1
|
Bell P, Down RE, Matthews HJ, Isaac RE, Audsley N. Peptidergic control of the crop of the cabbage root fly, Delia radicum (L.) Diptera: Anthomyiidae): A role for myosuppressin. Gen Comp Endocrinol 2019; 278:50-57. [PMID: 30077792 DOI: 10.1016/j.ygcen.2018.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/19/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022]
Abstract
There is much interest in targeting neuropeptide signaling for the development of new and environmentally friendly insect control chemicals. In this study we have focused attention on the peptidergic control of the adult crop of Delia radicum (cabbage root fly), an important pest of brassicas in European agriculture. The dipteran crop is a muscular organ formed from the foregut of the digestive tract and plays a vital role in the processing of food in adult flies. We have shown using direct tissue profiling by MALDI-TOF mass spectrometry that the decapeptide myosuppressin (TDVDHVFLRFamide) is present in the crop nerve bundle and that application of this peptide to the crop potently inhibits the spontaneous contractions of the muscular lobes with an IC50 of 4.4 × 10-8 M. The delivery of myosuppressin either by oral administration or by injection had no significant detrimental effect on the adult fly. This failure to elicit a response is possibly due to the susceptibility of the peptide to degradative peptidases that cleave the parent peptide to inactive fragments. Indeed, we show that the crop of D. radicum is a source of neuropeptide-degrading endo- and amino-peptidases. In contrast, feeding benzethonium chloride, a non-peptide agonist of myosuppressin, reduced feeding rate and increased the rate of mortality of adult D. radicum. Current results are indicative of a key role for myosuppressin in the regulation of crop physiology and the results achieved during this project provide the basis for subsequent studies aimed at developing insecticidal molecules targeting the peptidergic control of feeding and food digestion in this pest species.
Collapse
Affiliation(s)
- Petra Bell
- School of Biology, University of Leeds, Leeds LS2 9JT, UK; FERA Science, Sand Hutton, York YO41 1LZ, UK
| | | | | | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
2
|
Gough CS, Fairlamb GM, Bell P, Nachman RJ, Audsley N, Isaac RE. Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii. PLoS One 2017; 12:e0188021. [PMID: 29125862 PMCID: PMC5681264 DOI: 10.1371/journal.pone.0188021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/29/2017] [Indexed: 11/23/2022] Open
Abstract
Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 μM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii.
Collapse
Affiliation(s)
- Caroline S. Gough
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Grace M. Fairlamb
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Petra Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, United States of America
| | | | - R. Elwyn Isaac
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Calkins TL, DeLaat A, Piermarini PM. Physiological characterization and regulation of the contractile properties of the mosquito ventral diverticulum (crop). JOURNAL OF INSECT PHYSIOLOGY 2017; 103:98-106. [PMID: 29107658 PMCID: PMC5708170 DOI: 10.1016/j.jinsphys.2017.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/16/2023]
Abstract
In adult dipteran insects (flies), the crop is a diverticulum of the esophagus that serves as a food storage organ. The crop pumps stored contents into the alimentary canal for digestion and absorption. The pumping is mediated by peristaltic contractions of the crop musculature. In adult female mosquitoes, the crop (ventral diverticulum) selectively stores sugar solutions (e.g., nectar); proteinaceous blood meals by-pass the crop and are transferred directly to the midgut for digestion. The mechanisms that regulate crop contractions have never been investigated in mosquitoes. Here we provide the first physiological characterization of the contractile properties of the mosquito crop and explore the mechanisms that regulate crop contractions. Using an in vitro bioassay we found that the isolated crop spontaneously contracts in Ringer solution for at least 1 h and its contractions are dependent on extracellular Ca2+. Adding serotonin (5-hydroxytryptamine, 5-HT) or a membrane-permeable analog of cyclic adenosine monophosphate (cAMP) to the extracellular bath increased the frequency of crop contractions. On the other hand, adding benzethonium chloride (BzCl; a chemical that mimics the effects of myosuppressins), H-89 or Rp-cAMPS (inhibitors of protein kinase A, PKA), or carbenoxolone (an inhibitor of gap junctions) reduced the frequency of the unstimulated, spontaneous and/or 5-HT-stimulated crop contractions. Adding aedeskinin III did not detectably alter crop contraction rates. In addition to pharmacological evidence of gap junctions, we demonstrated that the crop expressed several mRNAs encoding gap junctional proteins (i.e. innexins). Furthermore, we localized immunoreactivity for innexin 2 and innexin 3 to muscle and epithelial cells of the crop, respectively. Our results 1) suggest that 5-HT and myosupressins oppositely regulate contractile activity of the mosquito crop, and 2) provide the first evidence for putative roles of cAMP, PKA, and gap junctions in modulating contractile activity of the dipteran crop.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Andrew DeLaat
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, USA.
