1
|
Shima A, Pham J, Blanco E, Barton ER, Sweeney HL, Matsuda R. IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures. Exp Cell Res 2010; 317:356-66. [PMID: 21070767 DOI: 10.1016/j.yexcr.2010.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
In a previous study investigating the effects of low temperature on skeletal muscle differentiation, we demonstrated that C2C12 mouse myoblasts cultured at 30°C do not express myogenin, a myogenic regulatory factor (MRF), or fuse into multinucleated myotubes. At this low temperature, the myoblasts continuously express Id3, a negative regulator of MRFs, and do not upregulate muscle-specific microRNAs. In this study, we examined if insulin-like growth factor-I (IGF-I) and a stable form of vitamin C (L-ascorbic acid phosphate) could alleviate the low temperature-induced inhibition of myogenic differentiation in C2C12 cells. Although the addition of either IGF-I or vitamin C alone could promote myogenin expression in C2C12 cells at 30°C, elongated multinucleated myotubes were not formed unless both IGF-I and vitamin C were continuously administered. In human skeletal muscle cells, low temperature-induced blockage of myogenic differentiation was also ameliorated by exogenous IGF-I and vitamin C. In addition, we demonstrated that satellite cells of IGF-I overexpressing transgenic mice in single-fiber culture expressed myogenin at a higher level than those of wild-type mice at 30°C. This study suggests that body temperature plays an important role in myogenic differentiation of endotherms, but the sensitivity to low temperature could be buffered by certain factors in vivo, such as IGF-I and vitamin C.
Collapse
Affiliation(s)
- Ai Shima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 309A Building 15, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | |
Collapse
|
2
|
Bower NI, Johnston IA. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon. PLoS One 2010; 5:e11100. [PMID: 20559434 PMCID: PMC2885424 DOI: 10.1371/journal.pone.0011100] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d−1 at days 2 and 3 of the culture, increasing to 66% d−1 at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom.
| | | |
Collapse
|
3
|
Ostrovsky O, Eletto D, Makarewich C, Barton ER, Argon Y. Glucose regulated protein 94 is required for muscle differentiation through its control of the autocrine production of insulin-like growth factors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:333-41. [PMID: 19914304 DOI: 10.1016/j.bbamcr.2009.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/26/2009] [Accepted: 11/06/2009] [Indexed: 11/17/2022]
Abstract
The endoplasmic reticulum chaperone GRP94 is essential for early embryonic development and in particular affects differentiation of muscle lineages. To determine why an ubiquitously expressed protein has such a specific effect, we investigated the function of GRP94 in the differentiation of established myogenic cell lines in culture. Using both genetic suppression of expression, via RNA interference, and inhibition of function, via specific chemical inhibitors, we show that GRP94 expression and activity are needed for the in vitro fusion of myoblasts precursors into myotubes and the expression of contractile proteins that mark terminal differentiation. The inhibition can be complemented by addition of insulin-like growth factors to the cultures. GRP94 is not needed for the initial steps of myogenesis, only for the steps downstream of MyoD up-regulation, coinciding with the known need for synergistic input from growth factor signaling. Indeed, GRP94 is needed for the production of insulin-like growth factors I and II (IGF-I and IGF-II) by the differentiating cells. Moreover, the depletion of the chaperone does not increase the rate of apoptosis that always accompanies myogenic differentiation. Thus, the major effect of GRP94 on muscle differentiation is mediated by its regulation of IGF production.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
4
|
Ren H, Yin P, Duan C. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. ACTA ACUST UNITED AC 2008; 182:979-91. [PMID: 18762576 PMCID: PMC2528583 DOI: 10.1083/jcb.200712110] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IGF-II stimulates both mitogenesis and myogenesis through its binding and activation of the IGF-I receptor (IGF-IR). How this growth factor pathway promotes these two opposite cellular responses is not well understood. We investigate whether local IGF binding protein-5 (IGFBP-5) promotes the myogenic action of IGF-II. IGFBP-5 is induced before the elevation of IGF-II expression during myogenesis. Knockdown of IGFBP-5 impairs myogenesis and suppresses IGF-II gene expression. IGF-II up-regulates its own gene expression via the PI3K-Akt signaling pathway. Adding IGF-II or constitutively activating Akt rescues the IGFBP-5 knockdown-caused defects. However, an IGF analogue that binds to the IGF-IR but not IGFBP has only a limited effect. When added with low concentrations of IGF-II, IGFBP-5 restores IGF-II expression and myogenic differentiation, whereas an IGF binding–deficient IGFBP-5 mutant has no effect. These findings suggest that IGFBP-5 promotes muscle cell differentiation by binding to and switching on the IGF-II auto-regulation loop.
