1
|
Gregory LE, Driscoll RMH, Parker BJ, Brisson JA. Impacts of Body Colour, Symbionts and Genomic Regions on the Pea Aphid Wing Plasticity Variation. Mol Ecol 2025; 34:e17660. [PMID: 39903065 DOI: 10.1111/mec.17660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Adaptive phenotypic plasticity describes the phenomenon in which a single genotype can produce a variety of phenotypes that match their environments. Like any trait, plasticity is a phenotype that can exhibit variation, but despite the ecological importance of plasticity variation, little is known about its genetic basis. Here we use the pea aphid to investigate the genetic basis of wing plasticity variation. Previous reports have suggested an ecological association between body coloration and wing plasticity strength in the pea aphid, so we tested the hypothesis that the body colour determination locus (tor) associated with wing plasticity variation. We discover that there is no relationship between body colour and wing plasticity in natural populations or in a genetic mapping population. We also localise the tor locus to the third autosome, whereas it was previously thought to be on the first autosome, a finding that will be important for future studies of the locus. We find that the presence of the bacterial symbiont Regiella is associated with higher levels of wing plasticity. Genome-wide association analysis of wing plasticity variation did not reveal an impact of the tor locus, consistent with independence of body colour and wing plasticity. This analysis implicated one possible candidate gene-a Hox gene, abdominal-A-underlying wing plasticity variation, although SNPs do not reach the level of genome-wide significance and therefore will require further study. Our study highlights that plasticity variation is complex, impacted by a bacterial symbiont and genetic variation, but not influenced by body colour.
Collapse
Affiliation(s)
- Lauren E Gregory
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Rose M H Driscoll
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin J Parker
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
2
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary bypass activity in the abdominal-B region of the Drosophila bithorax complex is position dependent and regulated. Open Biol 2023; 13:230035. [PMID: 37582404 PMCID: PMC10427195 DOI: 10.1098/rsob.230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Expression of Abdominal-B (Abd-B) in abdominal segments A5-A8 is controlled by four regulatory domains, iab-5-iab-8. Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements (Mcp, Fab-7, Fab-7 and Fab-8). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can 'jump over' intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary Bypass Activity in the Abdominal-B Region of the Drosophila Bithorax Complex is Position Dependent and Regulated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543971. [PMID: 37333165 PMCID: PMC10274778 DOI: 10.1101/2023.06.06.543971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Expression of Abdominal-B ( Abd-B ) in abdominal segments A5 - A8 is controlled by four regulatory domains, iab-5 - iab-8 . Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements ( Mcp , Fab-7 , Fab-7 and Fab-8 ). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can "jump over" intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation. Summary Statement Boundaries separating Abd-B regulatory domains block crosstalk between domains and mediate their interactions with Abd-B . The latter function is location but not orientation dependent.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
4
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Redundant enhancers in the iab-5 domain cooperatively activate Abd-B in the A5 and A6 abdominal segments of Drosophila. Development 2021; 148:272019. [PMID: 34473267 DOI: 10.1242/dev.199827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/21/2021] [Indexed: 01/10/2023]
Abstract
The Abdominal-B (Abd-B) gene belongs to the bithorax complex and its expression is controlled by four regulatory domains, iab-5, iab-6, iab-7 and iab-8, each of which is thought to be responsible for directing the expression of Abd-B in one of the abdominal segments from A5 to A8. A variety of experiments have supported the idea that BX-C regulatory domains are functionally autonomous and that each domain is both necessary and sufficient to orchestrate the development of the segment they specify. Unexpectedly, we discovered that this model does not always hold. Instead, we find that tissue-specific enhancers located in the iab-5 domain are required for the proper activation of Abd-B not only in A5 but also in A6. Our findings indicate that the functioning of the iab-5 and iab-6 domains in development of the adult cuticle A5 and A6 in males fit better with an additive model, much like that first envisioned by Ed Lewis.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
5
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
6
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Redundant enhancers in the iab-5 domain cooperatively activate Abd-B in the A5 and A6 abdominal segments of Drosophila.. [DOI: 10.1101/2021.05.22.445252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe homeotic Abdominal-B (Abd-B) gene belongs to Bithorax complex and is regulated by four regulatory domains named iab-5, iab-6, iab-7 and iab-8, each of which is thought to be responsible for directing the expression of Abd-B in one of the abdominal segments from A5 to A8. It is assumed that male specific features of the adult cuticle in A5 is solely dependent on regulatory elements located in iab-5, while the regulatory elements in the iab-6 are both necessary and sufficient for the proper differentiation of the A6 cuticle. Unexpectedly, we found that this long held assumption is not correct. Instead, redundant tissue-specific enhancers located in the iab-5 domain are required for the proper activation of Abd-B not only in A5 but also in A6. Our study of deletions shows that the iab-5 initiator is essential for the functioning of the iab-5 enhancers in A5, as well as for the correct differentiation of A6. This requirement is circumvented by deletions that remove the initiator and most of the iab-5 regulatory domain sequences. While the remaining iab-5 enhancers are inactive in A5, they are activated in A6 and contribute to the differentiation of this segment. In this case, Abd-B stimulation by the iab-5 enhancers in A6 depends on the initiators in the iab-4 and iab-6 domains.Summary StatementIn Drosophila, the segmental-specific expression of the homeotic gene Abdominal-B in the abdominal segments is regulated by autonomous regulatory domains. We demonstrated cooperation between these domains in activation of Abdominal-B.
Collapse
|
7
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster. Sci Rep 2021; 11:4156. [PMID: 33603202 PMCID: PMC7892861 DOI: 10.1038/s41598-021-83734-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
The autonomy of segment-specific regulatory domains in the Bithorax complex is conferred by boundary elements and associated Polycomb response elements (PREs). The Fab-6 boundary is located at the junction of the iab-5 and iab-6 domains. Previous studies mapped it to a nuclease hypersensitive region 1 (HS1), while the iab-6 PRE was mapped to a second hypersensitive region HS2 nearly 3 kb away. To analyze the role of HS1 and HS2 in boundary we generated deletions of HS1 or HS1 + HS2 that have attP site for boundary replacement experiments. The 1389 bp HS1 deletion can be rescued by a 529 bp core Fab-6 sequence that includes two CTCF sites. However, Fab-6 HS1 cannot rescue the HS1 + HS2 deletion or substitute for another BX-C boundary - Fab-7. For this it must be combined with a PRE, either Fab-7 HS3, or Fab-6 HS2. These findings suggest that the boundary function of Fab-6 HS1 must be bolstered by a second element that has PRE activity.