| |
Collapse
|
4
|
Beltramo M, Decourt C. Towards new strategies to manage livestock reproduction using kisspeptin analogs. Theriogenology 2017; 112:2-10. [PMID: 28916209 DOI: 10.1016/j.theriogenology.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022]
Abstract
The discovery of the hypothalamic neuropeptide kisspeptin and its receptor (KISS1R) have dramatically improved our knowledge about the central mechanisms controlling reproduction. Kisspeptin neurons could be considered the hub where internal and external information controlling reproduction converge. The information is here elaborated and the command dispatched to GnRH neurons, the final output of the brain system controlling reproduction. Several studies have shown that in mammals administration of kisspeptin could finely modulate many aspects of reproduction from puberty to ovulation. For example in ewes kisspeptin infusion triggered ovulation during the non-breeding season and in prepubertal rat repeated injections advanced puberty onset. However, especially in livestock, the suboptimal pharmacological properties of endogenous kisspeptin, notably it short half-life and consequently its poor pharmacodynamics, fetters its use to experimental setting. To overcome this issue synthetic KISS1R agonists, mainly based on kisspeptin backbone, were created. Their more favorable pharmacological profile, longer half-life and duration of action, allowed to perform promising initial experiments for controlling ovulation and puberty. Additional experiments and further refinement of analogs would still be necessary to exploit fully the potential of targeting the kisspeptin system. Nevertheless, it is already clear that this new strategy may represent a breakthrough in the field of reproduction control.
Collapse
Affiliation(s)
- M Beltramo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| | - C Decourt
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| |
Collapse
|
5
|
Lee D, James TE, Lange AB. Identification, characterization and expression of a receptor for the unusual myosuppressin in the blood-feeding bug, Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2015; 24:129-137. [PMID: 25318350 DOI: 10.1111/imb.12141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myosuppressins are a family of the FMRFamide-like peptides. They have been characterized in many insects and shown to inhibit visceral muscle contraction. Rhodnius prolixus possesses an unusual myosuppressin in that the typical FLRFamide C-terminal motif is unique and ends with FMRFamide. In the present study, we isolated the cDNA sequence for the R. prolixus receptor for this unusual myosuppressin (RhoprMSR). Quantitative PCR indicates high relative transcript expression of RhoprMSR in the central nervous system and also supports the previously described physiological effects of RhoprMS on the digestive system, with expression of the RhoprMSR transcript in the midgut and hindgut. Expression of the RhoprMSR transcript was also found in the female and male reproductive system of 5th instar nymphs, with transcript expression greater in the female reproductive tissues. No expression was found in the salivary glands or Malpighian tubules. A functional receptor expression assay confirmed that the cloned RhoprMSR is indeed activated by RhoprMS (half maximum effective concentration = 42.7 nM). Structure-activity studies based upon both functional receptor assays and physiological assays showed the importance of the HVFMRFamide moiety, as further N-terminal truncation removed all activity.
Collapse
Affiliation(s)
- D Lee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
6
|
Stoffolano JG, Danai L, Chambers J. Effect of channel blockers on the smooth muscle of the adult crop of the queen blowfly, Phormia regina. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:97. [PMID: 24205919 PMCID: PMC3841069 DOI: 10.1673/031.013.9701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/21/2012] [Indexed: 05/28/2023]
Abstract
Few studies have examined the various factors affecting the rate of contraction of the supercontractile muscles of the crop lobes of adult Phormia regina Meigen (Diptera: Calliphoridae). Using an in situ bioassay of the crop organ, various ion channel blockers were tested and it was demonstrated that in all cases the blockers (i.e., against the following conductances: Cl⁻, Ca²⁺, Na⁺, and a FMRF-amide action) significantly reduced the contraction rates of the crop lobes, which were filled with 4.5 µL of 1.0 M sucrose containing 10 mM of the dye amaranth. Benzyltrimethylammonium chloride, never before reported for its effect on insect muscle, was as effective in suppressing crop muscle contraction as benzethonium chloride, which is a reported agonist of dromyosuppressin.
Collapse
Affiliation(s)
- John G. Stoffolano
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Laura Danai
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - James Chambers
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Abstract
In a search for more environmentally benign alternatives to chemical pesticides, insect neuropeptides have been suggested as ideal candidates. Neuropeptides are neuromodulators and/or neurohormones that regulate most major physiological and behavioral processes in insects. The major neuropeptide structures have been identified through peptide purification in insects (peptidomics) and insect genome projects. Neuropeptide receptors have been identified and characterized in Drosophila and similar receptors are being targeted in other insects considered to be economically detrimental pests in agriculture and forestry. Defining neuropeptide action in different insect systems has been more challenging and as a consequence, identifying unique targets for potential pest control is also a challenge. In this chapter, neuropeptide biosynthesis as well as select physiological processes are examined with a view to pest control targets. The application of molecular techniques to transform insects with neuropeptide or neuropeptide receptor genes, or knockout genes to identify potential pest control targets, is a relatively new area that offers promise to insect control. Insect immune systems may also be manipulated through neuropeptides which may aid in compromising the insects ability to defend against foreign invasion.
