1
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
3
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
5
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Tavares TT, Azevedo GC, Garcia A, Carpanez AG, Lewer PM, Paschoal D, Müller BL, Dos Santos HF, Matos RC, Silva H, Grazul RM, Fontes APS. Gold(I) complexes with aryl-thiosemicarbazones: Molecular modeling, synthesis, cytotoxicity and TrxR inhibition. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Parsons PG. Can skin cancer in humans be prevented by alleviation of oxidative stress? Redox Rep 2016; 3:77-83. [DOI: 10.1080/13510002.1997.11747094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Chaplin A, Palou A, Serra F. Methylation analysis in fatty-acid-related genes reveals their plasticity associated with conjugated linoleic acid and calcium supplementation in adult mice. Eur J Nutr 2015; 56:879-891. [PMID: 26700221 DOI: 10.1007/s00394-015-1135-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE DNA methylation is one of the most extensively studied mechanisms within epigenetics, and it is suggested that diet-induced changes in methylation status could be involved in energy metabolism regulation. Conjugated linoleic acid (CLA) and calcium supplementation counteract body weight gain, particularly under a high-fat (HF) diet, in adult mice. The aim was to determine whether the modulation of DNA methylation pattern in target genes and tissues could be an underlying mechanism of action. METHODS Mice (C57BL/6J) were divided into five groups according to diet and treatment: normal fat as the control group (12 % kJ content as fat), HF group (43 % kJ content as fat), HF + CLA (6 mg CLA/day), HF + calcium (12 g/kg of calcium) and HF with both compounds. Gene expression and methylation degree of CpG sites in promoter sequences of genes involved in fatty acid metabolism, including adiponectin (Adipoq), stearoyl-CoA desaturase (Scd1) and fatty acid synthase (Fasn), were determined by bisulphite sequencing in liver and epididymal white adipose tissue. RESULTS Results showed that the methylation profile of promoters was significantly altered by dietary supplementation in a gene- and tissue-specific manner, whereas only slight changes were observed in the HF group. Furthermore, changes in specific CpG sites were also associated with an overall healthier metabolic profile, in particular for calcium-receiving groups. CONCLUSIONS Both CLA and calcium were able to modify the methylation pattern of genes involved in energy balance in adulthood, which opens a novel area for increasing efficiency in body weight management strategies.
Collapse
Affiliation(s)
- Alice Chaplin
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
9
|
Abstract
Inflammasomes are high molecular weight complexes that sense and react to injury and infection. Their activation induces caspase-1 activation and release of interleukin-1β, a pro-inflammatory cytokine involved in both acute and chronic inflammatory responses. There is increasing evidence that inflammasomes, particularly the NLRP3 inflammasome, act as guardians against noninfectious material. Inappropriate activation of the NLRP3 inflammasome contributes to the progression of many noncommunicable diseases such as gout, type II diabetes, and Alzheimer's disease. Inhibiting the inflammasome may significantly reduce damaging inflammation and is therefore regarded as a therapeutic target. Currently approved inhibitors of interleukin-1β are rilonacept, canakinumab, and anakinra. However, these proteins do not possess ideal pharmacokinetic properties and are unlikely to easily cross the blood-brain barrier. Because inflammation can contribute to neurological disorders, this review focuses on the development of small-molecule inhibitors of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alex G Baldwin
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - David Brough
- Faculty of Life Sciences, The University of Manchester , AV Hill Building, Oxford Road, Manchester M13 9PT, U.K
| | - Sally Freeman
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
10
|
Jacques A, Lebrun C, Casini A, Kieffer I, Proux O, Latour JM, Sénèque O. Reactivity of Cys4 Zinc Finger Domains with Gold(III) Complexes: Insights into the Formation of “Gold Fingers”. Inorg Chem 2015; 54:4104-13. [DOI: 10.1021/acs.inorgchem.5b00360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aurélie Jacques
- Université Grenoble Alpes, LCBM/PMB, F-38000 Grenoble, France
- CNRS, LCBM/PMB, UMR 5249, F-38000 Grenoble, France
- CEA, IRTSV-LCBM, PMB, F-38000 Grenoble, France
| | - Colette Lebrun
- Université Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology and Targeting, Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Isabelle Kieffer
- BM30B/FAME beamline, European Synchrotron Radiation Facility (ESRF), F-38000 Grenoble, France
- Observatoire
des Sciences de l′Univers de Grenoble, UMS 832, CNRS, Université Joseph Fourier, F-38000 Grenoble, France
| | - Olivier Proux
- BM30B/FAME beamline, European Synchrotron Radiation Facility (ESRF), F-38000 Grenoble, France
- Observatoire
des Sciences de l′Univers de Grenoble, UMS 832, CNRS, Université Joseph Fourier, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Université Grenoble Alpes, LCBM/PMB, F-38000 Grenoble, France
- CNRS, LCBM/PMB, UMR 5249, F-38000 Grenoble, France
- CEA, IRTSV-LCBM, PMB, F-38000 Grenoble, France
| | - Olivier Sénèque
- Université Grenoble Alpes, LCBM/PMB, F-38000 Grenoble, France
- CNRS, LCBM/PMB, UMR 5249, F-38000 Grenoble, France
- CEA, IRTSV-LCBM, PMB, F-38000 Grenoble, France
| |
Collapse
|
11
|
|
12
|
Abbehausen C, Peterson EJ, de Paiva REF, Corbi PP, Formiga ALB, Qu Y, Farrell NP. Gold(I)-Phosphine-N-Heterocycles: Biological Activity and Specific (Ligand) Interactions on the C-Terminal HIVNCp7 Zinc Finger. Inorg Chem 2013; 52:11280-7. [DOI: 10.1021/ic401535s] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Camilla Abbehausen
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box
6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Erica J. Peterson
- Goodwin Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| | - Raphael E. F. de Paiva
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box
6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Pedro P. Corbi
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box
6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - André L. B. Formiga
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box
6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Yun Qu
- Goodwin Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284-2006, United States
| | - Nicholas P. Farrell
- Goodwin Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
13
|
Gaynor D, Griffith DM. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Trans 2012; 41:13239-13257. [PMID: 22930130 DOI: 10.1039/c2dt31601c] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal complexes and metal salts have a wide range of medicinal applications and are extensively administered to patients or purchased over the counter as a matter of routine. The abundance and variety of non-platinum metal complexes, which are approved for use as therapeutic or diagnostic agents, are highlighted. Current insights into the mechanism of action or indeed lack thereof of a selection of metallodrugs are discussed. Ultimately this perspective seeks to inspire chemists to tackle new challenges and raise awareness of opportunities in the area of inorganic therapeutic and diagnostic medicine.