Collapse
Affiliation(s)
- Nikolay Postika
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Paul Schedl
- grid.419021.f0000 0004 0380 8267Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Pavel Georgiev
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Olga Kyrchanova
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.419021.f0000 0004 0380 8267Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| |
Collapse
|
8
|
Postika N, Metzler M, Affolter M, Müller M, Schedl P, Georgiev P, Kyrchanova O. Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex. PLoS Genet 2018; 14:e1007702. [PMID: 30540750 PMCID: PMC6306242 DOI: 10.1371/journal.pgen.1007702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
Drosophila bithorax complex (BX-C) is one of the best model systems for studying the role of boundaries (insulators) in gene regulation. Expression of three homeotic genes, Ubx, abd-A, and Abd-B, is orchestrated by nine parasegment-specific regulatory domains. These domains are flanked by boundary elements, which function to block crosstalk between adjacent domains, ensuring that they can act autonomously. Paradoxically, seven of the BX-C regulatory domains are separated from their gene target by at least one boundary, and must “jump over” the intervening boundaries. To understand the jumping mechanism, the Mcp boundary was replaced with Fab-7 and Fab-8. Mcp is located between the iab-4 and iab-5 domains, and defines the border between the set of regulatory domains controlling abd-A and Abd-B. When Mcp is replaced by Fab-7 or Fab-8, they direct the iab-4 domain (which regulates abd-A) to inappropriately activate Abd-B in abdominal segment A4. For the Fab-8 replacement, ectopic induction was only observed when it was inserted in the same orientation as the endogenous Fab-8 boundary. A similar orientation dependence for bypass activity was observed when Fab-7 was replaced by Fab-8. Thus, boundaries perform two opposite functions in the context of BX-C–they block crosstalk between neighboring regulatory domains, but at the same time actively facilitate long distance communication between the regulatory domains and their respective target genes. Drosophila bithorax complex (BX-C) is one of a few examples demonstrating in vivo role of boundary/insulator elements in organization of independent chromatin domains. BX-C contains three HOX genes, whose parasegment-specific pattern is controlled by cis-regulatory domains flanked by boundary/insulator elements. Since the boundaries ensure autonomy of adjacent domains, the presence of these elements poses a paradox: how do the domains bypass the intervening boundaries and contact their proper regulatory targets? According to the textbook model, BX-C regulatory domains are able to bypass boundaries because they harbor special promoter targeting sequences. However, contrary to this model, we show here that the boundaries themselves play an active role in directing regulatory domains to their appropriate HOX gene promoter.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| |
Collapse
|
9
|
Kyrchanova O, Kurbidaeva A, Sabirov M, Postika N, Wolle D, Aoki T, Maksimenko O, Mogila V, Schedl P, Georgiev P. The bithorax complex iab-7 Polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary. PLoS Genet 2018; 14:e1007442. [PMID: 30110328 PMCID: PMC6110506 DOI: 10.1371/journal.pgen.1007442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Expression of the three bithorax complex homeotic genes is orchestrated by nine parasegment-specific regulatory domains. Autonomy of each domain is conferred by boundary elements (insulators). Here, we have used an in situ replacement strategy to reanalyze the sequences required for the functioning of one of the best-characterized fly boundaries, Fab-7. It was initially identified by a deletion, Fab-71, that transformed parasegment (PS) 11 into a duplicate copy of PS12. Fab-71 deleted four nuclease hypersensitive sites, HS*, HS1, HS2, and HS3, located between the iab-6 and iab-7 regulatory domains. Transgenic and P-element excision experiments mapped the boundary to HS*+HS1+HS2, while HS3 was shown to be the iab-7 Polycomb response element (PRE). Recent replacement experiments showed that HS1 is both necessary and sufficient for boundary activity when HS3 is also present in the replacement construct. Surprisingly, while HS1+HS3 combination has full boundary activity, we discovered that HS1 alone has only minimal function. Moreover, when combined with HS3, only the distal half of HS1, dHS1, is needed. A ~1,000 kD multiprotein complex containing the GAF protein, called the LBC, binds to the dHS1 sequence and we show that mutations in dHS1, that disrupt LBC binding in nuclear extracts, eliminate boundary activity and GAF binding in vivo. HS3 has binding sites for GAF and Pho proteins that are required for PRE silencing. In contrast, HS3 boundary activity only requires the GAF binding sites. LBC binding with HS3 in nuclear extracts, and GAF association in vivo, depend upon the HS3 GAF sites, but not the Pho sites. Consistent with a role for the LBC in HS3 boundary activity, the boundary function of the dHS1+HS3mPho combination is lost when the flies are heterozygous for a mutation in the GAF gene. Taken together, these results reveal a novel function for the iab-7 PREs in chromosome architecture. Polycomb group proteins (PcG) are important epigenetic regulators of developmental genes in all higher eukaryotes. In Drosophila, these proteins are bound to specific regulatory DNA elements called Polycomb group Response Elements (PREs). Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins, including GAF and Pho. In the regulatory region of the bithorax complex (BX-C), the boundary/insulator elements organize the autonomous regulatory domains, and their active or repressed states are regulated by PREs. Here, we studied functional properties of sequences that constitute the Fab-7 boundary and the adjacent iab-7 PRE. It was previously thought that the sole function of the iab-7 PRE is to recruit PcG proteins in parasegments anterior to PS12 and silence the iab-7 domain. However, we found that the iab-7 PRE also functions as a component of the Fab-7 boundary. The boundary activity of the iab-7 PRE sequence depends upon a large complex called the LBC. We show that it is possible to reconstitute a fully functional boundary by combining the LBC binding sequences in HS1 with the iab-7 PRE. Moreover, its boundary function is independent of its PcG silencing activity.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amina Kurbidaeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Marat Sabirov
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Acsademy of Sciences, Moscow, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Acsademy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
- * E-mail: (PS); (PG)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PS); (PG)
| |
Collapse
|
10
|
Susan Celniker: Foundational Resources To Study a Dynamic Genome. Genetics 2016; 204:845-848. [PMID: 28114099 PMCID: PMC5105864 DOI: 10.1534/genetics.116.196261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Kyrchanova O, Mogila V, Wolle D, Deshpande G, Parshikov A, Cléard F, Karch F, Schedl P, Georgiev P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 2016; 12:e1006188. [PMID: 27428541 PMCID: PMC4948906 DOI: 10.1371/journal.pgen.1006188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. Boundary elements in the Bithorax complex have two seemingly contradictory activities. They must block crosstalk between neighboring regulatory domains, but at the same time be permissive (insulator bypass) for regulatory interactions between the domains and the BX-C homeotic genes. We have used a replacement strategy to investigate how they carry out these two functions. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site is sufficient to fully rescue a Fab-7 boundary deletion. It blocks crosstalk and supports bypass. As has been observed in transgene assays, blocking activity requires the Fab-8 dCTCF sites, while full bypass activity requires the dCTCF sites plus a small part of PTS. In transgene assays, bypass activity typically depends on the orientation of the two insulators relative to each other. A similar orientation dependence is observed for the Fab-8 replacement in BX-C. When the orientation of the Fab-8 boundary is reversed, bypass activity is lost, while blocking is unaffected. Interestingly, unlike what has been observed in mammals, reversing the orientation of only the Fab-8 dCTCF sites does not affect boundary function. This finding indicates that other Fab-8 factors must play a critical role in determining orientation. Taken together, our findings argue that carrying out the paradoxical functions of the BX-C boundaries does not require any unusual or special properties; rather BX-C boundaries utilize generic blocking and insulator bypass activities that are appropriately adapted to their regulatory context. Thus making them a good model for studying the functional properties of boundaries/insulators in their native setting.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexander Parshikov
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Fabienne Cléard
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Francois Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Paul Schedl
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| |
Collapse
|
12
|
Bi HL, Xu J, Tan AJ, Huang YP. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. INSECT SCIENCE 2016; 23:469-77. [PMID: 27061764 DOI: 10.1111/1744-7917.12341] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 05/12/2023]
Abstract
Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura.
