1
|
Marcos-Torres FJ, Juniar L, Griese JJ. The molecular mechanisms of the bacterial iron sensor IdeR. Biochem Soc Trans 2023:233013. [PMID: 37140254 DOI: 10.1042/bst20221539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francisco Javier Marcos-Torres
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-CSIC, 18011 Granada, Spain
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
3
|
Lee MY, Lee DW, Joo HK, Jeong KH, Lee JY. Structural analysis of the manganese transport regulator MntR from Bacillus halodurans in apo and manganese bound forms. PLoS One 2019; 14:e0224689. [PMID: 31738781 PMCID: PMC6860424 DOI: 10.1371/journal.pone.0224689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023] Open
Abstract
The manganese transport regulator MntR is a metal-ion activated transcriptional repressor of manganese transporter genes to maintain manganese ion homeostasis. MntR, a member of the diphtheria toxin repressor (DtxR) family of metalloregulators, selectively responds to Mn2+ and Cd2+ over Fe2+, Co2+ and Zn2+. The DtxR/MntR family members are well conserved transcriptional repressors that regulate the expression of metal ion uptake genes by sensing the metal ion concentration. MntR functions as a homo-dimer with one metal ion binding site per subunit. Each MntR subunit contains two domains: an N-terminal DNA binding domain, and a C-terminal dimerization domain. However, it lacks the C-terminal SH3-like domain of DtxR/IdeR. The metal ion binding site of MntR is located at the interface of the two domains, whereas the DtxR/IdeR subunit contains two metal ion binding sites, the primary and ancillary sites, separated by 9 Å. In this paper, we reported the crystal structures of the apo and Mn2+-bound forms of MntR from Bacillus halodurans, and analyze the structural basis of the metal ion binding site. The crystal structure of the Mn2+-bound form is almost identical to the apo form of MntR. In the Mn2+-bound structure, one subunit contains a binuclear cluster of manganese ions, the A and C sites, but the other subunit forms a mononuclear complex. Structural data about MntR from B. halodurans supports the previous hypothesizes about manganese-specific activation mechanism of MntR homologues.
Collapse
Affiliation(s)
- Myeong Yeon Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Dong Won Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Kyu Joo
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Parveen S, Bishai WR, Murphy JR. Corynebacterium diphtheriae: Diphtheria Toxin, the tox Operon, and Its Regulation by Fe2 + Activation of apo-DtxR. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0063-2019. [PMID: 31267892 PMCID: PMC8713076 DOI: 10.1128/microbiolspec.gpp3-0063-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Diphtheria is one of the most well studied of all the bacterial infectious diseases. These milestone studies of toxigenic Corynebacterium diphtheriae along with its primary virulence determinant, diphtheria toxin, have established the paradigm for the study of other related bacterial protein toxins. This review highlights those studies that have contributed to our current understanding of the structure-function relationships of diphtheria toxin, the molecular mechanism of its entry into the eukaryotic cell cytosol, the regulation of diphtheria tox expression by holo-DtxR, and the molecular basis of transition metal ion activation of apo-DtxR itself. These seminal studies have laid the foundation for the protein engineering of diphtheria toxin and the development of highly potent eukaryotic cell-surface receptor-targeted fusion protein toxins for the treatment of human diseases that range from T cell malignancies to steroid-resistant graft-versus-host disease to metastatic melanoma. This deeper scientific understanding of diphtheria toxin and the regulation of its expression have metamorphosed the third-most-potent bacterial toxin known into a life-saving targeted protein therapeutic, thereby at least partially fulfilling Paul Erlich's concept of a magic bullet-"a chemical that binds to and specifically kills microbes or tumor cells."
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - William R Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - John R Murphy
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
5
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
6
|
Martinez-Pastor M, Lancaster WA, Tonner PD, Adams MWW, Schmid AK. A transcription network of interlocking positive feedback loops maintains intracellular iron balance in archaea. Nucleic Acids Res 2017; 45:9990-10001. [PMID: 28973467 PMCID: PMC5737653 DOI: 10.1093/nar/gkx662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Iron is required for key metabolic processes but is toxic in excess. This circumstance forces organisms across the tree of life to tightly regulate iron homeostasis. In hypersaline lakes dominated by archaeal species, iron levels are extremely low and subject to environmental change; however, mechanisms regulating iron homeostasis in archaea remain unclear. In previous work, we demonstrated that two transcription factors (TFs), Idr1 and Idr2, collaboratively regulate aspects of iron homeostasis in the model species Halobacterium salinarum. Here we show that Idr1 and Idr2 are part of an extended regulatory network of four TFs of the bacterial DtxR family that maintains intracellular iron balance. We demonstrate that each TF directly regulates at least one of the other DtxR TFs at the level of transcription. Dynamical modeling revealed interlocking positive feedback loop architecture, which exhibits bistable or oscillatory network dynamics depending on iron availability. TF knockout mutant phenotypes are consistent with model predictions. Together, our results support that this network regulates iron homeostasis despite variation in extracellular iron levels, consistent with dynamical properties of interlocking feedback architecture in eukaryotes. These results suggest that archaea use bacterial-type TFs in a eukaryotic regulatory network topology to adapt to harsh environments.
Collapse
Affiliation(s)
| | - W Andrew Lancaster
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peter D Tonner
- Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, NC 27708, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA.,Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, NC 27708, USA.,Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
8
|
Rudra P, Prajapati RK, Banerjee R, Sengupta S, Mukhopadhyay J. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA. Nucleic Acids Res 2015; 43:5855-67. [PMID: 25999340 PMCID: PMC4499140 DOI: 10.1093/nar/gkv516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | | - Rajdeep Banerjee
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | - Shreya Sengupta
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | |
Collapse
|
9
|
Abstract
Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
10
|
Yeo HK, Park YW, Lee JY. Structural analysis and insight into metal-ion activation of the iron-dependent regulator fromThermoplasma acidophilum. ACTA ACUST UNITED AC 2014; 70:1281-8. [DOI: 10.1107/s1399004714004118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/21/2014] [Indexed: 11/11/2022]
Abstract
The iron-dependent regulator (IdeR) is a metal ion-activated transcriptional repressor that regulates the expression of genes encoding proteins involved in iron uptake to maintain metal-ion homeostasis. IdeR is a functional homologue of the diphtheria toxin repressor (DtxR), and both belong to the DtxR/MntR family of metalloregulators. The structure of Fe2+-bound IdeR (TA0872) fromThemoplasma acidophilumwas determined at 2.1 Å resolution by X-ray crystallography using single-wavelength anomalous diffraction. The presence of Fe2+, which is the true biological activator of IdeR, in the metal-binding site was ascertained by the use of anomalous difference electron-density maps using diffraction data collected at the Fe absorption edge. Each DtxR/IdeR subunit contains two metal ion-binding sites separated by 9 Å, labelled the primary and ancillary sites, whereas the crystal structures of IdeR fromT. acidophilumshow a binuclear iron cluster separated by 3.2 Å, which is novel toT. acidophilumIdeR. The metal-binding site analogous to the primary site in DtxR was unoccupied, and the ancillary site was occupied by binuclear clustered ions. This difference suggests thatT. acidophilumIdeR and its closely related homologues are regulated by a mechanism distinct from that of either DtxR or MntR.T. acidophilumIdeR was also shown to have a metal-dependent DNA-binding property by electrophoretic mobility shift assay.