Collapse
Affiliation(s)
- Declan Gaynor
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland Medical University of Bahrain, Building No. 2441, Road 2835, Busaiteen 228, PO Box 15503, Adliya, Kingdom of Bahrain.
| | | |
Collapse
|
14
|
Kelley MR, Georgiadis MM, Fishel ML. APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr Mol Pharmacol 2012; 5:36-53. [PMID: 22122463 DOI: 10.2174/1874467211205010036] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
The heterogeneity of most cancers diminishes the treatment effectiveness of many cancer-killing regimens. Thus, treatments that hold the most promise are ones that block multiple signaling pathways essential to cancer survival. One of the most promising proteins in that regard is APE1, whose reduction-oxidation activity influences multiple cancer survival mechanisms, including growth, proliferation, metastasis, angiogenesis, and stress responses. With the continued research using APE1 redox specific inhibitors alone or coupled with developing APE1 DNA repair inhibitors it will now be possible to further delineate the role of APE1 redox, repair and protein-protein interactions. Previously, use of siRNA or over expression approaches, while valuable, do not give a clear picture of the two major functions of APE1 since both techniques severely alter the cellular milieu. Additionally, use of the redox-specific APE1 inhibitor, APX3330, now makes it possible to study how inhibition of APE1's redox signaling can affect multiple tumor pathways and can potentiate the effectiveness of existing cancer regimens. Because APE1 is an upstream effector of VEGF, as well as other molecules that relate to angiogenesis and the tumor microenvironment, it is also being studied as a possible treatment for agerelated macular degeneration and diabetic retinopathy. This paper reviews all of APE1's functions, while heavily focusing on its redox activities. It also discusses APE1's altered expression in many cancers and the therapeutic potential of selective inhibition of redox regulation, which is the subject of intense preclinical studies.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
15
|
Rohr-Udilova N, Sieghart W, Eferl R, Stoiber D, Björkhem-Bergman L, Eriksson LC, Stolze K, Hayden H, Keppler B, Sagmeister S, Grasl-Kraupp B, Schulte-Hermann R, Peck-Radosavljevic M. Antagonistic effects of selenium and lipid peroxides on growth control in early hepatocellular carcinoma. Hepatology 2012; 55:1112-21. [PMID: 22105228 DOI: 10.1002/hep.24808] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Activation of the activator protein 1 (AP-1) transcription factor as well as increased serum levels of vascular endothelial growth factor (VEGF) and interleukin (IL)-8 predict poor prognosis of patients with hepatocellular carcinomas (HCCs). Moreover, HCC patients display reduced selenium levels, which may cause lipid peroxidation and oxidative stress because selenium is an essential component of antioxidative glutathione peroxidases (GPx). We hypothesized that selenium-lipid peroxide antagonism controls the above prognostic markers and tumor growth. (1) In human HCC cell lines (HCC-1.2, HCC-3, and SNU398) linoleic acid peroxide (LOOH) and other prooxidants enhanced the expression of VEGF and IL-8. LOOH up-regulated AP-1 activation. Selenium inhibited these effects. This inhibition was mediated by glutathione peroxidase 4 (GPx4), which preferentially degrades lipid peroxides. Selenium enhanced GPx4 expression and total GPx activity, while knock-down of GPx4 by small interfering RNA (siRNA) increased VEGF, and IL-8 expression. (2) These results were confirmed in a rat hepatocarcinogenesis model. Selenium treatment during tumor promotion increased hepatic GPx4 expression and reduced the expression of VEGF and of the AP-1 component c-fos as well as nodule growth. (3) In HCC patients, increased levels of LOOH-related antibodies (LOOH-Ab) were found, suggesting enhanced LOOH formation. LOOH-Ab correlated with serum VEGF and IL-8 and with AP-1 activation in HCC tissue. In contrast, selenium inversely correlated with VEGF, IL-8, and HCC size (the latter only for tumors smaller than 3 cm). CONCLUSION Reduced selenium levels result in accumulation of lipid peroxides. This leads to enhanced AP-1 activation and consequently to elevated expression of VEGF and IL-8, which accelerate the growth of HCC. Selenium supplementation could be considered for investigation as a strategy for chemoprevention or additional therapy of early HCC in patients with low selenium levels.
Collapse
Affiliation(s)
- Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Inhibition of human DNA topoisomerase IB by a Cyclometalated Gold III compound: Analysis on the different steps of the enzyme catalytic cycle. Arch Biochem Biophys 2011; 516:108-12. [DOI: 10.1016/j.abb.2011.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 01/24/2023]
|
17
|
The intraoperative decrease of selenium is associated with the postoperative development of multiorgan dysfunction in cardiac surgical patients*. Crit Care Med 2011; 39:1879-85. [DOI: 10.1097/ccm.0b013e3182190d48] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Abstract
Dietary exposures can have consequences for health years or decades later and this raises questions about the mechanisms through which such exposures are 'remembered' and how they result in altered disease risk. There is growing evidence that epigenetic mechanisms may mediate the effects of nutrition and may be causal for the development of common complex (or chronic) diseases. Epigenetics encompasses changes to marks on the genome (and associated cellular machinery) that are copied from one cell generation to the next, which may alter gene expression, but which do not involve changes in the primary DNA sequence. These include three distinct, but closely inter-acting, mechanisms including DNA methylation, histone modifications and non-coding microRNAs (miRNA) which, together, are responsible for regulating gene expression not only during cellular differentiation in embryonic and foetal development but also throughout the life-course. This review summarizes the growing evidence that numerous dietary factors, including micronutrients and non-nutrient dietary components such as genistein and polyphenols, can modify epigenetic marks. In some cases, for example, effects of altered dietary supply of methyl donors on DNA methylation, there are plausible explanations for the observed epigenetic changes, but to a large extent, the mechanisms responsible for diet-epigenome-health relationships remain to be discovered. In addition, relatively little is known about which epigenomic marks are most labile in response to dietary exposures. Given the plasticity of epigenetic marks and their responsiveness to dietary factors, there is potential for the development of epigenetic marks as biomarkers of health for use in intervention studies.
