1
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
2
|
Sutovsky P, Zigo M, Tirpak F, Oko R. Paternal contributions to mammalian zygote - Beyond sperm-oocyte fusion. Curr Top Dev Biol 2025; 162:387-446. [PMID: 40180516 DOI: 10.1016/bs.ctdb.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Contrary to a common misconception that the fertilizing spermatozoon acts solely as a vehicle for paternal genome delivery to the zygote, this chapter aims to illustrate how the male gamete makes other essential contributions , including the sperm borne-oocyte activation factors, centrosome components, and components of the sperm proteome and transcriptome that help to lay the foundation for pregnancy establishment and maintenance to term, and the newborn and adult health. Our inquiry starts immediately after sperm plasma membrane fusion with its oocyte counterpart, the oolemma. Parallel to and following sperm incorporation in the egg cytoplasm, some of the sperm structures (perinuclear theca) are dissolved and spent to induce development, others (nucleus, centriole) are transformed into zygotic structures enabling it, and yet others (mitochondrial and fibrous sheath, axonemal microtubules and outer dense fibers) are recycled as to not stand in its way. Noteworthy advances in this research include the identification of several sperm-borne oocyte activating factor candidates, the role of autophagy in the post-fertilization sperm mitochondrion degradation, new insight into zygotic centrosome origins and function, and the contributions of sperm-delivered RNA cargos to early embryo development. In concluding remarks, the unresolved issues, and clinical and biotechnological implications of sperm-vectored paternal inheritance are discussed.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:484-492. [PMID: 37702423 DOI: 10.1093/pcp/pcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows the transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (∼10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance from a mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1) influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
6
|
Cao J, Luo Y, Chen Y, Wu Z, Zhang J, Wu Y, Hu W. Maternal mitochondrial function affects paternal mitochondrial inheritance in Drosophila. Genetics 2024; 226:iyae014. [PMID: 38290047 PMCID: PMC10990420 DOI: 10.1093/genetics/iyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
The maternal inheritance of mitochondria is a widely accepted paradigm, and mechanisms that prevent paternal mitochondria transmission to offspring during spermatogenesis and postfertilization have been described. Although certain species do retain paternal mitochondria, the factors affecting paternal mitochondria inheritance in these cases are unclear. More importantly, the evolutionary benefit of retaining paternal mitochondria and their ultimate fate are unknown. Here we show that transplanted exogenous paternal D. yakuba mitochondria can be transmitted to offspring when maternal mitochondria are dysfunctional in D. melanogaster. Furthermore, we show that the preserved paternal mitochondria are functional, and can be stably inherited, such that the proportion of paternal mitochondria increases gradually in subsequent generations. Our work has important implications that paternal mitochondria inheritance should not be overlooked as a genetic phenomenon in evolution, especially when paternal mitochondria are of significant differences from the maternal mitochondria or the maternal mitochondria are functionally abnormal. Our results improve the understanding of mitochondrial inheritance and provide a new model system for its study.
Collapse
Affiliation(s)
- Jinguo Cao
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Mitochondrial Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yuying Luo
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yonghe Chen
- Department of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zhaoqi Wu
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jiting Zhang
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou 341000, China
- Key Laboratory of Genetic and Developmental Related Diseases, Gannan Medical University, Ganzhou 341000, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou 341000, China
| |
Collapse
|
7
|
Li CY, Liu XC, Li YZ, Wang Y, Nie YH, Xu YT, Zhang XT, Lu Y, Sun Q. Generation of mitochondrial replacement monkeys by female pronucleus transfer. Zool Res 2024; 45:292-298. [PMID: 38485499 PMCID: PMC11017074 DOI: 10.24272/j.issn.2095-8137.2023.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/25/2023] [Indexed: 03/19/2024] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) are maternally inherited and have the potential to cause severe disorders. Mitochondrial replacement therapies, including spindle, polar body, and pronuclear transfers, are promising strategies for preventing the hereditary transmission of mtDNA diseases. While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos, its application in non-human primates has not been previously reported. In this study, we successfully generated four healthy cynomolgus monkeys ( Macaca fascicularis) via female pronuclear transfer. These individuals all survived for more than two years and exhibited minimal mtDNA carryover (3.8%-6.7%), as well as relatively stable mtDNA heteroplasmy dynamics during development. The successful establishment of this non-human primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans.
Collapse
Affiliation(s)
- Chun-Yang Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution and Animal Models, Chinese Academy of Sciences, Kunming 650201, China
| | - Xing-Chen Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution and Animal Models, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Zhuo Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution and Animal Models, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan-Hong Nie
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution and Animal Models, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Ting Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Tong Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution and Animal Models, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution and Animal Models, Chinese Academy of Sciences, Kunming 650201, China. E-mail:
| |
Collapse
|
8
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Zuidema D, Jones A, Song WH, Zigo M, Sutovsky P. Identification of candidate mitochondrial inheritance determinants using the mammalian cell-free system. eLife 2023; 12:RP85596. [PMID: 37470242 PMCID: PMC10393022 DOI: 10.7554/elife.85596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The degradation of sperm-borne mitochondria after fertilization is a conserved event. This process known as post-fertilization sperm mitophagy, ensures exclusively maternal inheritance of the mitochondria-harbored mitochondrial DNA genome. This mitochondrial degradation is in part carried out by the ubiquitin-proteasome system. In mammals, ubiquitin-binding pro-autophagic receptors such as SQSTM1 and GABARAP have also been shown to contribute to sperm mitophagy. These systems work in concert to ensure the timely degradation of the sperm-borne mitochondria after fertilization. We hypothesize that other receptors, cofactors, and substrates are involved in post-fertilization mitophagy. Mass spectrometry was used in conjunction with a porcine cell-free system to identify other autophagic cofactors involved in post-fertilization sperm mitophagy. This porcine cell-free system is able to recapitulate early fertilization proteomic interactions. Altogether, 185 proteins were identified as statistically different between control and cell-free-treated spermatozoa. Six of these proteins were further investigated, including MVP, PSMG2, PSMA3, FUNDC2, SAMM50, and BAG5. These proteins were phenotyped using porcine in vitro fertilization, cell imaging, proteomics, and the porcine cell-free system. The present data confirms the involvement of known mitophagy determinants in the regulation of mitochondrial inheritance and provides a master list of candidate mitophagy co-factors to validate in the future hypothesis-driven studies.
Collapse
Affiliation(s)
- Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, United States
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, United States
| |
Collapse
|
10
|
Liu Y, Zhao S, Chen X, Bian Y, Cao Y, Xu P, Zhang C, Zhang J, Zhao S, Zhao H. Variations in mitochondrial DNA coding and D-loop region are associated with early embryonic development defects in infertile women. Hum Genet 2023; 142:193-200. [PMID: 36352239 DOI: 10.1007/s00439-022-02505-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial DNA (mtDNA) plays a critical role in oocyte maturation, fertilization, and early embryonic development. Defects in mtDNA may determine the alteration of the mitochondrial function, affecting cellular oxidative phosphorylation and ATP supply, leading to impaired oocyte maturation, abnormal fertilization, and low embryonic developmental potential, ultimately leading to female infertility. This case-control study was established to investigate the correlation between mtDNA variations and early embryonic development defects. Peripheral blood was collected for next-generation sequencing from women who suffered the repeated failures of in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) cycles due to early embryonic development defects as well as in-house healthy controls, and the sequencing results were statistically analyzed for all subjects. This study found that infertile women with early embryonic development defects carried more mtDNA variants, especially in the D-loop region, ATP6 gene, and CYTB gene. By univariate logistic regression analysis, 16 mtDNA variants were associated with an increased risk of early embryonic development defects (OR > 1, p < 0.05). Furthermore, we identified 16 potentially pathogenic mtDNA variants only in infertile cases. The data proved that mtDNA variations were associated with early embryonic development defects in infertile Chinese women.
