1
|
Liu P, Rojo de la Vega M, Sammani S, Mascarenhas JB, Kerins M, Dodson M, Sun X, Wang T, Ooi A, Garcia JGN, Zhang DD. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 2018; 115:E10352-E10361. [PMID: 30309964 PMCID: PMC6217430 DOI: 10.1073/pnas.1812125115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NRF2 regulates cellular redox homeostasis, metabolic balance, and proteostasis by forming a dimer with small musculoaponeurotic fibrosarcoma proteins (sMAFs) and binding to antioxidant response elements (AREs) to activate target gene transcription. In contrast, NRF2-ARE-dependent transcriptional repression is unreported. Here, we describe NRF2-mediated gene repression via a specific seven-nucleotide sequence flanking the ARE, which we term the NRF2-replication protein A1 (RPA1) element (NRE). Mechanistically, RPA1 competes with sMAF for NRF2 binding, followed by interaction of NRF2-RPA1 with the ARE-NRE and eduction of promoter activity. Genome-wide in silico and RNA-seq analyses revealed this NRF2-RPA1-ARE-NRE complex mediates negative regulation of many genes with diverse functions, indicating that this mechanism is a fundamental cellular process. Notably, repression of MYLK, which encodes the nonmuscle myosin light chain kinase, by the NRF2-RPA1-ARE-NRE complex disrupts vascular integrity in preclinical inflammatory lung injury models, illustrating the translational significance of NRF2-mediated transcriptional repression. Our findings reveal a gene-suppressive function of NRF2 and a subset of negatively regulated NRF2 target genes, underscoring the broad impact of NRF2 in physiological and pathological settings.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | | | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Michael Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Ting Wang
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721;
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721;
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
2
|
|
3
|
Levidou G, Gakiopoulou H, Kavantzas N, Saetta AA, Karlou M, Pavlopoulos P, Thymara I, Diamantopoulou K, Patsouris E, Korkolopoulou P. Prognostic significance of replication protein A (RPA) expression levels in bladder urothelial carcinoma. BJU Int 2010; 108:E59-65. [PMID: 21062395 DOI: 10.1111/j.1464-410x.2010.09828.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To elucidate the role of replication protein A (RPA) in both superficial (Ta-T1) and muscle-invasive (T2-T4) urothelial carcinomas (UCs), investigating its potential prognostic usefulness. PATIENTS AND METHODS Paraffin-embedded tissue from 156 patients with bladder UC was immunostained for RPA1 and RPA2. RESULTS RPA1 and RPA2 labelling indexes (LIs) decreased with increasing histological grade (both P < 0.001) and T-category in the entire cohort (P = 0.008 and P < 0.001, respectively) and in muscle-invasive carcinomas (P = 0.014 and P = 0.012, respectively). RPA1 expression was positively correlated with RPA2 (Spearman's correlation coefficient ρ = 0.309, P < 0.001). Both RPA1 and RPA2 LIs were positively correlated with cyclin D1 expression (ρ = 0.354, P < 0.001 and ρ = 0.934, P < 0.001). In survival analysis of the entire cohort decreased RPA2 and RPA1 correlated with a lesser probability of survival (P < 0.001 and P = 0.018). In non-muscle-invasive tumours (Ta-T1) only lower RPA2 (P < 0.001) was correlated with shortened survival, whereas in muscle-invasive tumours (T2-T4) decreased RPA2 and RPA1 expression levels were associated with adverse prognosis (P = 0.035 and P = 0.042, respectively). In multivariate survival analysis of the entire cohort and in non-muscle-invasive cases RPA2 expression remained significant, even when adjustment for cyclin D1 expression was applied. CONCLUSIONS RPA1 and RPA2 overexpression seems to be more important during early T-categories of bladder carcinogenesis. Showing similar kinetics with cyclin D1. RPA2 expression emerges as a valuable marker of favourable prognosis in the entire cohort and in non-muscle-invasive tumours, supplementing the information obtained by standard clinicopathological prognosticators.
Collapse
Affiliation(s)
- Georgia Levidou
- National and Kapodistrian University of Athens, Laiko Hospital, First Department of Pathology, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Krasikova YS, Belousova EA, Lebedeva NA, Pestryakov PE, Lavrik OI. Interaction between DNA Polymerase lambda and RPA during translesion synthesis. BIOCHEMISTRY (MOSCOW) 2008; 73:1042-6. [PMID: 18976222 DOI: 10.1134/s0006297908090125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Replication of damaged DNA (translesion synthesis, TLS) is realized by specialized DNA polymerases. Additional protein factors such as replication protein A (RPA) play important roles in this process. However, details of the interaction are unknown. Here we analyzed the influence of the hRPA and its mutant hABCD lacking domains responsible for protein-protein interactions on ability of DNA polymerase lambda to catalyze TLS. The primer-template structures containing varying parts of extended strand (16 and 37 nt) were used as model systems imitating DNA intermediate of first stage of TLS. The 8-oxoguanine disposed in +1 position of the template strand in relation to 3 -end of primer was exploited as damage. It was shown that RPA stimulated TLS DNA synthesis catalyzed by DNA polymerase lambda in its globular but not in extended conformation. Moreover, this effect is dependent on the presence of p70N and p32C domains in RPA molecule.
Collapse
Affiliation(s)
- Yu S Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
5
|
Fu Y, Pastushok L, Xiao W. DNA damage-induced gene expression inSaccharomyces cerevisiae. FEMS Microbiol Rev 2008; 32:908-26. [DOI: 10.1111/j.1574-6976.2008.00126.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Burgis NE, Samson LD. The protein degradation response of Saccharomyces cerevisiae to classical DNA-damaging agents. Chem Res Toxicol 2007; 20:1843-53. [PMID: 18020423 DOI: 10.1021/tx700126e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome wide experiments indicate both proteasome- and vacuole-mediated protein degradation modulate sensitivity to classical DNA-damaging agents. Here, we show that global protein degradation is significantly increased upon methyl methanesulfonate (MMS) exposure. In addition, global protein degradation is similarly increased upon exposure to 4-nitroquinoline-N-oxide (4NQO) and UV and, to a lesser extent, tert-butyl hydroperoxide. The proteasomal inhibitor MG132 decreases both MMS-induced and 4NQO-induced protein degradation, while addition of the vacuolar inhibitor phenylmethanesulfonyl fluoride does not. The addition of both inhibitors grossly inhibits cell growth upon MMS exposure over and above the growth inhibition induced by MMS alone. The MMS-induced protein degradation response remains unchanged in several ubiquitin-proteasome and vacuolar mutants, presumably because these mutants are not totally deficient in either essential pathway. Furthermore, MMS-induced protein degradation is independent of Mec1, Mag1, Rad23, and Rad6, suggesting that the protein degradation response is not transduced through the classical Mec1 DNA damage response pathway or through repair intermediates generated by the base excision, nucleotide excision, or postreplication-DNA repair pathways. These results identify the regulation of protein degradation as an important factor in the recovery of cells from toxicity induced by classical DNA-damaging agents.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
7
|
Givalos N, Gakiopoulou H, Skliri M, Bousboukea K, Konstantinidou AE, Korkolopoulou P, Lelouda M, Kouraklis G, Patsouris E, Karatzas G. Replication protein A is an independent prognostic indicator with potential therapeutic implications in colon cancer. Mod Pathol 2007; 20:159-66. [PMID: 17361204 DOI: 10.1038/modpathol.3800719] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication protein A (RPA), a component of the origin recognition complex, is required for stabilization of single-stranded DNA at early and later stages of DNA replication being thus critical for eukaryotic DNA replication. Experimental studies in colon cancer cell lines have shown that RPA protein may be the target of cytotoxins designed to inhibit cellular proliferation. This is the first study to investigate the expression of RPA1 and RPA2 subunits of RPA protein and assess their prognostic value in colon cancer patients. We analyzed immunohistochemically the expression of RPA1 and RPA2 proteins in a series of 130 colon cancer resection specimens in relation to conventional clinicopathological parameters and patients' survival. Statistical significant positive associations emerged between: (a) RPA1 and RPA2 protein expressions (P=0.0001), (b) RPA1 and RPA2 labelling indices (LIs) and advanced stage of the disease (P=0.001 and 0.003, respectively), (c) RPA1 and RPA2 LIs and the presence of lymph node metastasis (P=0.002 and 0.004, respectively), (d) RPA1 LI and the number of infiltrated lymph nodes (P=0.021), (e) RPA2 LI and histological grade of carcinomas (P=0.05). Moreover, a statistical significant higher RPA1 LI was observed in the metastatic sites compared to the original ones (P=0.012). RPA1 and RPA2 protein expression associated with adverse patients' outcome in both univariate (log rank test: P<0.00001 and 0.00001, respectively) and multivariate (Cox model: P=0.092 and 0.0001, respectively) statistical analysis. Statistical significant differences according to the expression of RPA1 and RPA2 proteins were also noticed in the survival of stage II (P<0.00001 and 0.0016, respectively) and stage III (P=0.0029 and 0.0079, respectively) patients. In conclusion, RPA1 and RPA2 proteins appear to be useful prognostic indicators in colon cancer patients and attractive therapeutic targets for regulation by tumor suppressors or other proteins involved in the control of cell proliferation.
