1
|
Melogmo Dongmo YK, Tchatat Tali MB, Dize D, Jiatsa Mbouna CD, Kache Fotsing S, Ngouana V, Pinlap BR, Zeuko'o Menkem E, Yamthe Tchokouaha LR, Fotso Wabo G, Lenta Ndjakou B, Lunga PK, Fekam Boyom F. Anti-Shigella and antioxidant-based screening of some Cameroonian medicinal plants, UHPLC-LIT-MS/MS fingerprints, and prediction of pharmacokinetic and drug-likeness properties of identified chemicals. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117788. [PMID: 38296176 DOI: 10.1016/j.jep.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shigella infection is a public health problem responsible for approximately 700,000 deaths annually. The management of this disease is impaired by the emergence of multidrug-resistant Shigella species, highlighting the urgent need to search for alternative treatment options. In this regard, investigating medicinal plants traditionally used for the treatment of dysentery, diarrheal infections, and/or associated symptoms in endemic regions might provide an opportunity to identify phytochemicals that could be further used as a basis for the development of future anti-shigella drug candidates. AIM OF THE STUDY This study was designed to investigate the anti-shigella and antioxidant-based ethnopharmacological potency of some Cameroonian medicinal plants with an emphasis on pharmacokinetic properties of the identified chemical pharmacophore. MATERIALS AND METHODS Briefly, plant species were selected and collected based on their ethnopharmacological uses and information reported in the literature. Crude aqueous, ethanolic, methanolic, and hydroethanolic (30:70, v/v) extracts from these plants were prepared and then screened for their anti-Shigella activity against four Shigella strains and cytotoxicity against Vero and Raw cell lines using microdilution and resazurin-based methods, respectively. The antioxidant activities of potent extracts were evaluated using DPPH, ABTS, NO, and FRAP scavenging assays. The chemical profile of potent extracts was performed using the UHPLC-LIT-MS/MS and the pharmacokinetic properties, druglikeness, and likely molecular targets of the chemical scaffolds identified were predicted using SwissADME and SwissTargetPredictor. RESULTS Thirty-nine (39) plants belonging to 26 plant families were harvested. Out of the 228 extracts tested, 18 extracts originating from 6 plants (15.38 %) were active (MICs 250-1000 μg/mL) and nontoxic toward Vero (CC50 129.25-684.55 μg/mL) and Raw cell lines (CC50 336.20 to >1000 μg/mL). Six potent extracts from the two plants exhibited moderate to potent DPPH (SC50 8.870-54.410 μg/mL), ABTS (SC50 12.020-27.36 μg/mL), and NO (SC50 0.02-195.85 μg/mL) scavenging activities. Later, these extracts showed interesting ferric iron-reducing power (1.28-12.14 μg equivalent NH2OH/g of extract). The shortest onset of action time (4 and 6 h) observed following inhibition kinetics studies was observed with extracts BFSHE, PMSE, and PMSM. The UHPLC-LIT-MS/MS and some databases (Mass Spectral Library (NIST 14), Human Metabolome Database (HMD), MassBank, SuperNatural 3.0, The Food Database (FooDB), and Chemical Entities of Biological Interest (ChEBI)) allowed the annotation of 18 and 17 metabolites in the extracts from stem bark of P. macrophylla and B. ferruginea respectively. Pharmacokinetic prediction of these chemicals showed that compound 6 (4,6a-bis(Hydroxymethyl)-9a-methyl-3-oxo-1a,1b,3,5,6,6a,7a,9a-octahydrobis (oxireno)[2',3':5,6; 2″,3'':9,10]cyclodeca[1,2-b]furan-5-yl methacrylate), compound 8 (Corynoxeine), and compounds 35 (Stachybotrydial acetate) demonstrated acceptable druglike and pharmacokinetic properties and might act through inhibition of kinase, transferase, protease, oxidoreductase, and family AG protein-linked receptors. CONCLUSION The findings from this investigation demonstrated that Cameroonian medicinal plants are suitable reservoirs of anti-Shigella and antioxidant agents with good drug candidate properties.
Collapse
Affiliation(s)
- Yanick Kevin Melogmo Dongmo
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Mariscal Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Darline Dize
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Sorelle Kache Fotsing
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Vincent Ngouana
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon; Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96, Dschang, Cameroon.
| | - Brice Rostan Pinlap
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Elisabeth Zeuko'o Menkem
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon; Department of Biomedical Sciences, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon; Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of Scientific Research and Innovation, P.O. Box 6133, Yaounde, Cameroon.
| | - Ghislain Fotso Wabo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Bruno Lenta Ndjakou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon.
| | - Paul Keilah Lunga
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Fabrice Fekam Boyom
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| |
Collapse
|
2
|
Wang G, Mohanty B, Williams ML, Doak BC, Dhouib R, Totsika M, McMahon R, Sharma G, Zheng D, Bentley MR, Chin YKY, Horne J, Chalmers DK, Heras B, Scanlon MJ. Selective binding of small molecules to Vibrio cholerae DsbA offers a starting point for the design of novel antibacterials. ChemMedChem 2022; 17:e202100673. [PMID: 34978144 PMCID: PMC9305425 DOI: 10.1002/cmdc.202100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/25/2022]
Abstract
DsbA enzymes catalyze oxidative folding of proteins that are secreted into the periplasm of Gram‐negative bacteria, and they are indispensable for the virulence of human pathogens such as Vibrio cholerae and Escherichia coli. Therefore, targeting DsbA represents an attractive approach to control bacterial virulence. X‐ray crystal structures reveal that DsbA enzymes share a similar fold, however, the hydrophobic groove adjacent to the active site, which is implicated in substrate binding, is shorter and flatter in the structure of V. cholerae DsbA (VcDsbA) compared to E. coli DsbA (EcDsbA). The flat and largely featureless nature of this hydrophobic groove is challenging for the development of small molecule inhibitors. Using fragment‐based screening approaches, we have identified a novel small molecule, based on the benzimidazole scaffold, that binds to the hydrophobic groove of oxidized VcDsbA with a KD of 446±10 μM. The same benzimidazole compound has ∼8‐fold selectivity for VcDsbA over EcDsbA and binds to oxidized EcDsbA, with KD>3.5 mM. We generated a model of the benzimidazole complex with VcDsbA using NMR data but were unable to determine the structure of the benzimidazole bound EcDsbA using either NMR or X‐ray crystallography. Therefore, a structural basis for the observed selectivity is unclear. To better understand ligand binding to these two enzymes we crystallized each of them in complex with a known ligand, the bile salt sodium taurocholate. The crystal structures show that taurocholate adopts different binding poses in complex with VcDsbA and EcDsbA, and reveal the protein‐ligand interactions that stabilize the different modes of binding. This work highlights the capacity of fragment‐based drug discovery to identify inhibitors of challenging protein targets. In addition, it provides a starting point for development of more potent and specific VcDsbA inhibitors that act through a novel anti‐virulence mechanism.