Collapse
Affiliation(s)
- Yuqing Liu
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Peiwen Xu
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Changming Zhang
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, 157 Jingliu Road, Jinan, 250021, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China. .,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China. .,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Kawasaki E, Wenjing D, Sawada A, Nakajima M, Momose K, Yoshino T, Amano T, Endoh D, Nakajima N, Teraoka H. Conventional Gel Electrophoresis-Resolvable Insertion/Deletion Markers for Individual Identification and Analysis of Population Genetics in Red-Crowned Cranes in Eastern Hokkaido, Japan. Animals (Basel) 2022; 12:2293. [PMID: 36078013 PMCID: PMC9455020 DOI: 10.3390/ani12172293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Red-crowned crane Grus japonensis is an endangered species in two separate populations: the mainland population in the Eurasian continent and the island population in eastern Hokkaido, Japan. We found 11 insertion/deletion (InDel) markers in the genome of the red-crowned crane and designed primer sets across these InDels that can be analyzed with conventional agarose gel electrophoresis. Sixty-six samples of whole blood and skeletal muscle obtained from red-crowned cranes, including 12 families in eastern Hokkaido from 1994 to 2021, showed different patterns in gel images of 11 InDel PCR reactions except for two pairs. The combined non-exclusion probability of the 11 markers indicates that individuals can be determined with a probability of 99.9%. In 39 non-relative chicks, the expected heterozygosity (He) was 0.316, suggesting low genetic diversity. This might not be caused by high levels of inbreeding since the average FIS was not significantly different from zero (0.095, p = 0.075). The results suggest that the 11 InDel primer sets can be used for fairly accurate individual identification as well as genetic population analyses in red-crowned cranes in the island population.
Collapse
Affiliation(s)
- Erika Kawasaki
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Dong Wenjing
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Akira Sawada
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Momoko Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | | | - Tomoko Amano
- College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- NPO Red-Crowned Crane Conservancy, Kushiro 085-0036, Japan
| |
Collapse
|
12
|
Tani H, Ishikawa K, Tamashiro H, Ogasawara E, Yasukawa T, Matsuda S, Shimizu A, Kang D, Hayashi JI, Wei FY, Nakada K. Aberrant RNA processing contributes to the pathogenesis of mitochondrial diseases in trans-mitochondrial mouse model carrying mitochondrial tRNALeu(UUR) with a pathogenic A2748G mutation. Nucleic Acids Res 2022; 50:9382-9396. [PMID: 35998911 PMCID: PMC9458463 DOI: 10.1093/nar/gkac699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial tRNAs are indispensable for the intra-mitochondrial translation of genes related to respiratory subunits, and mutations in mitochondrial tRNA genes have been identified in various disease patients. However, the molecular mechanism underlying pathogenesis remains unclear due to the lack of animal models. Here, we established a mouse model, designated 'mito-mice tRNALeu(UUR)2748', that carries a pathogenic A2748G mutation in the tRNALeu(UUR) gene of mitochondrial DNA (mtDNA). The A2748G mutation is orthologous to the human A3302G mutation found in patients with mitochondrial diseases and diabetes. A2748G mtDNA was maternally inherited, equally distributed among tissues in individual mice, and its abundance did not change with age. At the molecular level, A2748G mutation is associated with aberrant processing of precursor mRNA containing tRNALeu(UUR) and mt-ND1, leading to a marked decrease in the steady-levels of ND1 protein and Complex I activity in tissues. Mito-mice tRNALeu(UUR)2748 with ≥50% A2748G mtDNA exhibited age-dependent metabolic defects including hyperglycemia, insulin insensitivity, and hepatic steatosis, resembling symptoms of patients carrying the A3302G mutation. This work demonstrates a valuable mouse model with an inheritable pathological A2748G mutation in mt-tRNALeu(UUR) that shows metabolic syndrome-like phenotypes at high heteroplasmy level. Furthermore, our findings provide molecular basis for understanding A3302G mutation-mediated mitochondrial disorders.
Collapse
Affiliation(s)
- Haruna Tani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan,Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kaori Ishikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroaki Tamashiro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan,Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeru Matsuda
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinori Shimizu
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan,Kashiigaoka Rehabilitation Hospital, Higashi-ku, Fukuoka, Fukuoka 813-0002, Japan
| | - Jun-Ichi Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazuto Nakada
- To whom correspondence should be addressed. Tel: +81 29 853 6694; Fax: +81 29 853 6614;
| |
Collapse
|
13
|
Lee J, Willett CS. Frequent Paternal Mitochondrial Inheritance and Rapid Haplotype Frequency Shifts in Copepod Hybrids. J Hered 2022; 113:171-183. [PMID: 35575078 DOI: 10.1093/jhered/esab068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.
