleming
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, 77843-2471, USA
| | | | | | | |
Collapse
|
32
|
Lollivier V, Marnet PG, Delpal S, Rainteau D, Achard C, Rabot A, Ollivier-Bousquet M. Oxytocin stimulates secretory processes in lactating rabbit mammary epithelial cells. J Physiol 2005; 570:125-40. [PMID: 16166151 PMCID: PMC1464286 DOI: 10.1113/jphysiol.2005.097816] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxytocin plays a major role in lactation mainly by its action on milk ejection via the contraction of myoepithelial cells. The effect of oxytocin on milk production and the presence of oxytocin receptors on different epithelial cells suggest that this hormone may play a role in mammary epithelial cells. To determine precisely the various roles of oxytocin, we studied localization of oxytocin receptors in lactating rabbit and rat mammary tissue and the influence of oxytocin on secretory processes in lactating rabbit mammary epithelial cells. Immunolocalization of oxytocin receptors on mammary epithelial cells by immunofluorescence and in mammary tissue by immunogold in addition to in situ hybridization showed that lactating rat and rabbit mammary epithelial cells expressed oxytocin receptors. Moreover, oxytocin bound specifically to epithelial cells. To determine whether oxytocin had an effect on lactating rabbit mammary epithelial cells, isolated mammary fragments were incubated in the presence or absence of 10(-6) i.u. ml(-1) of oxytocin. After 1 min of incubation with oxytocin, the morphology of epithelial cells and the localization of caseins and proteins associated with the secretory traffic suggested a striking acceleration of the transport leading to exocytosis, whereas the contraction of myoepithelial cells was only detectable after 7 min. Addition of 10(-8) g ml(-1) of atosiban before the addition of oxytocin prevented the oxytocin effect on secretory processes and on myoepithelial cell contraction. Addition of 10(-6) i.u. ml(-1) of vasopressin to the incubation medium did not mimic the stimulating effect of oxytocin on secretory traffic. These results show that lactating rabbit and rat mammary epithelial cells express oxytocin receptors and that oxytocin binds to these receptors. They strongly suggest that oxytocin has a dual effect on lactating mammary tissue: an acceleration of the intracellular transfer of caseins in mammary epithelial cells followed by the contraction of myoepithelial cells.
Collapse
Affiliation(s)
- Vanessa Lollivier
- UMR INRA-Agrocampus Production du Lait, 65 Rue de Saint-Brieuc, 35 042 Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Martins AS, Crescenzi A, Stern JE, Bordin S, Michelini LC. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain. Hypertension 2005; 46:1004-9. [PMID: 16157794 DOI: 10.1161/01.hyp.0000175812.03322.59] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously shown that exercise training activates nucleus tractus solitarii (NTS) oxytocinergic projections, resulting in blunted exercise tachycardia. The objective of this study was to determine the effects of hypertension and training on oxytocin (OT) and OT receptor expression in the hypothalamic paraventricular nucleus (PVN) and projection areas (dorsal brain stem [DBS]). Male, normotensive, Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were trained (55% maximal exercise capacity, 3 months) or kept sedentary, and pressure was measured weekly. DBS sections were processed for immunohistochemistry (polyclonal guinea pig anti-OT) or in situ hybridization for OT and OT receptor (35S-oligonucleotide probes). Other groups of rats had brains removed and frozen to isolate the DBS and PVN; samples were processed for OT and OT receptor cDNA reverse transcription-polymerase chain reaction amplification with beta-actin as the housekeeping gene. Training was equally effective in improving running distance in both groups, with pressure reduction only in SHR (-10%, P<0.05). In trained WKY, baseline bradycardia (P<0.05) occurred simultaneously with increased NTS OT immunostaining and mRNA expression (+3.5-fold), without any change in OT receptor mRNA expression. PVN OT mRNA and DBS OT receptor mRNA expressions were significantly lower in SHR versus WKY (-39% and -56%, respectively). Training did not alter DBS OT receptor density in the SHR group but increased OT mRNA in both PVN and DBS areas (+78% and +45%, respectively). Our results show a marked hypertension-induced reduction in OT receptor mRNA expression, not altered by training. In contrast, training increased OT mRNA expression in sedentary and hypertensive rats, which may facilitate training-induced cardiac performance.