Collapse
|
11
|
Cloning, expression, purification and characterization of an iron-dependent regulator protein from Thermobifida fusca. Protein Expr Purif 2013; 92:190-4. [PMID: 24084005 DOI: 10.1016/j.pep.2013.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022]
Abstract
Iron-dependent regulators (IdeRs) control the transcription of a variety of genes associated with iron homeostasis in Gram-positive bacteria. In this study we report the cloning of a putative IdeR gene from the moderate thermophile Thermobifida fusca into the pET-21a(+) expression vector. The expressed protein, Tf-IdeR, was purified using immobilized metal affinity and size-exclusion chromatography, and yielded approximately 12-16 mg of protein per liter of culture. The purified Tf-IdeR protein binds the tox operator sequence in the presence of divalent metal ions. Two Tf-IdeR binding sites were identified in the T. fusca genome upstream of a putative enterobactin exporter and a putative ABC-type multidrug transporter.
Collapse
|
12
|
Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, de Vasconcelos ATR, Kube M, Reinhardt R, Lins U, Pignol D, Schüler D, Bazylinski DA, Ginet N. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol 2013; 15:2712-35. [PMID: 23607663 DOI: 10.1111/1462-2920.12128] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/20/2013] [Indexed: 01/20/2023]
Abstract
Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yeo HK, Kang J, Park YW, Sung JS, Lee JY. Crystallization and preliminary X-ray diffraction analysis of the metalloregulatory protein DtxR from Thermoplasma acidophilum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:172-4. [PMID: 22297991 DOI: 10.1107/s1744309111051700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/30/2011] [Indexed: 11/10/2022]
Abstract
The diphtheria toxin repressor (DtxR) is a metal-ion-dependent transcriptional regulator which regulates genes encoding proteins involved in metal-ion uptake to maintain metal-ion homeostasis. DtxR from Thermoplasma acidophilum was cloned and overexpressed in Escherichia coli. Crystals of N-terminally His-tagged DtxR were obtained by hanging-drop vapour diffusion and diffracted to 1.8 Å resolution. DtxR was crystallized at 296 K using polyethylene glycol 4000 as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 61.14, b = 84.61, c = 46.91 Å, α = β = γ = 90°. The asymmetric unit contained approximately one monomer of DtxR, giving a crystal volume per mass (V(M)) of 2.22 Å(3) Da(-1) and a solvent content of 44.6%.
Collapse
Affiliation(s)
- Hyun Ku Yeo
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
15
|
Crystal structure of the manganese transport regulatory protein fromEscherichia coli. Proteins 2009; 77:741-6. [DOI: 10.1002/prot.22541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
|
17
|
D'Aquino JA, Denninger AR, Moulin AG, D'Aquino KE, Ringe D. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K). J Mol Biol 2009; 390:112-23. [PMID: 19433095 DOI: 10.1016/j.jmb.2009.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 11/25/2022]
Abstract
The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K(a)=7.6+/-0.5x10(4), which is very similar to the reported value for the wild-type repressor, K(a)=6.3x10(4). Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.
Collapse
Affiliation(s)
- J Alejandro D'Aquino
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
18
|
Ranjan S, Yellaboina S, Ranjan A. IdeR in Mycobacteria: From Target Recognition to Physiological Function. Crit Rev Microbiol 2008; 32:69-75. [PMID: 16809230 DOI: 10.1080/10408410600709768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In mycobacteria, iron dependent transcription regulator (IdeR) regulates transcription of genes in response to iron levels. The IdeR regulated genes have been investigated mostly in M. tuberculosis, M. smegmatis, and in few of the other related species. Recent advances in crystal structure solution and computational as well as experimental identification of IdeR targets has provided insight into IdeR structure and function. Here in this review we take stock of current state of knowledge on IdeR and its targets to understand the underlying design of the IdeR regulon and its role in mycobacterial physiology.
Collapse
Affiliation(s)
- Sarita Ranjan
- Sun Centre of Excellence in Medical Bioinformatics, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| | | | | |
Collapse
|
19
|
Brett PJ, Burtnick MN, Fenno JC, Gherardini FC. Treponema denticola TroR is a manganese- and iron-dependent transcriptional repressor. Mol Microbiol 2008; 70:396-409. [PMID: 18761626 PMCID: PMC2628430 DOI: 10.1111/j.1365-2958.2008.06418.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola harbours a genetic locus with significant homology to most of the previously characterized Treponema pallidum tro operon. Within this locus are five genes (troABCDR) encoding for the components of an ATP-binding cassette cation-transport system (troABCD) and a DtxR-like transcriptional regulator (troR). In addition, a sigma(70)-like promoter and an 18 bp region of dyad symmetry were identified upstream of the troA start codon. This putative operator sequence demonstrated similarity to the T. pallidum TroR (TroR(Tp)) binding sequence; however, the position of this motif with respect to the predicted tro promoters differed. Interestingly, unlike the T. pallidum orthologue, T. denticola TroR (TroR(Td)) possesses a C-terminal Src homology 3-like domain commonly associated with DtxR family members. In the present study, we show that TroR(Td) is a manganese- and iron-dependent transcriptional repressor using Escherichia coli reporter constructs and in T. denticola. In addition, we demonstrate that although TroR(Td) possessing various C-terminal deletions maintain metal-sensing capacities, these truncated proteins exhibit reduced repressor activities in comparison with full-length TroR(Td). Based upon these findings, we propose that TroR(Td) represents a novel member of the DtxR family of transcriptional regulators and is likely to play an important role in regulating both manganese and iron homeostases in this spirochaete.
Collapse
Affiliation(s)
- Paul J Brett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
20
|
Bhattacharya N, Yi M, Zhou HX, Logan TM. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR. J Mol Biol 2007; 374:977-92. [PMID: 17976643 DOI: 10.1016/j.jmb.2007.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/09/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting beta-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 mus time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding<-->unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.