Collapse
Affiliation(s)
- Geqing Wang
- La Trobe University - Bundoora Campus: La Trobe University, Department of Biochemistry and Genetics, AUSTRALIA
| | | | - Martin L Williams
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Bradley C Doak
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Rabeb Dhouib
- Queensland University of Technology, School of Biomedical Sciences, AUSTRALIA
| | - Makrina Totsika
- Queensland University of Technology, School of Biomedical Sciences, AUSTRALIA
| | - Roisin McMahon
- Griffith University, Griffith Institute for Drug Discovery, AUSTRALIA
| | - Gaurav Sharma
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Dan Zheng
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Matthew R Bentley
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Yanni Ka-Yan Chin
- The University of Queensland, Cantre for Advanced Imaging, AUSTRALIA
| | - James Horne
- University of Tasmania, Central Science Laboratory, AUSTRALIA
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Begoña Heras
- La Trobe University, Department of Biochemistry and Genetics, AUSTRALIA
| | - Martin Joseph Scanlon
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, Medicinal Chemistry, 381 Royal Parade, Monash University, 3052, Parkville, AUSTRALIA
| |
Collapse
|
3
|
Sutoh S, Uemura Y, Yamaguchi Y, Kiyotou A, Sugihara R, Nagayasu M, Kurokawa M, Ito K, Tsunekawa N, Nemoto M, Inagaki K, Tamura T. Redox-tuning of oxidizing disulfide oxidoreductase generates a potent disulfide isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:194-201. [DOI: 10.1016/j.bbapap.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
4
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
5
|
In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity. PLoS One 2017; 12:e0180505. [PMID: 28767653 PMCID: PMC5540609 DOI: 10.1371/journal.pone.0180505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/18/2017] [Indexed: 12/20/2022] Open
Abstract
Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.
Collapse
|
6
|
Bacterial thiol oxidoreductases - from basic research to new antibacterial strategies. Appl Microbiol Biotechnol 2017; 101:3977-3989. [PMID: 28409380 PMCID: PMC5403849 DOI: 10.1007/s00253-017-8291-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
The recent, rapid increase in bacterial antimicrobial resistance has become a major public health concern. One approach to generate new classes of antibacterials is targeting virulence rather than the viability of bacteria. Proteins of the Dsb system, which play a key role in the virulence of many pathogenic microorganisms, represent potential new drug targets. The first part of the article presents current knowledge of how the Dsb system impacts function of various protein secretion systems that influence the virulence of many pathogenic bacteria. Next, the review describes methods used to study the structure, biochemistry, and microbiology of the Dsb proteins and shows how these experiments broaden our knowledge about their function. The lessons gained from basic research have led to a specific search for inhibitors blocking the Dsb networks.
Collapse
|
7
|
Smith RP, Paxman JJ, Scanlon MJ, Heras B. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Molecules 2016; 21:molecules21070811. [PMID: 27438817 PMCID: PMC6273893 DOI: 10.3390/molecules21070811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.
Collapse
Affiliation(s)
- Roxanne P Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Royal Parade, Parkville, Vic 3052, Australia.
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| |
Collapse
|
8
|
Moncada D, Arenas A, Acosta A, Molina D, Hernández A, Cardona N, Gomez-Yepes M, Gomez-Marin JE. Role of the 52 KDa thioredoxin protein disulfide isomerase of Toxoplasma gondii during infection to human cells. Exp Parasitol 2016; 164:36-42. [DOI: 10.1016/j.exppara.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
9
|
Agaisse H. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination. Front Cell Infect Microbiol 2016; 6:29. [PMID: 27014639 PMCID: PMC4786538 DOI: 10.3389/fcimb.2016.00029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| |
Collapse
|
10
|
Lo KY, Visram S, Vogl AW, Shen CLJ, Guttman JA. Morphological analysis of Francisella novicida epithelial cell infections in the absence of functional FipA. Cell Tissue Res 2016; 363:449-59. [PMID: 26239909 DOI: 10.1007/s00441-015-2246-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022]
Abstract
Francisella novicida is a surrogate pathogen commonly used to study infections by the potential bioterrorism agent, Francisella tularensis. One of the primary sites of Francisella infections is the liver where >90% of infected cells are hepatocytes. It is known that once Francisella enter cells it occupies a membrane-bound compartment, the Francisella-containing vacuole (FCV), from which it rapidly escapes to replicate in the cytosol. Recent work examining the Francisella disulfide bond formation (Dsb) proteins, FipA and FipB, have demonstrated that these proteins are important during the Francisella infection process; however, details as to how the infections are altered in epithelial cells have remained elusive. To identify the stage of the infections where these Dsbs might act during epithelial infections, we exploited a hepatocyte F. novicida infection model that we recently developed. We found that F. novicida ΔfipA-infected hepatocytes contained bacteria clustered within lysosome-associated membrane protein 1-positive FCVs, suggesting that FipA is involved in the escape of F. novicida from its vacuole. Our morphological evidence provides a tangible link as to how Dsb FipA can influence Francisella infections.
Collapse
Affiliation(s)
- Karen Y Lo
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Shyanne Visram
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - A Wayne Vogl
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, British Columbia, Canada
| | - Chiao Ling Jennifer Shen
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
11
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
12
|
Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol 2015; 79:208-15. [PMID: 24552512 DOI: 10.1111/bcp.12356] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
New antibacterials need new approaches to overcome the problem of rapid antibiotic resistance. Here we review the development of potential new antibacterial drugs that do not kill bacteria or inhibit their growth, but combat disease instead by targeting bacterial virulence.