Collapse
Affiliation(s)
- Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Balakirev ES. Recombinant Mitochondrial Genomes Reveal Recent Interspecific Hybridization between Invasive Salangid Fishes. Life (Basel) 2022; 12:661. [PMID: 35629328 PMCID: PMC9144084 DOI: 10.3390/life12050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The interspecific recombination of the mitochondrial (mt) genome, if not an experimental artifact, may result from interbreeding of species with broken reproductive barriers, which, in turn, is a frequent consequence of human activities including species translocations, habitat modifications, and climate change. This issue, however, has not been addressed for Protosalanx chinensis and other commercially important and, simultaneously, invasive salangid fishes that were the product of successful aquaculture in China. To assess the probability of interspecific hybridization, we analyzed the patterns of diversity and recombination in the complete mitochondrial (mt) genomes of these fishes using the GenBank resources. A sliding window analysis revealed a non-uniform distribution of the intraspecific differences in P. chinensis with four highly pronounced peaks of divergence centered at the COI, ND4L-ND4, and ND5 genes, and also at the control region. The corresponding divergent regions in P. chinensis show a high sequence similarity (99−100%) to the related salangid fishes, Neosalanx tangkahkeii and N. anderssoni. This observation suggests that the divergent regions of P. chinensis may represent a recombinant mitochondrial DNA (mtDNA) containing mt genome fragments belonging to different salangid species. Indeed, four, highly significant (pairwise homoplasy index test, P < 0.00001) signals of recombination have been revealed at coordinates closely corresponding to the divergent regions. The recombinant fragments are, however, not fixed, and different mt genomes of P. chinensis are mosaic, containing different numbers of recombinant events. These facts, along with the high similarity or full identity of the recombinant fragments between the donor and the recipient sequences, indicate a recent interspecific hybridization between P. chinensis and two Neosalanx species. Alternative hypotheses, including taxonomical misidentifications, sequence misalignments, DNA contamination, and/or artificial PCR recombinants, are not supported by the data. The recombinant fragments revealed in our study represent diagnostic genetic markers for the identification and distinguishing of hybrids, which can be used to control the invasive dynamics of hybrid salangid fishes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
15
|
Podolak A, Woclawek-Potocka I, Lukaszuk K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022; 11:797. [PMID: 35269419 PMCID: PMC8909547 DOI: 10.3390/cells11050797] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are well known as 'the powerhouses of the cell'. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte's mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
16
|
Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update 2021; 28:200-231. [PMID: 34967891 PMCID: PMC8889000 DOI: 10.1093/humupd/dmab043] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular catabolic process of degrading and recycling proteins and organelles to modulate various physiological and pathological events, including cell differentiation and development. Emerging data indicate that autophagy is closely associated with male reproduction, especially the biosynthetic and catabolic processes of sperm. Throughout the fate of sperm, a series of highly specialized cellular events occur, involving pre-testicular, testicular and post-testicular events. Nonetheless, the most fundamental question of whether autophagy plays a protective or harmful role in male reproduction, especially in sperm, remains unclear. OBJECTIVE AND RATIONALE We summarize the functional roles of autophagy in the pre-testicular (hypothalamic–pituitary–testis (HPG) axis), testicular (spermatocytogenesis, spermatidogenesis, spermiogenesis, spermiation) and post-testicular (sperm maturation and fertilization) processes according to the timeline of sperm fate. Additionally, critical mechanisms of the action and clinical impacts of autophagy on sperm are identified, laying the foundation for the treatment of male infertility. SEARCH METHODS In this narrative review, the PubMed database was used to search peer-reviewed publications for summarizing the functional roles of autophagy in the fate of sperm using the following terms: ‘autophagy’, ‘sperm’, ‘hypothalamic–pituitary–testis axis’, ‘spermatogenesis’, ‘spermatocytogenesis’, ‘spermatidogenesis’, ‘spermiogenesis’, ‘spermiation’, ‘sperm maturation’, ‘fertilization’, ‘capacitation’ and ‘acrosome’ in combination with autophagy-related proteins. We also performed a bibliographic search for the clinical impact of the autophagy process using the keywords of autophagy inhibitors such as ‘bafilomycin A1’, ‘chloroquine’, ‘hydroxychloroquine’, ‘3-Methyl Adenine (3-MA)’, ‘lucanthone’, ‘wortmannin’ and autophagy activators such as ‘rapamycin’, ‘perifosine’, ‘metformin’ in combination with ‘disease’, ‘treatment’, ‘therapy’, ‘male infertility’ and equivalent terms. In addition, reference lists of primary and review articles were reviewed for additional relevant publications. All relevant publications until August 2021 were critically evaluated and discussed on the basis of relevance, quality and timelines. OUTCOMES (i) In pre-testicular processes, autophagy-related genes are involved in the regulation of the HPG axis; and (ii) in testicular processes, mTORC1, the main gate to autophagy, is crucial for spermatogonia stem cell (SCCs) proliferation, differentiation, meiotic progression, inactivation of sex chromosomes and spermiogenesis. During spermatidogenesis, autophagy maintains haploid round spermatid chromatoid body homeostasis for differentiation. During spermiogenesis, autophagy participates in acrosome biogenesis, flagella assembly, head shaping and the removal of cytoplasm from elongating spermatid. After spermatogenesis, through PDLIM1, autophagy orchestrates apical ectoplasmic specialization and basal ectoplasmic specialization to handle cytoskeleton assembly, governing spermatid movement and release during spermiation. In post-testicular processes, there is no direct evidence that autophagy participates in the process of capacitation. However, autophagy modulates the acrosome reaction, paternal mitochondria elimination and clearance of membranous organelles during fertilization. WIDER IMPLICATIONS Deciphering the roles of autophagy in the entire fate of sperm will provide valuable insights into therapies for diseases, especially male infertility.
Collapse
Affiliation(s)
- Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Harvard Reproductive Endocrine Science Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Yuan Zhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| |
Collapse
|
17
|
Song WH, Zuidema D, Yi YJ, Zigo M, Zhang Z, Sutovsky M, Sutovsky P. Mammalian Cell-Free System Recapitulates the Early Events of Post-Fertilization Sperm Mitophagy. Cells 2021; 10:2450. [PMID: 34572103 PMCID: PMC8466530 DOI: 10.3390/cells10092450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Propagation of paternal sperm-contributed mitochondrial genes, resulting in heteroplasmy, is seldom observed in mammals due to post-fertilization degradation of sperm mitochondria, referred to as sperm mitophagy. Whole organelle sperm mitochondrion degradation is thought to be mediated by the interplay between the ubiquitin-proteasome system (UPS) and the autophagic pathway (Song et al., Proc. Natl. Acad. Sci. USA, 2016). Both porcine and primate post-fertilization sperm mitophagy rely on the ubiquitin-binding autophagy receptor, sequestosome 1 (SQSTM1), and the proteasome-interacting ubiquitinated protein dislocase, valosin-containing protein (VCP). Consequently, we anticipated that sperm mitophagy could be reconstituted in a cell-free system consisting of permeabilized mammalian spermatozoa co-incubated with porcine oocyte extracts. We found that SQSTM1 was detected in the midpiece/mitochondrial sheath of the sperm tail after, but not before, co-incubation with oocyte extracts. VCP was prominent in the sperm mitochondrial sheath both before and after the extract co-incubation and was also detected in the acrosome and postacrosomal sheath and the subacrosomal layer of the spermatozoa co-incubated with extraction buffer as control. Such patterns are consistent with our previous observation of SQSTM1 and VCP associating with sperm mitochondria inside the porcine zygote. In addition, it was observed that sperm head expansion mimicked the early stages of paternal pronucleus development in a zygote during prolonged sperm-oocyte extract co-incubation. Treatment with anti-SQSTM1 antibody during extract co-incubation prevented ooplasmic SQSTM1 binding to sperm mitochondria. Even in an interspecific cellular environment encompassing bull spermatozoa and porcine oocyte extract, ooplasmic SQSTM1 was recruited to heterospecific sperm mitochondria. Complementary with the binding of SQSTM1 and VCP to sperm mitochondria, two sperm-borne pro-mitophagy proteins, parkin co-regulated gene product (PACRG) and spermatogenesis associated 18 (SPATA18), underwent localization changes after extract coincubation, which were consistent with their degradation observed inside fertilized porcine oocytes. These results demonstrate that the early developmental events of post-fertilization sperm mitophagy observed in porcine zygote can be reconstituted in a cell-free system, which could become a useful tool for identifying additional molecules that regulate mitochondrial inheritance in mammals.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Dalen Zuidema
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Young-Joo Yi
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Michal Zigo
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA;
- The C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Sasaki T, Sato M. Degradation of paternal mitochondria via mitophagy. Biochim Biophys Acta Gen Subj 2021; 1865:129886. [PMID: 33636253 DOI: 10.1016/j.bbagen.2021.129886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. SCOPE OF REVIEW In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. MAJOR CONCLUSIONS Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. GENERAL SIGNIFICANCE Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.