Collapse
Affiliation(s)
- Nilakshee Bhattacharya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
21
|
Ledala N, Pearson SL, Wilkinson BJ, Jayaswal RK. Molecular characterization of the Fur protein of Listeria monocytogenes. Microbiology (Reading) 2007; 153:1103-1111. [PMID: 17379719 DOI: 10.1099/mic.0.2006/000620-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the survival of almost all organisms, although excess iron can result in the generation of free radicals which are toxic to cells. To avoid the toxic effects of free radicals, the concentration of intracellular iron is generally regulated by the ferric uptake regulator Fur in bacteria. The 150 aa fur ORF from Listeria monocytogenes was cloned into pRSETa, and the His-tagged fusion protein was purified by nickel affinity column chromatography. DNA binding activity of this protein was studied by an electrophoretic mobility shift assay using the end-labelled promoters P(fhuDC) and P(fur). The results showed a decrease in migration for both promoter DNAs in the presence of the Fur protein, and the change in migration was competitively inhibited with an excess of the same unlabelled promoters. No shift in migration was observed when a similar assay was performed using non-specific end-labelled DNA. The assay showed that binding of Fur to P(fur) or P(fhuDC) was independent of iron or manganese ions, and was not inhibited in the presence of 2 mM EDTA. Inductively coupled plasma MS of the Fur protein showed no iron or manganese, but 0.48 mole zinc per mole protein was detected. A DNase I protection assay revealed that Fur specifically bound to and protected a 19 bp consensus Fur box sequence located in the promoters of fur and fhuDC. There was no requirement for iron or manganese in this assay also. However, Northern blot analysis showed an increase in fur transcription under iron-restricted compared to high-level conditions. Thus, the study suggests that under in vitro conditions, the affinity of the Fur protein for the 19 bp Fur box sequence does not require iron, but iron availability regulates fur transcription in vivo. Thus, the regulation by Fur in this intracellular pathogen may be dependent on either the structure of the DNA binding domain or other intracellular factors yet to be identified.
Collapse
Affiliation(s)
- Nagender Ledala
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Stacy L Pearson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Brian J Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - R K Jayaswal
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| |
Collapse
|
22
|
DeWitt MA, Kliegman JI, Helmann JD, Brennan RG, Farrens DL, Glasfeld A. The conformations of the manganese transport regulator of Bacillus subtilis in its metal-free state. J Mol Biol 2006; 365:1257-65. [PMID: 17118401 PMCID: PMC2877129 DOI: 10.1016/j.jmb.2006.10.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 10/24/2022]
Abstract
The manganese transport regulator (MntR) from Bacillus subtilis binds cognate DNA sequences in response to elevated manganese concentrations. MntR functions as a homodimer that binds two manganese ions per subunit. Metal binding takes place at the interface of the two domains that comprise each MntR subunit: an N-terminal DNA-binding domain and a C-terminal dimerization domain. In order to elucidate the link between metal binding and activation, a crystallographic study of MntR in its metal-free state has been undertaken. Here we describe the structures of the native protein and a selenomethionine-containing variant, solved to 2.8 A. The two structures contain five crystallographically unique subunits of MntR, providing diverse views of the metal-free protein. In apo-MntR, as in the manganese complex, the dimer is formed by dyad-related C-terminal domains that provide a conserved structural core. Similarly, each DNA-binding domain largely retains the folded conformation found in metal bound forms of MntR. However, compared to metal-activated MntR, the DNA-binding domains move substantially with respect to the dimer interface in apo-MntR. Overlays of multiple apo-MntR structures indicate that there is a greater range of positioning allowed between N and C-terminal domains in the metal-free state and that the DNA-binding domains of the dimer are farther apart than in the activated complex. To further investigate the conformation of the DNA-binding domain of apo-MntR, a site-directed spin labeling experiment was performed on a mutant of MntR containing cysteine at residue 6. Consistent with the crystallographic results, EPR spectra of the spin-labeled mutant indicate that tertiary structure is conserved in the presence or absence of bound metals, though slightly greater flexibility is present in inactive forms of MntR.
Collapse
Affiliation(s)
- Mark A. DeWitt
- Department of Chemistry, Reed College, Portland, OR 97202, USA
| | | | - John D. Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, NY 14853, USA
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, U. T. M. D. Anderson Cancer Center, Unit 1000 Houston, TX 77030, USA
| | - David L. Farrens
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201, USA
| | - Arthur Glasfeld
- Department of Chemistry, Reed College, Portland, OR 97202, USA
- *E-mail address of the corresponding author:
| |
Collapse
|
23
|
Iwig JS, Rowe JL, Chivers PT. Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 2006; 62:252-62. [PMID: 16956381 DOI: 10.1111/j.1365-2958.2006.05369.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nickel physiology of Escherichia coli is dominated by its Ni-Fe hydrogenase isozymes, which are expressed under anaerobic growth conditions. Hydrogenase activity in E. coli requires the NikABCDE nickel transporter, which is transcriptionally repressed by NikR in the presence of excess nickel. Recently, a nickel and cobalt-efflux protein, RcnA, was identified in E. coli. This study examines the effect of RcnA on nickel homeostasis in E. coli. Under nickel-limiting conditions, deletion of rcnA increased NikR activity in vivo. Nickel and cobalt-dependent regulation of rcnA expression required the newly identified transcriptional repressor RcnR (formerly YohL). Deletion of rcnR results in constitutive rcnA expression and a corresponding decrease in NikR activity. Purified RcnR binds directly to the rcnA promoter DNA fragment and this interaction is inhibited by nickel and cobalt. Nickel accumulation is affected differently among deletion strains with impaired nickel homeostasis. Surprisingly, in low nickel growth conditions rcnA expression is required for nickel import via NikABCDE. The data support a model with two distinct pools of nickel ions in E. coli. NikR bridges these two pools by controlling the levels of the hydrogenase-associated pool based on the nickel levels in the second pool.
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
24
|
Oram DM, Jacobson AD, Holmes RK. Transcription of the contiguous sigB, dtxR, and galE genes in Corynebacterium diphtheriae: evidence for multiple transcripts and regulation by environmental factors. J Bacteriol 2006; 188:2959-73. [PMID: 16585757 PMCID: PMC1447015 DOI: 10.1128/jb.188.8.2959-2973.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron-dependent transcriptional regulator DtxR from Corynebacterium diphtheriae is the prototype for a family of metal-dependent regulators found in diverse bacterial species. The structure of DtxR and its action as a repressor have been extensively characterized, but little is known about expression of dtxR. In the current study, we investigated transcription of dtxR as well as the sigB and galE genes located immediately upstream and downstream from dtxR, respectively. We identified two promoters that determine transcription of dtxR. The first, located upstream of sigB, appears to be controlled by an extracytoplasmic function sigma factor. The second, located in the intergenic region between sigB and dtxR, is similar to promoters used by the primary vegetative sigma factors in other actinomycete species. Using quantitative real-time assays, we demonstrated that the number of transcripts initiated upstream from sigB is affected by several environmental factors. In contrast, the presence of sodium dodecyl sulfate was the only factor tested that conclusively affects the number of transcripts initiated in the sigB-dtxR intergenic region. Additionally, we provided evidence for the existence of transcripts that contain sigB, dtxR, and galE. Our studies provide the first quantitative transcriptional analysis of a gene encoding a DtxR family regulator and give new insights into transcriptional regulation in C. diphtheriae.