Collapse
Affiliation(s)
- Nikolaos Givalos
- Department of Surgery, Medical School, National Kapodistrian University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lin Y, Guzman CE, McKinney MC, Nair SK, Ha T, Cann IKO. Methanosarcina acetivorans flap endonuclease 1 activity is inhibited by a cognate single-stranded-DNA-binding protein. J Bacteriol 2006; 188:6153-67. [PMID: 16923882 PMCID: PMC1595394 DOI: 10.1128/jb.00045-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oligonucleotide/oligosaccharide-binding (OB) fold is central to the architecture of single-stranded- DNA-binding proteins, which are polypeptides essential for diverse cellular processes, including DNA replication, repair, and recombination. In archaea, single-stranded DNA-binding proteins composed of multiple OB folds and a zinc finger domain, in a single polypeptide, have been described. The OB folds of these proteins were more similar to their eukaryotic counterparts than to their bacterial ones. Thus, the archaeal protein is called replication protein A (RPA), as in eukaryotes. Unlike most organisms, Methanosarcina acetivorans harbors multiple functional RPA proteins, and it was our interest to determine whether the different proteins play different roles in DNA transactions. Of particular interest was lagging-strand DNA synthesis, where recently RPA has been shown to regulate the size of the 5' region cleaved during Okazaki fragment processing. We report here that M. acetivorans RPA1 (MacRPA1), a protein composed of four OB folds in a single polypeptide, inhibits cleavage of a long flap (20 nucleotides) by M. acetivorans flap endonuclease 1 (MacFEN1). To gain a further insight into the requirement of the different regions of MacRPA1 on its inhibition of MacFEN1 endonuclease activity, N-terminal and C-terminal truncated derivatives of the protein were made and were biochemically and biophysically analyzed. Our results suggested that MacRPA1 derivatives with at least three OB folds maintained the properties required for inhibition of MacFEN1 endonuclease activity. Despite these interesting observations, further biochemical and genetic analyses are required to gain a deeper understanding of the physiological implications of our findings.
Collapse
Affiliation(s)
- Yuyen Lin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
9
|
Tringe SG, Willis J, Liberatore KL, Ruby SW. The WTM genes in budding yeast amplify expression of the stress-inducible gene RNR3. Genetics 2006; 174:1215-28. [PMID: 16980392 PMCID: PMC1667055 DOI: 10.1534/genetics.106.062042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to DNA damage and inhibited replication are evolutionarily conserved sets of pathways that are critical to preserving genome stability. To identify new participants in these responses, we undertook a screen for regulators that, when present on a high-copy vector, alter expression of a DNA damage-inducible RNR3-lacZ reporter construct in Saccharomyces cerevisiae. From this screen we isolated a plasmid encoding two closely related paralogs, WTM1 and WTM2, that greatly increases constitutive expression of RNR3-lacZ. Moderate overexpression of both genes together, or high-level expression of WTM2 alone from a constitutive promoter, upregulates RNR3-lacZ in the absence of DNA damage. Overexpressed, tagged Wtm2p is associated with the RNR3 promoter, indicating that this effect is likely direct. Further investigation reveals that Wtm2p and Wtm1p, previously described as regulators of meiotic gene expression and transcriptional silencing, amplify transcriptional induction of RNR3 in response to replication stress and modulate expression of genes encoding other RNR subunits.
Collapse
Affiliation(s)
- Susannah Green Tringe
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Genome-wide studies of mRNA regulation and phenotypic responses have shown that eukaryotic cells mount a robust and multifaceted response upon exposure to DNA-damaging agents. The integration of theses studies over frameworks provided by protein-protein interactions, protein-DNA interactions, and subcellular localization information have led to the identification of networked responses to damage. Taken together, these studies illustrate that cellular protection from DNA and other macromolecular damage involves an intricate network of proteins involved in many different cellular functions, some of them expected (e.g., DNA repair and cell cycle checkpoints) but many of them unexpected (e.g., protein trafficking and degradation). This review highlights many of the studies that detail genome-wide responses to DNA-damaging agents and examines how these datasets have been used to build a systems view of cellular responses to damage.
Collapse
Affiliation(s)
- Rebecca C Fry
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
11
|
Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez AL, Aragon AD, Quiñones GA, Allen C, Werner-Washburne M. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 2004; 15:5295-305. [PMID: 15456898 PMCID: PMC532011 DOI: 10.1091/mbc.e03-11-0856] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Most cells on earth exist in a quiescent state. In yeast, quiescence is induced by carbon starvation, and exit occurs when a carbon source becomes available. To understand how cells survive in, and exit from this state, mRNA abundance was examined using oligonucleotide-based microarrays and quantitative reverse transcription-polymerase chain reaction. Cells in stationary-phase cultures exhibited a coordinated response within 5-10 min of refeeding. Levels of >1800 mRNAs increased dramatically (>or=64-fold), and a smaller group of stationary-phase mRNAs decreased in abundance. Motif analysis of sequences upstream of genes clustered by VxInsight identified an overrepresentation of Rap1p and BUF (RPA) binding sites in genes whose mRNA levels rapidly increased during exit. Examination of 95 strains carrying deletions in stationary-phase genes induced identified 32 genes essential for survival in stationary-phase at 37 degrees C. Analysis of these genes suggests that mitochondrial function is critical for entry into stationary-phase and that posttranslational modifications and protection from oxidative stress become important later. The phylogenetic conservation of stationary-phase genes, and our findings that two-thirds of the essential stationary-phase genes have human homologues and of these, many have human homologues that are disease related, demonstrate that yeast is a bona fide model system for studying the quiescent state of eukaryotic cells.