Collapse
Affiliation(s)
- Taeko Sasaki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| |
Collapse
|
19
|
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 2021; 27:697-719. [PMID: 33555313 DOI: 10.1093/humupd/dmab001] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The best-known role of spermatozoa is to fertilize the oocyte and to transmit the paternal genome to offspring. These highly specialized cells have a unique structure consisting of all the elements absolutely necessary to each stage of fertilization and to embryonic development. Mature spermatozoa are made up of a head with the nucleus, a neck, and a flagellum that allows motility and that contains a midpiece with a mitochondrial helix. Mitochondria are central to cellular energy production but they also have various other functions. Although mitochondria are recognized as essential to spermatozoa, their exact pathophysiological role and their functioning are complex. Available literature relative to mitochondria in spermatozoa is dense and contradictory in some cases. Furthermore, mitochondria are only indirectly involved in cytoplasmic heredity as their DNA, the paternal mitochondrial DNA, is not transmitted to descendants. OBJECTIVE AND RATIONAL This review aims to summarize available literature on mitochondria in spermatozoa, and, in particular, that with respect to humans, with the perspective of better understanding the anomalies that could be implicated in male infertility. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews pertaining to human spermatozoa and mitochondria. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA', 'spermatozoa' or 'sperm' and 'reactive oxygen species' or 'calcium' or 'apoptosis' or signaling pathways'. These keywords were combined with other relevant search phrases. References from these articles were used to obtain additional articles. OUTCOMES Mitochondria are central to the metabolism of spermatozoa and they are implicated in energy production, redox equilibrium and calcium regulation, as well as apoptotic pathways, all of which are necessary for flagellar motility, capacitation, acrosome reaction and gametic fusion. In numerous cases, alterations in one of the aforementioned functions could be linked to a decline in sperm quality and/or infertility. The link between the mitochondrial genome and the quality of spermatozoa appears to be more complex. Although the quantity of mtDNA, and the existence of large-scale deletions therein, are inversely correlated to sperm quality, the effects of mutations seem to be heterogeneous and particularly related to their pathogenicity. WIDER IMPLICATIONS The importance of the role of mitochondria in reproduction, and particularly in gamete quality, has recently emerged following numerous publications. Better understanding of male infertility is of great interest in the current context where a significant decline in sperm quality has been observed.
Collapse
Affiliation(s)
- Magalie Boguenet
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France
| | - Pierre-Emmanuel Bouet
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Andrew Spiers
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Pascal Reynier
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Department of Biochemistry and Genetics, Angers University Hospital, Angers 49000, France
| | - Pascale May-Panloup
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Reproductive Biology Unit, Angers University Hospital, Angers 49000, France
| |
Collapse
|
20
|
Wang Y, Sun W, Gu Q, Yao J, Tan H, Huang X, Qin Q, Tao M, Zhang C, Liu S. Variations in the Mitochondrial Genome of a Goldfish-Like Hybrid [Koi Carp (♀) × Blunt Snout Bream (♂)] Indicate Paternal Leakage. Front Genet 2021; 11:613520. [PMID: 33552134 PMCID: PMC7861200 DOI: 10.3389/fgene.2020.613520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, a homodiploid goldfish-like fish (2n = 100; GF-L) was spontaneously generated by self-crossing a homodiploid red crucian carp-like fish (2n = 100; RCC-L), which was in turn produced via the distant hybridization of female koi carp (Cyprinus carpio haematopterus, KOC, 2n = 100) and male blunt snout bream (Megalobrama amblycephala, BSB, 2n = 48). The phenotypes and genotypes of RCC-L and GF-L differed from those of the parental species but were similar to diploid red crucian carp (2n = 100; RCC) and goldfish (2n = 100; GF), respectively. We sequenced the complete mitochondrial DNAs (mtDNAs) of the KOC, BSB, RCC-L, GF-L, and subsequent generations produced by self-crossing [the self-mating offspring of RCC-L (RCC-L-F2) to the self-mating offspring of RCC-L-F2 (RCC-L-F3) and the self-mating offspring of GF-L (GF-L-F2)]. Paternal mtDNA fragments were stably embedded in the mtDNAs of both lineages, forming chimeric DNA fragments. In addition to these chimeras, several nucleotide positions in the RCC-L and GF-L lineages differed from the parental bases, and were instead identical with RCC and GF, respectively. Moreover, RCC-L and GF-L mtDNA organization and nucleotide composition were more similar to those of RCC and GF, respectively, compared to parental mtDNA. Finally, phylogenetic analyses indicated that RCC-L and GF-L clustered with RCC and GF, not with the parental species. The molecular dating time shows that the divergence time of KOC and GF was about 21.26 Mya [95% highest posterior density (HPD): 24.41-16.67 Mya], which fell within the period of recent. The heritable chimeric DNA fragments and mutant loci identified in the mtDNA of the RCC-L and GF-L lineages provided important evidence that hybridizations might lead to changes in the mtDNA and the subsequent generation of new lineages. Our findings also demonstrated for the first time that the paternal mtDNA was transmitted into the mtDNA of homodiploid lineages (RCC-L and GF-L), which provided evidence that paternal DNA plays a role in inherited mtDNA. These evolutionary analyses in mtDNA suggest that GF might have diverged from RCC after RCC diverged from koi carp.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenzhen Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jiajun Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huifang Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
21
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
22
|
Sayed GA, Al-Sawaf HA, Al-Sawaf AH, Saeid M, Maged A, Ibrahim IH. Mitochondrial DNA in Fresh versus Frozen Embryo Culture Media of Polycystic Ovarian Syndrome Patients Undergoing Invitro Fertilization: A Possible Predictive Marker of a Successful Pregnancy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:27-38. [PMID: 33469340 PMCID: PMC7810675 DOI: 10.2147/pgpm.s284064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022]
Abstract
Purpose Frozen embryos transfer (ET) may improve the live-birth and reduce rates of ovarian hyperstimulation in polycystic ovary syndrome (PCOS) patients. Morphological criteria are the classical way for embryo selection, yet recently, many biochemical and genetic markers have been developed. This study aimed to compare fresh and frozen ET using the mtDNA/gDNA ratio of embryo secretome and the possibility of using this ratio as a predictive marker of PCOS pregnancy rate. Subjects and Methods One hundred PCOS patients undergoing IVF were chosen according to Rotterdam criteria and divided into two groups. Group I (50 with fresh ET), group II (50 with frozen ET), and otherwise 33 apparently healthy women as a control group with fresh ET. We then carried out absolute quantification of embryo culture media mtDNA and gDNA by real-time PCR. Results mtDNA/gDNA ratio was significantly low in PCOS embryo culture media in comparison with control. Additionally, while the mtDNA/gDNA ratio was significantly high in pregnant PCOS embryo culture media, it was high, though not statistically significant, in the fresh ET than frozen ET group. mtDNA/gDNA ratio sensitivity and specificity in PCOS embryo culture media as a predictive value of pregnancy rate were (86% and 96%, respectively). Conclusion mtDNA/gDNA ratio measurement in PCOS embryo culture media is a novel marker that can be clinically applied as a predictive value of the quality of the morphologically good embryo. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/uqKkQgRrql4
Collapse
Affiliation(s)
- Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hussein A Al-Sawaf
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ahmed H Al-Sawaf
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Ahmed Maged
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman Hassan Ibrahim
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Lopez Sanchez MIG, Cipullo M, Gopalakrishna S, Khawaja A, Rorbach J. Methylation of Ribosomal RNA: A Mitochondrial Perspective. Front Genet 2020; 11:761. [PMID: 32765591 PMCID: PMC7379855 DOI: 10.3389/fgene.2020.00761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ribosomal RNA (rRNA) from all organisms undergoes post-transcriptional modifications that increase the diversity of its composition and activity. In mitochondria, specialized mitochondrial ribosomes (mitoribosomes) are responsible for the synthesis of 13 oxidative phosphorylation proteins encoded by the mitochondrial genome. Mitoribosomal RNA is also modified, with 10 modifications thus far identified and all corresponding modifying enzymes described. This form of epigenetic regulation of mitochondrial gene expression affects mitoribosome biogenesis and function. Here, we provide an overview on rRNA methylation and highlight critical work that is beginning to elucidate its role in mitochondrial gene expression. Given the similarities between bacterial and mitochondrial ribosomes, we focus on studies involving Escherichia coli and human models. Furthermore, we highlight the use of state-of-the-art technologies, such as cryoEM in the study of rRNA methylation and its biological relevance. Understanding the mechanisms and functional relevance of this process represents an exciting frontier in the RNA biology and mitochondrial fields.