Collapse
|
8
|
Lange AB. The female reproductive system and control of oviposition in Locusta migratoria migratorioidesThe present review is the first of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2009. [DOI: 10.1139/z09-063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spermatheca acts as a repository for sperm deposited by the male and, in the African migratory locust ( Locusta migratoria migratorioides (Fairmaire and Reiche, 1849)), is situated dorsal to the lateral and common oviducts. In the locust, eggs mature in the ovaries and are ovulated into the lateral oviducts where they are held until a suitable oviposition site is found. At that time, a hole is dug in the soil by the locust and, aided by muscular contractions of the upper lateral oviducts, the eggs are propelled through the common oviduct and genital chamber and deposited in a pod in the soil. Contractions of the spermathecal sac lead to sperm release, resulting in fertilization of eggs in the genital chamber. Coordination of digging and of the oviducts and spermatheca is clearly critical to the production of viable eggs. The muscles responsible for digging and both reproductive structures are under central neuronal control, incorporating neurons that express an array of neuropeptide and amine phenotypes. Many of the phenotypes are common to both reproductive tissues. A neural loop ensures the coordinated release of sperm when an egg passes into the genital chamber. This review will discuss our understanding of the neural control of these reproductive tissues and their coordination with digging.
Collapse
Affiliation(s)
- Angela B. Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada (e-mail: )
| |
Collapse
|
9
|
Scherkenbeck J, Zdobinsky T. Insect neuropeptides: Structures, chemical modifications and potential for insect control. Bioorg Med Chem 2009; 17:4071-84. [DOI: 10.1016/j.bmc.2008.12.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 12/31/2022]
|
10
|
Greenwood K, Williams T, Geary T. Nematode neuropeptide receptors and their development as anthelmintic screens. Parasitology 2007; 131 Suppl:S169-77. [PMID: 16569288 DOI: 10.1017/s003118200500819x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review addresses the potential use of neuropeptide receptors for the discovery of anthelmintic agents, and particularly for the identification of non-peptide ligands. It outlines which nematode neuropeptides are known and have been characterized, the published information on drug discovery around these targets, information about existing high- and low-throughput screening systems and finally the likely safety of neuropeptide mimetics.
Collapse
Affiliation(s)
- K Greenwood
- Pfizer Animal Health, Ramsgate Road, Sandwich, Kent CT13 9NJ.
| | | | | |
Collapse
|
11
|
Mousley A, Maule AG, Halton DW, Marks NJ. Inter-phyla studies on neuropeptides: the potential for broad-spectrum anthelmintic and/or endectocide discovery. Parasitology 2007; 131 Suppl:S143-67. [PMID: 16569287 DOI: 10.1017/s0031182005008553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.
Collapse
Affiliation(s)
- A Mousley
- Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
12
|
Orsini MJ, Klein MA, Beavers MP, Connolly PJ, Middleton SA, Mayo KH. Metastin (KiSS-1) mimetics identified from peptide structure-activity relationship-derived pharmacophores and directed small molecule database screening. J Med Chem 2007; 50:462-71. [PMID: 17266198 DOI: 10.1021/jm0609824] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metastin, also known as KiSS-1, the cognate ligand for the metastin receptor GPR54, is a peptide known to dramatically reduce metastasis in experimental models. Despite this, there is no reported structure for metastin nor any small molecule modulators of metastin function that could be used either clinically or experimentally. Here we report the NMR solution structure of a 13-residue metastin peptide in a membrane-like environment (SDS micelles) and find it to have a relatively stable helix conformation from residues 7 to 13. In assays for metastin receptor binding and calcium flux with receptor-transfected HEK-293 cells, we demonstrate through alanine scanning and amino acid substitutions that the peptide C-terminus shows helix periodicity in an NMR structural model and that Phe9, Arg12, and Phe13 are crucial to the activity of the peptide. These three residues lie on one face of the helix and define a pharmacophore site for metastin. We used these pharmacophore features in small molecule database searches to identify hits with submicromolar affinity for the metastin receptor. We also show here that molecules mimicking key elements of this pharmacophore site bind to the metastin receptor and act as full agonists, albeit with reduced potency compared to that of metastin itself. Together this structure-activity approach may yield pharmacologically useful compounds relevant in defining and modulating metastin receptor function.