Collapse
Affiliation(s)
- Diana Marra Oram
- University of Colorado at Denver and Health Sciences Center, School of Medicine, Department of Microbiology, Mail Stop 8333, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
25
|
D'Aquino JA, Tetenbaum-Novatt J, White A, Berkovitch F, Ringe D. Mechanism of metal ion activation of the diphtheria toxin repressor DtxR. Proc Natl Acad Sci U S A 2005; 102:18408-13. [PMID: 16352732 PMCID: PMC1317899 DOI: 10.1073/pnas.0500908102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10(-7), binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10(-4). These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.
Collapse
|
26
|
|
27
|
Flores FJ, Barreiro C, Coque JJR, Martín JF. Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J 2005; 272:725-35. [PMID: 15670153 DOI: 10.1111/j.1742-4658.2004.04509.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Gram-positive bacteria, the expression of iron-regulated genes is mediated by a class of divalent metal-dependent regulatory (DmdR) proteins. We cloned and characterized two dmdR genes of Streptomyces coelicolor that were located in two different nonoverlapping cosmids. Functional analysis of dmdR1 and dmdR2 was performed by deletion of each copy. Deletion of dmdR1 resulted in the derepression of at least eight proteins and in the repression of three others, as shown by 2D proteome analysis. These 11 proteins were characterized by MALDI-TOF peptide mass fingerprinting. The proteins that show an increased level in the mutant correspond to a DNA-binding hemoprotein, iron-metabolism proteins and several divalent metal-regulated enzymes. The levels of two other proteins--a superoxide dismutase and a specific glutamatic dehydrogenase--were found to decrease in this mutant. Complementation of the dmdR1-deletion mutant with the wild-type dmdR1 allele restored the normal proteome profile. By contrast, deletion of dmdR2 did not affect significantly the protein profile of S. coelicolor. One of the proteins (P1, a phosphatidylethanolamine-binding protein), overexpressed in the dmdR1-deleted mutant, is encoded by ORF3 located immediately upstream of dmdR2; expression of both ORF3 and dmdR2 is negatively controlled by DmdR1. Western blot analysis confirmed that dmdR2 is only expressed when dmdR1 is disrupted. Species of Streptomyces have evolved an elaborated regulatory mechanism mediated by the DmdR proteins to control the expression of divalent metal-regulated genes.
Collapse
Affiliation(s)
- Francisco J Flores
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Spain
| | | | | | | |
Collapse
|
28
|
Oram DM, Must LM, Spinler JK, Twiddy EM, Holmes RK. Analysis of truncated variants of the iron dependent transcriptional regulators fromCorynebacterium diphtheriaeandMycobacterium tuberculosis. FEMS Microbiol Lett 2005; 243:1-8. [PMID: 15667993 DOI: 10.1016/j.femsle.2004.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/19/2022] Open
Abstract
Iron dependent regulatory proteins of the diphtheria toxin repressor family regulate transcription in a variety of bacterial species. These regulators have three domains. Domains 1 and 2 are required for DNA- and metal-binding while the role of the third domain is only partially defined. We compared full-length and carboxyl-terminally truncated variants of Corynebacterium diphtheriae DtxR and Mycobacterium tuberculosis IdeR for recognition by antibodies, DNA binding, and repressor activity. The third domain of DtxR contains immunodominant epitopes and is required for full repressor activity in an Escherichia coli reporter system, but it is not required for binding to DNA in vitro. In contrast, the third domain of IdeR is required both for full DNA binding activity in vitro and for repressor activity in vivo. DtxR and IdeR differ significantly in their requirements for domain 3 for DNA-binding and repressor activity.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Iron is an essential element for most organisms, including bacteria. The oxidized form is insoluble, and the reduced form is highly toxic for most macromolecules and, in biological systems, is generally sequestrated by iron- and heme-carrier proteins. Thus, despite its abundance on earth, there is practically no free iron available for bacteria whatever biotope they colonize. To fulfill their iron needs, bacteria have multiple iron acquisition systems, reflecting the diversity of their potential biotopes. The iron/heme acquisition systems in bacteria have one of two general mechanisms. The first involves direct contact between the bacterium and the exogenous iron/heme sources. The second mechanism relies on molecules (siderophores and hemophores) synthesized and released by bacteria into the extracellular medium; these molecules scavenge iron or heme from various sources. Recent genetic, biochemical, and crystallographic studies have allowed substantial progress in describing molecular mechanisms of siderophore and hemophore interactions with the outer membrane receptors, transport through the inner membrane, iron storage, and regulation of genes encoding biosynthesis and uptake proteins.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
30
|
Wisedchaisri G, Holmes RK, Hol WGJ. Crystal structure of an IdeR-DNA complex reveals a conformational change in activated IdeR for base-specific interactions. J Mol Biol 2004; 342:1155-69. [PMID: 15351642 DOI: 10.1016/j.jmb.2004.07.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/20/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
The iron-dependent regulator (IdeR) is an essential protein in Mycobacterium tuberculosis that regulates iron uptake in this major pathogen. Under high iron concentrations, IdeR binds to several operator regions and represses transcription of target genes. Here, we report the first crystal structure of cobalt-activated IdeR bound to the mbtA-mbtB operator at 2.75 A resolution. IdeR binds to the DNA as a "double-dimer" complex with two dimers on opposite sides of the DNA duplex with the dimer axes deviating approximately 157 degrees. The asymmetric unit contains two such double-dimer complexes with a total molecular mass of 240 kDa. Two metal-binding sites are fully occupied with the SH3-like third domain adopting a "wedge" position to interact with the two other domains, and providing two ligands for the metal site 1 in all eight subunits per asymmetric unit. A putative sodium ion is observed to mediate interactions between Asp35 and DNA. There is a conformational change in the DNA-binding domain caused by a 6-9 degrees rotation of the helix-turn-helix motif with respect to the rest of the molecule upon binding to the DNA. Ser37 and Pro39 make specific interactions with conserved thymine bases while Gln43 makes non-specific contacts with different types of bases in different subunits. A "p1s2C3T4a5" base recognition pattern is proposed to be the basis for key interactions for each IdeR subunit with the DNA in the IdeR-DNA complex structure.