Collapse
Affiliation(s)
- M Isabel G Lopez Sanchez
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Centre for Eye Research Australia, Melbourne, VIC, Australia
| | - Miriam Cipullo
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Shreekara Gopalakrishna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Anas Khawaja
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Mitochondrial Inheritance in Phytopathogenic Fungi-Everything Is Known, or Is It? Int J Mol Sci 2020; 21:ijms21113883. [PMID: 32485941 PMCID: PMC7312866 DOI: 10.3390/ijms21113883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.
Collapse
|
25
|
Rodríguez-Pena E, Verísimo P, Fernández L, González-Tizón A, Bárcena C, Martínez-Lage A. High incidence of heteroplasmy in the mtDNA of a natural population of the spider crab Maja brachydactyla. PLoS One 2020; 15:e0230243. [PMID: 32191743 PMCID: PMC7082002 DOI: 10.1371/journal.pone.0230243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are mostly inherited by maternal via, that is, only mitochondria from eggs are retained in the embryos. However, this general assumption of uniparentally transmitted, homoplasmic and non-recombining mitochondrial genomes is becoming more and more controversial. The presence of different sequences of mtDNA within a cell or individual, known as heteroplasmy, is increasingly reported in several taxon of animals, such as molluscs, arthropods and vertebrates. In this work, a considerable frequency of heteroplasmy were detected in the COI and 16S genes of the spider crab Maja brachydactyla, possibly associated to hybridisation with the congeneric species Maja squinado. This finding is a fact to keep in mind before addressing molecular analyses based on mitochondrial markers, since the assumption of maternal inheritance could lead to erroneous results. As M. brachydactyla is a commercial species, heteroplasmy is an important aspect to take into account for the fisheries management of this resource, since effective population size could be overestimated.
Collapse
Affiliation(s)
- Elba Rodríguez-Pena
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Patricia Verísimo
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Luis Fernández
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Ana González-Tizón
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Covadonga Bárcena
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Andrés Martínez-Lage
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
- * E-mail:
| |
Collapse
|
26
|
van den Ameele J, Li AY, Ma H, Chinnery PF. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin Cell Dev Biol 2020; 97:156-166. [DOI: 10.1016/j.semcdb.2019.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
27
|
Zeng Z, Ren X, Yin T, Gao X, Tsai M, Zhang Y, Gu M. Multiplexed detection and the establishment of a novel high-throughput method for human germ cell quality screening based on aggregation-induced emission. Am J Transl Res 2019; 11:6907-6923. [PMID: 31814896 PMCID: PMC6895534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
We report a rapid, sensitive, and high-throughput method for quality control of human sperm cells and oocytes staining based on the aggregation-induced emission feature of the tetraphenylethylene-based luminogen (TPE-Ph-In), which is mitochondria-specific. Germ cells are evaluated to assess fertility and to facilitate assisted reproduction. In regular clinical practice, sperm quality is determined on the basis of visual examination and mathematical models of the sperm cell number, motility, and morphology. The maturation of the oocyte is crucial for the developmental competence of the resulting embryo. Human in vitro fertilization (IVF) have indicated that delaying insemination improves fertilization rates, presumably by allowing the completion of cytoplasmic maturation for those oocytes that have not completely matured at the time. Therefore, a more reliable method to determine germ cell quality is needed. The mitochondrial membrane potential (MMP) of spermatozoa reflects the function and status of those cells. In oocytes, the distribution of mitochondria indicates the readiness of the cell for fertilization. Aggregation-induced emission luminogens (AIEgens) have good biocompatibility and photostability and produce low levels of background signal. There are about 100,000 mitochondria per fully-grown human oocyte. Mitochondria in mammalian oocytes are spherical with little cristae, supplying large scale of ATP for embryo development. Here, we expanded the use of TPE-Ph-Into determine germ cell quality on the basis of the MMP and the intracellular distribution of mitochondria. We stained clinical sperm samples from 36 patients with infertility, as well as four oocytes, with TPE-Ph-In and examined the cells by confocal microscopy and cell sorting analysis. Our results showed a positive correlation between the MMP and sperm cell motility, as well as the different distribution of mitochondria in oocyte. Thus, staining with TPE-Ph-In could be used to quickly determine germ cell quality in vivo, bringing new possibilities for applications of AIEgens in biomedical research and clinical trials.
Collapse
Affiliation(s)
- Zixuan Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan UniversityWuhan 430071, Hubei, China
| | - Xiaojiao Ren
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan UniversityWuhan 430071, Hubei, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Xiang Gao
- Reproductive Medicine Center, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Mengting Tsai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan UniversityWuhan 430071, Hubei, China
| | - Yi Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan UniversityWuhan 430071, Hubei, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan UniversityWuhan 430071, Hubei, China
| |
Collapse
|
28
|
Zuidema D, Sutovsky P. The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res 2019; 380:263-271. [DOI: 10.1007/s00441-019-03100-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
|
29
|
Chu Z, Guo W, Hu W, Mei J. Delayed elimination of paternal mtDNA in the interspecific hybrid of Pelteobagrus fulvidraco and Pelteobagrus vachelli during early embryogenesis. Gene 2019; 704:1-7. [PMID: 30970275 DOI: 10.1016/j.gene.2019.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial homoplasmy is essential for normal development, as its heteroplasmy usually leads to abnormal or diseased phenotypes in mammals. So far, diverse mechanisms have been proposed to play roles in ensuring uniparental inheritance of mitochondria in many organisms. In recent years, hybrid yellow catfish from mating female yellow catfish (Pelteobagrus fulvidraco) with male darkbarbel catfish (Pelteobagrus vachelli) has been widely cultured in China due to its fast-growing. However, a high rate of abnormal and defective embryos was observed in the offsprings of hybrid yellow catfish. In this study, we systematically investigated the elimination process of paternal mitochondrial DNA (mtDNA) in yellow catfish and hybrid yellow catfish. The mtDNA contents significantly decreased in the isolated mature sperm compared with the semen. Different from the elimination of paternal mtDNA after fertilization in yellow catfish, paternal mtDNA was retained in the developmental embryos of hybrid yellow catfish as later as gastrula stage, indicating a delay of elimination for paternal mtDNA and mitochondrial heteroplasmy during embryogenesis in hybrid yellow catfish. Altogether, the present study suggests that mitochondrial heteroplasmy may affect embryonic development of hybrid progeny between catfish species.