Collapse
Affiliation(s)
- J A McKay
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
19
|
Quintal SM, dePaula QA, Farrell NP. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 2011; 3:121-39. [PMID: 21253649 DOI: 10.1039/c0mt00070a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc finger reactions with inorganic ions and coordination compounds are as diverse as the zinc fingers themselves. Use of metal ions such as Co(2+) and Cd(2+) has given structural, thermodynamic and kinetic information on zinc fingers and zinc-finger-DNA/RNA interactions. It is a general truism that alteration of the coordination sphere in the finger environment will disrupt the recognition with DNA/RNA and this has implications for mechanism of toxicity and carcinogenesis of metal ions. Structural zinc fingers are susceptible to electrophilic attack and the recognition that the coordination sphere of inorganic compounds may be modulated for control of electrophilic attack on zinc fingers raises the possibility of systematic studies of zinc fingers as drug targets using inorganic chemistry. Some inorganic compounds such as those of As(III) and Au(I) may exert their biological effects through inactivation of zinc fingers and novel approaches to specifically attack the zinc-bound ligands using Co(III)-Schiff bases and Platinum(II)-Nucleobase compounds have been proposed. The genomic importance of zinc fingers suggests that the "coordination chemistry" of zinc fingers themselves is ripe for exploration to design new targets for medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Susana M Quintal
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, USA
| | | | | |
Collapse
|
20
|
Berners-Price SJ, Filipovska A. Gold compounds as therapeutic agents for human diseases. Metallomics 2011; 3:863-73. [DOI: 10.1039/c1mt00062d] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Luo M, He H, Kelley MR, Georgiadis MM. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid Redox Signal 2010; 12:1247-69. [PMID: 19764832 PMCID: PMC2864659 DOI: 10.1089/ars.2009.2698] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
| | - Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
| | - Mark R. Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indiana
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
22
|
|
23
|
Larabee JL, Hocker JR, Hanas JS. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. J Inorg Biochem 2009; 103:419-26. [PMID: 19167089 DOI: 10.1016/j.jinorgbio.2008.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 11/21/2022]
Abstract
The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, 940 Stanton Young Blvd., Room 939, Oklahoma City, OK 73104, United States
| | | | | |
Collapse
|
24
|
Khalaf H, Salste L, Karlsson P, Ivarsson P, Jass J, Olsson PE. In vitro analysis of inflammatory responses following environmental exposure to pharmaceuticals and inland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1452-1460. [PMID: 19038416 DOI: 10.1016/j.scitotenv.2008.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 10/05/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals are regularly released into the environment; in particular non-steroidal anti-inflammatory drugs (NSAIDs) and antibiotics. Erythromycin, naproxen, furosemide and atenolol are reported to be stable for up to 1 year in the environment, which increases the risk for accumulation. In the present study we have measured the occurrence and concentration of pharmaceuticals in river Viskan (Jössabron) downstream of a sewage treatment plant in Borås, Sweden. Pharmaceuticals and water samples were tested for potential human risk by evaluating inflammatory responses (NF-kappaB and AP-1) using human T24 bladder epithelial cells and Jurkat T-cells. NF-kappaB activity in T24 cells was significantly reduced by all NSAIDs analysed (diclofenac, ketoprofen, naproxen, ibuprophen and dextropropoxyphene), but also by trimethoprim, using environmentally relevant concentrations. NF-kappaB and AP-1 activation was further analysed in response to water samples collected from different locations in Sweden. Dose-dependent down-regulation of AP-1 activity in Jurkat cells was observed at all locations. At two locations (Jössabron and Almenäs) down-regulation of NF-kappaB was observed. In contrast, the NF-kappaB response was potentiated by exposure to water from both locations following activation of NF-kappaB by treatment with heat-killed Escherichia coli. To determine the involvement of pharmaceuticals in the responses, T24 cells were exposed to the pharmaceutical mixture, based on the determined levels at Jössabron. This resulted in reduction of the NF-kappaB response following exposure to the pharmaceutical mixture alone while no potentiation was observed when cells were co-exposed to heat killed E. coli and pharmaceuticals. The obtained results demonstrate that the identified pharmaceuticals affect the inflammatory responses and furthermore indicate the presence of unknown substance(s) with the ability to potentiate inflammatory responses.
Collapse
Affiliation(s)
- Hazem Khalaf
- Biology, Orebro Life Science Center, School of Science and Technology, Orebro University, SE-701 82 Orebro, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Bachman RE, Bodolosky-Bettis SA, Pyle CJ, Gray MA. Reversible Oxidative Addition and Reductive Elimination of Fluorinated Disulfides at Gold(I) Thiolate Complexes: A New Ligand Exchange Mechanism. J Am Chem Soc 2008; 130:14303-10. [DOI: 10.1021/ja805266r] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Robert E. Bachman
- Departments of Chemistry, The University of the South, 735 University Avenue, Sewanee, Tennessee 37383, and Georgetown University, Box 571227, Washington, D.C. 20057-1227
| | - Sheri A. Bodolosky-Bettis
- Departments of Chemistry, The University of the South, 735 University Avenue, Sewanee, Tennessee 37383, and Georgetown University, Box 571227, Washington, D.C. 20057-1227
| | - Chelsea J. Pyle
- Departments of Chemistry, The University of the South, 735 University Avenue, Sewanee, Tennessee 37383, and Georgetown University, Box 571227, Washington, D.C. 20057-1227
| | - Margaret Anne Gray
- Departments of Chemistry, The University of the South, 735 University Avenue, Sewanee, Tennessee 37383, and Georgetown University, Box 571227, Washington, D.C. 20057-1227
| |
Collapse
|
26
|
Franzman MA, Barrios AM. Spectroscopic Evidence for the Formation of Goldfingers. Inorg Chem 2008; 47:3928-30. [DOI: 10.1021/ic800157t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew A. Franzman
- Department of Chemistry, University of Southern California, Los Angeles, California 90089
| | - Amy M. Barrios
- Department of Chemistry, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
27
|
Forceville X, Laviolle B, Annane D, Vitoux D, Bleichner G, Korach JM, Cantais E, Georges H, Soubirou JL, Combes A, Bellissant E. Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care 2008; 11:R73. [PMID: 17617901 PMCID: PMC2206523 DOI: 10.1186/cc5960] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/28/2007] [Accepted: 07/06/2007] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Sepsis is associated with the generation of oxygen free radicals and (lacking) decreased selenium plasma concentrations. High doses of sodium selenite might reduce inflammation by a direct pro-oxidative effect and may increase antioxidant cell capacities by selenium incorporation into selenoenzymes. We investigated the effects of a continuous administration of high doses of selenium in septic shock patients. METHODS A prospective, multicentre, placebo-controlled, randomized, double-blind study was performed with an intention-to-treat analysis in severe septic shock patients with documented infection. Patients received, for 10 days, selenium as sodium selenite (4,000 microg on the first day, 1,000 microg/day on the nine following days) or matching placebo using continuous intravenous infusion. The primary endpoint was the time to vasopressor therapy withdrawal. The duration of mechanical ventilation, the mortality rates in the intensive care unit, at hospital discharge, and at 7, 14, 28 and 180 days and 1 year after randomization, and adverse events were recorded. RESULTS Sixty patients were included (placebo, n = 29; selenium, n = 31). The median time to vasopressor therapy withdrawal was 7 days in both groups (95% confidence interval = 5-8 and 6-9 in the placebo and selenium groups, respectively; log-rank, P = 0.713). The median duration of mechanical ventilation was 14 days and 19 days in the placebo and selenium groups, respectively (P = 0.762). Mortality rates did not significantly differ between groups at any time point. Rates of adverse events were similar in the two groups. CONCLUSION Continuous infusion of selenium as sodium selenite (4,000 microg on the first day, 1,000 microg/day on the nine following days) had no obvious toxicity but did not improve the clinical outcome in septic shock patients. Trial Registration = NCT00207844.