Collapse
Affiliation(s)
- Hongxia Ren
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
5
|
Xi G, Hathaway MR, Dayton WR, White ME. Growth factor messenger ribonucleic acid expression during differentiation of porcine embryonic myogenic cells. J Anim Sci 2007; 85:143-50. [PMID: 17179550 DOI: 10.2527/jas.2006-351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth factors, IGF-I and II, their binding proteins, IGFBP, and members of the transforming growth factor (TGF) superfamily (myostatin and TGFbeta1) are known to regulate proliferation and differentiation of myogenic cells. We hypothesized that changes in the relative expression of members of the IGF and TGFbeta systems play a significant role in regulating myogenesis in porcine embryonic myogenic cell (PEMC) cultures. Therefore, determining the expression patterns of these factors during PEMC myogenesis is important. Consequently, we used real-time PCR to explore the pattern of IGF-I; IGF-II; IGFBP-2, -3, and -5; IGF-type-I receptor; myogenin; myostatin; and TGFbeta1 mRNA expression during PEMC myogenesis. The progression of differentiation was assessed using creatine kinase activity and myogenin mRNA expression. As anticipated, creatine kinase activity was low in PEMC cultures at 48 h and increased 20-fold (P < 0.0001) between 48 h and its peak at 144 h. Similarly, myogenin mRNA was low at 48 h and increased approximately 5-fold (P < 0.0001) as differentiation progressed, peaking at 120 h and decreasing at 144 h. The patterns of IGF-I and IGFBP-2 mRNA expression were similar and were relatively lower in 48-h PEMC cultures, increasing approximately 5-fold (P < 0.0001) to their greatest levels at 120 h. In contrast, IGF-II and IGFBP-5 mRNA levels were relatively high at 48 h, peaking at 72 h, and steadily decreasing by 60 and 80%, respectively (P < 0.001), at 144 h. The level of IGF-type-I receptor mRNA was relatively high until 96 h of culture, after which it decreased 40% (P < 0.01), reaching a low at 144 h. Levels of IGFBP-3 mRNA were relatively high at 48 h, dropped approximately 40% to their lowest level at 72 h (P < 0.001), and then increased approximately 60% (P < 0.001) to their greatest levels at 144 h. Levels of TGFbeta1 mRNA decreased approximately 30% (P < 0.0001) between 48 and 96 h, then quickly rebounded to a peak at 120 h, and by 144 h had dropped to the levels seen at 72 h. Myostatin mRNA was at its greatest level at 48 h and declined rapidly between 72 and 96 h, finally decreasing by approximately 80% at 144 h (P < 0.0001). Our data demonstrate that these factors are differentially regulated during PEMC myogenesis and provide new information about their pattern of mRNA expression in cultured porcine muscle cells.