Collapse
Affiliation(s)
- Zhenzhen Chu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Abstract
A cell-free system using oocyte extracts is a valuable tool to study early events of animal fertilization and examine protein-protein interactions difficult to observe in whole cells. The process of postfertilization sperm mitophagy assures timely elimination of paternal, sperm-contributed mitochondria carrying potentially corrupted mitochondrial DNA (mtDNA). Cell-free systems would be especially advantageous for studying postfertilization sperm mitophagy as large amounts of oocyte extracts can be incubated with hundreds to thousands of spermatozoa in a single trial, while only one spermatozoon per zygote can be examined by whole-cell approaches. Since sperm mitophagy is species-specific, the abundantly available frog egg extracts commonly used for cell-free systems have to be replaced with isospecific mammalian oocyte extracts, which are difficult to obtain. Here we describe the protocol for a mammalian, porcine cell-free system consisting of permeabilized domestic boar spermatozoa co-incubated with cell extracts from porcine oocytes, suitable for studying the interactions of maternal, oocyte-derived mitophagy factors with paternal, sperm mitochondria.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, South Korea
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
31
|
Afrifa J, Zhao T, Yu J. Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate. Mitochondrion 2018; 47:238-243. [PMID: 30562607 DOI: 10.1016/j.mito.2018.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
The mitochondria are defined by their unique structure and cellular functions which includes energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, cell motility and transport as well as free radical generation. Recent advances geared towards enhancing the diagnostic and prognostic value of cancer patients have targeted the circulating mitochondria genome due to its specific and unique characteristics. Circulating mitochondria DNA is known to possess short length, relatively simple molecular structure and a high copy number. These coupled with its ability to serve as a liquid biopsy makes it an easily accessible non-invasive biomarker for diagnostics and prognostics of various forms of solid tumors. In this article, we review recent findings on circulating mitochondria DNA content in cancer. In addition, we provide an insight into the potential of circulating mitochondria DNA to act as a non-invasive diagnostic biomarker and its linearity with clinical and sociodemographic characteristics.
Collapse
Affiliation(s)
- Justice Afrifa
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Tie Zhao
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jingcui Yu
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
32
|
Palozzi JM, Jeedigunta SP, Hurd TR. Mitochondrial DNA Purifying Selection in Mammals and Invertebrates. J Mol Biol 2018; 430:4834-4848. [DOI: 10.1016/j.jmb.2018.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023]
|
33
|
Kazama M, Yoshida K, Ogiwara S, Makiuchi T, Tachibana H. Influence of Heterologous Transplant of DNA-lacking Mitochondria from Entamoeba histolytica on Proliferation of Entamoeba invadens. J Eukaryot Microbiol 2018; 66:483-493. [PMID: 30329208 DOI: 10.1111/jeu.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
In mitochondria, compatibility of proteins encoded in mitochondrial DNA and nuclear DNA is essential for the normal functioning of the organelle. Incompatibility between mitochondrial and nuclear DNA can lead to dysfunctional respiration, mitochondrial diseases, and lethal problems, which suggests that the presence of heterologous mitochondria is unfavorable. In a previous study, we established a transplant method for DNA-lacking mitochondria (mitosomes) in the anaerobic protozoan Entamoeba histolytica. In this study, interspecies transplant of mitosomes from E. histolytica into Entamoeba invadens, which is a parasitic protozoon of reptiles, was performed using the microinjection method at various temperatures and injection volumes. When E. invadens was used as recipient, it showed higher tolerance to a lower temperature and larger injection volume, in comparison with E. histolytica. After microinjection, donor mitosomes expressing HA-tag conjugated protein were observed in recipient cells by immunofluorescent staining. The heterologous mitosomes-injected cells proliferated and growth rate of the microinjected-cells was similar to that of intact cells. Therefore, we conclude that interspecies transplant of DNA-lacking mitochondria does not result in incompatibility.
Collapse
Affiliation(s)
- Makoto Kazama
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,NEKKEN Bio-Resource Center, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kazuhiro Yoshida
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
34
|
Woods DC, Khrapko K, Tilly JL. Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos. Genes (Basel) 2018; 9:E265. [PMID: 29883421 PMCID: PMC5977205 DOI: 10.3390/genes9050265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Contrasting the equal contribution of nuclear genetic material from maternal and paternal sources to offspring, passage of mitochondria, and thus mitochondrial DNA (mtDNA), is uniparental through the egg. Since mitochondria in eggs are ancestral to all somatic mitochondria of the next generation and to all cells of future generations, oocytes must prepare for the high energetic demands of maturation, fertilization and embryogenesis while simultaneously ensuring that their mitochondrial genomes are inherited in an undamaged state. Although significant effort has been made to understand how the mtDNA bottleneck and purifying selection act coordinately to prevent silent and unchecked spreading of invisible mtDNA mutations through the female germ line across successive generations, it is unknown if and how somatic cells of the immediate next generation are spared from inheritance of detrimental mtDNA molecules. Here, we review unique aspects of mitochondrial activity and segregation in eggs and early embryos, and how these events play into embryonic developmental competency in the face of advancing maternal age.
Collapse
Affiliation(s)
- Dori C Woods
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Konstantin Khrapko
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Srirattana K, St John JC. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci Rep 2018; 8:7246. [PMID: 29740154 PMCID: PMC5940817 DOI: 10.1038/s41598-018-25516-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/24/2018] [Indexed: 01/13/2023] Open
Abstract
We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Justin C St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
36
|
Meza-Lázaro RN, Poteaux C, Bayona-Vásquez NJ, Branstetter MG, Zaldívar-Riverón A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1203-1214. [PMID: 29385929 DOI: 10.1080/24701394.2018.1431228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We assembled mitogenomes from 21 ant workers assigned to four morphospecies (E. ruidum spp. 1-4) and putative hybrids of the Ectatomma ruidum complex (E. ruidum spp. 2x3), and to E. tuberculatum using NGS data. Mitogenomes from specimens of E. ruidum spp. 3, 4 and 2 × 3 had a high proportion of polymorphic sites. We investigated whether polymorphisms in mitogenomes are due to nuclear mt paralogues (numts) or due to the presence of more than one mitogenome within an individual (heteroplasmy). We did not find loss of function signals in polymorphic protein-coding genes, and observed strong evidence for purifying selection in two haplotype-phased genes, which indicate the presence of two functional mitochondrial genomes coexisting within individuals instead of numts. Heteroplasmy due to hybrid paternal leakage is not supported by phylogenetic analyses. Our results reveal the presence of a fast-evolving secondary mitochondrial lineage of uncertain origin in the E. ruidum complex.