Collapse
Affiliation(s)
- Hong-Lun Bi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - An-Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Kyrchanova O, Mogila V, Wolle D, Magbanua JP, White R, Georgiev P, Schedl P. The boundary paradox in the Bithorax complex. Mech Dev 2015; 138 Pt 2:122-132. [PMID: 26215349 PMCID: PMC4890074 DOI: 10.1016/j.mod.2015.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023]
Abstract
The parasegment-specific expression of the three Drosophila Bithorax complex homeotic genes is orchestrated by nine functionally autonomous regulatory domains. Functional autonomy depends upon special elements called boundaries or insulators that are located between each domain. The boundaries ensure the independent activity of each domain by blocking adventitious interactions with initiators, enhancers and silencers in the neighboring domains. However, this blocking activity poses a regulatory paradox--the Bithorax boundaries are also able to insulate promoters from regulatory interactions with enhancers and silencers and six of the nine Bithorax regulatory domains are separated from their target genes by at least one boundary element. Here we consider several mechanisms that have been suggested for how the Bithorax regulatory domains are able to bypass intervening boundary elements and direct the appropriate parasegment-specific temporal and spatial expression of their target gene.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Nikolaev V.A. Sukhomlinsky National University, Department of Biology, Ukraine
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Drewell RA, Nevarez MJ, Kurata JS, Winkler LN, Li L, Dresch JM. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer. Mech Dev 2014; 131:68-77. [PMID: 24514265 DOI: 10.1016/j.mod.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/20/2023]
Abstract
In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterior–posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function.
Collapse
|
15
|
Gummalla M, Galetti S, Maeda RK, Karch F. Hox gene regulation in the central nervous system of Drosophila. Front Cell Neurosci 2014; 8:96. [PMID: 24795565 PMCID: PMC4005941 DOI: 10.3389/fncel.2014.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
Hox genes specify the structures that form along the anteroposterior (AP) axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance,” states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B Hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS). While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92 kb long non-coding RNA (lncRNA) encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA). Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The first mechanism is mediated by a microRNA (mir-iab-8) encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila Hox complexes.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland ; Institute of Biochemistry, University of Medicine - University of Göttingen Göttingen, Germany
| | - Sandrine Galetti
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| |
Collapse
|
16
|
Ando H, Kawaai K, Mikoshiba K. IRBIT: a regulator of ion channels and ion transporters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2195-204. [PMID: 24518248 DOI: 10.1016/j.bbamcr.2014.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
IRBIT (also called AHCYL1) was originally identified as a binding protein of the intracellular Ca(2+) channel inositol 1,4,5-trisphosphate (IP3) receptor and functions as an inhibitory regulator of this receptor. Unexpectedly, many functions have subsequently been identified for IRBIT including the activation of multiple ion channels and ion transporters, such as the Na(+)/HCO3(-) co-transporter NBCe1-B, the Na(+)/H(+) exchanger NHE3, the Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR), and the Cl(-)/HCO3(-) exchanger Slc26a6. The characteristic serine-rich region in IRBIT plays a critical role in the functions of this protein. In this review, we describe the evolution, domain structure, expression pattern, and physiological roles of IRBIT and discuss the potential molecular mechanisms underlying the coordinated regulation of these diverse ion channels/transporters through IRBIT. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Katsuhiro Kawaai
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratories for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
17
|
Abstract
RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function.
Collapse
|
18
|
RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 2013; 8:e65740. [PMID: 23785447 PMCID: PMC3681981 DOI: 10.1371/journal.pone.0065740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/26/2013] [Indexed: 02/02/2023] Open
Abstract
Background Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated. Principal Findings Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins. Conclusions We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila.
Collapse
|
19
|
A novel function for the Hox gene Abd-B in the male accessory gland regulates the long-term female post-mating response in Drosophila. PLoS Genet 2013; 9:e1003395. [PMID: 23555301 PMCID: PMC3610936 DOI: 10.1371/journal.pgen.1003395] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022] Open
Abstract
In insects, products of the male reproductive tract are essential for initiating and maintaining the female post-mating response (PMR). The PMR includes changes in egg laying, receptivity to courting males, and sperm storage. In Drosophila, previous studies have determined that the main cells of the male accessory gland produce some of the products required for these processes. However, nothing was known about the contribution of the gland's other secretory cell type, the secondary cells. In the course of investigating the late functions of the homeotic gene, Abdominal-B (Abd-B), we discovered that Abd-B is specifically expressed in the secondary cells of the Drosophila male accessory gland. Using an Abd-B BAC reporter coupled with a collection of genetic deletions, we discovered an enhancer from the iab-6 regulatory domain that is responsible for Abd-B expression in these cells and that apparently works independently from the segmentally regulated chromatin domains of the bithorax complex. Removal of this enhancer results in visible morphological defects in the secondary cells. We determined that mates of iab-6 mutant males show defects in long-term egg laying and suppression of receptivity, and that products of the secondary cells are influential during sperm competition. Many of these phenotypes seem to be caused by a defect in the storage and gradual release of sex peptide in female mates of iab-6 mutant males. We also found that Abd-B expression in the secondary cells contributes to glycosylation of at least three accessory gland proteins: ovulin (Acp26Aa), CG1656, and CG1652. Our results demonstrate that long-term post-mating changes observed in mated females are not solely induced by main cell secretions, as previously believed, but that secondary cells also play an important role in male fertility by extending the female PMR. Overall, these discoveries provide new insights into how these two cell types cooperate to produce and maintain a robust female PMR.