Collapse
Affiliation(s)
- Begoña Heras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic
| | | | | |
Collapse
|
13
|
Kahn TB, Fernández JM, Perez-Jimenez R. Monitoring Oxidative Folding of a Single Protein Catalyzed by the Disulfide Oxidoreductase DsbA. J Biol Chem 2015; 290:14518-27. [PMID: 25897077 DOI: 10.1074/jbc.m115.646000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
Oxidative folding, the process by which proteins fold and acquire disulfide bonds concurrently, is of critical importance for a wide range of biological processes. Generally, this process is catalyzed by oxidoreductase enzymes that facilitate oxidation and also bear chaperone functionality. Although this process has been well described qualitatively, fine yet important details remain obscured by a limited quantitative perspective, arising from the limitations in the application of bulk biochemical methods to the study of oxidative folding. In this work, we have applied single molecule force spectroscopy techniques to monitor in real time the process of oxidative folding as catalyzed by DsbA, the enzyme solely responsible for the catalysis of oxidative folding in the bacterial periplasm. We provide a quantitative and detailed description of the catalytic mechanism utilized by DsbA that offers insight into the entire sequence of events that occurs in the periplasm from the unfolded-reduced state to the folded-oxidized protein. We have compared our results with those of protein disulfide-isomerase, the eukaryotic counterpart of DsbA, allowing us to devise a general mechanism for oxidative folding that also reflects upon the physiological functions and demands of these enzymes in vivo.
Collapse
Affiliation(s)
- Thomas B Kahn
- From the Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Raul Perez-Jimenez
- Centro de Investigación Cooperativa (CIC) nanoGUNE, 20018 Donostia-San Sebastian, Spain, and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Holyoake LV, Poole RK, Shepherd M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Adv Microb Physiol 2015. [PMID: 26210105 DOI: 10.1016/bs.ampbs.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection.
Collapse
|
15
|
FipB, an essential virulence factor of Francisella tularensis subsp. tularensis, has dual roles in disulfide bond formation. J Bacteriol 2014; 196:3571-81. [PMID: 25092026 DOI: 10.1128/jb.01359-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
FipB, an essential virulence factor of Francisella tularensis, is a lipoprotein with two conserved domains that have similarity to disulfide bond formation A (DsbA) proteins and the amino-terminal dimerization domain of macrophage infectivity potentiator (Mip) proteins, which are proteins with peptidyl-prolyl cis/trans isomerase activity. This combination of conserved domains is unusual, so we further characterized the enzymatic activity and the importance of the Mip domain and lipid modification in virulence. Unlike typical DsbA proteins, which are oxidases, FipB exhibited both oxidase and isomerase activities. FipA, which also shares similarity with Mip proteins, potentiated the isomerase activity of FipB in an in vitro assay and within the bacteria, as measured by increased copper sensitivity. To determine the importance of the Mip domain and lipid modification of FipB, mutants producing FipB proteins that lacked either the Mip domain or the critical cysteine necessary for lipid modification were constructed. Both strains replicated within host cells and retained virulence in mice, though there was some attenuation. FipB formed surface-exposed dimers that were sensitive to dithiothreitol (DTT), dependent on the Mip domain and on at least one cysteine in the active site of the DsbA-like domain. However, these dimers were not essential for virulence, because the Mip deletion mutant, which failed to form dimers, was still able to replicate intracellularly and retained virulence in mice. Thus, the Mip domains of FipB and FipA impart additional isomerase functionality to FipB, but only the DsbA-like domain and oxidase activity are essential for its critical virulence functions.
Collapse
|
16
|
Ireland PM, McMahon RM, Marshall LE, Halili M, Furlong E, Tay S, Martin JL, Sarkar-Tyson M. Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxid Redox Signal 2014; 20:606-17. [PMID: 23901809 PMCID: PMC3901323 DOI: 10.1089/ars.2013.5375] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed. RESULTS Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB. INNOVATION This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei. CONCLUSION These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism.
Collapse
Affiliation(s)
- Philip M Ireland
- 1 Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kakisu E, Bolla P, Abraham AG, de Urraza P, De Antoni GL. Lactobacillus plantarum isolated from kefir: Protection of cultured Hep-2 cells against Shigella invasion. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Neutrophils Turn Plasma Proteins into Weapons against HIV-1. PLoS One 2013; 8:e66073. [PMID: 23840401 PMCID: PMC3694086 DOI: 10.1371/journal.pone.0066073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/30/2013] [Indexed: 12/31/2022] Open
Abstract
As a consequence of innate immune activation granulocytes and macrophages produce hypochlorite/hypochlorous acid (HOCl) via secretion of myeloperoxidase (MPO) to the outside of the cells, where HOCl immediately reacts with proteins. Most proteins that become altered by this system do not belong to the invading microorganism but to the host. While there is no doubt that the myeloperoxidase system is capable of directly inactivating HIV-1, we hypothesized that it may have an additional indirect mode of action. We show in this article that HOCl is able to chemically alter proteins and thus turn them into Idea-Ps (Idea-P = immune defence-altered protein), potent amyloid-like and SH-groups capturing antiviral weapons against HIV-1. HOCl-altered plasma proteins (Idea-PP) have the capacity to bind efficiently and with high affinity to the HIV-1 envelope protein gp120, and to its receptor CD4 as well as to the protein disulfide isomerase (PDI). Idea-PP was able to inhibit viral infection and replication in a cell culture system as shown by reduced number of infected cells and of syncytia, resulting in reduction of viral capsid protein p24 in the culture supernatant. The unmodified plasma protein fraction had no effect. HOCl-altered isolated proteins antithrombin III and human serum albumin, taken as representative examples of the whole pool of plasma proteins, were both able to exert the same activity of binding to gp120 and inhibition of viral proliferation. These data offer an opportunity to improve the understanding of the intricacies of host-pathogen interactions and allow the generation of the following hypothetical scheme: natural immune defense mechanisms generate by posttranslational modification of plasma proteins a potent virucidal weapon that immobilizes the virus as well as inhibits viral fusion and thus entry into the host cells. Furthermore simulation of this mechanism in vitro might provide an interesting new therapeutic approach against microorganisms.
Collapse
|
19
|
Anwar N, Sem XH, Rhen M. Oxidoreductases that act as conditional virulence suppressors in Salmonella enterica serovar Typhimurium. PLoS One 2013; 8:e64948. [PMID: 23750221 PMCID: PMC3672137 DOI: 10.1371/journal.pone.0064948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium.
Collapse
Affiliation(s)
- Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Hui Sem
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
20
|
Abstract
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the "arms race" in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The "identity" of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this "identity" may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis.