Collapse
Affiliation(s)
- Xavier Forceville
- Service de Réanimation Polyvalente, Centre Hospitalier de Meaux, Hôpital Saint Faron, 6–8 rue Saint Fiacre, 77104 Meaux, France
| | - Bruno Laviolle
- Centre d'Investigation Clinique INSERM 0203, Unité de Pharmacologie Clinique, Hôpital de Pontchaillou, CHU de Rennes et Université de Rennes 1, 2 rue Henri le Guilloux, 35033 Rennes, France
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Dominique Vitoux
- Service de Biochimie A, Hôpital Saint-Louis, avenue Claude Vellefaux, 75475 Paris cedex 10, France
| | - Gérard Bleichner
- Service de Réanimation Polyvalente, Centre Hospitalier Victor Dupouy, 69 rue du Lieut-Col Prudhon, 95107 Argenteuil cedex, France
| | - Jean-Michel Korach
- Service de Réanimation Polyvalente, Centre Hospitalier, 51 rue du Commandant Derrien, 51005 Châlons en Champagne cedex, France
| | - Emmanuel Cantais
- Hôpital d'Instruction des Armées Sainte Anne, boulevard Sainte Anne, 83800 Toulon Naval, France
| | - Hugues Georges
- Centre Hospitalier Gustave Dron, 135 rue du Président Coty, 59200 Tourcoing, France
| | - Jean-Louis Soubirou
- Hôpital d'Instruction des Armées Desgenettes, 108 boulevard Pinel, 69003 Lyon, France
| | - Alain Combes
- Service de Réanimation Polyvalente, Centre Hospitalier de Meaux, Hôpital Saint Faron, 6–8 rue Saint Fiacre, 77104 Meaux, France
| | - Eric Bellissant
- Centre d'Investigation Clinique INSERM 0203, Unité de Pharmacologie Clinique, Hôpital de Pontchaillou, CHU de Rennes et Université de Rennes 1, 2 rue Henri le Guilloux, 35033 Rennes, France
| |
Collapse
|
28
|
Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol 2008; 75:494-502. [DOI: 10.1016/j.bcp.2007.08.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/18/2022]
|
29
|
Abstract
The DNA in all cells of the human body is subject to damage continuously from exogenous agents, internal cellular processes and spontaneous decomposition. Failure to repair such damage is fundamental to the development of many diseases and to ageing. Fortunately, the vast majority of DNA damage is detected and repaired by one of five complementary DNA repair systems. However, recent studies have shown that even in healthy individuals there is a wide inter-individual variation in DNA repair capacity. Part of this variation can be accounted for by polymorphisms in the genes encoding DNA repair proteins. However, it is probable that environmental factors, including dietary exposure as well as diet-gene interactions, are also responsible for much of the difference in repair capacity between individuals. Whilst there is some evidence from human studies that generalised malnutrition or low intakes of specific nutrients may affect DNA repair, as yet there is limited understanding of the molecular mechanisms through which nutrients can modulate this key cellular process.
Collapse
Affiliation(s)
- J Tyson
- Human Nutrition Research Centre, School of Clinical Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
30
|
Sakr Y, Reinhart K, Bloos F, Marx G, Russwurm S, Bauer M, Brunkhorst F. Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 2007; 98:775-84. [PMID: 17478454 DOI: 10.1093/bja/aem091] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Selenium plays an important role in defence against acute illness. We investigated, in intensive care unit (ICU) patients, the time course of plasma selenium concentrations and their relationship to systemic inflammatory response syndrome (SIRS), organ dysfunction/failure, infection, and ICU outcome. METHODS Plasma selenium and laboratory indices of organ dysfunction/failure, tissue inflammation, and infection were measured daily during the ICU stay in 60 consecutive ICU patients, 15 in each of four a priori defined subgroups: ICU controls (no SIRS); uncomplicated SIRS; severe SIRS; and severe sepsis/septic shock. RESULTS Plasma selenium concentrations were below standard values for healthy subjects (74 microg litre(-1)) in 55 patients (92%). Selenium concentrations decreased during the ICU stay in all groups, except controls, to a minimum value that was lower in patients with organ failure, particularly in those with infection. The minimum plasma selenium was inversely correlated to admission Acute Physiology and Chronic Health Evaluation II and Simplified Acute Physiology System II scores, indicators of inflammation, and the maximal degree of organ dysfunction/failure during the ICU stay. Plasma selenium was positively correlated with minimum platelet count, minimum plasma antithrombin activity, and protein C activity. In a receiver operator characteristic analysis, SAPS II score [area under the curve (AUC) = 0.903] and minimum selenium concentration (AUC = 0.867) were the strongest predictive factors for ICU mortality. CONCLUSIONS In critically ill surgical patients, plasma selenium concentrations are generally low with a greater decrease during the ICU stay in patients with organ failure, especially when attributed to infection. Lower plasma selenium concentrations are associated with more tissue damage, the presence of infection or organ dysfunction/failure, and increased ICU mortality.
Collapse
Affiliation(s)
- Y Sakr
- Department of Anesthesiology and Intensive Care, Friedrich-Schiller-University Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Celik HA, Kircelli F, Saydam G, Aydin HH. Potential involvement of serine/threonine protein phosphatases in apoptosis of HepG2 cells during selenite treatment. Biol Trace Elem Res 2007; 117:65-75. [PMID: 17873393 DOI: 10.1007/bf02698084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/05/2006] [Accepted: 10/23/2006] [Indexed: 11/25/2022]
Abstract
Selenium, an essential biological trace element present in both prokaryotic and eukaryotic cells, exerts its regulatory effect in a variety of cellular events, including cell growth, survival, and death. Selenium compounds have been shown in different cell lines to inhibit apoptosis by several mechanisms. Serine/threonine phosphatases (STPs) are potentially important in selenite-induced apoptosis because of their role in regulation of diverse set of cellular processes. In this study, the regulatory role of STPs in selenite-induced apoptosis has been implied by the use of two specific inhibitors: ocadaic acid and calyculin A. Our results show a decrease in cell density in HepG2 cells under selenite treatment. Resulting specific enzyme activities showed a concentration-dependent increase in all three phosphatase activities after 24 h in cells treated with 5 microM selenite and these activities decreased at 48 and 72 h. However, in cells treated with 10 microM selenite, PP2A and PP2B decreased at 48 h, whereas PP2C activity did not change at this dose. In cells treated with 25 microM, there was not a significant change in PP2C activity. These data suggest that the most specific response to selenite treatment was in PP2A and PP2B activities in a dose-dependent manner. Our results with OA and Cal-A further support the view that PP1 and PP2A might act as negative regulators of growth. With these data, we have first demonstrated the role of serine/threonine protein phosphatases in the signaling pathway of selenite-induced apoptosis and resulting cytotoxicity.