Collapse
Affiliation(s)
- Michael J Orsini
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Health Science Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Since the introduction of DDT in the 1940s, arthropod pest control has relied heavily upon chemical insecticides. However, the development of insect resistance, an increased awareness of the real and perceived environmental and health impacts of these chemicals, and the need for systems with a smaller environmental footprint has stimulated the search for new insecticidal compounds, novel molecular targets, and alternative control methods. In recent decades a variety of biocontrol methods employing peptidic or proteinaceous insect-specific toxins derived from microbes, plants and animals have been examined in the laboratory and field with varying results. Among the many interdependent factors involved with the production of a cost-effective pesticide--production expense, kill efficiency, environmental persistence, pest-specificity, pest resistance-development, public perception and ease of delivery--sprayable biopesticides have not yet found equal competitive footing with chemical counterparts. However, while protein/peptide-based biopesticides continue to have limitations, advances in the technology, particularly of genetically modified organisms as biopesticidal delivery systems, has continually progressed. This review highlights the varieties of delivery methods currently practiced, examining the strengths and weaknesses of each method.
Collapse
|
14
|
Hill SR, Orchard I. In vitro analysis of the digestive enzymes amylase and alpha-glucosidase in the midguts of Locusta migratoria L. in response to the myosuppressin, SchistoFLRFamide. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1-9. [PMID: 15686640 DOI: 10.1016/j.jinsphys.2004.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/01/2004] [Accepted: 10/06/2004] [Indexed: 05/24/2023]
Abstract
We have investigated the effect of the locust myosuppressin, SchistoFLRFamide, on the activity of amylase and alpha-glucosidase in the midgut of 2-week old male locusts. Total enzyme activity in the lumen contents and tissue extracts of midguts responds to SchistoFLRFamide in a dose-dependent manner that appears to vary with the feeding state of the locust and duration of exposure to the peptide. Starvation for 24h prior to assessment alters the distribution of enzyme activity between the midgut lumen contents and tissue extracts in response to SchistoFLRFamide when compared with fed locusts. Duration of exposure to SchistoFLRFamide also alters the distribution of total amylase and alpha-glucosidase activity; as duration of exposure increases, lower concentrations of SchistoFLRFamide increase total enzyme activity in the lumen contents while decreasing total enzyme activity in the tissue extracts. We suggest that the minimum amino acid sequence in SchistoFLRFamide necessary to increase both amylase and alpha-glucosidase activity is DHVFLRFamide. We have determined that two other peptides endogenous to the locust, AFIRFamide and GQERNFLRFamide, increase amylase and alpha-glucosidase activity in midgut lumen contents.
Collapse
Affiliation(s)
- Sharon R Hill
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | |
Collapse
|
15
|
Haselton AT, Stoffolano JG, Nichols R, Yin CM. Peptidergic innervation of the crop and the effects of an ingested nonpeptidal agonist on longevity in female Musca domestica (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:684-690. [PMID: 15311461 DOI: 10.1603/0022-2585-41.4.684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dromyosuppressin (DMS) immunoreactive neurons were discovered running along the crop duct and on the surface of the crop in the house fly, Musca domestica L. DMS is a myoinhibitory neuropeptide that has been shown to inhibit crop contractions, in vitro, in the blow fly, Phormia regina (Meigen), and in Drosophila melanogaster Meigen. Various concentrations of benzethonium chloride (Bztc), an agonist of DMS with shown inhibitory effects on blow fly crop contractions, were fed to adult female M. domestica. Flies exhibited a dose-dependent mortality; avoidance and subsequent dehydration are probably the cause of the low survivorship at higher Bztc concentrations.
Collapse
Affiliation(s)
- Aaron T Haselton
- Department of Entomology, University of Massachusetts, Amherst, MA 01003-2410, USA.
| | | | | | | |
Collapse
|
16
|
Mispelon M, Thakur K, Chinn L, Owen R, Nichols R. A nonpeptide provides insight into mechanisms that regulate Drosophila melanogaster heart contractions. Peptides 2003; 24:1599-605. [PMID: 14706539 DOI: 10.1016/j.peptides.2003.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the effect of a nonpeptide, benzethonium chloride (bztc), on Drosophila melanogaster larval, pupal, and adult heart rates in vivo. Benzethonium chloride reduced the frequency of spontaneous contractions in the D. melanogaster pupal heart, but not in the larval heart or the adult heart as measured in noninvasive whole animal preparations. When applied directly to the D. melanogaster heart, in the absence of hemolymph, bztc reduced the frequency of spontaneous contractions in larval, pupal, and adult hearts. These findings are consistent with the conclusion that bztc acts through or is regulated by different mechanisms in these three developmental stages. An alternative explanation is that larval hemolymph and adult hemolymph contain a material that interferes with the effect of the nonpeptide on heart contractions. Bztc mimicked the effect of the peptide dromyosuppressin (DMS) on the heart at an equivalent concentration; in contrast, 103-fold more nonpeptide is required to mimic the effect of DMS on fly gut. These findings are consistent with the presence of tissue-specific myosuppressin receptors or mechanisms.