Collapse
Affiliation(s)
- Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Anastasia Gazi
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France,Chaire de Microbiologie et Maladies Infectieuses; Collège de France; Paris, France,Correspondence to: Philippe Sansonetti,
| |
Collapse
|
21
|
The Aeromonas dsbA mutation decreased their virulence by triggering type III secretion system but not flagella production. Microb Pathog 2011; 52:130-9. [PMID: 22198000 DOI: 10.1016/j.micpath.2011.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/17/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022]
Abstract
Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Dsb (Disulfide bond) proteins play an important role in catalyzing disulfide bond formation in proteins within the periplasmic space. An A. hydrophila dsbA mutant with attenuated virulence using Dictyostelium amoebae as an alternative host model was identified. The attenuated virulence was tested in other animal models (by intraperitoneal injection in fish and mice) and was correlated with the presence of a defective type III secretion system for the first time in non enteric bacteria. The dsbA mutation was shown in several enteric bacteria to involve the outer membrane secretin. The defect in Aeromonas also seems to involve the outer membrane secretin homologue named AscC. However, unlike what happen in Escherichia coli, no changes in motility or flagella expression were observed for A. hydrophila dsbA mutants. The loss of E. coli motility caused by deletion of dsbA is likely due to defective disulfide bond formation in FlgI, a component of the flagella. No disulfide bond formation in FlgI homologues in Aeromonas flagella biogenesis, either polar or lateral, could be expected according to their amino acid residues sequences.
Collapse
|
22
|
Abstract
In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Disruption of two genes within the FTT0789-FTT0800 putative polysaccharide locus, including a galE homologue (FTT0791) and a putative glycosyltransferase (FTT0798), resulted in loss of glycan modification of DsbA. The F. tularensis subsp. tularensis ΔFTT0798 and ΔFTT0791::Cm mutants remained virulent in the murine model of subcutaneous tularemia. This indicates that glycosylation of DsbA does not play a major role in virulence under these conditions. This is the first report of the detailed characterization of the DsbA glycan and putative role of the FTT0789-FTT0800 gene cluster in glycan biosynthesis.
Collapse
|
23
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Translocation of surface-localized effectors in type III secretion. Proc Natl Acad Sci U S A 2011; 108:1639-44. [PMID: 21220342 DOI: 10.1073/pnas.1013888108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Yersinia species suppress the host immune response by using a plasmid-encoded type III secretion system (T3SS) to translocate virulence proteins into the cytosol of the target cells. T3SS-dependent protein translocation is believed to occur in one step from the bacterial cytosol to the target-cell cytoplasm through a conduit created by the T3SS upon target cell contact. Here, we report that T3SS substrates on the surface of Yersinia pseudotuberculosis are translocated into target cells. Upon host cell contact, purified YopH coated on Y. pseudotuberculosis was specifically and rapidly translocated across the target-cell membrane, which led to a physiological response in the infected cell. In addition, translocation of externally added YopH required a functional T3SS and a specific translocation domain in the effector protein. Efficient, T3SS-dependent translocation of purified YopH added in vitro was also observed when using coated Salmonella typhimurium strains, which implies that T3SS-mediated translocation of extracellular effector proteins is conserved among T3SS-dependent pathogens. Our results demonstrate that polarized T3SS-dependent translocation of proteins can be achieved through an intermediate extracellular step that can be reconstituted in vitro. These results indicate that translocation can occur by a different mechanism from the assumed single-step conduit model.
Collapse
|
25
|
Matteï PJ, Faudry E, Job V, Izoré T, Attree I, Dessen A. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2010; 278:414-26. [PMID: 21182592 DOI: 10.1111/j.1742-4658.2010.07974.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.
Collapse
Affiliation(s)
- Pierre-Jean Matteï
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075 (CNRS/CEA/UJF), Grenoble, France
| | | | | | | | | | | |
Collapse
|
26
|
Vivian JP, Scoullar J, Rimmer K, Bushell SR, Beddoe T, Wilce MCJ, Byres E, Boyle TP, Doak B, Simpson JS, Graham B, Heras B, Kahler CM, Rossjohn J, Scanlon MJ. Structure and function of the oxidoreductase DsbA1 from Neisseria meningitidis. J Mol Biol 2009; 394:931-43. [PMID: 19815019 DOI: 10.1016/j.jmb.2009.09.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/25/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-A-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.
Collapse
Affiliation(s)
- Julian P Vivian
- The Protein Crystallography Unit, Australian Research Council Center of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin D, Kim B, Slauch JM. DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2009; 155:4014-4024. [PMID: 19797361 DOI: 10.1099/mic.0.032904-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disulfide bond formation in periplasmic proteins is catalysed by the DsbA/DsbB system in most Gram-negative bacteria. Salmonella enterica serovar Typhimurium also encodes a paralogous pair of proteins to DsbA and DsbB, DsbL and DsbI, respectively, downstream of a periplasmic arylsulfate sulfotransferase (ASST). We show that DsbL and DsbI function as a redox pair contributing to periplasmic disulfide bond formation and, as such, affect transcription of the Salmonella pathogenicity island 1 (SPI1) type three secretion system genes and activation of the RcsCDB system, as well as ASST activity. In contrast to DsbA/DsbB, however, the DsbL/DsbI system cannot catalyse the disulfide bond formation required for flagellar assembly. Phylogenic analysis suggests that the assT dsbL dsbI genes are ancestral in the Enterobacteriaceae, but have been lost in many lineages. Deletion of assT confers no virulence defect during acute Salmonella infection of mice.
Collapse
Affiliation(s)
- Dongxia Lin
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Byoungkwan Kim
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - James M Slauch
- College of Medicine, University of Illinois, Urbana, IL 61801, USA.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Paxman JJ, Borg NA, Horne J, Thompson PE, Chin Y, Sharma P, Simpson JS, Wielens J, Piek S, Kahler CM, Sakellaris H, Pearce M, Bottomley SP, Rossjohn J, Scanlon MJ. The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes. J Biol Chem 2009; 284:17835-45. [PMID: 19389711 PMCID: PMC2719422 DOI: 10.1074/jbc.m109.011502] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/22/2009] [Indexed: 11/06/2022] Open
Abstract
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.
Collapse
Affiliation(s)
- Jason J. Paxman
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Natalie A. Borg
- the Protein Crystallography Unit, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - James Horne
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Philip E. Thompson
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Yanni Chin
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Pooja Sharma
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Jamie S. Simpson
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Jerome Wielens
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| | - Susannah Piek
- the School of Biomedical, Biomolecular and Chemical Sciences, QEII Medical Centre, University of Western Australia, Crawley, Western Australia 6009, and
| | - Charlene M. Kahler
- the School of Biomedical, Biomolecular and Chemical Sciences, QEII Medical Centre, University of Western Australia, Crawley, Western Australia 6009, and
| | - Harry Sakellaris
- the School of Biomedical, Biomolecular and Chemical Sciences, QEII Medical Centre, University of Western Australia, Crawley, Western Australia 6009, and
| | - Mary Pearce
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Stephen P. Bottomley
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- the Protein Crystallography Unit, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - Martin J. Scanlon
- From Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052
| |
Collapse
|
29
|
Ray K, Marteyn B, Sansonetti PJ, Tang CM. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 2009; 7:333-40. [PMID: 19369949 DOI: 10.1038/nrmicro2112] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens exploit a huge range of niches within their hosts. Many pathogens can invade non-phagocytic cells and survive within a membrane-bound compartment. However, only a small number of bacteria, including Listeria monocytogenes, Shigella flexneri, Burkholderia pseudomallei, Francisella tularensis and Rickettsia spp., can gain access to and proliferate within the host cell cytosol. Here, we discuss the mechanisms by which these cytosolic pathogens escape into the cytosol, obtain nutrients to replicate and subvert host immune responses.