Collapse
Affiliation(s)
- Handan Ak Celik
- Department of Biochemistry, School of Medicine, Bornova, Izmir, TR-35100, Turkey
| | | | | | | |
Collapse
|
32
|
Salama A, Sakr Y, Reinhart K. The role of selenium in critical illness: Basic science and clinical implications. Indian J Crit Care Med 2007. [DOI: 10.4103/0972-5229.35086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
33
|
Shalini S, Bansal MP. Role of selenium in spermatogenesis: differential expression of cjun and cfos in tubular cells of mice testis. Mol Cell Biochem 2006; 292:27-38. [PMID: 17066317 DOI: 10.1007/s11010-006-9168-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/27/2006] [Indexed: 11/26/2022]
Abstract
Selenium (Se) is an essential dietary trace element, involved in the process of male reproduction. Best known as an antioxidant, it acts through various selenoproteins viz. glutathione peroxidase, thioredoxin reductase and selenoprotein P. The aim of the present study was to identify the underlying molecular mechanism of Se in regulating spermatogenesis. Different Se status: deficient, adequate and excess Se, were generated in male Balb/c mice by feeding yeast based Se deficient diet, and deficient diet supplemented with Se as sodium selenite (0.2 and 1 ppm Se) respectively for a period of 4 and 8 weeks. Se levels and glutathione peroxidase (GSH-Px) activity were significantly reduced in the Se deficient mice and enhanced in Se supplemented group. Reduction in the number of post-meiotic germ cells viz. spermatids and spermatozoa, were observed in the deficient groups indicating loss in fertility and reproductive ability. cjun and cfos (components of transcription factor AP1) regulate cellular growth and differentiation and also exert a regulatory role in steroidogenesis and spermatogenesis. Changes in the mRNA expression of cjun and cfos were observed. Concomitant with this, western blot revealed that the protein expression profile for both these genes was significantly altered in the Se deficient and Se excess groups. Further immunohistochemical analysis showed that, both these genes had identical cellular localization indicating that they do not work alone but act synergistically as AP1. cjun and cfos expression was greater in the early mitotic stages-spermatogonia and spermatocytes in the Se adequate controls. It decreased in the meiotic stages and then again peaked around the later stages-elongating spermatids and spermatozoa. However in the Se deficient mice, weaker expression was observed in the spermatogonia with a complete absence of expression near the lumen. No visible changes in cjun/cfos expression and immunohistochemical localization were observed in the excess group compared to the Se adequate controls. In conclusion, the present study clearly demonstrates that alteration in Se supply leads to decreased expression pattern for both cJun and cFos in the testicular germ cells which might be responsible for decreased germ cell number, differentiation and reduced fertility and accounts for the mechanism of Se action in regulating spermatogenesis.
Collapse
Affiliation(s)
- Sonia Shalini
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
34
|
Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 2006; 350:866-71. [PMID: 17034761 PMCID: PMC2668920 DOI: 10.1016/j.bbrc.2006.09.097] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 09/20/2006] [Indexed: 01/23/2023]
Abstract
Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-kappaB and IRF3, and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-kappaB activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKbeta, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity.
Collapse
Affiliation(s)
- Hyung S Youn
- USDA, ARS, Western Human Nutrition Research Center, Department of Nutrition, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
35
|
Sakaguchi S, Furusawa S. Oxidative stress and septic shock: metabolic aspects of oxygen-derived free radicals generated in the liver during endotoxemia. ACTA ACUST UNITED AC 2006; 47:167-77. [PMID: 16831203 DOI: 10.1111/j.1574-695x.2006.00072.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review describes the role of oxidative stress caused by endotoxin challenge in sepsis or septic shock symptoms. We observed that endotoxin injection resulted in lipid peroxide formation and membrane damage (near 60-150 kDa) in the livers of experimental animals, causing decreased levels of scavengers or quenchers of free radicals. The administration of alpha-tocopherol completely prevented injury to the liver plasma membrane caused by endotoxin, and suggested that lipid peroxidation by free radicals might occur in a tissue ischemic state, probably by disseminated intravascular coagulation (DIC), in endotoxemia. In mice, depression of Ca(2+)-ATPase activity in the liver plasma membrane may contribute to the membrane damage caused by endotoxin, and the increase of [Ca(2+)](i) in the liver cytoplasm may partially explain the oxidative stress that occurs in endotoxemia. It seems that endotoxin-induced free radical formation is regulated by Ca(2+) mobilization. Moreover, we have suggested that the oxidative stress caused by endotoxin may be due, at least in part, to the changes in endogenous zinc or selenium regulation during endotoxemia. Interestingly, the extent of TNF-alpha-induced oxidative stress may be the result of a synergism between TNF-alpha and gut-derived endotoxin. It is likely that bacterial or endotoxin translocation plays a significant role in TNF-alpha-induced septic shock. On the other hand, although nitric oxide (NO) has been implicated in the pathogenesis of vascular hyporesponsiveness and hypotension in septic shock in our experimental model, it is unlikely that NO plays a significant role in liver injury caused by free radical generation in endotoxemia.
Collapse
Affiliation(s)
- Shuhei Sakaguchi
- First Department of Hygienic Chemistry, Tohoku Pharmaceutical University, Sendai, Japan.
| | | |
Collapse
|
36
|
Shalini S, Bansal MP. Alterations in selenium status influences reproductive potential of male mice by modulation of transcription factor NFkappaB. Biometals 2006; 20:49-59. [PMID: 16758115 DOI: 10.1007/s10534-006-9014-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 04/11/2006] [Indexed: 01/12/2023]
Abstract
Selenium (Se), an essential dietary trace element, is required for the maintenance of male fertility. In order to study its role in spermatogenesis, Balb/c mice with different Se status (Se deficient, group I; adequate, group II and excess, group III) were generated by feeding yeast based Se deficient diet for group I and deficient diet supplemented with Se as sodium selenite at adequate (0.2 ppm) and excess (1 ppm) for group II and III, respectively, for a period of 4 and 8 weeks. Percentage fertility was reduced in group I and III as compared to group II. A significant decrease in Se levels and glutathione peroxidase (GSH-Px) activity were observed in group I animals, whereas increase in GSH-Px activity was seen in group III. Further, significant increase in lipid peroxidation was observed in both Se deficient and excess groups. This indicated that dietary manipulation of Se levels either deficiency or excess leads to increased oxidative stress. Nuclear factor kappa B (NFkappaB), a well-known redox regulated transcription factor has also been suggested to play a crucial role in spermatogenesis. The expression of both p65 and p50 genes (components of NFkappaB) increased in Se deficient group I mice while the expression of the inhibitory IkappaBalpha declined significantly. This indicated activation of NFkappaB in Se deficiency. We also studied iNOS expression, which is a known target gene of NFkappaB, by RT-PCR. Significant elevation in the iNOS levels as well as NO levels was recorded. Both enhanced NO levels and NFkappaB are harmful in the progression of normal spermatogenic cycle. Therefore, present result clearly demonstrates the effect of reduced supply of Se on up-regulation and activation of NFkappaB in testis and its influence on spermatogenesis.