Collapse
|
20
|
The border between the ultrabithorax and abdominal-A regulatory domains in the Drosophila bithorax complex. Genetics 2013; 193:1135-47. [PMID: 23288934 DOI: 10.1534/genetics.112.146340] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bithorax complex in Drosophila melanogaster includes three homeobox-containing genes--Ultrabithorax (Ubx), abdominal--A (abd-A), and Abdominal-B (Abd-B)-which are required for the proper differentiation of the posterior 10 segments of the body. Each of these genes has multiple distinct regulatory regions; there is one for each segmental unit of the body plan where the genes are expressed. One additional protein- coding gene in the bithorax complex, Glut3, a sugar-transporter homolog, can be deleted without phenotype. We focus here on the upstream regulatory region for Ubx, the bithoraxoid (bxd) domain, and its border with the adjacent infraabdominal-2 (iab-2) domain, which controls abdA. These two domains can be defined by the phenotypes of rearrangement breakpoints, and by the expression patterns of enhancer traps. In D. virilis, the homeotic cluster is split between Ubx and abd-A, and so the border can also be located by a sequence comparison between species. When the border region is deleted in melanogaster, the flies show a dominant phenotype called Front-ultraabdominal (Fub); the first abdominal segment is transformed into a copy of the second abdominal segment. Thus, the border blocks the spread of activation from the bxd domain into the iab-2 domain.
Collapse
|
21
|
Abstract
Many aspects of gene regulation are mediated by RNA molecules. However, regulatory RNAs have remained elusive until very recently. At least three types of small regulatory RNAs have been characterized in Drosophila: microRNAs (miRNAs), piwi-interacting RNAs and endogenous siRNAs. A fourth class of regulatory RNAs includes known long non-coding RNAs such as roX1 or bxd. The initial sequencing of the Drosophila melanogaster genome has served as a scaffold to study the transcriptional profile of an animal, revealing the complexities of the function and biogenesis of regulatory RNAs. The comparative analysis of 12 Drosophila genomes has been crucial for the study of microRNA evolution. However, comparative genomics of other RNA regulators is confounded by technical problems: genomic loci are poorly conserved and frequently encoded in the heterochromatin. Future developments in genome sequencing and population genomics in Drosophila will continue to shed light on the conservation, evolution and function of regulatory RNAs.
Collapse
Affiliation(s)
- Antonio Marco
- University of Manchester, Michael Smith Building, Manchester, UK.
| |
Collapse
|
22
|
Papaceit M, Segarra C, Aguadé M. Structure and population genetics of the breakpoints of a polymorphic inversion in Drosophila subobscura. Evolution 2012; 67:66-79. [PMID: 23289562 DOI: 10.1111/j.1558-5646.2012.01731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura--inversion 3 of the O chromosome--in a population sample. The breakpoints could be identified as two rather short fragments (∼300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ∼300-bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double-strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species-group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high-turnover fragment within a long collinear region (∼300 kb).
Collapse
Affiliation(s)
- Montserrat Papaceit
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
23
|
Hövel I, Louwers M, Stam M. 3C Technologies in plants. Methods 2012; 58:204-11. [PMID: 22728034 DOI: 10.1016/j.ymeth.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022] Open
Abstract
Chromosome conformation capture (3C) and 3C-based technology have revolutionized studies on chromosomal interactions and their role in gene regulation and chromosome organization. 3C allows the in vivo identification of physical interactions between chromosomal regions. Such interactions are shown to play a role in various aspects of gene regulation, for example transcriptional activation of genes by remote enhancer sequences, or the silencing by Polycomb-group complexes. The last few years the number of publications involving chromosomal interactions increased significantly. Until now, however, the vast majority of the studies reported are performed in yeast or animal systems. So far, studies on plant systems are extremely limited, possibly due to the plant-specific characteristics that hamper the implementation of the 3C technique. In this paper we provide a plant-specific 3C protocol, optimized for maize tissue, and an extensive discussion on (i) plant-specific adjustments to the protocol, and (ii) solutions to problems that may arise when optimizing the protocol for the tissue or plant of interest. Together, this paper should facilitate the application of 3C technology to plant tissue and stimulate studies on the 3D conformation of chromosomal regions and chromosomes in plants.
Collapse
Affiliation(s)
- Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S, Edwards KA, Karch F, Bender W. abd-A regulation by the iab-8 noncoding RNA. PLoS Genet 2012; 8:e1002720. [PMID: 22654672 PMCID: PMC3359974 DOI: 10.1371/journal.pgen.1002720] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022] Open
Abstract
The homeotic genes in Drosophila melanogaster are aligned on the chromosome in the order of the body segments that they affect. The genes affecting the more posterior segments repress the more anterior genes. This posterior dominance rule must be qualified in the case of abdominal-A (abd-A) repression by Abdominal-B (Abd-B). Animals lacking Abd-B show ectopic expression of abd-A in the epidermis of the eighth abdominal segment, but not in the central nervous system. Repression in these neuronal cells is accomplished by a 92 kb noncoding RNA. This “iab-8 RNA” produces a micro RNA to repress abd-A, but also has a second, redundant repression mechanism that acts only “in cis.” Transcriptional interference with the abd-A promoter is the most likely mechanism. Although long, noncoding RNAs have been found in many organisms, it has been difficult to assign to them any molecular function. The homeotic gene clusters in the fruit fly, Drosophila melanogaster, contain many such noncoding RNAs. We have characterized one such noncoding RNA, a 92 kb transcription unit from within the bithorax complex. This transcript, called the iab-8 ncRNA, is made in the cells of the central nervous system in the eighth abdominal segment, along with the homeotic transcription factor Abdominal-B. Another homeotic transcription factor, abdominal-A, is repressed in these cells. It has generally been assumed that abdominal-A repression in these cells is mediated by the Abdominal-B protein. However, here we show that it is not Abdominal-B that represses abdominal-A, but the iab-8 ncRNA. This repression is accomplished by two redundant mechanisms; the iab-8 precursor produces a micro RNA, which targets the abdominal-A mRNA, and iab-8 transcription interferes with the abdominal-A promoter, which lies just downstream of the iab-8 ncRNA poly(A) site.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | | | - Swetha Singari
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- * E-mail: (FK); (WB)
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (FK); (WB)
| |
Collapse
|
25
|
Transcription factor binding site redundancy in embryonic enhancers of the Drosophila bithorax complex. G3-GENES GENOMES GENETICS 2011; 1:603-6. [PMID: 22384371 PMCID: PMC3276168 DOI: 10.1534/g3.111.001404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/18/2011] [Indexed: 01/22/2023]
Abstract
The molecular control of gene expression in development is mediated through the activity of embryonic enhancer cis-regulatory modules. This activity is determined by the combination of repressor and activator transcription factors that bind at specific DNA sequences in the enhancer. A proposed mechanism to ensure a high fidelity of transcriptional output is functional redundancy between closely spaced binding sites within an enhancer. Here I show that at the bithorax complex in Drosophila there is selective redundancy for both repressor and activator factor binding sites in vivo. The absence of compensatory binding sites is responsible for two rare gain-of-function mutations in the complex.