Collapse
Affiliation(s)
- Melissa Mispelon
- Undergraduate Cell and Molecular Biology Program, Biological Chemistry Department, University of Michigan Medical School, 4444 Medical Sciences Building I, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | |
Collapse
|
17
|
Egerod K, Reynisson E, Hauser F, Cazzamali G, Williamson M, Grimmelikhuijzen CJP. Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proc Natl Acad Sci U S A 2003; 100:9808-13. [PMID: 12907701 PMCID: PMC188343 DOI: 10.1073/pnas.1632197100] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Genome Project database contains the sequences of two genes, CG8985 and CG13803, which are predicted to code for G protein-coupled receptors. We cloned the cDNAs corresponding to these genes and found that their gene structures had not been correctly annotated. We subsequently expressed the coding regions of the two corrected receptor genes in Chinese hamster ovary cells and found that each of them coded for a receptor that could be activated by low concentrations of Drosophila myosuppressin (EC50,4 x 10(-8) M). The insect myosuppressins are decapeptides that generally inhibit insect visceral muscles. Other tested Drosophila neuropeptides did not activate the two receptors. In addition to the two Drosophila myosuppressin receptors, we identified a sequence in the genomic database from the malaria mosquito Anopheles gambiae that also very likely codes for a myosuppressin receptor. To our knowledge, this paper is the first report on the molecular identification of specific insect myosuppressin receptors.
Collapse
Affiliation(s)
- Kristoffer Egerod
- Department of Cell Biology, Zoological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Cazzamali G, Grimmelikhuijzen CJP. Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci U S A 2002; 99:12073-8. [PMID: 12218185 PMCID: PMC129400 DOI: 10.1073/pnas.192442799] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 07/25/2002] [Indexed: 11/18/2022] Open
Abstract
FMRFamide and FMRFamide-related neuropeptides are extremely widespread and abundant in invertebrates and have numerous important functions. Here, we have cloned a Drosophila orphan receptor, and stably expressed it in Chinese hamster ovary cells. Screening of a peptide library revealed that the receptor reacted with high affinity to FMRFamide (EC50, 6 x 10(-9) M). The intrinsic Drosophila FMRFamide peptides are known to be synthesized as a large preprohormone, containing at least 13 related FMRFamide peptides (8 distinct FMRFamides). Screening of these intrinsic Drosophila FMRFamides showed that the receptor had highest affinity to Drosophila FMRFamide-6 (PDNFMRFamide) (EC50, 9 x 10(-10) M), whereas it had a somewhat lower affinity to Drosophila FMRFamide-2 (DPKQDFMRFamide) (EC50, 3 x 10(-9) M) and considerably less affinity to the other Drosophila FMRFamide-related peptides. To our knowledge, this article is the first report on the molecular identification of an invertebrate FMRFamide receptor.
Collapse
Affiliation(s)
- Giuseppe Cazzamali
- Department of Cell Biology, Zoological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
19
|
Abstract
A putative SchistoFLRFamide receptor in CNS membrane preparations of Locusta migratoria was characterized by cold competition binding and kinetic binding assays using [125I][Y(1)]SchistoFLRFamide ([125I]YDVDHVFLRFamide) as a radioligand. Binding to this site was saturable, specific, reversible, and of high-affinity. Data fit to a single-site binding model by non-linear regression (r(2) = 0.99) estimated K(d) = 1.73 +/- 0.45 x 10(-9) M and B(max) = 49.0 +/- 12.2 fmol.mg(-1) tissue. Total binding of [125I][Y(1)]SchistoFLRFamide to membrane preparations was reduced in the presence of GTPgammaS, an indication that the putative receptor is G protein-coupled. Structure-activity studies determined that the minimum sequence required for binding was HVFLRFamide. Other aspects of the ligand receptor interaction were also examined.