Collapse
Affiliation(s)
- M Juanita Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Singh KK, Rasmussen AK, Rasmussen LJ. Genome-wide analysis of signal transducers and regulators of mitochondrial dysfunction in Saccharomyces cerevisiae. Ann N Y Acad Sci 2004; 1011:284-98. [PMID: 15126304 DOI: 10.1007/978-3-662-41088-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondrial dysfunction is a hallmark of cancer cells. However, genetic response to mitochondrial dysfunction during carcinogenesis is unknown. To elucidate genetic response to mitochondrial dysfunction we used Saccharomyces cerevisiae as a model system. We analyzed genome-wide expression of nuclear genes involved in signal transduction and transcriptional regulation in a wild-type yeast and a yeast strain lacking the mitochondrial genome (rho(0)). Our analysis revealed that the gene encoding cAMP-dependent protein kinase subunit 3 (PKA3) was upregulated. However, the gene encoding cAMP-dependent protein kinase subunit 2 (PKA2) and the VTC1, PTK2, TFS1, CMK1, and CMK2 genes, involved in signal transduction, were downregulated. Among the known transcriptional factors, OPI1, MIG2, INO2, and ROX1 belonged to the upregulated genes, whereas MSN4, MBR1, ZMS1, ZAP1, TFC3, GAT1, ADR1, CAT8, and YAP4 including RFA1 were downregulated. RFA1 regulates DNA repair genes at the transcriptional level. RFA is also involved directly in DNA recombination, DNA replication, and DNA base excision repair. Downregulation of RFA1 in rho(0) cells is consistent with our finding that mitochondrial dysfunction leads to instability of the nuclear genome. Together, our data suggest that gene(s) involved in mitochondria-to-nucleus communication play a role in mutagenesis and may be implicated in carcinogenesis.
Collapse
Affiliation(s)
- Keshav K Singh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
13
|
SINGH KESHAVK, RASMUSSEN ANNEKARIN, RASMUSSEN LENEJUEL. Genome-Wide Analysis of Signal Transducers and Regulators of Mitochondrial Dysfunction inSaccharomyces cerevisiae. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Mou TC, Shen MC, Terwilliger TC, Gray DM. Binding and reversible denaturation of double-stranded DNA by Ff gene 5 protein. Biopolymers 2004; 70:637-48. [PMID: 14648774 DOI: 10.1002/bip.10500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The gene 5 protein (g5p) from Ff filamentous virus is a model single-stranded DNA (ssDNA) binding protein that has an oligonucleotide/oligosaccharide binding (OB)-fold structure and binding properties in common with other ssDNA-binding proteins. In the present work, we use circular dichroism (CD) spectroscopy to analyze the effects of amino acid substitutions on the binding of g5p to double-stranded DNA (dsDNA) compared to its binding to ssDNA. CD titrations of poly[d(A). d(T)] with mutants of each of the five tyrosines of the g5p showed that the 229-nm CD band of Tyr34, a tyrosine at the interface of adjacent protein dimers, is reversed in sign upon binding to the dsDNA, poly[d(A). d(T)]. This effect is like that previously found for g5p binding to ssDNAs, suggesting there are similarities in the protein-protein interactions when g5p binds to dsDNA and ssDNA. However, there are differences, and the possible perturbation of a second tyrosine, Tyr41, in the complex with dsDNA. Three mutant proteins (Y26F, Y34F, and Y41H) reduced the melting temperature of poly[d(A). d(T)] by 67 degrees C, but the wild-type g5p only reduced it by 2 degrees C. This enhanced ability of the mutants to denature dsDNA suggests that their binding affinities to dsDNA are reduced more than are their binding affinities to ssDNA. Finally, we present evidence that when poly[d(A). d(T)] is melted in the presence of the wild-type, Y26F, or Y34F proteins, the poly[d(A)] and poly[d(T)] strands are separately sequestered such that renaturation of the duplex is facilitated in 2 mM Na(+).
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Molecular and Cell Biology, Mail Stop FO31, University of Texas at Dallas, P.O. Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
15
|
Marwedel T, Ishibashi T, Lorbiecke R, Jacob S, Sakaguchi K, Sauter M. Plant-specific regulation of replication protein A2 (OsRPA2) from rice during the cell cycle and in response to ultraviolet light exposure. PLANTA 2003; 217:457-65. [PMID: 14520573 DOI: 10.1007/s00425-003-1001-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Indexed: 05/04/2023]
Abstract
DNA replication is a process that is highly conserved among eukaryotes. Nonetheless, little is known about the proteins involved in it in plants. Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein with several functions in DNA metabolism in humans and yeast and supposedly also in plants. Here we report on the regulation of OsRPA2, the 32-kDa subunit of RPA from rice ( Oryza sativa L.). We found conserved regulation mechanisms at the level of gene expression between animal and plant RPA2 genes and distinct features of OsRPA2 regulation at the level of protein expression. Unlike in animals or in yeast, protein abundance in rice was regulated in a cell cycle phase-specific manner and was altered after UV-C light exposure. On the other hand, posttranslational modification through phosphorylation did not appear to play a pivotal role in rice as it does in animal cells. Our results indicate that plant-specific mechanisms of regulation have evolved for RPA2 within the generally well-conserved process of DNA replication, suggesting specific requirements for regulation of DNA metabolism in plants as compared to other eukaryotes.
Collapse
Affiliation(s)
- Tanja Marwedel
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Sukhodolets KE, Hickman AB, Agarwal SK, Sukhodolets MV, Obungu VH, Novotny EA, Crabtree JS, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 2003; 23:493-509. [PMID: 12509449 PMCID: PMC151531 DOI: 10.1128/mcb.23.2.493-509.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence.
Collapse
Affiliation(s)
- Karen E Sukhodolets
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1802, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tomkiel JE, Alansari H, Tang N, Virgin JB, Yang X, VandeVord P, Karvonen RL, Granda JL, Kraut MJ, Ensley JF, Fernández-Madrid F. Autoimmunity to the M(r) 32,000 subunit of replication protein A in breast cancer. Clin Cancer Res 2002; 8:752-8. [PMID: 11895905 PMCID: PMC5604237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE We sought to identify autoantigens recognized by antibodies in breast cancer patient sera with potential diagnostic or prognostic significance. EXPERIMENTAL DESIGN Serum from a female breast cancer patient exhibiting a high titer antinuclear antibody was used to screen a HeLa cDNA expression library, leading to the cloning of a cDNA for the M(r) 32,000 subunit of replication protein A (RPA32). RPA32 expression and localization were assayed in autologous tumor by monoclonal antibody staining. A specific ELISA using recombinant protein was used to screen sera from 801 breast cancer patients and 65 controls. RESULTS A relationship between anti-replication protein A (RPA) antibodies and the ductal breast carcinoma of the proband was suggested by overexpression and aberrant localization of RPA32 in tumor cells as compared with surrounding normal ductal tissue and by the presence of anti-RPA32 antibodies before the diagnosis. The prevalence of anti-RPA32 antibodies was significantly higher (P < 0.01) among breast cancer patients (87 of 801 patients) than among noncancer controls (0 of 65 controls). Similarly, anti-RPA32 antibodies were present in 4 of 39 patients with intraductal in situ carcinoma. No associations were found between anti-RPA antibodies and survival, occurrence of a second tumor, metastases, or antibodies to p53. Reactivity to RPA32 also was detected in sera from 3 of 47 patients with other cancers. CONCLUSIONS In view of the central role of RPA in DNA replication, recombination, and repair, we suggest that autoimmunity to RPA32 may reflect molecular changes involved in the process of tumorigenesis. The finding of antibodies to RPA32 before diagnosis and their prevalence in in situ carcinoma suggest that they are potentially useful markers of early disease.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Autoantibodies/blood
- Autoantigens/immunology
- Autoimmunity
- Biomarkers, Tumor/blood
- Breast Neoplasms/blood
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma in Situ/blood
- Carcinoma in Situ/immunology
- Carcinoma in Situ/pathology
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Cloning, Molecular
- DNA-Binding Proteins/immunology
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Library
- HeLa Cells
- Head and Neck Neoplasms/blood
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/pathology
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/blood
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Molecular Weight
- Nuclear Family
- Reference Values
- Replication Protein A
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - F. Fernández-Madrid
- To whom requests for reprints should be addressed, at Hutzel Hospital, Department of Internal Medicine, Division of Rheumatology, Wayne State University, 4707 Saint Antoine Boulevard, Detroit, MI 48201. Phone: (313) 577-1134;
| |
Collapse
|
18
|
van Laar T, van der Eb AJ, Terleth C. A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat Res 2002; 499:53-61. [PMID: 11804604 DOI: 10.1016/s0027-5107(01)00291-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.