Collapse
Affiliation(s)
- Sonia Shalini
- Department of Biophysics, Panjab University, Chandigarh, 160 014, India
| | | |
Collapse
|
37
|
Chung YW, Kim TS, Lee SY, Lee SH, Choi Y, Kim N, Min BM, Jeong DW, Kim IY. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol Lett 2006; 160:143-50. [PMID: 16111838 DOI: 10.1016/j.toxlet.2005.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 06/27/2005] [Indexed: 01/26/2023]
Abstract
The possible effects of sodium selenite on mature osteoclasts were investigated. Incubation of osteoclast-like cells differentiated from RAW 264.7 cells with sodium selenite induced apoptosis as revealed by morphological changes, internucleosomal DNA fragmentation, and activation of caspase-3. Selenite also induced generation of the superoxide anion and reduced the number of free thiol groups in the osteoclast-like cells, suggestive of a shift to a more oxidizing intracellular environment. In addition, selenite induced protein aggregation by thiol cross-linking, loss of the mitochondrial membrane potential, and cytochrome c release in mitochondria isolated from the osteoclast-like cells. Finally, selenite-induced DNA fragmentation in osteoclasts was inhibited both by cyclosporin A, a blocker of the mitochondrial permeability transition pore, and by DEVD-CHO, a cell-permeable inhibitor of caspase-3. These results thus suggest that selenite induces apoptosis mediated by the mitochondrial pathway in mature osteoclasts.
Collapse
Affiliation(s)
- Youn Wook Chung
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lindenmeyer MT, Hrenn A, Kern C, Castro V, Murillo R, Müller S, Laufer S, Schulte-Mönting J, Siedle B, Merfort I. Sesquiterpene lactones as inhibitors of IL-8 expression in HeLa cells. Bioorg Med Chem 2005; 14:2487-97. [PMID: 16326104 DOI: 10.1016/j.bmc.2005.11.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 11/18/2022]
Abstract
Twenty-four structurally different SLs were studied for their inhibition on IL-8 production in HeLa229 cells and different IC50-values were obtained. QSAR analyses revealed that the alpha-methylene-gamma-lactone and the presence and reactivity of a second reaction center, expressed by LUMO2, are the most important descriptors for IL-8. Using two SLs as examples, we demonstrated that SLs prevent DNA binding of AP-1, which has binding sites in the IL-8 promoter together with NF-kappaB and C/EBP, and that this is probably due to directly targeting AP-1. p38 MAPK, which plays a role in AP-1 activation as well as in IL-8 regulation, was not influenced by SLs. These data show that NF-kappaB and AP-1, and consequently IL-8 may be interesting targets in antiinflammation research and that the small molecules of SLs may be powerful candidates with promising properties for therapeutic modulation of the inflammatory response.
Collapse
Affiliation(s)
- Maja T Lindenmeyer
- Institute of Pharmaceutical Science, Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Agay D, Anderson RA, Sandre C, Bryden NA, Alonso A, Roussel AM, Chancerelle Y. Alterations of antioxidant trace elements (Zn, Se, Cu) and related metallo-enzymes in plasma and tissues following burn injury in rats. Burns 2005; 31:366-71. [PMID: 15774296 DOI: 10.1016/j.burns.2004.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/10/2004] [Indexed: 11/16/2022]
Abstract
To improve the nutritional support for burn patients, we evaluated the alterations of selenium, zinc and copper (Se, Zn and Cu) and their possible contributions to an unbalanced antioxidant response to burn injury. These trace elements and the related antioxidant enzymes, glutathione peroxidase (GPx) and superoxide dismutase (SOD), were studied both in plasma (or serum) and tissues of 20% total body surface area (TBSA) burned rats for 10 days. While plasma Se and serum Zn levels significantly decreased 6 h after burn injury, serum Cu levels increased after 1 day and remained elevated the following 9 days. Selenium levels increased in kidney but decreased progressively in liver. The hepatic Zn and Cu concentrations followed a biphasic increase following burn injury. During the first day, GPx activity decreased in plasma and remained unchanged in the organs, except for a moderate diminution in the liver. Liver Cu/Zn SOD activity increased from 6 h to 4 days. In summary, following burn injury, copper and zinc were redistributed to the liver and selenium to the kidney with non-detectable changes in the muscle and brain. Changes in antioxidant enzyme activities following burn injury were significant mainly in the plasma. Early combined antioxidant supplementation to maintain and restore antioxidant status in burn patients requires further study.
Collapse
Affiliation(s)
- D Agay
- Centre de Recherches du Service de Santé des Armées, 24 Avenue du Maquis du Grésivaudan, BP87, 38702 La Tronche Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
McEligot AJ, Yang S, Meyskens FL. REDOX REGULATION BY INTRINSIC SPECIES AND EXTRINSIC NUTRIENTS IN NORMAL AND CANCER CELLS. Annu Rev Nutr 2005; 25:261-95. [PMID: 16011468 DOI: 10.1146/annurev.nutr.25.050304.092633] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in multicellular organisms are exposed to both endogenous oxidative stresses generated metabolically and to oxidative stresses that originate from neighboring cells and from other tissues. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems (glutathione/GSH and thioredoxin/thioredoxin reductase) and have developed several enzymatic mechanisms against oxidants that include catalase, superoxide dismutase, and glutathione peroxidase. Other major extrinsic defenses (from the diet) include ascorbic acid, beta-carotene and other carotenoids, and selenium. Recent evidence indicates that in addition to their antioxidant function, several of these redox species and systems are involved in regulation of biological processes, including cellular signaling, transcription factor activity, and apoptosis in normal and cancer cells. The survival and overall well-being of the cell is dependent upon the balance between the activity and the intracellular levels of these antioxidants as well as their interaction with various regulatory factors, including Ref-1, nuclear factor-kappaB, and activating protein-1.
Collapse
Affiliation(s)
- Archana Jaiswal McEligot
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868, USA.
| | | | | |
Collapse
|
41
|
Park CH, Lee JH, Yang CH. Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues. BMB Rep 2005; 38:474-80. [PMID: 16053715 DOI: 10.5483/bmbrep.2005.38.4.474] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Curcumin, a major active component of turmeric, has been identified as an inhibitor of the transcriptional activity of activator protein-1 (AP-1). Recently, it was also found that curcumin and synthetic curcumin derivatives can inhibit the binding of Jun-Fos, which are the members of the AP-1 family, to DNA. However, the mechanism of this inhibition by curcumin and its derivatives was not disclosed. Since the binding of Jun-Fos dimer to DNA can be modulated by redox control involving conserved cysteine residues, we studied whether curcumin and its derivatives inhibit Jun-Fos DNA binding activity via these residues. However, the inhibitory mechanism of curcumin and its derivatives, unlike that of other Jun-Fos inhibitors, was found to be independent of these conserved cysteine residues. In addition, we investigated whether curcumin derivatives can inhibit AP-1 transcriptional activity in vivo using a luciferase assay. We found that, among the curcumin derivatives examined, only inhibitors shown to inhibit the binding of Jun-Fos to DNA by Electrophoretic Mobility Shift Assay (EMSA) inhibited AP-1 transcriptional activity in vivo. Moreover, RT-PCR revealed that curcumin derivatives, like curcumin, downregulated c-jun mRNA in JB6 cells. These results suggest that the suppression of the formation of DNA-Jun-Fos complex is the main cause of reduced AP-1 transcriptional activity by curcuminoids, and that EMSA is a suitable tool for identifying inhibitors of transcriptional activation.