Collapse
Affiliation(s)
- Katrina Ray
- Department of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | | | | |
Collapse
|
30
|
Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. J Bacteriol 2009; 191:3901-8. [PMID: 19376849 DOI: 10.1128/jb.00143-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.
Collapse
|
31
|
Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 2009; 7:215-25. [DOI: 10.1038/nrmicro2087] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Jiang BL, Liu J, Chen LF, Ge YY, Hang XH, He YQ, Tang DJ, Lu GT, Tang JL. DsbB is required for the pathogenesis process of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1036-45. [PMID: 18616400 DOI: 10.1094/mpmi-21-8-1036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The DsbA/DsbB oxidation pathway is one of the two pathways that catalyze disulfide bond formation of proteins in the periplasm of gram-negative bacteria. It has been demonstrated that DsbA is essential for multiple virulence factors of several animal bacterial pathogens. In this article, we present genetic evidence to show that the open reading frame XC_3314 encodes a DsbB protein that is involved in disulfide bond formation in periplasm of Xanthomonas campestris pv. campestris, the causative agent of crucifer black rot disease. The dsbB mutant of X. campestris pv. campestris exhibited attenuation in virulence, hypersensitive response, cell motility, and bacterial growth in planta. Furthermore, mutation in the dsbB gene resulted in ineffective type II and type III secretion systems as well as flagellar assembly. These findings reveal that DsbB is required for the pathogenesis process of X. campestris pv. campestris.
Collapse
Affiliation(s)
- Bo-Le Jiang
- College of Life Science and Technology, Guangxi University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miki T, Okada N, Kim Y, Abe A, Danbara H. DsbA directs efficient expression of outer membrane secretin EscC of the enteropathogenic Escherichia coli type III secretion apparatus. Microb Pathog 2008; 44:151-8. [DOI: 10.1016/j.micpath.2007.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 11/30/2022]
|
34
|
Activation of the Cpx envelope stress response down-regulates expression of several locus of enterocyte effacement-encoded genes in enteropathogenic Escherichia coli. Infect Immun 2008; 76:1465-75. [PMID: 18227171 DOI: 10.1128/iai.01265-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Cpx two-component system regulates an extracytoplasmic stress response that functions to rid the envelope of misfolded and mislocalized proteins that may interfere with normal cellular processes. The Cpx pathway is also involved in pathogenesis. This study investigated the role of the Cpx response in enteropathogenic Escherichia coli (EPEC) type III secretion (T3S). It was determined that a functional Cpx pathway is not required for T3S but that pathway activation inhibits secretion by reducing the cellular pools of T3S substrates. The EPEC T3S system structural components, as well as a number of its substrates, are encoded on the locus of enterocyte effacement (LEE) pathogenicity island. Transcriptional fusions to the five major operons of the LEE were constructed and examined under Cpx pathway-activating conditions. Induction of the Cpx response caused a decrease in the transcription of several LEE operons, with the most pronounced effect on LEE4 and LEE5. Collectively, these two operons encode components of the T3S translocation apparatus, the bacterial adhesin intimin, and the translocated bacterial receptor Tir. These data show for the first time that activation of the Cpx envelope stress response in EPEC inhibits T3S of both translocators and effectors, likely through down regulation of LEE transcription. Coupled with recent findings, our results suggest that Cpx-mediated down regulation of virulence is a conserved theme in a number of bacterial pathogens.
Collapse
|
35
|
The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect Immun 2008; 76:1498-508. [PMID: 18212083 DOI: 10.1128/iai.01378-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is an obligate human pathogen that persistently colonizes the nasopharynx and causes disease when it invades the bloodstream, lungs, or middle ear. Proteins that mediate critical interactions with the host during invasive disease are likely to be secreted. Many secreted proteins require addition of disulfide bonds by the DsbA disulfide oxidoreductase for activity or stability. In this study, we evaluated the role in H. influenzae pathogenesis of DsbA, as well as HbpA, a substrate of DsbA. Mutants of H. influenzae Rd and type b strain Eagan having nonpolar deletions of dsbA were attenuated for bacteremia in animal models, and complemented strains exhibited virulence equivalent to that of the parental strains. Comparison of predicted secreted proteins in H. influenzae to known DsbA substrates in other species revealed several proteins that could contribute to the role of dsbA in virulence. One candidate, the heme transport protein, HbpA, was examined because of the importance of exogenous heme for aerobic growth of H. influenzae. The presence of a dsbA-dependent disulfide bond in HbpA was verified by an alkylation protection assay, and HbpA was less abundant in a dsbA mutant. The hbpA mutant exhibited reduced bacteremia in the mouse model, and complementation restored its in vivo phenotype to that of the parental strain. These results indicate that dsbA is required in vivo and that HbpA and additional DsbA-dependent factors are likely to participate in H. influenzae pathogenesis.
Collapse
|
36
|
Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence. Infect Immun 2008; 76:1083-92. [PMID: 18195027 DOI: 10.1128/iai.01211-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, a causative agent of bacterial dysentery, possesses two predicted iron-sulfur cluster biosynthesis systems called Suf and Isc. S. flexneri strains containing deletion mutations in the entire suf operon (UR011) or the iscSUA genes (UR022) were constructed. Both mutants were defective in surviving exposure to oxidative stress. The suf mutant showed growth that was comparable to that of the parental strain in both iron-replete and iron-limiting media; however, the isc mutant showed reduced growth, relative to the parental strain, in both media. Although the suf mutant formed wild-type plaques on Henle cell monolayers, the isc mutant was unable to form plaques on Henle cell monolayers because the strain was noninvasive. Expression from both the suf and isc promoters increased in iron-limiting media and in the presence of hydrogen peroxide. Iron repression of the suf promoter was mediated by Fur, and increased suf expression in iron-limiting media was enhanced by the presence of IscR. Iron repression of the isc promoter was mediated by IscR. Hydrogen peroxide-dependent induction of suf expression, but not isc expression, was mediated by OxyR. Furthermore, IscR was a positive regulator of suf expression in the presence of hydrogen peroxide and a negative regulator of isc expression in the absence of hydrogen peroxide. Expression from the S. flexneri suf and isc promoters increased when Shigella was within Henle cells, and our data suggest that the intracellular signal mediating this increased expression is reduced iron levels.