Collapse
Affiliation(s)
- G Xi
- Animal Growth and Development Laboratory, Department of Animal Science, University of Minnesota, 350 ABLMS, 1354 Eckles Avenue, St. Paul 55108, USA
| | | | | | | |
Collapse
|
6
|
Winner DG, Ealy AD, Hannon K, Johnson SE. Ectopic insulin-like growth factor I expression in avian skeletal muscle prevents expression of CMD4, a novel inhibitor of differentiation. Domest Anim Endocrinol 2006; 31:312-26. [PMID: 16423499 DOI: 10.1016/j.domaniend.2005.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 11/19/2022]
Abstract
Embryonic chick skeletal muscle undergoes profound hypertrophy in response to ectopic IGF-I resulting in two- to three-fold increase in total muscle mass. IGF-I likely causes several changes in gene expression profiles to elicit the robust effect. To identify genes differentially affected by IGF-I, total RNA was isolated from the hindlimbs of chick embryos infected with RCAS or RCAS-IGF-I and used in a subtractive library screen. CMD4 was identified as a novel, avian-specific gene expressed in muscle. In situ mRNA analysis reveals that the gene product is expressed in multiple tissues including skeletal muscle. Ectopic expression of IGF-I within the hindlimb results in a reduction in CMD4 mRNA to levels below conventional detection limits. A chimeric CMD4-yellow fluorescent protein (CMD4-YFP) demonstrates an indiscriminant localization pattern throughout the cytoplasm and nucleus of myoblasts. By contrast to control C2C12 myoblasts, a stable muscle cell line that expresses CMD4-YFP (C2C12-CMD4-YFP) is unable to form the large multinucleated cells characteristic of mature myofibers. The differentiation defective myoblasts do not express myosin heavy chain but the relative amounts of myogenin, desmin and troponin proteins do not differ from controls. The transcriptional activity of the myogenic regulatory factors (MRFs) remains unchanged by CMD4 expression. We report the identification of an IGF-I inhibited gene present in skeletal muscle. While the mechanism of CMD4-mediated inhibition of muscle development remains elusive, we propose that loss of CMD4 gene expression may be required for optimal muscle hypertrophy in the chick embryo.
Collapse
Affiliation(s)
- Dane G Winner
- Department of Animal Sciences, University of Florida, P.O. Box 110910 Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
7
|
Fernandez AM, LeRoith D. Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:117-47. [PMID: 16370138 DOI: 10.1007/0-387-26274-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Pantaleon M, Jericho H, Rabnott G, Kaye PL. The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod Fertil Dev 2005; 15:37-45. [PMID: 12729502 DOI: 10.1071/rd02031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 12/16/2002] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor II (IGF-II) and its receptor, the IGF-II/mannose-6-phosphate (IGF-II/M6P) receptor, are first expressed from the zygotic genome at the two-cell stage of mouse development. However, their role is not clearly defined. Insulin-like growth factor II is believed to mediate growth through the heterologous type 1 IGF and insulin receptors, whereas the IGF-II/M6P receptor is believed to act as a negative regulator of somatic growth by limiting the availability of excess levels of IGF-II. These studies demonstrate that IGF-II does have a role in growth regulation in the early embryo through the IGF-II/M6P receptor. Insulin-like growth factor II stimulated cleavage rate in two-cell embryos in vitro. Moreover, this receptor is required for the glycaemic response of two-cell embryos to IGF-II and for normal progression of early embryos to the blastocyst stage. Improved development of embryos in crowded culture supports the concept of an endogenous embryonic paracrine activity that enhances cell proliferation. These responses indicate that the IGF-II/M6P receptor is functional and likely to participate in such a regulatory circuit. The functional role of IGF-II and its receptor is discussed with reference to regulation of early development.
Collapse
Affiliation(s)
- M Pantaleon
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
9
|
Kumar N, Kaul CL, Ishrath A, Dey CS. Combination of metformin and thiazolidindiones restore insulin signalling in insulin-resistant cultured myotubes. Life Sci 2004; 74:1877-88. [PMID: 14761669 DOI: 10.1016/j.lfs.2003.08.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 08/20/2003] [Indexed: 10/26/2022]
Abstract
We examined the effect of combination of thiazolidinediones (TZDs) and metformin on insulin-resistant skeletal muscle cells. The combined use of TZDs and metformin resulted in maximum tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) at 12.5 microM of TZDs and 100 microM of metformin as compared to the maximum tyrosine phosphorylation of IR and IRS-1 achieved at 50 microM of TZDs or 400 microM of metformin. The glucose uptake was significantly high at the combination of lower concentration (12.5 microM of TZDs and 100 microM of metformin) as compared to the combination of higher concentration (50 microM of TZDs and 400 microM of metformin). Results demonstrated that (1) Additive effect on insulin sensitization can be achieved by a combination of TZDs and metformin at lower concentration; (2) combination of TZDs and metformin act on insulin signaling molecules in insulin resistance; (3) in vitro system has the potentiality to determine possible target molecule(s) and mechanism of action of drugs.