Collapse
Affiliation(s)
- Adriano S Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
34
|
Kanda A, Satake H, Kawada T, Minakata H. Novel evolutionary lineages of the invertebrate oxytocin/vasopressin superfamily peptides and their receptors in the common octopus (Octopus vulgaris). Biochem J 2005; 387:85-91. [PMID: 15504101 PMCID: PMC1134935 DOI: 10.1042/bj20041230] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The common octopus, Octopus vulgaris, is the first invertebrate species that was shown to possess two oxytocin/vasopressin (OT/VP) superfamily peptides, octopressin (OP) and cephalotocin (CT). Previously, we cloned a GPCR (G-protein-coupled receptor) specific to CT [CTR1 (CT receptor 1)]. In the present study, we have identified an additional CTR, CTR2, and a novel OP receptor, OPR. Both CTR2 and OPR include domains and motifs typical of GPCRs, and the intron- exon structures are in accord with those of OT/VP receptor genes. CTR2 and OPR expressed in Xenopus oocytes induced calcium-mediated inward chloride current in a CT- and OP-specific manner respectively. Several regions and residues, which are requisite for binding of the vertebrate OT/VP receptor family with their ligands, are highly conserved in CTRs, but not in OPR. These different sequences between CTRs and OPR, as well as the amino acid residues of OP and CT at positions 2-5, were presumed to play crucial roles in the binding selectivity to their receptors, whereas the difference in the polarity of OT/VP family peptide residues at position 8 confers OT and VP with the binding specificity in vertebrates. CTR2 mRNA was present in various peripheral tissues, and OPR mRNA was detected in both the nervous system and peripheral tissues. Our findings suggest that the CT and OP genes, similar to the OT/VP family, evolved through duplication, but the ligand-receptor selectivity were established through different evolutionary lineages from those of their vertebrate counterparts.
Collapse
Affiliation(s)
- Atsuhiro Kanda
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Honoo Satake
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Hiroyuki Minakata
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Siebel AL, Bathgate RAD, Parry LJ. Differential expression of mesotocin receptors in the uterus and ovary of the pregnant tammar wallaby. Reproduction 2005; 129:639-49. [PMID: 15855627 DOI: 10.1530/rep.1.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mesotocin, an oxytocin-like peptide, is released in highest concentrations during parturition in macropodid marsupials. In late pregnant wallabies, uterine sensitivity to mesotocin increases markedly in the myometrium of the gravid uterus. This coincides with a significant increase in myometrial mesotocin receptor concentrations 3–4 days before term. To date, there is no information on mesotocin receptor gene expression in female wallaby reproductive tissues. This study aimed to examine mesotocin receptor gene expression in the uterus and ovaries of pregnant tammar wallabies, and to localise mesotocin receptors within the uterus. An RT-PCR strategy produced a consensus nucleotide sequence of 834 bp, which encoded 278 amino acids of transmembrane domains I to VI. This protein sequence has approximately 80% homology with the bovine and rat oxytocin receptor exon 2 region. Only one mesotocin receptor was detected in the tammar genome. The myometrium and mammary gland both expressed a 4.1 kb mesotocin receptor gene transcript. Myometrial mesotocin receptor gene expression increased on day 22 of the 26-day gestation and was significantly higher in the gravid than the non-gravid uterus in late pregnancy. This pattern of mesotocin receptor gene expression paralleled mesotocin receptor concentrations. Mesotocin binding sites were localised only to the myometrium, the highest densities being observed in the gravid uterus. Finally, this study showed high expression of mesotocin receptors in the corpus luteum. The pattern of luteal mesotocin receptor expression differed from the myometrium, with a decrease in mesotocin receptors occurring on the day of expected births.