Collapse
Affiliation(s)
- Rodney Kwok
- Department of Zoology, University of Toronto, Ontario, M5S 3G5, Toronto, Canada.
| | | |
Collapse
|
20
|
Marvin LF, Zatylny C, Leprince J, Vaudry H, Henry J. Characterization of a novel Sepia officinalis neuropeptide using MALDI-TOF MS and post-source decay analysis. Peptides 2001; 22:1391-6. [PMID: 11514019 DOI: 10.1016/s0196-9781(01)00480-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel neuropeptide acting as a myosuppressor on esophagus, funnel and mantle muscular fibers has been isolated from the stellar ganglia of the mollusk cephalopod Sepia officinalis by means of HPLC analysis. Fractions were monitored using a myotropic bioassay. After three separation steps, MALDI-TOF spectrum revealed one main peak at m/z 756.6. The partial N-terminal and C-terminal digestions by exopeptidases followed by MALDI-TOF analysis allowed the determination of the nature of the two C-terminal and N-terminal amino acids. Post Source Decay fragmentation of the molecular ion accurately determined the following primary sequence: Val-Tyr-Ser-Ala-Pro-Tyr-Gly-OH. The mapping of this heptapeptide performed in ESI-MS revealed that its distribution is restricted to the stellar ganglia, the giant fibers III, and the nervous bundle containing the giant fibers II and the palleal nerve. The neuropeptide was not detected in the hemolymph suggesting a release by nerve endings next to the targets.
Collapse
Affiliation(s)
- L F Marvin
- Laboratoire de Spectrométrie de Masse Bio-organique, CNRS-UPRESA 6014, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, UFR des Sciences, Université de Rouen, Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
21
|
Sweedler JV, Li L, Floyd P, Gilly W. Mass spectrometric survey of peptides in cephalopods with an emphasis on the FMRFamide-related peptides. J Exp Biol 2000; 203:3565-73. [PMID: 11060217 DOI: 10.1242/jeb.203.23.3565] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods.
Collapse
Affiliation(s)
- J V Sweedler
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
22
|
Richer S, Stoffolano JG, Yin CM, Nichols R. Innervation of dromyosuppressin (DMS) immunoreactive processes and effect of DMS and benzethonium chloride on thePhormia regina (Meigen) crop. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000522)421:1<136::aid-cne8>3.0.co;2-c] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Abstract
The external ventral protractor muscle of the VIIth abdominal segment, M234, is a skeletal muscle that possesses receptors that recognize a range of FMRFamide-related peptides and application of these peptides results in an increase in the amplitude of neurally evoked contractions with little or no effect on basal tonus. FLRFamide itself has the same biologic activity as the extended peptides, whereas truncation to LRFamide or RFamide results in a peptide with no biologic activity. The receptors recognizing these extended FLRFamides, which include SchistoFLRFamide, seem to be different from the SchistoFLRFamide receptors found on locust oviduct visceral muscle. SchistoFLRFamide and the non-peptide mimetic, benzethonium chloride (Bztc), increase the frequency and amplitude of miniature endplate potentials, increase the amplitude of neurally evoked excitatory junction potentials, and result in a hyperpolarisation of resting membrane potential. Bztc, however, also abolishes the active membrane response that may explain its ability to decrease neurally evoked contractions.
Collapse
Affiliation(s)
- A B Lange
- Department of Biology, Erindale College, University of Toronto at Mississauga, Ontario, Canada
| | | |
Collapse
|
24
|
Henry J, Zatylny C, Boucaud-Camou E. Peptidergic control of egg-laying in the cephalopod Sepia officinalis: involvement of FMRFamide and FMRFamide-related peptides. Peptides 1999; 20:1061-70. [PMID: 10499423 DOI: 10.1016/s0196-9781(99)00102-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The peptidergic control of egg-laying was investigated in Sepia officinalis by using a myotropic bioassay. Three myotropic high-performance liquid chromatography fractions were obtained from optic lobe extracts. In the first fraction, FMRFamide (FMRFa) and FLRFa were isolated and sequenced. FMRFa-related peptides then were sought by dotting immunobinding of optic lobes extracts. The four immunoreactive fractions detected revealed the occurrence of FMRFa, FLRFa, FIRFa, and ALSGDAFLRFa predicted by the precursor already cloned from the optic lobes of S. officinalis (J Exp Biol 200:1483-9;1997). These peptides clearly appeared to be involved in the regulation of oocyte transport through the oviduct: the tetrapeptides FMRFa and FLRFa stimulated the contractions, whereas FIRFa and ALSGDAFLRFa lowered the tonus, the frequency, and the amplitude of the contractions. The occurrence of FaRPs in the nervous endings of the accessory sex glands suggested that this peptide family is involved in the regulation of secretory processes of the egg capsule. Indeed, FMRFa modulates the contractions of the main nidamental glands in vitro and, thus, should induce mechanical release of the secretion in vivo during ovulation. These results show that the FaRPs could play an important role in the synchronization of ovulation and egg capsule coating.