Collapse
Affiliation(s)
- Naresh Kumar
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | | | | | |
Collapse
|
10
|
Staib JL, Swoap SJ, Powers SK. Diaphragm contractile dysfunction in MyoD gene-inactivated mice. Am J Physiol Regul Integr Comp Physiol 2002; 283:R583-90. [PMID: 12184991 DOI: 10.1152/ajpregu.00080.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MyoD is one of four myogenic regulatory factors found exclusively in skeletal muscle. In an effort to better understand the role that MyoD plays in determining muscle contractile properties, we examined the effects of MyoD deletion on both diaphragmatic contractile properties and myosin heavy chain (MHC) phenotype. Regions of the costal diaphragm from wild-type and MyoD knockout [MyoD (-/-)] adult male BALB/c mice (n = 8/group) were removed, and in vitro diaphragmatic contractile properties were measured. Diaphragmatic contractile measurements revealed that MyoD (-/-) animals exhibited a significant (P < 0.05) downward shift in the force-frequency relationship, a decrement in maximal specific tension (P(o); -33%), a decline in maximal shortening velocity (V(max); -37%), and concomitant decrease in peak power output (-47%). Determination of MHC isoforms in the diaphragm via gel electrophoresis revealed that MyoD elimination resulted in a fast-to-slow shift (P < 0.05) in the MHC phenotype toward MHC types IIA and IIX in MyoD (-/-) animals. These data indicate that MyoD deletion results in a decrease in diaphragmatic submaximal force generation and P(o), along with decrements in both V(max) and peak power output. Hence, MyoD plays an important role in determining diaphragmatic contractile properties.
Collapse
Affiliation(s)
- Jessica L Staib
- Department of Exercise and Sport Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
11
|
Taylor-Jones JM, McGehee RE, Rando TA, Lecka-Czernik B, Lipschitz DA, Peterson CA. Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 2002; 123:649-61. [PMID: 11850028 DOI: 10.1016/s0047-6374(01)00411-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myoblasts isolated from mouse hindlimb skeletal muscle demonstrated increased adipogenic potential as a function of age. Whereas myoblasts from 8-month-old adult mice did not significantly accumulate terminal markers of adipogenesis regardless of culture conditions, myoblasts from 23-month-old mice accumulated fat and expressed genes characteristic of differentiated adipocytes, such as the fatty acid binding protein aP2. This change in differentiation potential was associated with a change in the abundance of the mRNA encoding the transcription factor C/EBPalpha, and in the relative abundance of PPARgamma2 to PPARgamma1 mRNAs. Furthermore, PPARgamma activity appeared to be regulated at the level of phosphorylation, being more highly phosphorylated in myoblasts isolated from younger animals. Although adipogenic gene expression in myoblasts from aged animals was activated, presumably in response to PPARgamma and C/EBPalpha, unexpectedly, myogenic gene expression was not effectively repressed. The Wnt signaling pathway may also alter differentiation potential in muscle with age. Wnt-10b mRNA was more abundantly expressed in muscle tissue and cultured myoblasts from adult compared with aged mice, resulting in stabilization of cytosolic beta-catenin, that may potentially contribute to inhibition of adipogenic gene expression in adult myoblasts. The changes reported here, together with those reported in bone marrow stroma with age, suggest that a default program may be activated in mesenchymal cells with increasing age resulting in a more adipogenic-like phenotype. Whether this change in differentiation potential contributes to the increased adiposity in muscle with age remains to be determined.