Collapse
Affiliation(s)
- Theo van Laar
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, P.O. Box 9503, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
19
|
Brush GS, Clifford DM, Marinco SM, Bartrand AJ. Replication protein A is sequentially phosphorylated during meiosis. Nucleic Acids Res 2001; 29:4808-17. [PMID: 11726690 PMCID: PMC96682 DOI: 10.1093/nar/29.23.4808] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation of the cellular single-stranded DNA-binding protein, replication protein A (RPA), occurs during normal mitotic cell cycle progression and also in response to genotoxic stress. In budding yeast, these reactions require the ATM homolog Mec1, a central regulator of the DNA replication and DNA damage checkpoint responses. We now demonstrate that the middle subunit of yeast RPA (Rfa2) becomes phosphorylated in two discrete steps during meiosis. Primary Rfa2 phosphorylation occurs early in meiotic progression and is independent of DNA replication, recombination and Mec1. In contrast, secondary Rfa2 phosphorylation is activated upon initiation of recombination and requires Mec1. While the primary Rfa2 phosphoisomer is detectable throughout most of meiosis, the secondary Rfa2 phosphoisomer is only transiently generated and begins to disappear soon after recombination is complete. Extensive secondary Rfa2 phosphorylation is observed in a recombination mutant defective for the pachytene checkpoint, indicating that Mec1-dependent Rfa2 phosphorylation does not function to maintain meiotic delay in response to DNA double-strand breaks. Our results suggest that Mec1-dependent RPA phosphorylation could be involved in regulating recombination rather than cell cycle or meiotic progression.
Collapse
Affiliation(s)
- G S Brush
- Program in Molecular Biology and Genetics, Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
20
|
Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP, Dixon K. UV-induced hyperphosphorylation of replication protein a depends on DNA replication and expression of ATM protein. Mol Biol Cell 2001; 12:1199-213. [PMID: 11359916 PMCID: PMC34578 DOI: 10.1091/mbc.12.5.1199] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.
Collapse
Affiliation(s)
- G G Oakley
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schramke V, Neecke H, Brevet V, Corda Y, Lucchini G, Longhese MP, Gilson E, Géli V. The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes. Genes Dev 2001; 15:1845-58. [PMID: 11459833 PMCID: PMC312739 DOI: 10.1101/gad.193901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SET domain proteins are present in chromosomal proteins involved in epigenetic control of transcription. The yeast SET domain protein Set1p regulates chromatin structure, DNA repair, and telomeric functions. We investigated the mechanism by which the absence of Set1p increases DNA repair capacities of checkpoint mutants. We show that deletion of SET1 induces a response relayed by the signaling kinase Rad53p that leads to the MEC1/TEL1-independent hyperphosphorylation of replication protein A middle subunit (Rfa2p). Consequently, the binding of Rfa2p to upstream repressing sequences (URS) of repair genes is decreased, thereby leading to their derepression. Our results correlate the set1Delta-dependent phosphorylation of Rfa2p with the transcriptional induction of repair genes. Moreover, we show that the deletion of the amino-terminal region of Rfa2p suppresses the sensitivity to ultraviolet radiation of a mec3Delta checkpoint mutant, abolishes the URS-mediated repression, and increases the expression of repair genes. This work provides an additional link for the role of Rfa2p in the regulation of the repair capacity of the cell and reveals a role for the phosphorylation of Rfa2p and unveils unsuspected connections between chromatin, signaling pathways, telomeres, and DNA repair.
Collapse
Affiliation(s)
- V Schramke
- Laboratoire D'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie (IBSM), Centre National de la Recherche Scientifique (CNRS), 13402, Marseille, Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jelinsky SA, Estep P, Church GM, Samson LD. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 2000; 20:8157-67. [PMID: 11027285 PMCID: PMC86425 DOI: 10.1128/mcb.20.21.8157-8167.2000] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure to carcinogenic alkylating agents, oxidizing agents, and ionizing radiation modulates transcript levels for over one third of Saccharomyces cerevisiae's 6,200 genes. Computational analysis delineates groups of coregulated genes whose upstream regions bear known and novel regulatory sequence motifs. One group of coregulated genes contain a number of DNA excision repair genes (including the MAG1 3-methyladenine DNA glycosylase gene) and a large selection of protein degradation genes. Moreover, transcription of these genes is modulated by the proteasome-associated protein Rpn4, most likely via its binding to MAG1 upstream repressor sequence 2-like elements, that turn out to be almost identical to the recently identified proteasome-associated control element (G. Mannhaupt, R. Schnall, V. Karpov, I. Vetter, and H. Feldmann, FEBS Lett. 450:27-34, 1999). We have identified a large number of genes whose transcription is influenced by Rpn4p.
Collapse
Affiliation(s)
- S A Jelinsky
- Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
23
|
Cho JM, Song DJ, Bergeron J, Benlimame N, Wold MS, Alaoui-Jamali MA. RBT1, a novel transcriptional co-activator, binds the second subunit of replication protein A. Nucleic Acids Res 2000; 28:3478-85. [PMID: 10982866 PMCID: PMC110737 DOI: 10.1093/nar/28.18.3478] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication Protein A (RPA) is required for DNA recombination, repair and replication in all eukaryotes. RPA participation in these pathways is mediated by single-stranded DNA binding and protein interactions. We herein identify a novel protein, Replication Protein Binding Trans-Activator (RBT1), in a yeast two-hybrid assay employing the second subunit of human RPA (RPA32) as bait. RBT1-RPA32 binding was confirmed by glutathione S:-transferase pull-down and co-immunoprecipitation. Fluorescence microscopy indicates that green fluorescence protein-tagged RBT1 is localized to the nucleus in vivo. RBT1 mRNA expression, determined by semi-quantitative RT-PCR, is significantly higher in cancer cell lines MCF-7, ZR-75, SaOS-2 and H661, compared to the cell lines normal non-immortalized human mammary epithelial cells and normal non-immortalized human bronchial epithelial cells. Further, yeast and mammalian one-hybrid analysis shows that RBT1 is a strong transcriptional co-activator. Interestingly, mammalian transactivation data is indicative of significant variance between cell lines; the GAL4-RBT1 fusion protein has significantly higher transcriptional activity in human cancer cells compared to human normal primary non-immortalized epithelial cells. We propose that RBT1 is a novel transcriptional co-activator that interacts with RPA, and has significantly higher activity in transformed cells.