Collapse
Affiliation(s)
- J Henry
- Latoratoire de Biologie et Biotechnologies Marines, URM14 IFREMER, Université de Caen, France.
| | | | | |
Collapse
|
25
|
Veelaert D, Schoofs L, De Loof A. Peptidergic control of the corpus cardiacum-corpora allata complex of locusts. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 182:249-302. [PMID: 9522462 DOI: 10.1016/s0074-7696(08)62171-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The brain-corpora cardiaca-corpora allata complex of insects is the physiological equivalent of the brain-hypophysis axis of vertebrates. In locusts there is only one corpus cardiacum as a result of fusion, while most other insect species have a pair of such glands. Like the pituitary of vertebrates, the corpus cardiacum consists of a glandular lobe and a neurohemal lobe. The glandular lobe synthesizes and releases adipokinetic hormones. In the neurohemal part many peptide hormones, which are produced in neurosecretory cells in the brain, are released into the hemolymph. The corpora allata, which have no counterpart in vertebrates, synthesize and release juvenile hormones. The control of the locust corpus cardiacum-corpora allata complex appears to be very complex. Numerous brain factors have been reported to have an effect on biosynthesis and release of juvenile hormone or adipokinetic hormone. Many neuropeptides are present in nerves projecting from the brain into the corpora cardiaca-corpora allata complex, the most important ones being neuroparsins, ovary maturating parsin, insulin-related peptide, diuretic peptide, tachykinins, FLRFamides, FXPRLamides, accessory gland myotropin I, crustacean cardioactive peptide, and schistostatins. In this paper, the cellular distribution, posttranslational processing, peptide-receptor interaction, and inactivation of these peptides are reviewed. In addition, the signal transduction pathways in the release of adipokinetic hormone and juvenile hormone from, respectively, the corpora cardiaca and corpora allata are discussed.
Collapse
Affiliation(s)
- D Veelaert
- Laboratory for Developmental Biology and Molecular Biology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
26
|
Abstract
Diuretic peptides (locustakinin and Locusta-DH) increase the spontaneous contractile activity of visceral muscle fibers associated with Malpighian tubules from the migratory locust (Locusta migratoria) at concentrations that increase urine production. Muscle activity is shown to assist the flow of material in the tubule lumen, but is not essential for diuresis. Tubule writhing also serves to reduce unstirred layers (USLs) at the basolateral surface of the epithelium and thereby facilitates the excretion of solutes entering the lumen by passive diffusion.
Collapse
Affiliation(s)
- G M Coast
- Department of Biology, Birkbeck College, London, UK.
| |
Collapse
|
27
|
Abstract
The midgut of insects has recently been shown to contain numerous endocrine-like cells and the midgut is now considered one of the largest endocrine organs in the insect. Using immunohistochemistry, radioimmunoassay, and muscle bioassay techniques, the midgut of the adult locust, Locusta migratoria, has been investigated for the distribution and possible function of FMRFamide-related peptides contained within these endocrine-like cells and innervation. Endocrine-like cells containing RFamide-like immunoreactivity were observed to be unequally distributed throughout the midgut. RFamide-like immunoreactivity was also seen in the ingluvial ganglion and in the nerves projecting posteriorly to the midgut. These axonal tracts resulted in extensive arborizations over the posterior midgut which were RFamide-like immunoreactive. Radioimmunoassay indicated larger amounts of FMRFamide equivalents in female locust midgut as compared to males with an unequal distribution of FMRFamide-like immunoreactivity in the gastric caeca and in the anterior and posterior parts of the midgut. Circular muscle contraction of the midgut was monitored using a ring-type preparation. Structure/activity studies have shown that the only FMRFamide-related peptides tested that alter circular muscle contraction of the midgut are those that belong to the subfamily referred to as myosuppressins. SchistoFLRFamide, leucomyosuppressin, and ManducaFLRFamide were each capable of lowering basal tonus and inhibiting spontaneous and proctolin-induced contractions of midgut muscle. Further structure/activity studies indicated that HVFLRFamide is the minimum sequence required to achieve inhibition comparable to the parent compound. This work suggests that a possible function for the FMRFamide-related peptides contained within the endocrine cells and innervation of the midgut of the locust may be in modulating midgut contraction and thereby playing a role in digestion.
Collapse
Affiliation(s)
- A B Lange
- University of Toronto at Mississauga, Department of Zoology, Ontario, Canada.