Collapse
|
37
|
Tyler HL, Triplett EW. Plants as a habitat for beneficial and/or human pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:53-73. [PMID: 18680423 DOI: 10.1146/annurev.phyto.011708.103102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Non-plant pathogenic endophytic bacteria can promote plant growth, improve nitrogen nutrition, and, in some cases, are human pathogens. Recent work in several laboratories has shown that enteric bacteria are common inhabitants of the interior of plants. These observations led to the experiments that showed the entry into plants of enteric human pathogens such as Salmonella and E. coli O157:H7. The extent of endophytic colonization by strains is regulated by plant defenses and several genetic determinants necessary for this interior colonization in endophytic bacteria have been identified. The genomes of four endophytic bacteria now available should promote discovery of other genes that contribute to this phenotype. Common virulence factors in plant and animal pathogens have also been described in bacteria that can infect both plant and animal models. Future directions in all of these areas are proposed.
Collapse
Affiliation(s)
- Heather L Tyler
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA.
| | | |
Collapse
|
38
|
The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 2007; 190:87-97. [PMID: 17951383 DOI: 10.1128/jb.01323-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon contact with intestinal epithelial cells, Salmonella enterica serovar Typhimurium injects a set of effector proteins into the host cell cytoplasm via the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) to induce inflammatory diarrhea and bacterial uptake. The master SPI1 regulatory gene hilA is controlled directly by three AraC-like regulators: HilD, HilC, and RtsA. Previous work suggested a role for DsbA, a periplasmic disulfide bond oxidase, in SPI1 T3SS function. RtsA directly activates dsbA, and deletion of dsbA leads to loss of SPI1-dependent secretion. We have studied the dsbA phenotypes by monitoring expression of SPI1 regulatory, structural, and effector genes. Here we present evidence that loss of DsbA independently affects SPI1 regulation and SPI1 function. The dsbA-mediated feedback inhibition of SPI1 transcription is not due to defects in the SPI1 T3SS apparatus. Rather, the transcriptional response is dependent on both the flagellar protein FliZ and the RcsCDB system, which also affects fliZ transcription. Thus, the status of disulfide bonds in the periplasm affects expression of the SPI1 system indirectly via the flagellar apparatus. RcsCDB can also affect SPI1 independently of FliZ. All regulation is through HilD, consistent with our current model for SPI1 regulation.
Collapse
|
39
|
The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42. Infect Immun 2007; 76:170-8. [PMID: 17938223 DOI: 10.1128/iai.01913-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis infection of cattle takes place through the intestinal mucosa. To identify M. avium subsp. paratuberculosis genes associated with the invasion of bovine epithelial cells in vitro, we screened a library of transposon mutants. Several mutants of M. avium subsp. paratuberculosis were identified which invaded Madin-Darby bovine kidney (MDBK) epithelial cells less efficiently than wild-type (wt) M. avium subsp. paratuberculosis. The deltaOx mutant had the transposon located in the MAP3464 gene, a putative oxidoreductase gene whose expression is upregulated upon bacterial contact with MDBK cells. Complete restoration of invasion comparable to that for the wt bacterium was achieved by introducing a copy of the complete oxidoreductase operon into the deltaOx mutant. Immunoprecipitation and Western blot analysis indicated that wt M. avium subsp. paratuberculosis activates Cdc42 and RhoA pathways of internalization 15 and 60 min after infection of the host cell, respectively. The deltaOx mutant, however, failed to activate the Cdc42 pathway. To determine whether an M. avium subsp. paratuberculosis protein delivered to the host cell mediates the entry of the wt bacterium by activation of the Cdc42 pathway, affinity precipitation of active Cdc42 from MDBK-infected cells followed by mass spectrometry was carried out. We identified a 17-amino-acid bacterial peptide associated with the Cdc42 of cells infected with wt M. avium subsp. paratuberculosis but not with the deltaOx mutant. The sequence of the peptide matches MAP3985c, a hypothetical protein, possibly functioning as a putative Cdc42 effector. These findings reveal a novel signaling pathway activated during M. avium subsp. paratuberculosis entry that links the product of MAP3464 gene to activation of Cdc42 in the host cell.
Collapse
|
40
|
Łasica AM, Jagusztyn-Krynicka EK. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol Rev 2007; 31:626-36. [PMID: 17696887 DOI: 10.1111/j.1574-6976.2007.00081.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tertiary and quaternary structures of extracytoplasmic proteins containing more than one cysteine residue often require introduction of disulfide bonds. This process takes place in an oxidative environment, such as the periplasm of Gram-negative bacteria, and is catalyzed by Dsb (disulfide bond formation) proteins. Mutations in dsb genes influence the conformation and stability of many extracytoplasmic proteins. Thus, many pathogens become partially or fully attenuated due to improper folding of proteins that act as virulence factors. This review summarizes the current knowledge on Dsb proteins and their effect on the pathogenicity of Gram-negative bacteria. The potential application of Dsb proteins in biotechnology is also discussed.
Collapse
Affiliation(s)
- Anna M Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Biology Faculty, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | |
Collapse
|
41
|
Kaakoush NO, Kovach Z, Mendz GL. Potential role of thiol:disulfide oxidoreductases in the pathogenesis ofHelicobacter pylori. ACTA ACUST UNITED AC 2007; 50:177-83. [PMID: 17521354 DOI: 10.1111/j.1574-695x.2007.00259.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Helicobacter pylori infections are responsible for a sequence of molecular events which ultimately result in the development of gastric diseases. The pathogenesis of H. pylori has been studied extensively with strong focus on the identification of virulence factors. In contrast, the involvement of thiol:disulfide oxidoreductases in bacterial pathogenesis is less well understood. This paper provides a review of the current knowledge of H. pylori putative thiol:disulfide oxidoreductases, and their potential role in promoting virulence and colonization. Several bioinformatic analyses served to complete the information on these oxidoreductases of H. pylori.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
42
|
Danelishvili L, Wu M, Stang B, Harriff M, Cirillo S, Cirillo J, Bildfell R, Arbogast B, Bermudez LE. Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc Natl Acad Sci U S A 2007; 104:11038-43. [PMID: 17578930 PMCID: PMC1904132 DOI: 10.1073/pnas.0610746104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to infect macrophages is a common characteristic shared among many mycobacterial species. Mycobacterium avium, Mycobacterium tuberculosis, and Mycobacterium kansasii enter macrophages, using the complement receptors CR1, CR3, CR4, and the mannose receptor. To identify M. avium genes and host cell pathways involved in the bacterial uptake by macrophages, we screened a M. avium transposon mutant library for the inability to enter macrophages. Uptake-impaired clones were selected. Sequence of six M. avium clones identified one gene involved in glycopeptidolipid biosynthesis, one gene encoding the conserved membrane protein homologue to the M. avium subsp. paratuberculosis MAP2446c gene and four others belonging to the same region of the chromosome. Analysis of the chromosome region revealed a pathogenicity island inserted between two tRNA sequences with 58% of G+C content versus 69% in the M. avium genome. The region is unique for M. avium and is not present in M. tuberculosis or M. paratuberculosis. Although the mutants did not differ from the WT bacterium regarding the binding to macrophage cell membrane, analysis of macrophage proteins after 1 h infection revealed a deficiency in the mutant to phosphorylate certain proteins on uptake. To understand M. avium interaction with two evolutionarily distinct hosts, the mutants were evaluated for Acanthamoeba castellanii invasion. The defect in the ability of the mutants to invade both cells was highly similar, suggesting that M. avium might have evolved mechanisms that are used to enter amoebas and human macrophages.