Collapse
|
26
|
Starr MO, Ho MCW, Gunther EJM, Tu YK, Shur AS, Goetz SE, Borok MJ, Kang V, Drewell RA. Molecular dissection of cis-regulatory modules at the Drosophila bithorax complex reveals critical transcription factor signature motifs. Dev Biol 2011; 359:290-302. [PMID: 21821017 PMCID: PMC3202680 DOI: 10.1016/j.ydbio.2011.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/17/2022]
Abstract
At the Drosophila melanogaster bithorax complex (BX-C) over 330kb of intergenic DNA is responsible for directing the transcription of just three homeotic (Hox) genes during embryonic development. A number of distinct enhancer cis-regulatory modules (CRMs) are responsible for controlling the specific expression patterns of the Hox genes in the BX-C. While it has proven possible to identify orthologs of known BX-C CRMs in different Drosophila species using overall sequence conservation, this approach has not proven sufficiently effective for identifying novel CRMs or defining the key functional sequences within enhancer CRMs. Here we demonstrate that the specific spatial clustering of transcription factor (TF) binding sites is important for BX-C enhancer activity. A bioinformatic search for combinations of putative TF binding sites in the BX-C suggests that simple clustering of binding sites is frequently not indicative of enhancer activity. However, through molecular dissection and evolutionary comparison across the Drosophila genus we discovered that specific TF binding site clustering patterns are an important feature of three known BX-C enhancers. Sub-regions of the defined IAB5 and IAB7b enhancers were both found to contain an evolutionarily conserved signature motif of clustered TF binding sites which is critical for the functional activity of the enhancers. Together, these results indicate that the spatial organization of specific activator and repressor binding sites within BX-C enhancers is of greater importance than overall sequence conservation and is indicative of enhancer functional activity.
Collapse
Affiliation(s)
| | | | | | - Yen-Kuei Tu
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Andrey S. Shur
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Sara E. Goetz
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Matthew J. Borok
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Victoria Kang
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| |
Collapse
|
27
|
Ho MCW, Schiller BJ, Akbari OS, Bae E, Drewell RA. Disruption of the abdominal-B promoter tethering element results in a loss of long-range enhancer-directed Hox gene expression in Drosophila. PLoS One 2011; 6:e16283. [PMID: 21283702 PMCID: PMC3025016 DOI: 10.1371/journal.pone.0016283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/21/2010] [Indexed: 11/29/2022] Open
Abstract
There are many examples within gene complexes of transcriptional enhancers interacting with only a subset of target promoters. A number of molecular mechanisms including promoter competition, insulators and chromatin looping are thought to play a role in regulating these interactions. At the Drosophila bithorax complex (BX-C), the IAB5 enhancer specifically drives gene expression only from the Abdominal-B (Abd-B) promoter, even though the enhancer and promoter are 55 kb apart and are separated by at least three insulators. In previous studies, we discovered that a 255 bp cis-regulatory module, the promoter tethering element (PTE), located 5′ of the Abd-B transcriptional start site is able to tether IAB5 to the Abd-B promoter in transgenic embryo assays. In this study we examine the functional role of the PTE at the endogenous BX-C using transposon-mediated mutagenesis. Disruption of the PTE by P element insertion results in a loss of enhancer-directed Abd-B expression during embryonic development and a homeotic transformation of abdominal segments. A partial deletion of the PTE and neighboring upstream genomic sequences by imprecise excision of the P element also results in a similar loss of Abd-B expression in embryos. These results demonstrate that the PTE is an essential component of the regulatory network at the BX-C and is required in vivo to mediate specific long-range enhancer-promoter interactions.
Collapse
Affiliation(s)
- Margaret C. W. Ho
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Benjamin J. Schiller
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Omar S. Akbari
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kyrchanova O, Ivlieva T, Toshchakov S, Parshikov A, Maksimenko O, Georgiev P. Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process. Nucleic Acids Res 2010; 39:3042-52. [PMID: 21149269 PMCID: PMC3082887 DOI: 10.1093/nar/gkq1248] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Maeda RK, Karch F. Cis-regulation in the Drosophila Bithorax Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:17-40. [PMID: 20795320 DOI: 10.1007/978-1-4419-6673-5_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The discovery of the first homeotic mutation by Calvin Bridges in 1915 profoundly influenced the way we think about developmental processes. Although many mutations modify or deform morphological structures, homeotic mutations cause a spectacular phenotype in which a morphological structure develops like a copy of a structure that is normally found elsewhere on an organism's body plan. This is best illustrated in Drosophila where homeotic mutations were first discovered. For example, Antennapedia mutants have legs developing on their head instead of antennae. Because a mutation in a single gene creates such complete structures, homeotic genes were proposed to be key "selector genes" regulating the initiation of a developmental program. According to this model, once a specific developmental program is initiated (i.e., antenna or leg), it can be executed by downstream "realizator genes" independent of its location along the body axis. Consistent with this idea, homeotic genes have been shown to encode transcription factor proteins that control the activity of the many downstream targets to "realize" a developmental program. Here, we will review the first and perhaps, best characterized homeotic complex, the Bithorax Complex (BX-C).
Collapse
Affiliation(s)
- Robert K Maeda
- NCCR Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
30
|
Ho MCW, Johnsen H, Goetz SE, Schiller BJ, Bae E, Tran DA, Shur AS, Allen JM, Rau C, Bender W, Fisher WW, Celniker SE, Drewell RA. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila. PLoS Genet 2009; 5:e1000709. [PMID: 19893611 PMCID: PMC2763271 DOI: 10.1371/journal.pgen.1000709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022] Open
Abstract
It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.
Collapse
Affiliation(s)
- Margaret C. W. Ho
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Holly Johnsen
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Sara E. Goetz
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Benjamin J. Schiller
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Diana A. Tran
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Andrey S. Shur
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - John M. Allen
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Christoph Rau
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William W. Fisher
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Susan E. Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| |
Collapse
|
31
|
Weier HUG, Greulich-Bode KM, Wu J, Duell T. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping. THE OPEN GENOMICS JOURNAL 2009; 2:15-23. [PMID: 20502619 PMCID: PMC2874907 DOI: 10.2174/1875693x00902010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.