Collapse
Affiliation(s)
- Andrew L Siebel
- Department of Zoology and Howard Florey Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | | | |
Collapse
|
36
|
Assinder SJ, Johnson C, King K, Nicholson HD. Regulation of 5alpha-reductase isoforms by oxytocin in the rat ventral prostate. Endocrinology 2004; 145:5767-73. [PMID: 15358676 DOI: 10.1210/en.2004-0711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) is present in the male reproductive tract, where it is known to modulate contractility, cell growth, and steroidogenesis. Little is known about how OT regulates these processes. This study describes the localization of OT receptor in the rat ventral prostate and investigates if OT regulates gene expression and/or activity of 5alpha-reductase isoforms I and II. The ventral prostates of adult male Wistar rats were collected following daily sc administration of saline (control), OT, a specific OT antagonist or both OT plus antagonist for 3 d. Expression of the OT receptor was identified in the ventral prostate by RT-PCR and Western blot, and confirmed to be a single active binding site by radioreceptor assay. Immunohistochemistry localized the receptor to the epithelium of prostatic acini and to the stromal tissue. Real-time RT-PCR determined that OT treatment significantly reduced expression of 5alpha-reductase I but significantly increased 5alpha-reductase II expression in the ventral prostate. Activity of both isoforms of 5alpha-reductase was significantly increased by OT, resulting in increased concentration of prostatic dihydrotestosterone. In conclusion, OT is involved in regulating conversion of testosterone to the biologically active dihydrotestosterone in the rat ventral prostate. It does so by differential regulation of 5alpha-reductase isoforms I and II.
Collapse
Affiliation(s)
- S J Assinder
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
37
|
Volpi S, Rabadán-Diehl C, Aguilera G. Regulation of vasopressin V1b receptors and stress adaptation. Ann N Y Acad Sci 2004; 1018:293-301. [PMID: 15240381 DOI: 10.1196/annals.1296.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vasopressin (VP) regulates pituitary corticotroph function by acting upon plasma membrane G-protein receptors of the V1b subtype (V1bR), coupled to calcium-phospholipid signaling. The number of these receptors in the anterior pituitary varies during stress in direct correlation with corticotroph responsiveness, suggesting that the V1bR plays an important role during adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to stress. The molecular regulation of pituitary V1bR involves transcriptional and translational mechanisms. V1bR gene transcription, which is necessary to maintain V1bR mRNA levels, depends on a number of responsive elements in the promoter region, of which the stretch of GA repeats near the transcription start point (GAGA box) is essential. Although transcriptional activation is necessary to maintain V1bR mRNA levels, the lack of correlation between VP binding and V1bR mRNA suggests that V1bR content is mainly regulated at the translational level. Two potential mechanisms by which the 5' untranslated region (5'UTR) of the V1bR mediates negative and positive regulation of V1bR translation were identified. This includes the repressor effect of small open reading frames (ORF) present upstream of the main V1bR ORF, and an internal ribosome entry site (IRES), which activates V1bR translation. The existence of multiple loci of regulation for the V1bR at transcriptional and translational levels provides a mechanism to facilitate plasticity of regulation of the number of pituitary vasopressin receptors according to physiological demand.
Collapse
Affiliation(s)
- Simona Volpi
- Section on Endocrine Physiology, Developmental Endocrinology Branch, NICHD, NIH, Bldg. 10, Rm. 10N262, 10 Center Drive MSC 1862, Bethesda, MD 20892-1862, USA
| | | | | |
Collapse
|
38
|
Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 2004; 84:169-208. [PMID: 14715914 DOI: 10.1152/physrev.00017.2003] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammals control the volume and osmolality of their body fluids from stimuli that arise from both the intracellular and extracellular fluid compartments. These stimuli are sensed by two kinds of receptors: osmoreceptor-Na+ receptors and volume or pressure receptors. This information is conveyed to specific areas of the central nervous system responsible for an integrated response, which depends on the integrity of the anteroventral region of the third ventricle, e.g., organum vasculosum of the lamina terminalis, median preoptic nucleus, and subfornical organ. The hypothalamo-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting vasopressin and oxytocin in response to osmotic and nonosmotic stimuli. Since the discovery of the atrial natriuretic peptide (ANP), a large number of publications have demonstrated that this peptide provides a potent defense mechanism against volume overload in mammals, including humans. ANP is mostly localized in the heart, but ANP and its receptor are also found in hypothalamic and brain stem areas involved in body fluid volume and blood pressure regulation. Blood volume expansion acts not only directly on the heart, by stretch of atrial myocytes to increase the release of ANP, but also on the brain ANPergic neurons through afferent inputs from baroreceptors. Angiotensin II also plays an important role in the regulation of body fluids, being a potent inducer of thirst and, in general, antagonizes the actions of ANP. This review emphasizes the role played by brain ANP and its interaction with neurohypophysial hormones in the control of body fluid homeostasis.