| | | |
Collapse
|
28
|
Piulachs MD, Vilaplana L, Bartolomé JM, Carreño C, Martín D, González-Muñiz R, Herranz R, García-López MT, Andreu D, Bellés X. Ketomethylene and methyleneamino pseudopeptide analogues of insect allatostatins inhibit juvenile hormone and vitellogenin production in the cockroach Blattella germanica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:851-858. [PMID: 9474781 DOI: 10.1016/s0965-1748(97)00067-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Metabolic studies on insect allatostatins have suggested that the dipeptide Leu-Tyr may be a target for endopeptidases. In order to increase resistance to degradation, methyleneamino psi [CH2NH] and ketomethylene psi [COCH2] peptide bond surrogates have been introduced at the position Leu3-Tyr4 of the allatostatin Asp-Arg-Leu-Tyr-Ser-Phe-Gly-Leu-amide (BLAST-2), and Leu3-Phe4 of [Phe4]BLAST-2, respectively. Assays of inhibition of juvenile hormone (JH) synthesis in vitro by corpora allata from the cockroach Blattella germanica showed that both analogues were similarly active to the respective model peptides. The methyleneamino analogue was further tested in vivo as an inhibitor of JH synthesis, and in vivo and in vitro as an inhibitor of vitellogenin production by the fat body of B. germanica. The analogue was less active than BLAST-2 when tested in vitro, but more active than it when tested in vivo.
Collapse
Affiliation(s)
- M D Piulachs
- Department of Agrobiology (CID, CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
LANGE ANGELAB, ORCHARD I, WANG Z, STARRATT AN, NACHMAN RJ. Structure-Activity Studies of SchistoFLRFamide-like Peptides. Ann N Y Acad Sci 1997. [DOI: 10.1111/j.1749-6632.1997.tb46169.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Abstract
The first peptide identified in locusts was adipokinetic hormone I (AKH-I), a neurohormone mobilizing lipids from the fat body. No other locusts peptides were isolated until 1985. From then on peptide identification started to boom at such a tremendously fast rate that even specialists in the field could hardly keep track. At this moment the total number of different insect neuropeptide sequences exceeds 100. Currently, the locusts Locusta migratoria and Schistocerca gregaria are the species from which the largest number of neuropeptides has been isolated and sequenced, namely 56. Myotropic bioassays have played a major role in the isolation and subsequent structural characterization of locust neuropeptides. They have been responsible for the discovery of locustamyotropins, locustapyrokinins, locustatachykinins, locustakinin, locusta accessory gland myotropins, locustasulfakinin, cardioactive peptide, and locustamyoinhibiting peptides. Members of the myotropin peptide families have been associated with a variety of physiological activities such as myotropic activities, pheromonotropic activities, diapause induction, stimulation of cuticular melanization, diuresis, pupariation, and allatostatic activities. Recently, we have identified in Schistocerca 10 peptides belonging to the allatostatin peptide family, which inhibit peristaltic movements of the oviduct. Some of the myotropins appear to be important neurotransmitters or modulators innervating the locust oviduct, the salivary glands, the male accessory glands, and the heart, whereas others are stored in neurohemal organs until release in the hemolymph. Some myotropic peptides have been found to be releasing factors of neurohormones from the corpora cardiaca. Several peptides isolated in locusts appear to be unique to insects or arthropods; others seem to be members of peptides families spanning across phyla: two vasopressin-like peptides, FMRFamide-related peptides, Locusta diuretic hormone (CRF-like), Locusta insulin-related peptide, locustatachykinins, locustasulfakinin (gastrin/CCK-like). In a systematic structural study of neuropeptides in Locusta, several novel peptides have been isolated from the corpora cardiaca and the pars intercerebralis. They include the neuroparsins, two 6-kDa dimeric peptides, and three proteinase inhibitors. Ovary maturating parsin is the first gonadotropin identified in insects. The isolation of a peptide from an ovary extract that inhibits ovary maturation in Schistocerca gregaria is currently underway in our lab. The proteinase inhibitors, recently found to be mainly transcribed in the fat body, are believed to play a role in defense reactions of insects. Finally, a locust ion transport peptide and a peptide stimulating salivation recently can be added to this extensive list of locust peptides.
Collapse
Affiliation(s)
- L Schoofs
- Zoological Institute, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
31
|
Thompson DP, Klein RD, Geary TG. Prospects for rational approaches to anthelmintic discovery. Parasitology 1996; 113 Suppl:S217-38. [PMID: 9051937 DOI: 10.1017/s0031182000077994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rational approaches to anthelmintic discovery include the design of screens for compounds directed at specific proteins in helminths that are pharmacologically distinguishable from their vertebrate homologues. The existence of several anthelmintics that selectively target the neuromusculature of helminths (e.g. levamisole, ivermectin, praziquantel, metrifonate), together with recent basic research in helminth physiology, have contributed to the recognition that neurobiology distinguishes these organisms from their vertebrate hosts. In this survey, we focus on mechanism-based screening and its application to anthelmintic discovery, with particular emphasis on targets in the neuromusculature of helminths. Few of these proteins have been exploited in chemotherapy. However, recent studies in comparative pharmacology and molecular biology, including the C. elegans genome project, have provided insights on potential new targets and, in some cases, molecular probes useful for their incorporation in mechanism-based screens.
Collapse
|