Collapse
|
31
|
Oram DM, Avdalovic A, Holmes RK. Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect Immun 2004; 72:1885-95. [PMID: 15039307 PMCID: PMC375144 DOI: 10.1128/iai.72.4.1885-1895.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal-dependent transcriptional regulators of the diphtheria toxin repressor (DtxR) family have been identified in a wide variety of bacterial genera, where they control gene expression in response to one of two metal ions, Fe(2+) or Mn(2+). DtxR of Corynebacterium diphtheriae is the best characterized of these important metal-dependent regulators. The genus Corynebacterium includes many phenotypically diverse species, and the prevalence of DtxR-like regulators within the genus is unknown. We assayed chromosomal DNA from 42 different corynebacterial isolates, representing 33 different species, for the presence of a highly conserved region of the dtxR gene that encodes the DNA-binding helix-turn-helix motif and metal-binding site 1 within domains 1 and 2 of DtxR. The chromosome of all of the isolates contained this conserved region of dtxR, and DNA sequencing revealed a high level of nucleotide sequence conservation within this region in all of the corynebacterial species (ranging from 62 to 100% identity and averaging 70% identity with the dtxR prototype). The level of identity was even greater for the predicted protein sequences encoded by the dtxR-like genes, ranging from 81 to 100% identity and averaging 91% identity with DtxR. Using a DtxR-specific antiserum we confirmed the presence of a DtxR-like protein in extracts of most of the corynebacterial isolates and determined the precise amount of DtxR per cell in C. diphtheriae. The high level of identity at both DNA and protein levels suggests that all of the isolates tested encode a functional DtxR-like Fe(2+)-activated regulatory protein that can bind homologs of the DtxR operator and regulate gene expression in response to iron.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
32
|
Love JF, vanderSpek JC, Marin V, Guerrero L, Logan TM, Murphy JR. Genetic and biophysical studies of diphtheria toxin repressor (DtxR) and the hyperactive mutant DtxR(E175K) support a multistep model of activation. Proc Natl Acad Sci U S A 2004; 101:2506-11. [PMID: 14983039 PMCID: PMC356980 DOI: 10.1073/pnas.0303794101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae is the prototypic member of a superfamily of transition metal ion-activated transcriptional regulators that have been isolated from Gram-positive prokaryotes. Upon binding divalent transition metal ions, the N-terminal domain of DtxR undergoes a dynamic structural organization leading to homodimerization and target DNA binding. We have used site-directed mutagenesis and NMR analysis to probe the mechanism by which apo-DtxR transits from an inactive to a fully active repressor upon metal ion binding. We demonstrate that the ancillary metal-binding site mutant DtxR(H79A) requires higher concentrations of metal ions for activation both in vivo and in vitro, providing a functional correlation to the proposed cooperativity between ancillary and primary binding sites. We also demonstrate that the C-terminal src homology 3 (SH3)-like domain of DtxR functions to modulate repressor activity by (i) binding to the polyprolyl tether region between the N- and C-terminal domains, and (ii) destabilizing the ancillary binding site, leading to full inactivation of the repressor. Finally, we show by NMR analysis that the hyperactive phenotype of DtxR(E175K) results from the stabilization of a structural intermediate in the activation process. Taken together, the data presented support a multistep model for the activation of apo-DtxR by transition metal ions.
Collapse
Affiliation(s)
- John F Love
- Department of Microbiology, Boston University School of Medicine, 650 Albany Street, X830, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.
Collapse
Affiliation(s)
- J Alejandro D'Aquino
- Department of Chemistry and Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
34
|
Spiering MM, Ringe D, Murphy JR, Marletta MA. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc Natl Acad Sci U S A 2003; 100:3808-13. [PMID: 12655054 PMCID: PMC153003 DOI: 10.1073/pnas.0737977100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor in Corynebacterium diphtheriae. DtxR is an iron sensor; metal-bound DtxR represses transcription of genes downstream of the tox operator. Wild-type DtxR [DtxR(wt)] and several mutant forms were overexpressed and purified from Escherichia coli. DtxR was isolated without bound metal. Metal reconstitution gave a binding stoichiometry of 2 per monomer for DtxR(wt) and 1 per monomer for DtxR(H79A) and DtxR(M10A). DNA binding of DtxR(H79A) and DtxR(M10A) indicates that metal site 2 is essential for activity. Metal binding lowers the dimerization K(d) of DtxR from low micromolar to 33 nM. Gel electrophoretic mobility-shift assays show that Fe(2+) and not Fe(3+) activates DtxR for DNA binding. This finding suggests that gene regulation by DtxR may be sensitive not only to iron levels but also to redox state of the iron. Mutations in the tox operator sequence indicate that DtxR dimers binding to DNA may be highly cooperative.
Collapse
Affiliation(s)
- Michelle M Spiering
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
35
|
Love JF, VanderSpek JC, Murphy JR. The src homology 3-like domain of the diphtheria toxin repressor (DtxR) modulates repressor activation through interaction with the ancillary metal ion-binding site. J Bacteriol 2003; 185:2251-8. [PMID: 12644496 PMCID: PMC151513 DOI: 10.1128/jb.185.7.2251-2258.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains active in vivo in the presence of 300 micro M 2,2'dipyridyl, the purified repressor is, in fact, dependent upon low levels of transition metal ion to transit from the inactive apo form to the active metal ion-bound form of the repressor. Binding studies using 8-anilino-1-naphthalenesulfonic acid suggest that the E175K mutation stabilizes an intermediate of the molten-globule form of the repressor, increasing exposure of hydrophobic residues to solvent. We demonstrate that the hyperactive DtxR(E175K) phenotype is dependent upon an intact ancillary metal ion-binding site (site 1) of the repressor. These observations support the hypothesis that metal ion binding in the ancillary site facilitates the conversion of the inactive apo-repressor to its active, operator-binding conformation. Furthermore, these results support the hypothesis that the C-terminal src homology 3-like domain of DtxR plays an active role in the modulation of repressor activity.
Collapse
Affiliation(s)
- John F Love
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
36
|
Abstract
The role of iron in mycobacteria as in other bacteria goes beyond the need for this essential cofactor. Limitation of this metal triggers an extensive response aimed at increasing iron acquisition while coping with iron deficiency. In contrast, iron-rich environments prompt these prokaryotes to induce synthesis of iron storage molecules and to increase mechanisms of protection against iron-mediated oxidative damage. The response to changes in iron availability is strictly regulated in order to maintain sufficient but not excessive and potentially toxic levels of iron in the cell. This response is also linked to other important processes such as protection against oxidative stress and virulence. In bacteria, iron metabolism is regulated by controlling transcription of genes involved in iron uptake, transport and storage. In mycobacteria, this role is fulfilled by the iron-dependent regulator IdeR. IdeR is an essential protein in Mycobacterium tuberculosis, the causative agent of human tuberculosis. It functions as a repressor of iron acquisition genes, but is also an activator of iron storage genes and a positive regulator of oxidative stress responses.
Collapse
Affiliation(s)
- G Marcela Rodriguez
- TB Center, Public Health Research Institute at the International Center for Public Health, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | |
Collapse
|
37
|
Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 2003; 47:903-15. [PMID: 12581348 DOI: 10.1046/j.1365-2958.2003.03337.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential element for almost all organisms, although an overload of this element results in toxicity because of the formation of hydroxyl radicals. Consequently, most living entities have developed sophisticated mechanisms to control their intracellular iron concentration. In many bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, this task is performed by the ferric uptake regulator (Fur). Fur controls a wide variety of basic physiological processes including iron uptake systems and the expression of exotoxin A. Here, we present the first crystal structure of Fur from P. aeruginosa in complex with Zn2+ determined at a resolution of 1.8 A. Furthermore, X-ray absorption spectroscopic measurements and microPIXE analysis were performed in order to characterize the distinct zinc and iron binding sites in solution. The combination of these complementary techniques enables us to present a model for the activation and DNA binding of the Fur protein.