Collapse
Affiliation(s)
- José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Goff AK. Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle. Biol Reprod 2004; 71:11-6. [PMID: 14973258 DOI: 10.1095/biolreprod.103.025890] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prostaglandins, produced from membrane phospholipids by the action of phospholipase A2, cyclooxygenase, and specific prostaglandin synthases, are important regulators of ovulation, luteolysis, implantation, and parturition in reproductive tissues. Destruction of the corpus luteum at the end of the estrous cycle in nonpregnant animals is brought about by the pulsatile secretion of prostaglandin F(2alpha) (PGF(2alpha)) from the endometrium. It has been known for many years that progesterone, estradiol, and oxytocin are the hormones responsible for luteolysis. To achieve luteolysis, two independent processes have to be coordinated; the first is an increase in the prostaglandin synthetic capability of the endometrium and the second is an increase in oxytocin receptor number. Although progesterone and estradiol can modulate the expression of the enzymes involved in prostaglandin synthesis, the primary reason for the initiation of luteolysis is the increase in oxytocin receptor on the endometrial epithelial cells. Results of many in vivo studies have shown that progesterone and estradiol are required for luteolysis, but it is still not fully understood exactly how these steroid hormones act. The purpose of this article is to review the recent data related to how progesterone and estradiol could regulate (initiate and then turn off) the uterine pulsatile secretion of PGF(2alpha) observed at luteolysis.
Collapse
Affiliation(s)
- Alan K Goff
- Centre de Recherche en Reproduction Animale, Faculte de medecine veterinaire, Universite de Montreal, St-Hyacinthe, Quebec, Canada J2S 7C6.
| |
Collapse
|
40
|
Champagne FA, Weaver ICG, Diorio J, Sharma S, Meaney MJ. Natural variations in maternal care are associated with estrogen receptor alpha expression and estrogen sensitivity in the medial preoptic area. Endocrinology 2003; 144:4720-4. [PMID: 12959970 DOI: 10.1210/en.2003-0564] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactating rats exhibit stable individual differences in pup licking/grooming (LG) over the first week postpartum. Such naturally occurring variations in maternal behavior are associated with differences in estrogen-inducible oxytocin receptors in the medial preoptic area (MPOA) of the hypothalamus. We compared levels of ER alpha and ER beta mRNA in the MPOA of lactating High or Low LG mothers as well as in their nonlactating, female offspring, which inherit the maternal phenotype of their mothers. Among lactating females, High LG females exhibited significantly elevated levels of ER alpha mRNA compared with Low LG females. Likewise, the adult, virgin female offspring of High LG mothers showed higher levels of ER alpha mRNA in the MPOA compared with those of Low LG mothers. There were no group differences in levels of ER beta mRNA. Differences in ER alpha protein expression in the MPOA were confirmed using Western blot analysis. To further characterize the effects of estrogen in the MPOA, cFos immunoreactivity was compared in ovariectomized, adult offspring of High and Low LG dams treated with estradiol or oil. Increased cFos activity in the anterior ventral nucleus of the MPOA was observed in estradiol-treated High LG, but not Low LG females. These findings suggest that natural variations in maternal care are associated with differences in ER alpha expression in the MPOA and that such differences are transmitted from the mother to her female offspring.