Collapse
Affiliation(s)
- Chi Hoon Park
- Division of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea,
| | | | | |
Collapse
|
42
|
Stern I, Wataha JC, Lewis JB, Messer RLW, Lockwood PE, Tseng WY. Anti-rheumatic gold compounds as sublethal modulators of monocytic LPS-induced cytokine secretion. Toxicol In Vitro 2005; 19:365-71. [PMID: 15713543 DOI: 10.1016/j.tiv.2004.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/05/2004] [Accepted: 11/09/2004] [Indexed: 10/25/2022]
Abstract
The objective of this study was to quantify the ability of sublethal concentrations of several gold compounds to differentially modulate the monocytic secretion of key cytokines that are important in the etiology of rheumatic diseases. Human THP1 monocytic cells were exposed to the anti-rheumatic drugs auranofin (AF), gold sodium thiomalate (GSTM) or HAuCl4 (Au(III)) for 24-72 h. Succinate dehydrogenase (SDH) activity of the monocytes was used to determine sublethal concentrations. Monocytes were then exposed to sublethal concentrations of gold compounds for 72 h, and the activator lipopolysaccharide (LPS) was added (or not) to cultures for the last 6h. The secretion of IL6, IL8, IL10, and TNFalpha were measured in cell supernatants using ELISA. Cytokine secretion was compared among concentrations and gold compounds. SDH experiments established a sublethal concentration range of 0-75 microM for GSTM and Au(III) and 0-0.5 microM for AF. In cytokine experiments, none of the compounds alone activated secretion of any of the cytokines, but all differentially (50-440%, p<0.05) increased LPS-induced secretion of IL6 and IL8 over TNFalpha and IL10. In conclusion, sublethal concentrations of AF, GSTM, and Au(III) all may differentially modulate activation of monocytic cells, and this differential modulation may be important in the mechanisms of action of these compounds.
Collapse
Affiliation(s)
- I Stern
- Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Selenium (Se) is involved in the process of male reproduction. Several studies have been carried out to find the mechanism of Se action through identified selenoproteins. Especially selenoenzyme phospholipid glutathione peroxidase (PHGPx, GPx-4) plays a pivotal role in regulating spermatogenesis. However, the action of selenium is best known as an antioxidant which acts through various selenoproteins viz. glutathione peroxidase, thioredoxin reductase and selenoprotein P. Oxidative stress is currently being considered a leading cause of male infertility. Presently, the involvement of redox active transcription factor, AP1 (Activator protein1) in testicular function was studied. AP1 is redox sensitive and also controls cell proliferation. The effects of Se might be mediated through it. Different Se status - deficient, adequate and excess Se - were generated in male Balb/c mice by feeding yeast based selenium deficient diet and deficient diet supplemented with Se as sodium selenite (0.2 and 1 ppm Se), respectively, for a period of 4 and 8 weeks. Se status was checked by measuring the Se levels and glutathione peroxidase (GSH-Px) activity in testis and liver. The reproductive potential of mice was affected at these changed Se levels. Changes in the activity of superoxide dismutase (SOD), levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) were observed indicating increased oxidative stress at both the levels. Further, changes in the mRNA expression of GSH-Px, gamma-glutamylcysteine synthetase gammaGCS) and Mn superoxide dismutase (MnSOD) were observed. Decrease in cjun and cfos mRNA levels were observed at both the Se status (deficient and excess) which might be responsible for decreased germ cell number, differentiation and reduced fertility observed at the altered Se levels.
Collapse
Affiliation(s)
- Sonia Shalini
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
44
|
|
45
|
Seitz M, Valbracht J, Quach J, Lotz M. Gold sodium thiomalate and chloroquine inhibit cytokine production in monocytic THP-1 cells through distinct transcriptional and posttranslational mechanisms. J Clin Immunol 2004; 23:477-84. [PMID: 15031635 DOI: 10.1023/b:joci.0000010424.41475.17] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gold sodium thiomalate (GST), chloroquine (CQ), and methotrexate have been widely used in the therapy of rheumatoid arthritis and other inflammatory conditions. Using the human monocytic cell line THP-1 we have analyzed effects of these drugs on cytokine production and intracellular signaling. GST and CQ were equally effective in reducing lipopolysaccharide (LPS)-induced IL-1 beta release while CQ was a more effective inhibitor of TNF-alpha production than GST. Methotrexate did not affect production of these cytokines. CQ reduced IL-1 beta mRNA expression and strongly inhibited phosphorylation of mitogen-activated protein kinase (MAPK) p38, and to a lesser extent c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2. In contrast, GST did not affect cytokine mRNA expression or MAPK activation. However, GST selectively inhibited the activity of the interleukin-1 converting enzyme (ICE)/caspase-1. These data demonstrate that CQ inhibits IL-1 beta release from monocytes by interfering with pretranscriptional signaling and TNF-alpha release by posttranslational events whereas GST downregulates IL-1 beta secretion by interfering with posttranslational IL-1 beta processing.
Collapse
Affiliation(s)
- Michael Seitz
- Department of Rheumatology and Clinical Immunology/Allergology, University Hospital, Inselspital, Berne, Switzerland
| | | | | | | |
Collapse
|
46
|
Brar SS, Grigg C, Wilson KS, Holder WD, Dreau D, Austin C, Foster M, Ghio AJ, Whorton AR, Stowell GW, Whittall LB, Whittle RR, White DP, Kennedy TP. Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1049.3.9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The thiocarbamate alcoholism drug disulfiram blocks the P-glycoprotein extrusion pump, inhibits the transcription factor nuclear factor-κB, sensitizes tumors to chemotherapy, reduces angiogenesis, and inhibits tumor growth in mice. Thiocarbamates react with critical thiols and also complex metal ions. Using melanoma as the paradigm, we tested whether disulfiram might inhibit growth by forming mixed disulfides with critical thiols in a mechanism facilitated by metal ions. Disulfiram given to melanoma cells in combination with Cu2+ or Zn2+ decreased expression of cyclin A and reduced proliferation in vitro at lower concentrations than disulfiram alone. In electrophoretic mobility shift assays, disulfiram decreased transcription factor binding to the cyclic AMP-responsive element in a manner potentiated by Cu2+ ions and by the presence of glutathione, suggesting that thiocarbamates might disrupt transcription factor binding by inducing S-glutathionylation of the transcription factor DNA binding region. Disulfiram inhibited growth and angiogenesis in melanomas transplanted in severe combined immunodeficient mice, and these effects were potentiated by Zn2+ supplementation. The combination of oral zinc gluconate and disulfiram at currently approved doses for alcoholism also induced >50% reduction in hepatic metastases and produced clinical remission in a patient with stage IV metastatic ocular melanoma, who has continued on oral zinc gluconate and disulfiram therapy for 53 continuous months with negligible side effects. These findings present a novel strategy for treating metastatic melanoma by employing an old drug toward a new therapeutic use.