Collapse
Affiliation(s)
- Ehmke Pohl
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, D-22603 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Oram DM, Avdalovic A, Holmes RK. Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol 2002; 184:5723-32. [PMID: 12270831 PMCID: PMC139604 DOI: 10.1128/jb.184.20.5723-5732.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the bacteriophage-borne diphtheria toxin gene tox is negatively regulated, in response to intracellular Fe(2+) concentration, by the chromosomally encoded diphtheria toxin repressor (DtxR). Due to a scarcity of tools, genetic analysis of Corynebacterium diphtheriae has primarily relied on analysis of chemically induced and spontaneously occurring mutants and on the results of experiments with C. diphtheriae genes cloned in Escherichia coli or analyzed in vitro. We modified a Tn5-based mutagenesis technique for use with C. diphtheriae, and we used it to construct the first transposon insertion libraries in the chromosome of this gram-positive pathogen. We isolated two insertions that affected expression of DtxR, one 121 bp upstream of dtxR and the other within an essential region of the dtxR coding sequence, indicating for the first time that dtxR is a dispensable gene in C. diphtheriae. Both mutant strains secrete diphtheria toxin when grown in medium containing sufficient iron to repress secretion of diphtheria toxin by wild-type C. diphtheriae. The upstream insertion mutant still produces DtxR in decreased amounts and regulates siderophore secretion in response to iron in a manner similar to its wild-type parent. The mutant containing the transposon insertion within dtxR does not produce DtxR and overproduces siderophore in the presence of iron. Differences in the ability of the two mutant strains to survive oxidative stress also indicated that the upstream insertion retained slight DtxR activity, whereas the insertion within dtxR abolished DtxR activity. This is the first evidence that DtxR plays a role in protecting the cell from oxidative stress.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
39
|
Love JF, Murphy JR. Design and development of a novel genetic probe for the analysis of repressor-operator interactions. J Microbiol Methods 2002; 51:63-72. [PMID: 12069891 DOI: 10.1016/s0167-7012(02)00058-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While the native diphtheria tox promoter/operator (toxPO)-lacZ transcriptional fusion has allowed initial isolation and characterization of the diphtheria toxin repressor (DtxR), the low level of reporter gene expression has limited the detection and analysis of mutations affecting subtle changes in repressor-operator binding. In order to overcome this difficulty, we have constructed a novel hybrid promoter/operator-lacZ transcriptional fusion in which the "-35" and spacing of the tac promoter was fused to the "-10" and interrupted palindromic sequence of toxO. We show that the hybrid tacPtoxO is regulated by the transition metal ion-dependent DtxR and that lacZ expression is increased approximately 70-fold in the reporter strain Escherichia coli DH5alpha/lambdaRS45-tacPtoxO-lacZ relative to DH5alpha/lambdaRS45-toxPO-lacZ. In addition, we have constructed a transcriptional fusion between tacPtoxO and luc, pJL1. We have used pJL1 to program S30 extracts of E. coli in order to direct in vitro the coupled transcription and translation of luciferase. We demonstrate the utility of this in vitro system in providing a direct functional link between in vivo and in vitro observations with DtxR and mutants of DtxR, which display subtle changes in activity in a manner not previously possible.
Collapse
Affiliation(s)
- John F Love
- Evans Department of Clinical Research and Department of Medicine, Boston University School of Medicine, 650 Albany Street, EBRC 830, Boston, MA 02118, USA
| | | |
Collapse
|
40
|
Twigg PD, Parthasarathy G, Guerrero L, Logan TM, Caspar DL. Disordered to ordered folding in the regulation of diphtheria toxin repressor activity. Proc Natl Acad Sci U S A 2001; 98:11259-64. [PMID: 11572979 PMCID: PMC58717 DOI: 10.1073/pnas.191354798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2001] [Indexed: 11/18/2022] Open
Abstract
Understanding how metal binding regulates the activity of the diphtheria toxin repressor protein (DtxR) requires information about the structure in solution. We have prepared a DtxR mutant construct with three additional N-terminal residues, Gly-Ser-His-DtxR(Cys-102 --> Asp), that retains metal-binding capabilities, but remains monomeric in solution and does not bind DNA under conditions that effect dimerization and DNA binding in the functional DtxR(Cys-102 --> Asp) construct. Although the interaction properties of this inactive mutant in solution are very different from that of active repressors, crystallization imposes the same dimeric structure as observed in all crystal forms of the active repressor with and without bound metal. Our solution NMR analyses of active and inactive metal-free diphtheria toxin repressors demonstrate that whereas the C-terminal one-third of the protein is well ordered, the N-terminal two-thirds exhibits conformational flexibility and exists as an ensemble of structural substates with undefined tertiary structure. Fluorescence binding assays with 1-anilino naphthalene-8-sulfonic acid (ANS) confirm that the highly alpha-helical N-terminal two-thirds of the apoprotein is molten globule-like in solution. Binding of divalent metal cations induces a substantial conformational reorganization to a more ordered state, as evidenced by changes in the NMR spectra and ANS binding. The evident disorder to order transition upon binding of metal in solution is in contrast to the minor conformational changes seen comparing apo- and holo-DtxR crystal structures. Disordered to ordered folding appears to be a general mechanism for regulating specific recognition in protein action and this mechanism provides a plausible explanation for how metal binding controls the DtxR repressor activity.
Collapse
Affiliation(s)
- P D Twigg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
41
|
Spatafora G, Moore M, Landgren S, Stonehouse E, Michalek S. Expression of Streptococcus mutans fimA is iron-responsive and regulated by a DtxR homologue. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1599-1610. [PMID: 11390691 DOI: 10.1099/00221287-147-6-1599] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iron uptake, transport and storage in Streptococcus mutans, the principal causative agent of human dental cavities, is unexplored despite early reports in the literature which predict a role for this trace metal in cariogenesis. Experiments in the authors' laboratory revealed several iron-responsive proteins in S. mutans, one of which reacted with a polyclonal antiserum directed against the FimA fimbrial adhesin from Streptococcus parasanguis on Western blots. The results of Western blot and Northern hybridization experiments support an inverse relationship between iron availability and S. mutans fimA expression, and metal ion uptake experiments implicate FimA in S. mutans (55)Fe transport. Cloning of the S. mutans fimA homologue facilitated the construction of a fimA knockout mutant which grew poorly in an iron-limiting medium relative to the wild-type progenitor strain, lending further support to a role for FimA in S. mutans iron transport. The authors also identified and cloned a dtxR-like gene (dlg) located downstream of fimA on the S. mutans chromosome, and noted increased fimA expression in a S. mutans dlg knockout mutant relative to wild-type on RNA spot blots and Western blots. The uptake of (55)Fe, which was also significantly increased in this mutant, was compromised in a fimA/dlg double knockout. These findings are consistent with a role for Dlg in the iron-mediated regulation of fimA, and possibly other S. mutans iron transporters. Finally, the cariogenic potential of the fimA and dlg knockout mutants was not significantly different from that of the wild-type progenitor in a germ-free rat model.