Collapse
Affiliation(s)
- Frances A Champagne
- Developmental Neuroendocrinology Laboratory, Douglas Hospital Research Centre, McGill University, 6875 LaSalle Boulevard, Montreal, Canada H4H 1R3
| | | | | | | | | |
Collapse
|
41
|
Lin SH, Kiyohara T, Sun B. Maternal behavior: activation of the central oxytocin receptor system in parturient rats? Neuroreport 2003; 14:1439-44. [PMID: 12960760 DOI: 10.1097/00001756-200308060-00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parturition plays a critical role in the full expression of maternal behavior in postpartum females, yet the precise mechanism remains unclear. Here we examined the role of parturition in the activation of Fos and FosB in the central oxytocin receptor (OTR) system in rats. Although expression of FosB, not Fos, was seen in the piriform cortex (Pir) and caudate putamen of virgin and pregnant females, activation of Fos and FosB with extensive co-localization was found in the medial preoptic area, the bed nucleus of the stria terminalis and Pir of parturient brain. This parturition induced activation of Fos and FosB was identified in the central OTR-expressing cells as well as in oxytocinergic neurons. Our data provide direct evidence, for the first time, that parturition activates Fos and FosB in the central OTR system. We propose that Fos and FosB may have comparable functions on initiating maternal behavior at parturition.
Collapse
Affiliation(s)
- Shi Hua Lin
- Department of Vascular Biology, Maryland Research Laboratories, Otsuka Maryland Research Institute Inc., 9900 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
42
|
Nikitenko LL, Smith DM, Bicknell R, Rees MCP. Transcriptional regulation of the CRLR gene in human microvascular endothelial cells by hypoxia. FASEB J 2003; 17:1499-501. [PMID: 12824306 DOI: 10.1096/fj.02-0993fje] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Adrenomedullin is a 52 amino acid peptide that shows a remarkable range of effects on the vasculature that include inter alia, vasodilatation, regulation of permeability, inhibition of endothelial cell apoptosis, and promotion of angiogenesis. Recently the G-protein coupled receptor (GPCR) calcitonin receptor-like receptor (CRLR), and receptor activity modifying proteins (RAMPs) have become recognized as integral components of the adrenomedullin signaling system. However, mechanisms of regulation of CRLR expression are still largely unknown. This is in part due to lack of information on the gene promoter. In this study we have determined the transcriptional start of human CRLR cDNA by 5'-RACE and cloned the proximal 5'-flanking region of the gene by PCR. The 2318 bp genomic fragment contains the basal promoter of human CRLR, including potential TATA-boxes and several GC boxes. Regulatory elements binding known transcription factors, such as Sp-1, Pit-1, glucocorticoid receptor, and hypoxia-inducible factor-1 alpha (HIF-1alpha) were also identified. When cloned into reporter gene vectors, the genomic fragment showed significant promoter activity, indicating that the 5'-flanking region isolated by PCR contains the gene promoter of human CRLR. Of significance is that the cloned promoter fragments were activated by hypoxia when transfected in primary microvascular endothelial cells. Site-directed mutagenesis of the consensus hypoxia-response element (HRE) in the 5'-flanking region abolished such a response. We also demonstrated by semi-quantitative RT-PCR that transcription of the gene is activated by hypoxia in microvascular endothelial cells. In contrast, expression of RAMPs 1, 2, and 3 was unaffected by low oxygen tension. We conclude that simultaneous transcriptional up-regulation of CRLR and its ligand adrenomedullin in endothelial cells could lead to a potent survival loop and therefore might play a significant role in vascular responses to hypoxia and ischemia.