Collapse
Affiliation(s)
- Rubi N Meza-Lázaro
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| | - Chantal Poteaux
- b Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13, Sorbonne Paris Cité , Villetaneuse , France
| | | | - Michael G Branstetter
- d USDA-ARS Pollinating Insects Research Unit, Utah State University , Logan , UT , USA
| | - Alejandro Zaldívar-Riverón
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| |
Collapse
|
37
|
Lima A, Burgstaller J, Sanchez-Nieto JM, Rodríguez TA. The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development. Curr Top Dev Biol 2017; 128:339-363. [PMID: 29477168 DOI: 10.1016/bs.ctdb.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From fertilization until the onset of gastrulation the early mammalian embryo undergoes a dramatic series of changes that converts a single fertilized cell into a remarkably complex organism. Much attention has been given to the molecular changes occurring during this process, but here we will review what is known about the changes affecting the mitochondria and how they impact on the energy metabolism and apoptotic response of the embryo. We will also focus on understanding what quality control mechanisms ensure optimal mitochondrial activity in the embryo, and in this way provide an overview of the importance of the mitochondria in determining cell fitness during early mammalian development.
Collapse
Affiliation(s)
- Ana Lima
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Cell Stress Group, MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Jörg Burgstaller
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom; Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Juan M Sanchez-Nieto
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
38
|
Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol 2017; 35:1059-1068. [PMID: 29121011 DOI: 10.1038/nbt.3997] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential cytoplasmic organelles that generate energy (ATP) by oxidative phosphorylation and mediate key cellular processes such as apoptosis. They are maternally inherited and in humans contain a 16,569-base-pair circular genome (mtDNA) encoding 37 genes required for oxidative phosphorylation. Mutations in mtDNA cause a range of pathologies, commonly affecting energy-demanding tissues such as muscle and brain. Because mitochondrial diseases are incurable, attention has focused on limiting the inheritance of pathogenic mtDNA by mitochondrial replacement therapy (MRT). MRT aims to avoid pathogenic mtDNA transmission between generations by maternal spindle transfer, pronuclear transfer or polar body transfer: all involve the transfer of nuclear DNA from an egg or zygote containing defective mitochondria to a corresponding egg or zygote with normal mitochondria. Here we review recent developments in animal and human models of MRT and the underlying biology. These have led to potential clinical applications; we identify challenges to their technical refinement.
Collapse
Affiliation(s)
- Andy Greenfield
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Harwell, Oxfordshire, UK
| | - Peter Braude
- Division of Women's Health, King's College, London, UK
| | - Frances Flinter
- Clinical Genetics Department, Guy's Hospital, Great Maze Pond, London, UK
| | | | - Caroline Ogilvie
- Genetics Department, Guy's & St Thomas' NHS Foundation Trust and Division of Women's Health, King's College, London, UK
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
39
|
Radzvilavicius AL, Lane N, Pomiankowski A. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance. BMC Biol 2017; 15:94. [PMID: 29073898 PMCID: PMC5658935 DOI: 10.1186/s12915-017-0437-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mitochondria are predominantly inherited from the maternal gamete, even in unicellular organisms. Yet an extraordinary array of mechanisms enforce uniparental inheritance, which implies shifting selection pressures and multiple origins. RESULTS We consider how this high turnover in mechanisms controlling uniparental inheritance arises using a novel evolutionary model in which control of mitochondrial transmission occurs either during spermatogenesis (by paternal nuclear genes) or at/after fertilization (by maternal nuclear genes). The model treats paternal leakage as an evolvable trait. Our evolutionary analysis shows that maternal control consistently favours strict uniparental inheritance with complete exclusion of sperm mitochondria, whereas some degree of paternal leakage of mitochondria is an expected outcome under paternal control. This difference arises because mito-nuclear linkage builds up with maternal control, allowing the greater variance created by asymmetric inheritance to boost the efficiency of purifying selection and bring benefits in the long term. In contrast, under paternal control, mito-nuclear linkage tends to be much weaker, giving greater advantage to the mixing of cytotypes, which improves mean fitness in the short term, even though it imposes a fitness cost to both mating types in the long term. CONCLUSIONS Sexual conflict is an inevitable outcome when there is competition between maternal and paternal control of mitochondrial inheritance. If evolution has led to complete uniparental inheritance through maternal control, it creates selective pressure on the paternal nucleus in favour of subversion through paternal leakage, and vice versa. This selective divergence provides a reason for the repeated evolution of novel mechanisms that regulate the transmission of paternal mitochondria, both in the fertilized egg and spermatogenesis. Our analysis suggests that the widespread occurrence of paternal leakage and prevalence of heteroplasmy are natural outcomes of this sexual conflict.
Collapse
Affiliation(s)
- Arunas L Radzvilavicius
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nick Lane
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
40
|
Kristensen SG, Pors SE, Andersen CY. Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod 2017; 32:725-732. [PMID: 28333265 DOI: 10.1093/humrep/dex043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Older women are often the most challenging group of patients in fertility clinics due to a decline in both number and overall quality of oocytes. The quality of oocytes has been linked to mitochondrial dysfunction. In this mini-review, we discuss this hypothesis and suggest alternative treatment options using autologous mitochondria to potentially augment pregnancy potential in ART. Autologous transfer of mitochondria from the patient's own germline cells has attracted much attention as a possible new treatment to revitalize deficient oocytes. IVF births have been reported after transfer of oogonial precursor cell-derived mitochondria; however, the source and quality of the mitochondria are still unclear. In contrast, fully grown oocytes are loaded with mitochondria which have passed the genetic bottleneck and are likely to be of high quality. An increased supply of such oocytes could potentially be obtained by in vitro follicle activation of ovarian cortical biopsies or from surplus immature oocytes collected from women undergoing ART or fertility preservation of ovarian tissue. Taken together, autologous oocytes are not necessarily a limiting resource in ART as fully grown oocytes with high quality mitochondria can be obtained from natural or stimulated ovaries and potentially be used to improve both quality and quantity of oocytes available for fertility treatment.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
41
|
Sato K, Sato M. Multiple ways to prevent transmission of paternal mitochondrial DNA for maternal inheritance in animals. J Biochem 2017; 162:247-253. [PMID: 28981751 DOI: 10.1093/jb/mvx052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/10/2017] [Indexed: 11/14/2022] Open
Abstract
Mitochondria contain their own DNA (mtDNA). In most sexually reproducing organisms, mtDNA is inherited maternally (uniparentally); this type of inheritance is thus referred to as 'maternal (uniparental) inheritance'. Recent studies have revealed various mechanisms to prevent the transmission of sperm-derived paternal mtDNA to the offspring, thereby ensuring maternal inheritance of mtDNA. In the nematode Caenorhabditis elegans, paternal mitochondria and their mtDNA degenerate almost immediately after fertilization and are selectively degraded by autophagy, which is referred to as 'allophagy' (allogeneic [non-self] organelle autophagy). In the fruit fly Drosophila melanogaster, paternal mtDNA is largely eliminated by an endonuclease G-mediated mechanism. Paternal mitochondria are subsequently removed by endocytic and autophagic pathways after fertilization. In many mammals, including humans, paternal mitochondria enter fertilized eggs. However, the fate of paternal mitochondria and their mtDNA in mammals is still a matter of debate. In this review, we will summarize recent knowledge on the molecular mechanisms underlying the prevention of paternal mtDNA transmission, which ensures maternal mtDNA inheritance in animals.