Collapse
Affiliation(s)
- J M Cho
- Departments of Medicine, Oncology and Pharmacology, Lady Davis Institute for Medical Research of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Keszenman DJ, Carmen Candreva E, Nunes E. Cellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae. Mutat Res 2000; 459:29-41. [PMID: 10677681 DOI: 10.1016/s0921-8777(99)00056-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study some mechanisms underlying the stress responses in eukaryotic cells, we investigated the effect of heat shock (HS) on the induction of DNA double strand breaks as well as on potentially lethal and mutagenic events induced by the radiomimetic antibiotic bleomycin (BLM) in Saccharomyces cerevisiae. Haploid wild-type yeast cells in the logarithmic phase of growth were exposed to different concentrations of BLM (0-30 microg/ml, 1.5 h) without and with a previous HS (38 degrees C, 1 h). Immediately after treatments, survival as well as mutation frequency were determined, and quantitative analysis of chromosomal DNA by laser densitometry were performed both immediately after treatments and after incubation of cells during different time intervals in liquid nutrient medium free of BLM. Our results indicate that HS induces resistance to potentially lethal and mutagenic effects of BLM. Quantitative analysis of chromosomal DNA performed immediately after treatments showed the same DNA fragmentation, either upon BLM as single agent or preceded by HS. However, HS pretreated cells incubated during 4 h in liquid nutrient medium free of BLM repaired DNA double strand breaks more efficiently as compared to non-pretreated cells. On this basis, we propose that the observed HS-induced resistance to BLM depends on a regulatory network acting after DNA-induced damage, which includes genes involved in DNA repair, HS response and DNA metabolism.
Collapse
Affiliation(s)
- D J Keszenman
- Dipartamento de Biofisica, LOBBM, Facultad de Medicina, Gral. Flores 2125, Montevideo, Uruguay.
| | | | | |
Collapse
|
25
|
Treuner K, Findeisen M, Strausfeld U, Knippers R. Phosphorylation of replication protein A middle subunit (RPA32) leads to a disassembly of the RPA heterotrimer. J Biol Chem 1999; 274:15556-61. [PMID: 10336450 DOI: 10.1074/jbc.274.22.15556] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication protein A (RPA), the major eukaryotic single-strand specific DNA binding protein, consists of three subunits, RPA70, RPA32, and RPA14. The middle subunit, RPA32, is phosphorylated in a cell cycle-dependent manner. RPA occurs in two nuclear compartments, bound to chromatin or free in the nucleosol. We show here that the chromatin-associated fraction of RPA contains the phosphorylated forms of RPA32. Treatment of chromatin with 0.4 M NaCl releases bound RPA and causes a separation of the large and the phosphorylated middle RPA subunit. Unmodified RPA in the nucleosolic fraction remains perfectly stable under identical conditions. Phosphorylation is most likely an important determinant of RPA desintegration because dialysis from 0.4 to 0.1 NaCl causes the reformation of trimeric RPA only under dephosphorylating conditions. Biochemical studies with isolated Cyclin-dependent protein kinases showed that cyclin A/CDK1 and cyclin B/CDK1, but not cyclin E/CDK2, can phosphorylate human recombinant RPA in vitro. However, only a small fraction of in vitro phosphorylated RPA desintegrated, suggesting that phosphorylation may be one, but probably not the only, determinant affecting subunit interaction. We speculate that phosphorylation and changes in subunit interaction are required for the proposed role of RPA during the polymerase switch at replication forks.
Collapse
Affiliation(s)
- K Treuner
- Department of Biology, Universität Konstanz, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
26
|
Jelinsky SA, Samson LD. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 1999; 96:1486-91. [PMID: 9990050 PMCID: PMC15489 DOI: 10.1073/pnas.96.4.1486] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA chip technology enables simultaneous examination of how approximately 6,200 Saccharomyces cerevisiae gene transcript levels, representing the entire genome, respond to environmental change. By using chips bearing oligonucleotide arrays, we show that, after exposure to the alkylating agent methyl methanesulfonate, approximately 325 gene transcript levels are increased and approximately 76 are decreased. Of the 21 genes that already were known to be induced by a DNA-damaging agent, 18 can be scored as inducible in this data set, and surprisingly, most of the newly identified inducible genes are induced even more strongly than these 18. We examined 42 responsive and 8 nonresponsive ORFs by conventional Northern blotting, and 48 of these 50 ORFs responded as they did by DNA chip analysis, with magnitudes displaying a correlation coefficient of 0.79. Responsive genes fall into several expected and many unexpected categories. Evidence for the induction of a program to eliminate and replace alkylated proteins is presented.
Collapse
Affiliation(s)
- S A Jelinsky
- Department of Cancer Cell Biology, Division of Toxicology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Dong J, Park JS, Lee SH. In vitro analysis of the zinc-finger motif in human replication protein A. Biochem J 1999; 337 ( Pt 2):311-7. [PMID: 9882630 PMCID: PMC1219967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Human replication protein A (RPA) is composed of 70, 34 and 11 kDa subunits (p70, p34 and p11 respectively) and functions in all three major DNA metabolic processes: replication, repair and recombination. Recent deletion analysis demonstrated that the large subunit of RPA, p70, has multiple functional domains, including a DNA polymerase alpha-stimulation domain and a single-stranded DNA-binding domain. It also contains a putative metal-binding domain of the 4-cysteine type (Cys-Xaa4-Cys-Xaa13-Cys-Xaa2-Cys) that is highly conserved among eukaryotes. To study the role of this domain in DNA metabolism, we created various p70 mutants that lack the zinc-finger motif (by Cys-->Ala substitutions). Mutation at the zinc-finger domain (ZFM) abolished RPA's function in nucleotide excision repair (NER), but had very little impact on DNA replication. The failure of zinc-finger mutant RPA in NER may be explained by the observation that wild-type RPA significantly stimulated DNA polymerase delta activity, whereas only marginal stimulation was observed with zinc-finger mutant RPA. We also observed that ZFM reduced RPA's single-stranded DNA-binding activity by 2-3-fold in the presence of low amounts of RPA. Interestingly, the ZFM abolished phosphorylation of the p34 subunit by DNA-dependent protein kinase, but not that by cyclin-dependent kinase. Taker together, our results strongly suggest a positive role for RPA's zinc finger domain in its function.
Collapse
Affiliation(s)
- J Dong
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
28
|
Wen X, Khampang P, Rutherford CL. The glycogen phosphorylase-2 promoter binding protein in Dictyostelium is replication protein A. J Mol Biol 1998; 284:903-13. [PMID: 9837714 DOI: 10.1006/jmbi.1998.2239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During Dictyostelium development, glycogen degradation is a crucial event that provides glucose monomers used in the synthesis of the essential structural components for cellular differentiation. The product of the developmentally regulated glycogen phosphorylase-2 gene (gp2) catalyzes the degradation. DNA-binding proteins were found to bind to a regulatory site of the gp2 gene in a stage-dependent pattern. Gel-shift analysis of undifferentiated amoebae cell extract revealed a protein migrating at 0.40 Rf, while 17 hour differentiated cell extract produced a species migrating at 0.32 Rf. Both the 0.32 and 0.40 Rf proteins were purified and found to consist of three subunits of 18, 35 and 62 kDa (for 0.40 Rf) or 81 kDa (for 0.32 Rf). Data base searches identified the protein as the Dictyostelium homologue of replication protein A (DdRPA). Amino acid sequence analysis showed identity between the 62 and 81 kDa subunits. Incubation of cell-free extracts under appropriate conditions at low pH, resulted in conversion of the 81 kDa to the 62 kDa subunit. Northern blot analysis revealed that the levels of expression of the large subunit of DdRPA were constant throughout differentiation and the size of the mRNA was the same at all stages of development. The results raise the possibility that pH induced post-translational modifications of DdRPA are involved in events that halt cell proliferation and induce differentiation in Dictyostelium.