Collapse
Affiliation(s)
- Leonid L Nikitenko
- NDOG, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | | | | | | |
Collapse
|
43
|
Vasopressin differentially modulates non-NMDA receptors in vasopressin and oxytocin neurons in the supraoptic nucleus. J Neurosci 2003. [PMID: 12764115 DOI: 10.1523/jneurosci.23-10-04270.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnocellular neurons of the supraoptic nucleus release the neuropeptides oxytocin and vasopressin from their dendrites to regulate their synaptic inputs. This study aims to determine the cellular mechanism by which vasopressin modulates excitatory synaptic transmission. Presumably by electroporation through perforated patch, we were able to successfully introduce biocytin into cells in which we performed an electrophysiological study. This method enabled us to determine that roughly half of the recorded neurons were immunoreactive to oxytocin-associated neurophysin and showed two characteristic features: an inward rectification and a sustained outward rectification. The remaining half showed a linear voltage-current relationship and was immunoreactive to vasopressin-associated neurophysin. Using these electrophysiological characteristics and post hoc immunohistochemistry to identify vasopressin or oxytocin neurons, we found that vasopressin decreased evoked EPSCs in vasopressin neurons while increasing EPSCs in oxytocin neurons. In both types of neurons, EPSC decay constants were not affected, indicating that desensitization of non-NMDA receptors did not underlie the EPSC amplitude change. In vasopressin neurons, both vasopressin and a V1a receptor agonist, F-180, decreased AMPA-induced currents, an effect blocked by a V1a receptor antagonist SR49059. In oxytocin neurons, AMPA-induced currents were facilitated by vasopressin, whereas F-180 had no effect. An oxytocin receptor antagonist blocked the facilitatory effect of vasopressin. Thus, we conclude that vasopressin inhibits EPSCs in vasopressin neurons via postsynaptic V1a receptors, whereas it facilitates EPSCs in oxytocin neurons through oxytocin receptors.
Collapse
|
44
|
Egawa M, Yasuda K, Nakajima T, Okada H, Yoshimura T, Yuri T, Yasuhara M, Nakamoto T, Nagata F, Kanzaki H. Smoking enhances oxytocin-induced rhythmic myometrial contraction. Biol Reprod 2003; 68:2274-80. [PMID: 12606462 DOI: 10.1095/biolreprod.102.010785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although smoking during pregnancy is one of the major risk factors of premature delivery, the underlying mechanism by which smoking causes premature delivery is unknown. In the present study, we examined the effects of smoking on uterine contractility induced by oxytocin and prostaglandin F(2alpha). Rats inhaled either cigarette smoke or room air from Day 14 to Day 16 of pregnancy through an inhalation apparatus for experimental animals (type "Hamburg II"). After the rats were killed on Day 17 of pregnancy, the uterine contractile sensitivity and activity on exposure to oxytocin or prostaglandin F2alpha were investigated. The expression levels of oxytocin-receptor mRNA and prostaglandin F(2alpha) receptor mRNA in the uterus were investigated by reverse transcription-polymerase chain reaction. The contractile activity was assessed as the contractile force and the frequency of rhythmic contractions of myometrial strips that were treated with oxytocin or prostaglandin F(2alpha). The contractile sensitivity to oxytocin was significantly higher in the smoking group than in the control group (P < 0.01). Although the contractile force of oxytocin-induced contractions did not differ between the smoking and control groups, the frequency of contractions was significantly higher in the smoking group than in the control group (P < 0.01). On the other hand, no significant differences were found in the contractile sensitivity and activity in response to prostaglandin F(2alpha) between the smoking and control groups. The expression of oxytocin-receptor mRNA in the myometrium was significantly increased in the smoking group compared with the control group (P < 0.01). However, no significant difference was found in the level of expression of prostaglandin F(2alpha)-receptor mRNA between the two groups. These results suggest that smoking during pregnancy increases the contractile sensitivity and activity of the myometrium in response to oxytocin by up-regulating the expression of oxytocin-receptor mRNA. The effects of smoking on the contractile sensitivity and activity of the myometrium in response to oxytocin may increase the risk of premature delivery in smokers.