Collapse
Affiliation(s)
- Heinz-Ulrich G. Weier
- Life Sciences Division, University of California, E.O. Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| | - Karin M. Greulich-Bode
- Life Sciences Division, University of California, E.O. Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
- Division Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Jenny Wu
- Life Sciences Division, University of California, E.O. Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| | - Thomas Duell
- Life Sciences Division, University of California, E.O. Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
- Asklepios Lungenfachkliniken München-Gauting, D-82131 Gauting, Germany
| |
Collapse
|
32
|
Pan MH, Wang XY, Chai CL, Zhang CD, Lu C, Xiang ZH. Identification and function of Abdominal-A in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2009; 18:155-160. [PMID: 19320756 DOI: 10.1111/j.1365-2583.2009.00862.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Abdominal-A (adb-A) is a key gene in the development of insects. To understand its function in the silkworm, we cloned 1193 bp of the abd-A gene of Bombyx mori (Bmabd-A), including the complete coding sequence and part of the 3' untranslated region sequence. Bmabd-A has at least three mRNA splice variants with coding sequences of lengths 1032, 1044 and 1059 bp, encoding 343, 347 and 352 amino acids, respectively. Each splice variant of Bmabd-A has three exons and differs only in second exon size. Bmabd-A was expressed at low levels in unfertilized eggs, but increased gradually in fertilized eggs after laying 22 h. Bmabd-A expression decreased in ant silkworms (newly hatched silkworms). After RNA interference for Bmabd-A, the embryos had two mutant phenotypes, either completely or partially absent abdominal feet from the third to sixth abdominal segments, suggesting that Bmabd-A is responsible for normal development of the third to sixth abdominal segments during embryonic development.
Collapse
Affiliation(s)
- M-H Pan
- Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In his 1978 seminal paper, Ed Lewis described a series of mutations that affect the segmental identities of the segments forming the posterior two-thirds of the Drosophila body plan. In each class of mutations, particular segments developed like copies of a more-anterior segment. Genetic mapping of the different classes of mutations led to the discovery that their arrangement along the chromosome paralleled the body segments they affect along the anteroposterior axis of the fly. As all these mutations mapped to the same cytological location, he named this chromosomal locus after its founding mutation. Thus the first homeotic gene (Hox) cluster became known as the bithorax complex (BX-C). Even before the sequencing of the BX-C, the fact that these similar mutations grouped together in a cluster, lead Ed Lewis to propose that the homeotic genes arose through a gene duplication mechanism and that these clusters would be conserved through evolution. With the identification of the homeobox in the early 1980s, Lewis' first prediction was confirmed. The two cloned Drosophila homeotic genes, Antennapedia and Ultrabithorax, were indeed related genes. Using the homeobox as an entry point, homologous genes have since been cloned in many other species. Today, Hox clusters have been discovered in almost all metazoan phyla, confirming Lewis' second prediction. Remarkably, these homologous Hox genes are also arranged in clusters with their order within each cluster reflecting the anterior boundary of their domain of expression along the anterior-posterior axis of the animal. This correlation between the genomic organization and the activity along the anteroposterior body axis is known as the principle of "colinearity." The description of the BX-C inspired decades of developmental and evolutionary biology. And although this first Hox cluster led to the identification of many important features common to all Hox gene clusters, it now turns out that the fly Hox clusters are rather exceptional when compared with the Hox clusters of other animals. In this chapter, we will review the history and salient features of bithorax molecular genetics, in part, emphasizing its unique features relative to the other Hox clusters.
Collapse
Affiliation(s)
- Robert K Maeda
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
34
|
Garaulet DL, Foronda D, Calleja M, Sánchez-Herrero E. Polycomb-dependentUltrabithoraxHox gene silencing induced by high Ultrabithorax levels inDrosophila. Development 2008; 135:3219-28. [DOI: 10.1242/dev.025809] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ultrabithorax (Ubx) gene of Drosophilaspecifies the third thoracic and first abdominal segments. Ubxexpression is controlled by several mechanisms, including negative regulation by its own product. We show here that if Ubx expression levels are inappropriately elevated, overriding the auto-regulatory control, a permanent repression of Ubx is established. This continuous repression becomes independent of the presence of exogenous Ubx and leads to the paradoxical result that an excess of Ubx results in a phenotype of Ubx loss. The mechanism of permanent repression depends on Polycomb-group genes. Absence of endogenous Ubxtranscription when Ubx levels are highly elevated probably activates Polycomb complexes on a Polycomb response element located in the Ubx major intron. This, in turn, brings about permanent repression of Ubx transcription. Similar results are obtained with the gene engrailed, showing that this mechanism of permanent repression may be a general one for genes with negative auto-regulation when levels of expression are transitorily elevated.
Collapse
Affiliation(s)
- Daniel L. Garaulet
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - Manuel Calleja
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| |
Collapse
|
35
|
Kyrchanova O, Toshchakov S, Podstreshnaya Y, Parshikov A, Georgiev P. Functional interaction between the Fab-7 and Fab-8 boundaries and the upstream promoter region in the Drosophila Abd-B gene. Mol Cell Biol 2008; 28:4188-95. [PMID: 18426914 PMCID: PMC2423118 DOI: 10.1128/mcb.00229-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/05/2008] [Indexed: 11/20/2022] Open
Abstract
Boundary elements have been found in the regulatory region of the Drosophila melanogaster Abdominal-B (Abd-B) gene, which is subdivided into a series of iab domains. The best-studied Fab-7 and Fab-8 boundaries flank the iab-7 enhancer and isolate it from the four promoters regulating Abd-B expression. Recently binding sites for the Drosophila homolog of the vertebrate insulator protein CTCF (dCTCF) were identified in the Fab-8 boundary and upstream of Abd-B promoter A, with no binding of CTCF to the Fab-7 boundary being detected either in vivo or in vitro. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when its binding sites are separated by a 5-kb yellow gene, we have tested the functional interactions between the Fab-7 and Fab-8 boundaries and between these boundaries and the upstream promoter A region containing a dCTCF binding site. It has been found that dCTCF binding sites are essential for pairing between two Fab-8 insulators. However, a strong functional interaction between the Fab-7 and Fab-8 boundaries suggests that additional, as yet unidentified proteins are involved in long-distance interactions between them. We have also shown that Fab-7 and Fab-8 boundaries effectively interact with the upstream region of the Abd-B promoter.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
36
|
Abstract
Noncoding RNA has arrived at centre stage in recent years with the discovery of "hidden transcriptomes" in many higher organisms. Over two decades ago, noncoding transcripts were discovered in Drosophila Hox complexes, but their function has remained elusive. Recent studies1-3 have examined the role of these noncoding RNAs in Hox gene regulation, and have generated a fierce debate as to whether the noncoding transcripts are important for silencing or activation. Here we review the evidence, and show that, by taking developmental timing into account, some of these apparently conflicting results can be resolved. We examine current models that explain these data and explore alternative interpretations.