Collapse
Affiliation(s)
- X Wen
- Biology Department, Molecular and Cellular Biology Section, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | |
Collapse
|
29
|
Teng Y, Longhese M, McDonough G, Waters R. Mutants with changes in different domains of yeast replication protein A exhibit differences in repairing the control region, the transcribed strand and the non-transcribed strand of the Saccharomyces cerevisiae MFA2 gene. J Mol Biol 1998; 280:355-63. [PMID: 9665842 DOI: 10.1006/jmbi.1998.1872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analysed the removal of UV-induced cyclobutane pyrimidine dimers (CPDs) at nucleotide resolution from the MFA2 gene of wild-type Saccharomyces cerevisiae and in strains harbouring mutations in one of the yeast replication protein A (RPA) genes, RFA1. This gene codes for the 70 kDa subunit of RPA and it has previously been shown to have a role in nucleotide excision repair. Here two RFA1 mutants were examined: rfa1-M2 which is mutated in the protein interaction domain and rfa1-M4 which is mutated in the DNA-binding domain. A distinct difference in the removal of CPDs from the MFA2 sequence of these two mutants was observed. Compared to the parental strain, there was no defect in CPD removal in the rfa1-M2 mutant. Contrarily, the rfa1-M4 mutant was totally defective in the global repair of CPDs from the non-transcribed strand and the non-transcribed portions of the strand containing the transcribed sequence, yet it was able to perform reduced transcription coupled repair of the transcribed strand. These results indicate that the role of the DNA-binding domain of RPA is different for global repair versus transcription coupled nucleotide excision repair.
Collapse
Affiliation(s)
- Y Teng
- School of Biological Sciences, University of Wales, Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | | | | | | |
Collapse
|
30
|
Sweet DH, Jang YK, Sancar GB. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:6223-35. [PMID: 9343383 PMCID: PMC232473 DOI: 10.1128/mcb.17.11.6223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Saccharomyces cerevisiae UV radiation and a variety of chemical DNA-damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of these genes is PHR1, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHR1 require an upstream activation sequence, UAS(PHR1), which has homology with DRC elements found upstream of at least 19 other DNA repair and DNA metabolism genes in yeast. Here we report the identification of the UME6 gene of S. cerevisiae as a regulator of UAS(PHR1) activity. Multiple copies of UME6 stimulate expression from UAS(PHR1) and the intact PHR1 gene. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHR1 is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UME6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHR1 mRNA, and increases the UV sensitivity of a rad2 mutant. Despite the fact that UAS(PHR1) does not contain the URS1 sequence, which has been previously implicated in UME6-mediated transcriptional regulation, we find that Ume6p binds to UAS(PHR1) with an affinity and a specificity similar to those seen for a URS1 site. Similar binding is also seen for DRC elements from RAD2, RAD7, and RAD53, suggesting that UME6 contributes to the regulated expression of a subset of damage-responsive genes in yeast.
Collapse
Affiliation(s)
- D H Sweet
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, 27599-7260, USA
| | | | | |
Collapse
|
31
|
van der Knaap E, Jagoueix S, Kende H. Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice. Proc Natl Acad Sci U S A 1997; 94:9979-83. [PMID: 9275237 PMCID: PMC23317 DOI: 10.1073/pnas.94.18.9979] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.
Collapse
Affiliation(s)
- E van der Knaap
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA
| | | | | |
Collapse
|
32
|
Iftode C, Borowiec JA. Denaturation of the simian virus 40 origin of replication mediated by human replication protein A. Mol Cell Biol 1997; 17:3876-83. [PMID: 9199322 PMCID: PMC232240 DOI: 10.1128/mcb.17.7.3876] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.
Collapse
Affiliation(s)
- C Iftode
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
33
|
Gailus-Durner V, Chintamaneni C, Wilson R, Brill SJ, Vershon AK. Analysis of a meiosis-specific URS1 site: sequence requirements and involvement of replication protein A. Mol Cell Biol 1997; 17:3536-46. [PMID: 9199289 PMCID: PMC232207 DOI: 10.1128/mcb.17.7.3536] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
URS1 is a transcriptional repressor site found in the promoters of a wide variety of yeast genes that are induced under stress conditions. In the context of meiotic promoters, URS1 sites act as repressor sequences during mitosis and function as activator sites during meiosis. We have investigated the sequence requirements of the URS1 site of the meiosis-specific HOP1 gene (URS1H) and have found differences compared with a URS1 site from a nonmeiotic gene. We have also observed that the sequence specificity for meiotic activation at this site differs from that for mitotic repression. Base pairs flanking the conserved core sequence enhance meiotic induction but are not required for mitotic repression of HOP1. Electrophoretic mobility shift assays of mitotic and meiotic cell extracts show a complex pattern of DNA-protein complexes, suggesting that several different protein factors bind specifically to the site. We have determined that one of the complexes of URS1H is formed by replication protein A (RPA). Although RPA binds to the double-stranded URS1H site in vitro, it has much higher affinity for single-stranded than for double-stranded URS1H, and one-hybrid assays suggest that RPA does not bind to this site at detectable levels in vivo. In addition, conditional-lethal mutations in RPA were found to have no effect on URS1H-mediated repression. These results suggest that although RPA binds to URS1H in vitro, it does not appear to have a functional role in transcriptional repression through this site in vivo.
Collapse
Affiliation(s)
- V Gailus-Durner
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey
| | | | | | | | | |
Collapse
|
34
|
Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J Biol Chem 1997; 272:12634-41. [PMID: 9139719 DOI: 10.1074/jbc.272.19.12634] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human single-stranded DNA-binding protein (HSSB, also called RPA), is a heterotrimeric complex that consists of three subunits, p70, p34, and p11. HSSB is essential for the in vitro replication of SV40 DNA and nucleotide excision repair. It also has important functions in other DNA transactions, including DNA recombination, transcription, and double-stranded DNA break repair. The p34 subunit of HSSB is phosphorylated in a cell cycle-dependent manner. Both Cdc2 kinase and the DNA-dependent protein kinase (DNA-PK) phosphorylate HSSB-p34 in vitro. In this study, we show that efficient phosphorylation of HSSB-p34 by DNA-PK requires Ku as well as DNA. The DNA-PK phosphorylation sites in HSSB-p34 have been mapped at Thr-21 and Ser-33. Kinetic studies demonstrated that a phosphate residue is first incorporated at Thr-21 followed by the incorporation of a second phosphate residue at Ser-33. We also identified Ser-29 as the major Cdc2 kinase phosphorylation site in the p34 subunit.
Collapse
Affiliation(s)
- H Niu
- Graduate Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
35
|
Miller SD, Moses K, Jayaraman L, Prives C. Complex formation between p53 and replication protein A inhibits the sequence-specific DNA binding of p53 and is regulated by single-stranded DNA. Mol Cell Biol 1997; 17:2194-201. [PMID: 9121469 PMCID: PMC232068 DOI: 10.1128/mcb.17.4.2194] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human replication protein A (RP-A) (also known as human single-stranded DNA binding protein, or HSSB) is a multisubunit complex involved in both DNA replication and repair. Potentially important to both these functions, it is also capable of complex formation with the tumor suppressor protein p53. Here we show that although p53 is unable to prevent RP-A from associating with a range of single-stranded DNAs in solution, RP-A is able to strongly inhibit p53 from functioning as a sequence-specific DNA binding protein when the two proteins are complexed. This inhibition, in turn, can be regulated by the presence of various lengths of single-stranded DNAs, as RP-A, when bound to these single-stranded DNAs, is unable to interact with p53. Interestingly, the lengths of single-stranded DNA capable of relieving complex formation between the two proteins represent forms that might be introduced through repair and replicative events. Increasing p53 concentrations can also overcome the inhibition by steady-state levels of RP-A, potentially mimicking cellular points of balance. Finally, it has been shown previously that p53 can itself be stimulated for site-specific DNA binding when complexed through the C terminus with short single strands of DNA, and here we show that p53 stays bound to these short strands even after binding a physiologically relevant site. These results identify a potential dual role for single-stranded DNA in the regulation of DNA binding by p53 and give insights into the p53 response to DNA damage.