Collapse
Affiliation(s)
- Makoto Egawa
- Department of Obstetrics and Gynecology, Kansai Medical University, Moriguchi, Osaka, 570-0074, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hirasawa M, Mouginot D, Kozoriz MG, Kombian SB, Pittman QJ. Vasopressin differentially modulates non-NMDA receptors in vasopressin and oxytocin neurons in the supraoptic nucleus. J Neurosci 2003; 23:4270-7. [PMID: 12764115 PMCID: PMC6741118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Magnocellular neurons of the supraoptic nucleus release the neuropeptides oxytocin and vasopressin from their dendrites to regulate their synaptic inputs. This study aims to determine the cellular mechanism by which vasopressin modulates excitatory synaptic transmission. Presumably by electroporation through perforated patch, we were able to successfully introduce biocytin into cells in which we performed an electrophysiological study. This method enabled us to determine that roughly half of the recorded neurons were immunoreactive to oxytocin-associated neurophysin and showed two characteristic features: an inward rectification and a sustained outward rectification. The remaining half showed a linear voltage-current relationship and was immunoreactive to vasopressin-associated neurophysin. Using these electrophysiological characteristics and post hoc immunohistochemistry to identify vasopressin or oxytocin neurons, we found that vasopressin decreased evoked EPSCs in vasopressin neurons while increasing EPSCs in oxytocin neurons. In both types of neurons, EPSC decay constants were not affected, indicating that desensitization of non-NMDA receptors did not underlie the EPSC amplitude change. In vasopressin neurons, both vasopressin and a V1a receptor agonist, F-180, decreased AMPA-induced currents, an effect blocked by a V1a receptor antagonist SR49059. In oxytocin neurons, AMPA-induced currents were facilitated by vasopressin, whereas F-180 had no effect. An oxytocin receptor antagonist blocked the facilitatory effect of vasopressin. Thus, we conclude that vasopressin inhibits EPSCs in vasopressin neurons via postsynaptic V1a receptors, whereas it facilitates EPSCs in oxytocin neurons through oxytocin receptors.
Collapse
Affiliation(s)
- Michiru Hirasawa
- Neuroscience Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, T2N 4N1 Canada.
| | | | | | | | | |
Collapse
|
46
|
Jo M, Fortune JE. Changes in oxytocin receptor in bovine preovulatory follicles between the gonadotropin surge and ovulation. Mol Cell Endocrinol 2003; 200:31-43. [PMID: 12644297 DOI: 10.1016/s0303-7207(02)00418-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In cattle, production of oxytocin by granulosa cells of preovulatory follicles is induced by the LH/FSH surge and intrafollicular oxytocin increases dramatically toward the end of the interval between the surge and ovulation. We reported previously that oxytocin modulates steroid production by both theca and granulosa cells obtained from bovine preovulatory follicles, implying actions of oxytocin on both cell types of preovulatory follicles. The objective of the present study was to examine the temporal expression of oxytocin receptor mRNA and protein in both theca and granulosa cells of bovine periovulatory follicles. To induce luteal regression and initiate a follicular phase, heifers were injected with prostaglandin F(2alpha) on Day 6 or 7 of the estrous cycle and 36 h later, a GnRH analogue was administered to induce the LH/FSH surge. The periovulatory follicle was isolated at 0, 3.5, 12, or 24 h after GnRH injection. A significant increase in the levels of mRNA for oxytocin was detected in granulosa, but not theca, cells of periovulatory follicles at 12 and 24 h after GnRH injection, relative to time 0. In contrast, the levels of oxytocin receptor mRNA and specific binding sites for oxytocin in granulosa cells had decreased significantly at 12 and 24 h post-GnRH. In theca cells, the levels of oxytocin receptor mRNA were significantly lower at 12 and 24 h compared with values at 3.5 h, but specific binding of oxytocin to thecal cell membranes was not different at any time point. Immunopositive staining for oxytocin receptor was localized to both the theca and granulosa cell layer of periovulatory follicles at all four times of follicle isolation. These results suggest the direct action of oxytocin on both theca and granulosa cells of bovine periovulatory follicles through binding to its receptor, supporting the hypothesis that follicular oxytocin plays an important role(s) in the regulation of the final stage of follicular development. Down-regulation of oxytocin receptor mRNA and oxytocin binding may serve to temporally limit the actions of oxytocin on the preovulatory follicle.