Collapse
|
37
|
Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol Genet Genomics 2008; 279:595-603. [PMID: 18350319 DOI: 10.1007/s00438-008-0336-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.
Collapse
Affiliation(s)
- Gabriella Kozma
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6701, Hungary
| | | | | |
Collapse
|
38
|
The enhancer of trithorax and polycomb corto interacts with cyclin G in Drosophila. PLoS One 2008; 3:e1658. [PMID: 18286205 PMCID: PMC2243016 DOI: 10.1371/journal.pone.0001658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/21/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.
Collapse
|
39
|
Abstract
The iab-4 noncoding RNA from the Drosophila bithorax complex is the substrate for a microRNA (miRNA). Gene conversion was used to delete the hairpin precursor of this miRNA; flies homozygous for this deletion are sterile. Surprisingly, this mutation complements with rearrangement breakpoint mutations that disrupt the iab-4 RNA but fails to complement with breaks mapping in the iab-5 through iab-7 regulatory regions. These breaks disrupt the iab-8 RNA, transcribed from the opposite strand. This iab-8 RNA also encodes a miRNA, detected on Northern blots, derived from the hairpin complementary to the iab-4 precursor hairpin. Ultrabithorax is a target of both miRNAs, although its repression is subtle in both cases.
Collapse
Affiliation(s)
- Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
40
|
Akbari OS, Bae E, Johnsen H, Villaluz A, Wong D, Drewell RA. A novel promoter-tethering element regulates enhancer-driven gene expression at the bithorax complex in the Drosophila embryo. Development 2008; 135:123-31. [PMID: 18045839 PMCID: PMC2205987 DOI: 10.1242/dev.010744] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A key question in our understanding of the cis-regulation of gene expression during embryonic development has been the molecular mechanism that directs enhancers to specific promoters within a gene complex. Promoter competition and insulators are thought to play a role in regulating these interactions. In the bithorax complex of Drosophila, the IAB5 enhancer is located 55 kb 3' of the Abdominal-B (Abd-B) promoter and 48 kb 5' of the abdominal-A (abd-A) promoter. Although roughly equidistant from the two promoters, IAB5 specifically interacts only with the Abdominal-B promoter, even though the enhancer and promoter are separated by at least two insulators. Here we demonstrate that a 255 bp element, located 40 bp 5' of the Abd-B transcriptional start site, has a novel cis-regulatory activity as it is able to tether IAB5 to the Abd-B promoter in transgenic embryos. The tethering element is sufficient to direct IAB5 to an ectopic promoter in competition assays. Deletion of the promoter-tethering element results in the redirection of enhancer-driven gene expression on transgenes. Taken together, these results provide evidence that specific long-range enhancer-promoter interactions in the bithorax complex are regulated by a tethering element 5' of the Abd-B promoter. We discuss a bioinformatic analysis of the tethering element across different Drosophila species and a possible molecular mechanism by which this element functions. We also examine existing evidence that this novel class of cis-regulatory elements might regulate enhancer-promoter specificity at other gene complexes.
Collapse
Affiliation(s)
- Omar S. Akbari
- Biology Department M/S 314, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E 2nd Street, Pomona, CA 91766, USA
| | - Holly Johnsen
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Alfred Villaluz
- Biology Department M/S 314, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Debbie Wong
- Biology Department M/S 314, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| |
Collapse
|
41
|
Sipos L, Kozma G, Molnár E, Bender W. In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:12416-21. [PMID: 17640916 PMCID: PMC1941339 DOI: 10.1073/pnas.0703144104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes of the Polycomb group maintain long-term, segment-specific repression of the homeotic genes in Drosophila. DNA targets of Polycomb group proteins, called Polycomb response elements (PREs), have been defined by several assays, but they have not been dissected in their original chromosomal context. An enhanced method of gene conversion was developed to generate a series of small, targeted deletions encompassing the best-studied PRE, upstream of the Ultrabithorax (Ubx) transcription unit in the bithorax complex. Deletions that removed an essential 185-bp core of the PRE caused anterior misexpression of Ubx and posterior segmental transformations, including the conversion of the third thoracic segment toward a duplicate first abdominal segment. These phenotypes were variable, suggesting some cooperation between this PRE and others in the bithorax complex. Larger deletions up to 3 kb were also created, which removed DNA sites reportedly needed for Ubx activation, including putative trithorax response elements. These deletions resulted in neither loss of Ubx expression nor loss-of-function phenotypes. Thus, the 3-kb region including the PRE is required for repression, but not for activation, of Ubx.
Collapse
Affiliation(s)
- László Sipos
- Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
42
|
Holohan EE, Kwong C, Adryan B, Bartkuhn M, Herold M, Renkawitz R, Russell S, White R. CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet 2007; 3:e112. [PMID: 17616980 PMCID: PMC1904468 DOI: 10.1371/journal.pgen.0030112] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/21/2007] [Indexed: 11/19/2022] Open
Abstract
Insulator or enhancer-blocking elements are proposed to play an important role in the regulation of transcription by preventing inappropriate enhancer/promoter interaction. The zinc-finger protein CTCF is well studied in vertebrates as an enhancer blocking factor, but Drosophila CTCF has only been characterised recently. To date only one endogenous binding location for CTCF has been identified in the Drosophila genome, the Fab-8 insulator in the Abdominal-B locus in the Bithorax complex (BX-C). We carried out chromatin immunopurification coupled with genomic microarray analysis to identify CTCF binding sites within representative regions of the Drosophila genome, including the 3-Mb Adh region, the BX-C, and the Antennapedia complex. Location of in vivo CTCF binding within these regions enabled us to construct a robust CTCF binding-site consensus sequence. CTCF binding sites identified in the BX-C map precisely to the known insulator elements Mcp, Fab-6, and Fab-8. Other CTCF binding sites correlate with boundaries of regulatory domains allowing us to locate three additional presumptive insulator elements; "Fab-2," "Fab-3," and "Fab-4." With the exception of Fab-7, our data indicate that CTCF is directly associated with all known or predicted insulators in the BX-C, suggesting that the functioning of these insulators involves a common CTCF-dependent mechanism. Comparison of the locations of the CTCF sites with characterised Polycomb target sites and histone modification provides support for the domain model of BX-C regulation.
Collapse
Affiliation(s)
- Eimear E Holohan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Camilla Kwong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Boris Adryan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Herold
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Abstract
One facet of the control of gene expression is long-range promoter regulation by distant enhancers. It is an important component of the regulation of genes that control metazoan development and has been appreciated for some time but the molecular mechanisms underlying this regulation have remained poorly understood. A recent study by Cleard and colleagues1 reports the first in vivo evidence of chromatin looping and boundary element promoter interaction. Specifically, they studied the function of a boundary element within the cis-regulatory region of the Abdominal-B (Abd-B) gene of Drosophila melanogaster.