Collapse
Affiliation(s)
- Lia Danelishvili
- Departments of *Biomedical Sciences, College of Veterinary Medicine, and
| | - Martin Wu
- Departments of *Biomedical Sciences, College of Veterinary Medicine, and
| | - Bernadette Stang
- Departments of *Biomedical Sciences, College of Veterinary Medicine, and
| | - Melanie Harriff
- Departments of *Biomedical Sciences, College of Veterinary Medicine, and
| | - Stuart Cirillo
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905
| | - Jeffrey Cirillo
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905
| | - Robert Bildfell
- Departments of *Biomedical Sciences, College of Veterinary Medicine, and
| | - Brian Arbogast
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331; and
| | - Luiz E. Bermudez
- Departments of *Biomedical Sciences, College of Veterinary Medicine, and
- Microbiology, College of Science, and
- To whom correspondence should be addressed.
Department of Biomedical Sciences College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-8797. E-mail:
| |
Collapse
|
43
|
Carlsson KE, Liu J, Edqvist PJ, Francis MS. Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis. Infect Immun 2007; 75:3913-24. [PMID: 17517869 PMCID: PMC1951977 DOI: 10.1128/iai.01346-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three signal transduction pathways, the two-component systems CpxRA and BaeSR and the alternative sigma factor sigma(E), respond to extracytoplasmic stress that facilitates bacterial adaptation to changing environments. At least the CpxRA and sigma(E) pathways control the production of protein-folding and degradation factors that counter the effects of protein misfolding in the periplasm. This function also influences the biogenesis of multicomponent extracellular appendages that span the bacterial envelope, such as various forms of pili. Herein, we investigated whether any of these regulatory pathways in the enteropathogen Yersinia pseudotuberculosis affect the functionality of the Ysc-Yop type III secretion system. This is a multicomponent molecular syringe spanning the bacterial envelope used to inject effector proteins directly into eukaryotic cells. Disruption of individual components revealed that the Cpx and sigma(E) pathways are important for Y. pseudotuberculosis type III secretion of Yops (Yersinia outer proteins). In particular, a loss of CpxA, a sensor kinase, reduced levels of structural Ysc (Yersinia secretion) components in bacterial membranes, suggesting that these mutant bacteria are less able to assemble a functional secretion apparatus. Moreover, these bacteria were no longer capable of localizing Yops into the eukaryotic cell interior. In addition, a cpxA lcrQ double mutant engineered to overproduce and secrete Yops was still impaired in intoxicating cells. Thus, the Cpx pathway might mediate multiple influences on bacterium-target cell contact that modulate Yersinia type III secretion-dependent host cell cytotoxicity.
Collapse
Affiliation(s)
- Katrin E Carlsson
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
44
|
Bringer MA, Rolhion N, Glasser AL, Darfeuille-Michaud A. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J Bacteriol 2007; 189:4860-71. [PMID: 17449627 PMCID: PMC1913465 DOI: 10.1128/jb.00233-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-DeltadsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-DeltadsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.
Collapse
Affiliation(s)
- Marie-Agnès Bringer
- Pathogénie Bactérienne Intestinale, Université Clermont I, USC INRA 2018, F-63000 Clermont-Fd, France
| | | | | | | |
Collapse
|
45
|
Ando H, Abe H, Sugimoto N, Tobe T. Maturation of functional type III secretion machinery by activation of anaerobic respiration in enterohaemorrhagic Escherichia coli. MICROBIOLOGY-SGM 2007; 153:464-473. [PMID: 17259617 DOI: 10.1099/mic.0.2006/000893-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a gastrointestinal pathogen that causes diarrhoea and more severe diseases in humans. A key feature of EHEC is the type III secretion system (TTSS), which translocates virulence factors (effectors) directly into host cells. In this study, the expression and secretion of effectors in EHEC grown under anaerobic conditions were examined. The secretion of effectors was greatly enhanced, without an increase in their expression levels, when EHEC was grown in the presence of specific electron acceptors, such as trimethylamine N-oxide (TMAO) and nitrate, for anaerobic respiration. The activation of the TTSS was dependent on the activity of respiratory systems, including electron-acceptor-specific signalling systems and reductases. Although de novo protein synthesis was not required for TTSS activation, the inhibition of respiratory activity abolished secretion. EHEC grown with either TMAO or nitrate possessed a more intact type III secretion (TTS) apparatus, including the needle protein EscF and the translocator protein EspA, than EHEC grown without an electron acceptor. These observations suggest that activation of either the TMAO- or the nitrate-specific respiratory system accelerates the maturation of functional TTS apparatus under anaerobic growth conditions.