Collapse
Affiliation(s)
- M Jo
- Department of Biomedical Sciences, College of Veterinary Medicine, T6-012B VRT, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
47
|
McCann SM, Antunes-Rodrigues J, Jankowski M, Gutkowska J. Oxytocin, vasopressin and atrial natriuretic peptide control body fluid homeostasis by action on their receptors in brain, cardiovascular system and kidney. PROGRESS IN BRAIN RESEARCH 2002; 139:309-28. [PMID: 12436946 DOI: 10.1016/s0079-6123(02)39027-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Samuel M McCann
- Pennington Biomedical Research Center (LSU), 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA.
| | | | | | | |
Collapse
|
48
|
Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D. Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-beta and membrane components. Glia 2002; 37:169-77. [PMID: 11754214 DOI: 10.1002/glia.10029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the effect of neurons on oxytocin (OT) receptors (OTR) and OTR gene expression in cultured astrocytes. The addition of neuron-conditioned medium induced an increase of both OTR binding and OTR mRNA level. This effect was enhanced after the medium was boiled or acidified. As it is known that transforming growth factor-beta (TGF-beta) can be released from carrier proteins by acid or heat, TGF-beta1 and 2 were tested and found to induce an increase of OTR binding. Furthermore, TGF-beta antibody abolished the stimulatory effect of normal or acidified neuron-conditioned medium. Neurons added to cultured astrocytes without contact mimicked the stimulatory effect of the conditioned medium. In contrast, neurons added with contact, induced a decrease in OTR binding and an increase of mRNA level, whereas neuronal membranes induced a decrease of both OTR binding and mRNA levels. In conclusion, the present data demonstrate that in vitro, neurons are able to modulate astrocytic OTR expression at the level of both protein and mRNA. They stimulate this expression through their release of TGF-beta and inhibit it by the action of unknown membrane components.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Communication/drug effects
- Cell Communication/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Contact Inhibition/drug effects
- Contact Inhibition/physiology
- Culture Media, Conditioned/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Hypothalamus/cytology
- Hypothalamus/metabolism
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptors, Oxytocin/drug effects
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Peggy Mittaud
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
49
|
Corti C, Xuereb JH, Corsi M, Ferraguti F. Identification and characterization of the promoter region of the GRM3 gene. Biochem Biophys Res Commun 2001; 286:381-7. [PMID: 11500049 DOI: 10.1006/bbrc.2001.5391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently described the genomic organisation of the human metabotropic glutamate receptor 3 (GRM3) gene. The putative promoter region is characterised by the presence of a CCAAT and Sp1 site and the absence of a TATA box. Using a reporter gene assay, now we describe the functional activity of GRM3 promoter by transient transfection in both human neuroblastoma and astroglioma cell lines. Deletion of the CCAAT box and Sp1 site resulted in a pronounced reduction of reporter gene expression in both cell types, which indicates that these elements to correspond to the core promoter region. Moreover, we found that the genomic sequence 140 bp upstream of the first transcription initiation site appears to contain regulatory promoter elements for a preferential transcription of the gene in neuroblastoma cells. We also provide evidence that the genomic sequence spanning exon I, corresponding to the GRM3 5'-untranslated region, contains a negative regulatory element that represses gene transcription.
Collapse
Affiliation(s)
- C Corti
- Cambridge Brain Bank Laboratory, Department of Pathology, University of Cambridge, Level 3 Laboratory Block Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Breton C, Chellil H, Kabbaj-Benmansour M, Carnazzi E, Seyer R, Phalipou S, Morin D, Durroux T, Zingg H, Barberis C, Mouillac B. Direct identification of human oxytocin receptor-binding domains using a photoactivatable cyclic peptide antagonist: comparison with the human V1a vasopressin receptor. J Biol Chem 2001; 276:26931-41. [PMID: 11337500 DOI: 10.1074/jbc.m102073200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.
Collapse
Affiliation(s)
- C Breton
- U469 INSERM and the UPR 9023 CNRS, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|