Collapse
Affiliation(s)
- S D Miller
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
36
|
Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M, Bharati S, Lindmo T, Benichou S, Benarous R, Krokan HE. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 1997; 272:6561-6. [PMID: 9045683 DOI: 10.1074/jbc.272.10.6561] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Uracil-DNA glycosylase releases free uracil from DNA and initiates base excision repair for removal of this potentially mutagenic DNA lesion. Using the yeast two-hybrid system, human uracil-DNA glycosylase encoded by the UNG gene (UNG) was found to interact with the C-terminal part of the 34-kDa subunit of replication protein A (RPA2). No interaction with RPA4 (a homolog of RPA2), RPA1, or RPA3 was observed. A sandwich enzyme-linked immunosorbent assay with trimeric RPA and the two-hybrid system both demonstrated that the interaction depends on a region in UNG localized between amino acids 28 and 79 in the open reading frame. In this part of UNG a 23-amino acid sequence has a significant homology to the RPA2-binding region of XPA, a protein involved in damage recognition in nucleotide excision repair. Trimeric RPA did not enhance the activity of UNG in vitro on single- or double-stranded DNA. A part of the N-terminal region of UNG corresponding in size to the complete presequence was efficiently removed by proteinase K, leaving the proteinase K-resistant compact catalytic domain intact and fully active. These results indicate that the N-terminal part constitutes a separate structural domain required for RPA binding and suggest a possible function for RPA in base excision repair.
Collapse
Affiliation(s)
- T A Nagelhus
- UNIGEN Center for Molecular Biology, The Medical Faculty, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scott AD, Waters R. The Saccharomyces cerevisiae RAD7 and RAD16 genes are required for inducible excision of endonuclease III sensitive-sites, yet are not needed for the repair of these lesions following a single UV dose. Mutat Res 1997; 383:39-48. [PMID: 9042418 DOI: 10.1016/s0921-8777(96)00044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The RAD7 and RAD16 genes of Saccharomyces cerevisiae have roles in the repair of UV induced CPDs in nontranscribed genes [1], and in the repair of CPDs in the nontranscribed strand of transcribed genes [2]. Previously, we identified an inducible component to nucleotide excision repair (NER), which is absent in a rad16 delta strain [3]. We have examined the repair of UV induced endonuclease III sensitive-sites (EIIISS), and have shown repair of these lesions to proceed by NER but their removal from nontranscribed regions is independent of RAD7 and RAD16. Furthermore, EIIISS are repaired with equal efficiency from both transcribed and nontranscribed genes [4]. In order to dissect the roles of RAD7 and RAD16 in the above processes we examined the repair of EIIISS in the MAT alpha and HML alpha loci, which are, respectively, transcriptionally active and inactive in alpha haploid cells. These loci have elevated levels of these lesions after UV (in genomic DNA EIIISS constitute about 10% of total lesions, whereas CPDs are about 70% of total lesions). We have shown that excision of UV induced EIIISS is enhanced following a prior UV irradiation. No enhancement of repair was detected in either the rad7 delta or the rad16 delta mutant. The fact that RAD7 and RAD16 are not required for the repair of EIIISS per se yet are required for the enhanced excision of these lesions from MAT alpha and HML alpha suggests two possibilities. These genes have two roles in NER, namely in the repair of CPDs from nontranscribed sequences, and in enhancing NER itself regardless of whether these genes' products are required for the excision of the specific lesion being repaired. In the latter case, the induction of RAD7 and RAD16 may increase the turnover of complexes stalled in nontranscribed DNA so as to increase the availability of NER proteins for the repair of CPDs and EIIISS in all regions of the genome.
Collapse
Affiliation(s)
- A D Scott
- School of Biological Sciences, University of Wales Swansea, UK
| | | |
Collapse
|
38
|
Wold MS. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 1997; 66:61-92. [PMID: 9242902 DOI: 10.1146/annurev.biochem.66.1.61] [Citation(s) in RCA: 1124] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Replication protein A [RPA; also known as replication factor A (RFA) and human single-stranded DNA-binding protein] is a single-stranded DNA-binding protein that is required for multiple processes in eukaryotic DNA metabolism, including DNA replication, DNA repair, and recombination. RPA homologues have been identified in all eukaryotic organisms examined and are all abundant heterotrimeric proteins composed of subunits of approximately 70, 30, and 14 kDa. Members of this family bind nonspecifically to single-stranded DNA and interact with and/or modify the activities of multiple proteins. In cells, RPA is phosphorylated by DNA-dependent protein kinase when RPA is bound to single-stranded DNA (during S phase and after DNA damage). Phosphorylation of RPA may play a role in coordinating DNA metabolism in the cell. RPA may also have a role in modulating gene expression.
Collapse
Affiliation(s)
- M S Wold
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City 52242, USA.
| |
Collapse
|
39
|
Brush GS, Morrow DM, Hieter P, Kelly TJ. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc Natl Acad Sci U S A 1996; 93:15075-80. [PMID: 8986766 PMCID: PMC26358 DOI: 10.1073/pnas.93.26.15075] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Replication protein A (RPA) is a highly conserved single-stranded DNA-binding protein, required for cellular DNA replication, repair, and recombination. In human cells, RPA is phosphorylated during the S and G2 phases of the cell cycle and also in response to ionizing or ultraviolet radiation. Saccharomyces cerevisiae exhibits a similar pattern of cell cycle-regulated RPA phosphorylation, and our studies indicate that the radiation-induced reactions occur in yeast as well. We have examined yeast RPA phosphorylation during the normal cell cycle and in response to environmental insult, and have demonstrated that the checkpoint gene MEC1 is required for the reaction under all conditions tested. Through examination of several checkpoint mutants, we have placed RPA phosphorylation in a novel pathway of the DNA damage response. MEC1 is similar in sequence to human ATM, the gene mutated in patients with ataxia-telangiectasia (A-T). A-T cells are deficient in multiple checkpoint pathways and are hypersensitive to killing by ionizing radiation. Because A-T cells exhibit a delay in ionizing radiation-induced RPA phosphorylation, our results indicate a functional similarity between MEC1 and ATM, and suggest that RPA phosphorylation is involved in a conserved eukaryotic DNA damage-response pathway defective in A-T.
Collapse
Affiliation(s)
- G S Brush
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
40
|
Longhese MP, Neecke H, Paciotti V, Lucchini G, Plevani P. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res 1996; 24:3533-7. [PMID: 8836179 PMCID: PMC146145 DOI: 10.1093/nar/24.18.3533] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The rfa1-M2 and rfa1-M4 Saccharomyces cerevisiae mutants, which are altered in the 70 kDa subunit of replication protein A (RPA) and sensitive to UV and methyl methane sulfonate (MMS), have been analyzed for possible checkpoint defects. The G1/S and intra-S DNA damage checkpoints are defective in the rfa1-M2 mutant, since rfa1-M2 cells fail to properly delay cell cycle progression in response to UV irradiation in G1 and MMS treatment during S phase. Conversely, the G2/M DNA damage checkpoint and the S/M checkpoint are proficient in rfa1-M2 cells and all the checkpoints tested are functional in the rfa1-M4 mutant. Preventing S phase entry by alpha-factor treatment after UV irradiation in G1 does not change rfa1-M4 cell lethality, while it allows partial recovery of rfa1-M2 cell viability. Therefore, the hypersensitivity to UV and MMS treatments observed in the rfa1-M4 mutant might only be due to impairment of RPA function in DNA repair, while the rfa1-M2 mutation seems to affect both the DNA repair and checkpoint functions of Rpa70.