Collapse
Affiliation(s)
- Hiroki Ando
- Division of Applied Bacteriology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Abe
- Division of Applied Bacteriology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nakaba Sugimoto
- Division of Applied Bacteriology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Tobe
- Division of Applied Bacteriology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Mavrodi OV, Mavrodi DV, Park AA, Weller DM, Thomashow LS. The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96. MICROBIOLOGY-SGM 2006; 152:863-872. [PMID: 16514165 DOI: 10.1099/mic.0.28545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain well-conserved genes in fluorescent Pseudomonas spp. are involved in pathogenic interactions between the bacteria and evolutionarily diverse hosts including plants, insects and vertebrate animals. One such gene, dsbA, encodes a periplasmic disulfide-bond-forming enzyme implicated in the biogenesis of exported proteins and cell surface structures. This study focused on the role of dsbA in Pseudomonas fluorescens Q8r1-96, a biological control strain that produces the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and is known for its exceptional ability to colonize the roots of wheat and pea. The deduced DsbA protein from Q8r1-96 is similar to other predicted thiol : disulfide interchange proteins and contains a conserved DsbA catalytic site, a pattern associated with the thioredoxin family active site, and a signal peptide and cleavage site. A dsbA mutant of Q8r1-96 exhibited decreased motility and fluorescence, and altered colony morphology; however, it produced more 2,4-DAPG and total phloroglucinol-related compounds and was more inhibitory in vitro to the fungal root pathogen Gaeumannomyces graminis var. tritici than was the parental strain. When introduced separately into a natural soil, Q8r1-96 and the dsbA mutant did not differ in their ability to colonize the rhizosphere of wheat in greenhouse experiments lasting 12 weeks. However, when the two strains were co-inoculated, the parental strain consistently out-competed the dsbA mutant. It was concluded that dsbA does not contribute to the exceptional rhizosphere competence of Q8r1-96, although the dsbA mutation reduces competitiveness when the mutant competes with the parental strain in the same niche in the rhizosphere. The results also suggest that exoenzymes and multimeric cell surface structures are unlikely to have a critical role in root colonization by this strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Amanda A Park
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - David M Weller
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - Linda S Thomashow
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
47
|
Hiniker A, Collet JF, Bardwell JCA. Copper Stress Causes an in Vivo Requirement for the Escherichia coli Disulfide Isomerase DsbC. J Biol Chem 2005; 280:33785-91. [PMID: 16087673 DOI: 10.1074/jbc.m505742200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the periplasmic disulfide oxidoreductase DsbA is thought to be a powerful but nonspecific oxidant, joining cysteines together the moment they enter the periplasm. DsbC, the primary disulfide isomerase, likely resolves incorrect disulfides. Given the reliance of protein function on correct disulfide bonds, it is surprising that no phenotype has been established for null mutations in dsbC. Here we demonstrate that mutations in the entire DsbC disulfide isomerization pathway cause an increased sensitivity to the redox-active metal copper. We find that copper catalyzes periplasmic disulfide bond formation under aerobic conditions and that copper catalyzes the formation of disulfide-bonded oligomers in vitro, which DsbC can resolve. Our data suggest that the copper sensitivity of dsbC- strains arises from the inability of the cell to rearrange copper-catalyzed non-native disulfides in the absence of functional DsbC. Absence of functional DsbA augments the deleterious effects of copper on a dsbC- strain, even though the dsbA- single mutant is unaffected by copper. This may indicate that DsbA successfully competes with copper and forms disulfide bonds more accurately than copper does. These findings lead us to a model in which DsbA may be significantly more accurate in disulfide oxidation than previously thought, and in which the primary role of DsbC may be to rearrange incorrect disulfide bonds that are formed during certain oxidative stresses.
Collapse
Affiliation(s)
- Annie Hiniker
- Program in Cellular and Molecular Biology, University of Michigan, 48109-1048, USA
| | | | | |
Collapse
|
48
|
Abstract
The sigma(E), Cpx and Bae envelope stress responses of Escherichia coli are involved in the maintenance, adaptation and protection of the bacterial envelope in response to a variety of stressors. Recent studies indicate that the Cpx and sigma(E) stress responses exist in many Gram-negative bacterial pathogens. The envelope is of particular importance to these organisms because most virulence determinants reside in, or must transit through, this cellular compartment. The Cpx system has been implicated in expression of pili, type IV secretion systems and key virulence regulators, while the sigma(E) pathway has been shown to be critical for protection from oxidative stress and intracellular survival. Homologues of the sigma(E)- and Cpx-regulated protease DegP are essential for full virulence in numerous pathogens, and, like sigma(E), DegP appears to confer resistance to oxidative stress and intracellular survival capacity. Some pathogens contain multiple homologues of the Cpx-regulated, disulphide bond catalyst DsbA protein, which has been demonstrated to play roles in the expression of secreted virulence determinants, type III secretion systems and pili. This review highlights recent studies that indicate roles for the sigma(E), Cpx and Bae envelope stress responses in Gram-negative bacterial pathogenesis.
Collapse
Affiliation(s)
- Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
49
|
Abstract
Several bacteria that are pathogenic to animals also infect plants. Mechanistic studies have proven that some human/animal pathogenic bacteria employ a similar subset of virulence determinants to elicit disease in animals, invertebrates and plants. Therefore, the results of plant infection studies are relevant to animal pathogenesis. This discovery has resulted in the development of convenient, cost-effective, and reliable plant infection models to study the molecular basis of infection by animal pathogens. Plant infection models provide a number of advantages in the study of animal pathogenesis. Using a plant model, mutations in animal pathogenic bacteria can easily be screened for putative virulence factors, a process which if done using existing animal infection models would be time-consuming and tedious. High-throughput screening of plants also provides the potential for unravelling the mechanisms by which plants resist animal pathogenic bacteria, and provides a means to discover novel therapeutic agents such as antibiotics and anti-infective compounds. In this review, we describe the developing technique of using plants as a model system to study Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus pathogenesis, and discuss ways to use this new technology against disease warfare and other types of bioterrorism.
Collapse
Affiliation(s)
- B Prithiviraj
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA
| | | | | | | | | |
Collapse
|
50
|
Kaakoush NO, Mendz GL. Helicobacter pyloridisulphide reductases: role in metronidazole reduction. ACTA ACUST UNITED AC 2005; 44:137-42. [PMID: 15866207 DOI: 10.1016/j.femsim.2004.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 10/27/2004] [Accepted: 11/22/2004] [Indexed: 11/28/2022]
Abstract
Disulphide reductases play an important role in maintaining intracellular redox potential. Three disulphide reductase activities were identified in Helicobacter pylori, which used dithiobis-2-nitrobenzoic acid, glutathione or l-cystine and ferredoxin as substrates. The kinetic parameters of these activities were determined and it was demonstrated that the reductase activities were inhibited by the presence of metronidazole. Substrate competition experiments served to show inhibition of metronidazole reduction by dithiobis-2-nitrobenzoic acid, glutathione and ferredoxin in lysates from metronidazole susceptible and resistant matched pairs of strains. The study demonstrated that the activities of three disulphide reductases were modulated by the presence of metronidazole, and that metronidazole reduction was inhibited by the presence of disulphide reductase substrates.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Biological Science Builiding, Sydney, NSW 2052, Australia
| | | |
Collapse
|