Collapse
Affiliation(s)
- Sukhdev S. Brar
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Claude Grigg
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Kimberly S. Wilson
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Walter D. Holder
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Didier Dreau
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Catherine Austin
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Mareva Foster
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Andrew J. Ghio
- 2U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - A. Richard Whorton
- 3Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina; and
| | | | | | | | | | - Thomas P. Kennedy
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| |
Collapse
|
47
|
Amantana A, Vorachek WR, Butler JA, Ream W, Whanger PD. Identification of putative transcription factor binding sites in rodent selenoprotein W promoter. J Inorg Biochem 2004; 98:1513-20. [PMID: 15337603 DOI: 10.1016/j.jinorgbio.2004.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 06/02/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
To understand transcriptional regulation of the selenoprotein W (SeW) gene, we used in vitro binding assays to identify transcription factors that may be involved in the transcriptional regulation of the SeW gene. Using protein from rat C6 (glial) cell nuclear extracts, oligonucleotides containing putative regulatory elements in the SeW promoter and antibodies, we observed that specificity protein 1(Sp1) transcription factor binds to the Sp1 consensus sequence in the SeW promoter as well as to the metal response element (MRE). Although competition analysis showed specific binding at the TFII-1 site, super-shift analysis using anti-TFII-1 antibody did not yield any super-shifted band. Therefore, the SeW gene may be a target for Sp1 whose binding to various regulatory sequences of the SeW promoter may activate or repress the transcription of SeW. The MRE, GRE, AP-1 and LF-A1 sites were also tested but no evidence was obtained for specific binding as indicated by lack of competition with unlabeled probes.
Collapse
Affiliation(s)
- A Amantana
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
48
|
Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 2004; 4:327-47. [PMID: 15037211 DOI: 10.1016/j.intimp.2004.01.020] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/13/2004] [Accepted: 01/29/2004] [Indexed: 02/07/2023]
Abstract
The excessive production of reactive oxygen species (ROS), associated with inflammation, leads to a condition of oxidative stress. Oxidative stress is a major contributing factor to the high mortality rates associated with several diseases such as endotoxic shock. This condition can be controlled to a certain degree by antioxidant therapies. Immune cells use ROS in order to support their functions and therefore need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive production of ROS. This review discusses the toxic effects of endotoxin, paying particular attention to immune function. It continues by analyzing the mechanism to which specific cells of the immune system recognize endotoxin, and the resulting pathways leading to nuclear factor-kappaB activation and proinflammatory gene transcription. We also focus on the involvement of reactive oxygen and nitric oxide (NO) and the protective role of antioxidants. The potential clinical use of antioxidants in the treatment of sepsis and the effects on the redox state of the immune cells are discussed.
Collapse
Affiliation(s)
- Victor M Victor
- Unidad Mixta Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III-Universidad de Valencia, Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | | | | |
Collapse
|
49
|
Sarker KP, Biswas KK, Rosales JL, Yamaji K, Hashiguchi T, Lee KY, Maruyama I. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. J Neurochem 2003; 87:1345-53. [PMID: 14713291 DOI: 10.1046/j.1471-4159.2003.02096.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ebselen, a selenium-containing heterocyclic compound, prevents ischemia-induced cell death. However, the molecular mechanism through which ebselen exerts its cytoprotective effect remains to be elucidated. Using sodium nitroprusside (SNP) as a nitric oxide (NO) donor, we show here that ebselen potently inhibits NO-induced apoptosis of differentiated PC12 cells. This was associated with inhibition of NO-induced phosphatidyl Serine exposure, cytochrome c release, and caspase-3 activation by ebselen. Analysis of key apoptotic regulators during NO-induced apoptosis of differentiated PC12 cells showed that ebselen blocks the activation of the apoptosis signaling-regulating kinase 1 (ASK1), and inhibits phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal protein kinase (JNK). Moreover, ebselen inhibits NO-induced p53 phosphorylation at Ser15 and c-Jun phosphorylation at Ser63 and Ser73. It appears that inhibition of p38 MAPK and p53 phosphorylation by ebselen occurs via a thiol-redox-dependent mechanism. Interestingly, ebselen also activates p44/42 MAPK, and inhibits the downregulation of the antiapoptotic protein Bcl-2 in SNP-treated PC12 cells. Together, these findings suggest that ebselen protects neuronal cells from NO cytotoxicity by reciprocally regulating the apoptotic and antiapoptotic signaling cascades.
Collapse
Affiliation(s)
- Krishna P Sarker
- Department of Laboratory and Molecular Medicine, Faculty of Medicine, Kagoshima University, Kagoshima-890, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Maehira F, Miyagi I, Eguchi Y. Selenium regulates transcription factor NF-kappaB activation during the acute phase reaction. Clin Chim Acta 2003; 334:163-71. [PMID: 12867288 DOI: 10.1016/s0009-8981(03)00223-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND We reported a reciprocal relationship between reduced serum selenium (Se) and elevated serum C-reactive protein (CRP) in various pathological conditions in comparison with the levels in 141 healthy subjects. To clarify the implications of these observations, the effect of Se on nuclear factor (NF)-kappaB, which upregulates the CRP synthesis in the liver, was examined. METHODS Human hepatoma cell line HuH-7 was cultured in medium with 2% fetal calf serum (FCS) for 3 days for the Se deprivation, followed by another 3 days in the same medium containing sodium selenite prior to stimulation of the cells with either monocyte-conditioned medium (MoCM) or tumor necrosis factor-alpha (TNF-alpha). NF-kappaB activation and the synthesis of CRP in hepatocytes were examined by a non-radioisotope (non-RI) gel shift assay for the nuclear extract from the cells and by a highly sensitive ELISA for the cellular extract, respectively. RESULTS The NF-kappaB activation induced by MoCM and TNF-alpha were inhibited by Se at the physiological levels. The maximum activation of NF-kappaB was induced by TNF-alpha or MoCM at a Se concentration (0.5 approximately 1 micromol/l) which was half the level of the serum Se in healthy subjects and was equivalent to level in subjects with pathological conditions together with high serum CRP values. Under the same conditions, the hepatocytes synthesized maximal amounts of CRP. CONCLUSIONS Selenium at physiological levels mediates inhibition of the activation of the transcription factor NF-kappaB which regulates genes that encode inflammatory cytokines, and that conversely, the reduction of selenium induces the synthesis of CRP by hepatocytes during the acute phase response.
Collapse
Affiliation(s)
- Fusako Maehira
- Laboratory of Clinical Biochemistry, Department of Health Technology, School of Health Sciences, University of the Ryukyus, Okinawa 903-0215, Japan.
| | | | | |
Collapse
|