Collapse
Affiliation(s)
- M P Longhese
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | | | |
Collapse
|
41
|
Philipova D, Mullen JR, Maniar HS, Lu J, Gu C, Brill SJ. A hierarchy of SSB protomers in replication protein A. Genes Dev 1996; 10:2222-33. [PMID: 8804316 DOI: 10.1101/gad.10.17.2222] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Replication Protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (SSB) found in all eukaryotic cells. RPA is known to be required for many of the same reactions catalyzed by the homotetrameric SSB of bacteria, but its origin, subunit functions, and mechanism of binding remain a mystery. Here we show that the three subunits of yeast RPA contain a total of four domains with weak sequence similarity to the Escherichia coli SSB protomer. We refer to these four regions as potential ssDNA-binding domains (SBDs). The p69 subunit, which is known to bind ssDNA on its own, contains two SBDs that together confer stable binding to ssDNA. The p36 and p13 subunits each contain a single SBD that does not bind stably, but corresponds to the minimal region required for viability in yeast. Photocross-linking of recombinant protein to ssDNA indicates that an SBD consists of approximately 120 amino acids with two centrally located aromatic residues. Mutation of these aromatic residues inactivates ssDNA binding and is a lethal event in three of the four domains. Finally, we present evidence that the p36 subunit binds ssDNA, as part of the RPA complex, in a salt-dependent reaction similar to the wrapping of ssDNA about E. coli SSB. The results are consistent with the notion that RPA arose by duplication of an ancestral SSB gene and that tetrameric ssDNA-binding domains and higher order binding are essential features of cellular SSBs.
Collapse
Affiliation(s)
- D Philipova
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tang CM, Tomkinson AE, Lane WS, Wold MS, Seto E. Replication protein A is a component of a complex that binds the human metallothionein IIA gene transcription start site. J Biol Chem 1996; 271:21637-44. [PMID: 8702952 DOI: 10.1074/jbc.271.35.21637] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous studies revealed that sequences surrounding the initiation sites in many mammalian and viral gene promoters, called initiator (Inr) elements, may be essential for promoter strength and for determining the actual transcription start sites. DNA sequences in the vicinity of the human metallothionein IIA (hMTIIA) gene transcription start site share homology with some of the previously identified Inr elements. However, in the present study we have found by in vitro transcription assays that the hMTIIA promoter does not contain a typical Inr. Electrophoretic mobility shift assays identified several DNA-protein complexes at the hMTIIA gene transcription start site. A partially purified protein fraction containing replication protein A (RPA) binds to the hMTIIA gene transcription start site and represses transcription from the hMTIIA promoter in vitro. In addition, overexpression of the human 70-kDa RPA-1 protein represses transcription of a reporter gene controlled by the hMTIIA promoter in vivo. These findings suggest that hMTIIA transcription initiation is controlled by a mechanism different from most mammalian and viral promoters and that the previously identified RPA may also be involved in transcription regulation.
Collapse
Affiliation(s)
- C M Tang
- Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, Florida, 33612, USA
| | | | | | | | | |
Collapse
|
43
|
Ishiai M, Sanchez JP, Amin AA, Murakami Y, Hurwitz J. Purification, gene cloning, and reconstitution of the heterotrimeric single-stranded DNA-binding protein from Schizosaccharomyces pombe. J Biol Chem 1996; 271:20868-78. [PMID: 8702843 DOI: 10.1074/jbc.271.34.20868] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have purified a single-stranded DNA-binding protein (SSB) from Schizosaccharomyces pombe (Sp) and have shown that it is composed of three subunits of 68, 30, and 12 kDa. The SpSSB supports T antigen-dependent unwinding of SV40 ori containing DNA, but is not functional in the SV40 in vitro replication reaction. All three genes that encode the SpSSB subunit have been isolated. The cloned cDNA of the ssb1(+), encoding the p68 subunit, contains 609 amino acids (68.3 kDa), while that of the ssb2(+), encoding the p30 subunit, contains a 279 amino acids (30.3 kDa). The genomic DNA clone of the p12 subunit gene (ssb3(+)) has 2 introns and an open reading frame of 104 amino acids (11.8 kDa). Significant homology is observed among the largest and middle subunits of eukaryotic SSBs, but there is poor homology among the smallest subunits. In addition, we have reconstituted the SpSSB complex by coexpression of all three subunits in Escherichia coli. The reconstituted complex is active in single-stranded DNA binding and the T antigen-dependent unwinding of SV40 ori DNA. Finally, we observed a cell cycle-dependent phosphorylation pattern of the p30 subunit of SpSSB, which is similar to that observed for the human and Saccharomyces cerevisiae SSB.
Collapse
Affiliation(s)
- M Ishiai
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
44
|
Aboussekhra A, Vialard JE, Morrison DE, de la Torre-Ruiz MA, Cernáková L, Fabre F, Lowndes NF. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription. EMBO J 1996; 15:3912-22. [PMID: 8670896 PMCID: PMC452098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cells respond to DNA damage by arresting cell cycle progression and activating several DNA repair mechanisms. These responses allow damaged DNA to be repaired efficiently, thus ensuring the maintenance of genetic integrity. In the budding yeast, Saccharomyces cerevisiae, DNA damage leads both to activation of checkpoints at the G1, S and G2 phases of the cell cycle and to a transcriptional response. The G1 and G2 checkpoints have been shown previously to be under the control of the RAD9 gene. We show here that RAD9 is also required for the transcriptional response to DNA damage. Northern blot analysis demonstrated that RAD9 controls the DNA damage-specific induction of a large 'regulon' of repair, replication and recombination genes. This induction is cell-cycle independent as it was observed in asynchronous cultures and cells blocked in G1 or G2/M. RAD9-dependent induction was also observed from isolated damage responsive promoter elements in a lacZ reporter-based plasmid assay. RAD9 cells deficient in the transcriptional response were more sensitive to DNA damage than wild-type cells, even after functional substitution of checkpoints, suggesting that this activation may have an important role in DNA repair. Our findings parallel observations with the Escherichia coli SOS system and suggest the existence of an analogous eukaryotic network coordinating the cellular responses to DNA damage.
Collapse
Affiliation(s)
- A Aboussekhra
- Institut Curie, UMR 144 CNRS, 26 Rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Gailus-Durner V, Xie J, Chintamaneni C, Vershon AK. Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene. Mol Cell Biol 1996; 16:2777-86. [PMID: 8649386 PMCID: PMC231269 DOI: 10.1128/mcb.16.6.2777] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.
Collapse
Affiliation(s)
- V Gailus-Durner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855-0759, USA
| | | | | | | |
Collapse
|
46
|
Jang YK, Jin YH, Shim YS, Kim MJ, Yoo EJ, Choi IS, Lee JS, Seong RH, Hong SH, Park SD. Identification of the DNA damage-responsive elements of the rhp51+ gene, a recA and RAD51 homolog from the fission yeast Schizosaccharomyces pombe. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:167-75. [PMID: 8668127 DOI: 10.1007/bf02172915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Schizosaccharomyces pombe rhp51+ gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and the Saccharomyces cerevisiae RAD51 protein. Levels of rhp51+ mRNA increase following several types of DNA damage or inhibition of DNA synthesis. An rhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulating rhp51+ expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (for damage-responsive element), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes from S. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility of rhp51+ expression.
Collapse
Affiliation(s)
- Y K Jang
- Department of Molecular Biology, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|