Collapse
Affiliation(s)
- Grace Spatafora
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Meagan Moore
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Susan Landgren
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Emily Stonehouse
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Suzanne Michalek
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA2
| |
Collapse
|
42
|
Weaver LH, Kwon K, Beckett D, Matthews BW. Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator. Proc Natl Acad Sci U S A 2001; 98:6045-50. [PMID: 11353844 PMCID: PMC33419 DOI: 10.1073/pnas.111128198] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2001] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli biotin repressor binds to the biotin operator to repress transcription of the biotin biosynthetic operon. In this work, a structure determined by x-ray crystallography of a complex of the repressor bound to biotin, which also functions as an activator of DNA binding by the biotin repressor (BirA), is described. In contrast to the monomeric aporepressor, the complex is dimeric with an interface composed in part of an extended beta-sheet. Model building, coupled with biochemical data, suggests that this is the dimeric form of BirA that binds DNA. Segments of three surface loops that are disordered in the aporepressor structure are located in the interface region of the dimer and exhibit greater order than was observed in the aporepressor structure. The results suggest that the corepressor of BirA causes a disorder-to-order transition that is a prerequisite to repressor dimerization and DNA binding.
Collapse
Affiliation(s)
- L H Weaver
- Institute for Molecular Biology, Howard Hughes Medical Institute and Department of Physics, 1229 University of Oregon, Eugene, OR 97403-1229, USA.
| | | | | | | |
Collapse
|
43
|
Feese MD, Ingason BP, Goranson-Siekierke J, Holmes RK, Hol WG. Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at 2.0-A resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J Biol Chem 2001; 276:5959-66. [PMID: 11053439 DOI: 10.1074/jbc.m007531200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-dependent regulators are primary transcriptional regulators of virulence factors and iron scavenging systems that are important for infection by several bacterial pathogens. Here we present the 2.0-A crystal structure of the wild type iron-dependent regulator from Mycobacterium tuberculosis in its fully active holorepressor conformation. Clear, unbiased electron density for the Src homology domain 3-like third domain, which is often invisible in structures of iron-dependent regulators, was revealed by density modification and averaging. This domain is one of the rare examples of Src homology domain 3-like folds in bacterial proteins, and, in addition, displays a metal binding function by contributing two ligands, one Glu and one Gln, to the pentacoordinated cobalt atom at metal site 1. Both metal sites are fully occupied, and tightly bound water molecules at metal site 1 ("Water 1") and metal site 2 ("Water 2") are identified unambiguously. The main chain carbonyl of Leu4 makes an indirect interaction with the cobalt atom at metal site 2 via Water 2, and the adjacent residue, Val5, forms a rare gamma turn. Residues 1-3 are well ordered and make numerous interactions. These ordered solvent molecules and the conformation and interactions of the N-terminal pentapeptide thus might be important in metal-dependent activation.
Collapse
Affiliation(s)
- M D Feese
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
This paper reports the presence of an ideR gene, which encodes an iron-dependent regulatory protein, in Rhodococcus erythropolis and in the intracellular pathogen Rhodococcus equi. The ideR gene of the latter encoded a protein of 230 amino acids with a molecular mass of 25619. The alpha-helices forming the helix-turn-helix motif of the R. equi protein were identical to those of the DtxR protein of Corynebacterium diphtheriae, which is an IdeR homologue. This indicates that the two proteins bind to the same DNA binding site. This was confirmed following expression of IdeR in Escherichia coli, which showed that the IdeR protein could repress transcription of the tox promoter of C. diphtheriae in an iron dependent manner. An open reading frame specifying a 283-amino acid polypeptide similar to galE encoding UDP-galactose 4-epimerase was present downstream of the ideR gene.
Collapse
Affiliation(s)
- C A Boland
- Department of Industrial Microbiology, Conway Institute of Biomolecular and Biomedical Research, National University of Ireland, Dublin, Dublin 4, Ireland
| | | |
Collapse
|
45
|
Que Q, Helmann JD. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 2000; 35:1454-68. [PMID: 10760146 DOI: 10.1046/j.1365-2958.2000.01811.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis yqhN gene encodes a metalloregulatory protein distantly related to the Corynebacterium diphtheriae diphtheria toxin repressor (DtxR). While DtxR mediates the iron-dependent repression of iron uptake, we demonstrate that yqhN (herein renamed mntR) encodes a manganese modulated regulator of manganese transport. An mntR mutant strain is sensitive to both manganese and cadmium, suggesting that the transport of these metals is derepressed. We selected Tn10 insertions that suppress the Mn(II) sensitivity of the mntR mutant or that increase the Cd(II) tolerance of wild-type cells, and in both cases we recovered insertions in mntH (formerly ydaR). MntH is a member of the NRAMP family of proton-coupled, metal ion transporters. MntR also regulates expression of a Mn(II) ABC transporter (MntABCD). The MntH and MntABCD transporters are both selectively repressed by Mn(II) and this regulation requires MntR. In high Mn(II) conditions, MntR functions as a Mn(II)-dependent repressor of mntH transcription. In contrast, MntR acts as a positive regulator of the mntABCD operon under low Mn(II) growth conditions. Biochemical studies demonstrate that MntR binding to the mntH control region requires Mn(II), while interaction with the mntABCD control region does not depend on Mn(II).
Collapse
Affiliation(s)
- Q Que
- Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
46
|
Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 2000; 181 Suppl 1:S156-67. [PMID: 10657208 DOI: 10.1086/315554] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diphtheria toxin (DT) is an extracellular protein of Corynebacterium diphtheriae that inhibits protein synthesis and kills susceptible cells. The gene that encodes DT (tox) is present in some corynephages, and DT is only produced by C. diphtheriae isolates that harbor tox+ phages. The diphtheria toxin repressor (DtxR) is a global regulatory protein that uses Fe2+ as co-repressor. Holo-DtxR represses production of DT, corynebacterial siderophore, heme oxygenase, and several other proteins. Diagnostic tests for toxinogenicity of C. diphtheriae are based either on immunoassays or on bioassays for DT. Molecular analysis of tox and dtxR genes in recent clinical isolates of C. diphtheriae revealed several tox alleles that encode identical DT proteins and multiple dtxR alleles that encode five variants of DtxR protein. Therefore, recent clinical isolates of C. diphtheriae produce a single antigenic type of DT, and diphtheria toxoid continues to be an effective vaccine for immunization against diphtheria.