Collapse
Affiliation(s)
- Susan E Celniker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
44
|
Negre B, Ruiz A. HOM-C evolution in Drosophila: is there a need for Hox gene clustering? Trends Genet 2006; 23:55-9. [PMID: 17188778 DOI: 10.1016/j.tig.2006.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 09/05/2006] [Accepted: 12/12/2006] [Indexed: 01/17/2023]
Abstract
The conservation of Homeotic (Hox) gene clustering and colinearity in many metazoans indicates that functional constraints operate on this genome organization. However, several studies have questioned its relevance in Drosophila. Here, we analyse the genomic organization of Hox and Hox-derived genes in 13 fruitfly species and the mosquito Anopheles gambiae. We found that at least seven different Homeotic complex (HOM-C) arrangements exist among Drosophila species, produced by three major splits, five microinversions and six gene transpositions. This dynamism contrasts with the stable organization of the complex in many other taxa. Although there is no evidence of an absolute requirement for Hox gene clustering in Drosophila, we found that strong functional constraints act on the individual genes.
Collapse
Affiliation(s)
- Bárbara Negre
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | |
Collapse
|
45
|
de Navas L, Foronda D, Suzanne M, Sánchez-Herrero E. A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev 2006; 123:860-7. [PMID: 16971094 DOI: 10.1016/j.mod.2006.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 01/12/2023]
Abstract
The functional replacement of one gene product by another one is a powerful method to study specificity in development and evolution. In Drosophila, the Gal4/UAS method has been used to analyze in vivo such functional substitutions. To this aim, Gal4 lines that inactivate a gene and reproduce its expression pattern are required, and they can be frequently obtained by replacing pre-existing P-lacZ lines with such characteristics. We have devised a new method to quickly identify replacements of P-lacZ lines by P-Gal4 lines, and applied it successfully to obtain Gal4 insertions in the Ultrabithorax and Abdominal-B Hox genes. We have used these lines to study the functional replacement of a Hox gene by another one. Our experiments confirm that the abdominal-A gene can replace Ultrabithorax in haltere development but that it cannot substitute for Abdominal-B in the formation of the genitalia.
Collapse
Affiliation(s)
- Luis de Navas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Mihaly J, Barges S, Sipos L, Maeda R, Cléard F, Hogga I, Bender W, Gyurkovics H, Karch F. Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. Development 2006; 133:2983-93. [PMID: 16818450 DOI: 10.1242/dev.02451] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.
Collapse
Affiliation(s)
- Jozsef Mihaly
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, 6723 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cléard F, Moshkin Y, Karch F, Maeda RK. Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nat Genet 2006; 38:931-5. [PMID: 16823379 DOI: 10.1038/ng1833] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/30/2006] [Indexed: 11/08/2022]
Abstract
A cis-regulatory region of nearly 300 kb controls the expression of the three bithorax complex (BX-C) homeotic genes: Ubx, abd-A and Abd-B. Interspersed between the numerous enhancers and silencers within the complex are elements called domain boundaries. Recently, many pieces of evidence have suggested that boundaries function to create autonomous domains by interacting among themselves and forming chromatin loops. In order to test this hypothesis, we used Dam identification to probe for interactions between the Fab-7 boundary and other regions in the BX-C. We were surprised to find that the targeting of Dam methyltransferase (Dam) to the Fab-7 boundary results in a strong methylation signal at the Abd-Bm promoter, approximately 35 kb away. Moreover, this methylation pattern is found primarily in the tissues where Abd-B is not expressed and requires an intact Fab-7 boundary. Overall, our work provides the first documented example of a dynamic, long-distance physical interaction between distal regulatory elements within a living, multicellular organism.
Collapse
Affiliation(s)
- Fabienne Cléard
- Department of Zoology and Animal Biology and National Research Center Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | | | | | |
Collapse
|
48
|
Abstract
As one of two Drosophila Hox clusters, the bithorax complex (BX-C) is responsible for determining the posterior thorax and each abdominal segment of the fly. Through the dissection of its large cis-regulatory region, biologists have obtained a wealth of knowledge that has informed our understanding of gene expression, chromatin dynamics and gene evolution. This primer attempts to distill and explain our current knowledge about this classic, complex locus.
Collapse
Affiliation(s)
- Robert K Maeda
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
49
|
Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G. RNAi Components Are Required for Nuclear Clustering of Polycomb Group Response Elements. Cell 2006; 124:957-71. [PMID: 16530043 DOI: 10.1016/j.cell.2006.01.036] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 12/02/2005] [Accepted: 01/17/2006] [Indexed: 01/14/2023]
Abstract
Drosophila Polycomb group (PcG) proteins silence homeotic genes through binding to Polycomb group response elements (PREs). Fab-7 is a PRE-containing regulatory element from the homeotic gene Abdominal-B. When present in multiple copies in the genome, Fab-7 can induce long-distance gene contacts that enhance PcG-dependent silencing. We show here that components of the RNA interference (RNAi) machinery are involved in PcG-mediated silencing at Fab-7 and in the production of small RNAs at transgenic Fab-7 copies. In general, these mutations do not affect the recruitment of PcG components, but they are specifically required for the maintenance of long-range contacts between Fab-7 copies. Dicer-2, PIWI, and Argonaute1, three RNAi components, frequently colocalize with PcG bodies, and their mutation significantly reduces the frequency of PcG-dependent chromosomal associations of endogenous homeotic genes. This suggests a novel role for the RNAi machinery in regulating the nuclear organization of PcG chromatin targets.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
50
|
Sanchez-Elsner T, Gou D, Kremmer E, Sauer F. RETRACTED: Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 2006; 311:1118-23. [PMID: 16497925 DOI: 10.1126/science.1117705] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeotic genes contain cis-regulatory trithorax response elements (TREs) that are targeted by epigenetic activators and transcribed in a tissue-specific manner. We show that the transcripts of three TREs located in the Drosophila homeotic gene Ultrabithorax (Ubx) mediate transcription activation by recruiting the epigenetic regulator Ash1 to the template TREs. TRE transcription coincides with Ubx transcription and recruitment of Ash1 to TREs in Drosophila. The SET domain of Ash1 binds all three TRE transcripts, with each TRE transcript hybridizing with and recruiting Ash1 only to the corresponding TRE in chromatin. Transgenic transcription of TRE transcripts restores recruitment of Ash1 to Ubx TREs and restores Ubx expression in Drosophila cells and tissues that lack endogenous TRE transcripts. Small interfering RNA-induced degradation of TRE transcripts attenuates Ash1 recruitment to TREs and Ubx expression, which suggests that noncoding TRE transcripts play an important role in epigenetic activation of gene expression.
Collapse
|