Collapse
Affiliation(s)
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15, Showa-machi, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
42
|
Ancient mitochondrial pseudogenes reveal hybridization between distant lineages in the evolution of the Rupicapra genus. Gene 2017; 628:63-71. [DOI: 10.1016/j.gene.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022]
|
43
|
|
44
|
Establishment of a heteroplasmic mouse strain with interspecific mitochondrial DNA haplotypes and improvement of a PCR-RFLP-based measurement system for estimation of mitochondrial DNA heteroplasmy. Transgenic Res 2017; 26:559-565. [DOI: 10.1007/s11248-017-0009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
45
|
Celik O, Aygun BK, Celik N, Aydin S, Haberal ET, Sahin L, Yavuz Y, Celik S. Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve. Horm Mol Biol Clin Investig 2016; 25:45-63. [PMID: 26677904 DOI: 10.1515/hmbci-2015-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/30/2015] [Indexed: 11/15/2022]
Abstract
Emigration is defined as a synchronized movement of germ cells between the yolk sack and genital ridges. The miraculous migration of germ cells resembles the remigration of salmon traveling from one habitat to other. This migration of germ cells is indispensible for the development of new generations. It is not, however, clear why germ cells differentiate during migration but not at the place of origin. In order to escape harmful somatic signals which might disturb the proper establishment of germ cells forced germ cell migration may be necessary. Another reason may be to benefit from the opportunities of new habitats. Therefore, emigration may have powerful effects on the population dynamics of the immigrant germ cells. While some of these cells do reach their target, some others die or reach to wrong targets. Only germ cell precursors with genetically, and structurally powerful can reach their target. Likewise, epigenetic reprogramming in both migratory and post-migratory germ cells is essential for the establishment of totipotency. During this journey some germ cells may sacrifice themselves for the goodness of the others. The number and quality of germ cells reaching the genital ridge may vary depending on the problems encountered during migration. If the aim in germ cell specification is to provide an optimal ovarian reserve for the continuity of the generation, then this cascade of events cannot be only accomplished at the same level for every one but also are manifested by several outcomes. This is significant evidence supporting the possibility of unique individual ovarian reserve.
Collapse
|
46
|
Ross JA, Howe DK, Coleman-Hulbert A, Denver DR, Estes S. Paternal Mitochondrial Transmission in Intra-Species Caenorhabditis briggsae Hybrids. Mol Biol Evol 2016; 33:3158-3160. [PMID: 27613821 PMCID: PMC5100050 DOI: 10.1093/molbev/msw192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To study mitochondrial–nuclear genetic interactions in the nematode Caenorhabditis briggsae, our three laboratories independently created 38 intra-species cytoplasmic–nuclear hybrid (cybrid) lines. Although the cross design combines maternal mitotypes with paternal nuclear genotypes, eight lines (21%) unexpectedly contained paternal mitotypes. All eight share in common ancestry of one of two genetically related strains. This unexpected parallel observation of paternal mitochondrial transmission, undesirable given our intent of creating cybrids, provides a serendipitous experimental model and framework to study the molecular and evolutionary basis of uniparental mitochondrial inheritance.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Biology, California State University, Fresno, CA
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Anna Coleman-Hulbert
- Department of Biology, Portland State University, Portland, OR.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR
| |
Collapse
|
47
|
Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A 2016; 113:E5261-70. [PMID: 27551072 PMCID: PMC5018771 DOI: 10.1073/pnas.1605844113] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondrial sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300
| | - Young-Joo Yi
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211-5300
| |
Collapse
|
48
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
49
|
Zhang WZ, Xiong XM, Zhang XJ, Wan SM, Guan NN, Nie CH, Zhao BW, Hsiao CD, Wang WM, Gao ZX. Mitochondrial Genome Variation after Hybridization and Differences in the First and Second Generation Hybrids of Bream Fishes. PLoS One 2016; 11:e0158915. [PMID: 27391325 PMCID: PMC4938612 DOI: 10.1371/journal.pone.0158915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022] Open
Abstract
Hybridization plays an important role in fish breeding. Bream fishes contribute a lot to aquaculture in China due to their economically valuable characteristics and the present study included five bream species, Megalobrama amblycephala, Megalobrama skolkovii, Megalobrama pellegrini, Megalobrama terminalis and Parabramis pekinensis. As maternal inheritance of mitochondrial genome (mitogenome) involves species specific regulation, we aimed to investigate in which way the inheritance of mitogenome is affected by hybridization in these fish species. With complete mitogenomes of 7 hybrid groups of bream species being firstly reported in the present study, a comparative analysis of 17 mitogenomes was conducted, including representatives of these 5 bream species, 6 first generation hybrids and 6 second generation hybrids. The results showed that these 17 mitogenomes shared the same gene arrangement, and had similar gene size and base composition. According to the phylogenetic analyses, all mitogenomes of the hybrids were consistent with a maternal inheritance. However, a certain number of variable sites were detected in all F1 hybrid groups compared to their female parents, especially in the group of M. terminalis (♀) × M. amblycephala (♂) (MT×MA), with a total of 86 variable sites between MT×MA and its female parent. Among the mitogenomes genes, the protein-coding gene nd5 displayed the highest variability. The number of variation sites was found to be related to phylogenetic relationship of the parents: the closer they are, the lower amount of variation sites their hybrids have. The second generation hybrids showed less mitogenome variation than that of first generation hybrids. The non-synonymous and synonymous substitution rates (dN/dS) were calculated between all the hybrids with their own female parents and the results indicated that most PCGs were under negative selection.
Collapse
Affiliation(s)
- Wei-Zhuo Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Xue-Mei Xiong
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Xiu-Jie Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Shi-Ming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| |
Collapse
|
50
|
Hayashi JI, Hashizume O, Ishikawa K, Shimizu A. Mutations in mitochondrial DNA regulate mitochondrial diseases and metastasis but do not regulate aging. Curr Opin Genet Dev 2016; 38:63-67. [PMID: 27078865 DOI: 10.1016/j.gde.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023]
Abstract
The mitochondria theory of aging proposes that accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations, and the resultant respiration defects, are responsible not only for mitochondrial diseases but also for aging and age-associated disorders, including tumor development. This theory is partly supported by results obtained from our transmitochondrial mice (mito-mice), which harbour mtDNA with mutations that are orthologous to those found in patients with mitochondrial diseases: mito-mice express disease phenotypes only when they express respiration defects caused by accumulation of mutated mtDNA. With regard to tumor development, specific mtDNA mutations that induce reactive oxygen species (ROS) enhance malignant transformation of lung carcinoma cells to cells with high metastatic potential. However, age-associated respiration defects in elderly human fibroblasts are due not to mtDNA mutations but to epigenetic regulation of nuclear-coded genes, as indicated by the fact that normal respiratory function is restored by reprogramming of elderly fibroblasts.
Collapse
Affiliation(s)
- Jun-Ichi Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Osamu Hashizume
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Akinori Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|