Collapse
Affiliation(s)
- R K Holmes
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
47
|
Lee JH, Holmes RK. Characterization of specific nucleotide substitutions in DtxR-specific operators of Corynebacterium diphtheriae that dramatically affect DtxR binding, operator function, and promoter strength. J Bacteriol 2000; 182:432-8. [PMID: 10629190 PMCID: PMC94293 DOI: 10.1128/jb.182.2.432-438.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) of Corynebacterium diphtheriae uses Fe(2+) as a corepressor. Holo-DtxR inhibits transcription from the iron-regulated promoters (IRPs) designated IRP1 through IRP5 as well as from the promoters for the tox and hmuO genes. DtxR binds to 19-bp operators with the consensus sequence 5'-TTAGGTTAGCCTAACCTAA-3', a perfect 9-bp palindrome interrupted by a single C. G base pair. Among the seven known DtxR-specific operators, IRP3 exhibits the weakest binding to DtxR. The message (sense) strand of the IRP3 operator (5'-TTAGGTGAGACGCACCCAT-3' [nonconsensus nucleotides underlined]) overlaps by 2 nucleotides at its 5' end with the putative -10 sequence of the IRP3 promoter. The underlined C at position +7 from the center of the IRP3 operator [C(+7)] is unique, because T is conserved at that position in other DtxR-specific operators. The present study examined the effects of nucleotide substitutions at position +7 or -7 in the IRP3 operator. In gel mobility shift assays, only the change of C(+7) to the consensus nucleotide T caused a dramatic increase in the binding of DtxR, whereas other nucleotide substitutions for C(+7) or replacements for A(-7) had only small positive or negative effects on DtxR binding. All substitutions for C(+7) or A(-7) except for A(-7)C dramatically decreased IRP3 promoter strength. In contrast, the A(-7)C variant caused increased promoter strength at the cost of nearly eliminating repressibility by DtxR. The message (sense) strand of the IRP1 operator (5'-TTAGGTTAGCCAAACCTTT-3') includes the -35 region of the IRP3 promoter. A T(+7)C variant of the IRP1 operator was also constructed, and it was shown to exhibit decreased binding to DtxR, decreased repressibility by DtxR, and increased promoter strength. The nucleotides at positions +7 and -7 in DtxR-specific operators are therefore important determinants of DtxR binding and repressibility of transcription by DtxR, and they also have significant effects on promoter activity for IRP3 and IRP1.
Collapse
Affiliation(s)
- J H Lee
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
48
|
Pohl E, Holmes RK, Hol WG. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 1999; 292:653-67. [PMID: 10497029 DOI: 10.1006/jmbi.1999.3073] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diphtheria toxin repressor (DtxR) is the prototype of a family of iron-dependent regulator (IdeR) proteins, which are activated by divalent iron and bind DNA to prevent the transcription of downstream genes. In Corynebacterium diphtheriae, DtxR regulates not only the expression of diphtheria toxin encoded by a corynebacteriophage, but also of components of the siderophore-mediated iron-transport system. Here we report the crystal structure of wild-type DtxR, a 226 residue three-domain dimeric protein, activated by cobalt and bound to a 21 bp DNA duplex based on the consensus operator sequence. Two DtxR dimers surround the DNA duplex which is distorted compared to canonical B -DNA. The SH3-like third domain interacts with the metal at site 1 via the side-chains of Glu170 and Gln173, revealing for the first time a metal-binding function for this class of domains. The SH3-like domain is also in contact with the DNA-binding first domain and with the second, or dimerization, domain. The DNA-binding helices in the first domain are shifted by 3 to 5 A when compared to the apo-repressor, and fit into the major groove of the duplex bound. These shifts are due to a hinge-binding motion of the DNA-binding domain with respect to the dimerization domains of DtxR. The third domain might play a role in regulating this hinge motion.
Collapse
Affiliation(s)
- E Pohl
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
49
|
Dussurget O, Timm J, Gomez M, Gold B, Yu S, Sabol SZ, Holmes RK, Jacobs WR, Smith I. Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 1999; 181:3402-8. [PMID: 10348851 PMCID: PMC93806 DOI: 10.1128/jb.181.11.3402-3408.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exochelin is the primary extracellular siderophore of Mycobacterium smegmatis, and the iron-regulated fxbA gene encodes a putative formyltransferase, an essential enzyme in the exochelin biosynthetic pathway (E. H. Fiss, Y. Yu, and W. R. Jacobs, Jr., Mol. Microbiol. 14:557-569, 1994). We investigated the regulation of fxbA by the mycobacterial IdeR, a homolog of the Corynebacterium diphtheriae iron regulator DtxR (M. P. Schmitt, M. Predich, L. Doukhan, I. Smith, and R. K. Holmes, Infect. Immun. 63:4284-4289, 1995). Gel mobility shift experiments showed that IdeR binds to the fxbA regulatory region in the presence of divalent metals. DNase I footprinting assays indicated that IdeR binding protects a 28-bp region containing a palindromic sequence of the fxbA promoter that was identified in primer extension assays. fxbA regulation was measured in M. smegmatis wild-type and ideR mutant strains containing fxbA promoter-lacZ fusions. These experiments confirmed that fxbA expression is negatively regulated by iron and showed that inactivation of ideR results in iron-independent expression of fxbA. However, the levels of its expression in the ideR mutant were approximately 50% lower than those in the wild-type strain under iron limitation, indicating an undefined positive role of IdeR in the regulation of fxbA.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Cations, Divalent/pharmacology
- DNA Footprinting
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Bacterial/drug effects
- Genes, Bacterial/genetics
- Genes, Reporter
- Hydroxymethyl and Formyl Transferases/genetics
- Iron/pharmacology
- Mutation
- Mycobacterium/drug effects
- Mycobacterium/enzymology
- Mycobacterium/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins
- Response Elements/genetics
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- O Dussurget
- TB Center, Public Health Research Institute, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Proc Natl Acad Sci U S A 1999; 96:6119-24. [PMID: 10339551 PMCID: PMC26845 DOI: 10.1073/pnas.96.11.6119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is the best-characterized member of a family of homologous proteins that regulate iron uptake and virulence gene expression in the Gram-positive bacteria. DtxR contains two domains that are separated by a short, unstructured linker. The N-terminal domain is structurally well-defined and is responsible for Fe2+ binding, dimerization, and DNA binding. The C-terminal domain adopts a fold similar to eukaryotic Src homology 3 domains, but the functional role of the C-terminal domain in repressor activity is unknown. The solution structure of the C-terminal domain, consisting of residues N130-L226 plus a 13-residue N-terminal extension, has been determined by using NMR spectroscopy. Residues before A147 are highly mobile and adopt a random coil conformation, but residues A147-L226 form a single structured domain consisting of five beta-strands and three helices arranged into a partially orthogonal, two-sheet beta-barrel, similar to the structure observed in the crystalline Co2+ complex of full-length DtxR. Chemical shift perturbation studies demonstrate that a proline-rich peptide corresponding to residues R125-G139 of intact DtxR binds to the C-terminal domain in a pocket formed by residues in beta-strands 2, 3, and 5, and helix 3. Binding of the proline-rich peptide by the C-terminal domain of DtxR presents an example of peptide binding by a prokaryotic Src homology 3-like protein. The results of this study, combined with previous x-ray studies of intact DtxR, provide insights into a possible biological function of the C-terminal domain in regulating repressor activity.
Collapse
Affiliation(s)
- G Wang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|