Collapse
Affiliation(s)
- Jane M Taylor-Jones
- Department of Geriatrics, Donald W. Reynolds Center on Aging, University of Arkansas for Medical Sciences, 629 South Elm Street, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
12
|
Belmonte SA, Romano PS, Sosa MA. Mannose-6-phosphate receptors as a molecular indicator of maturation of epididymal sperm. ARCHIVES OF ANDROLOGY 2002; 48:53-63. [PMID: 11789684 DOI: 10.1080/014850102753385215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This review discusses some of the changes in sperm during maturation within the context of current concepts of membrane structure and fertilization. Mammalian sperm are surrounded by a limiting plasma membrane that undergoes remodeling during passage through the epididymis. This process confers on the gamete vigorous motility and the ability to fertilize the egg. The repositioning of some surface proteins may follow redistribution of lipids in the plasmalemma, and thus represent a critical step in the maturation of the gametes. Among the various affected proteins of the sperm plasmalemma, mannose-6-phosphate receptors undergo redistribution as the gametes transit through the epididymal duct. The authors summarize their studies of the redistribution of phosphomannosyl receptors during maturation of sperm and discuss possible roles of these glycoproteins in the fertilizing capability of sperm.
Collapse
Affiliation(s)
- S A Belmonte
- Instituto de Histologia y Embriologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | |
Collapse
|
13
|
Dupont-Versteegden EE, Murphy RJ, Houlé JD, Gurley CM, Peterson CA. Mechanisms leading to restoration of muscle size with exercise and transplantation after spinal cord injury. Am J Physiol Cell Physiol 2000; 279:C1677-84. [PMID: 11078681 DOI: 10.1152/ajpcell.2000.279.6.c1677] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that cycling exercise combined with fetal spinal cord transplantation restored muscle mass reduced as a result of complete transection of the spinal cord. In this study, mechanisms whereby this combined intervention increased the size of atrophied soleus and plantaris muscles were investigated. Rats were divided into five groups (n = 4, per group): control, nontransected; spinal cord transected at T10 for 8 wk (Tx); spinal cord transected for 8 wk and exercised for the last 4 wk (TxEx); spinal cord transected for 8 wk with transplantation of fetal spinal cord tissue into the lesion site 4 wk prior to death (TxTp); and spinal cord transected for 8 wk, exercised for the last 4 wk combined with transplantation 4 wk prior to death (TxExTp). Tx soleus and plantaris muscles were decreased in size compared with control. Exercise and transplantation alone did not restore muscle size in soleus, but exercise alone minimized atrophy in plantaris. However, the combination of exercise and transplantation resulted in a significant increase in muscle size in soleus and plantaris compared with transection alone. Furthermore, myofiber nuclear number of soleus was decreased by 40% in Tx and was not affected in TxEx or TxTp but was restored in TxExTp. A strong correlation (r = 0.85) between myofiber cross-sectional area and myofiber nuclear number was observed in soleus, but not in plantaris muscle, in which myonuclear number did not change with any of the experimental manipulations. 5'-Bromo-2'-deoxyuridine-positive nuclei inside the myofiber membrane were observed in TxExTp soleus muscles, indicating that satellite cells had divided and subsequently fused into myofibers, contributing to the increase in myonuclear number. The increase in satellite cell activity did not appear to be controlled by the insulin-like growth factors (IGF), as IGF-I and IGF-II mRNA abundance was decreased in Tx soleus and plantaris, and was not restored with the interventions. These results indicate that, following a relatively long postinjury interval, exercise and transplantation combined restore muscle size. Satellite cell fusion and restoration of myofiber nuclear number contributed to increased muscle size in the soleus, but not in plantaris, suggesting that cellular mechanisms regulating muscle size differ between muscles with different fiber type composition.
Collapse
Affiliation(s)
- E E Dupont-Versteegden
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
14
|
Tsuruta JK, Eddy EM, O'Brien DA. Insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor mediates paracrine interactions during spermatogonial development. Biol Reprod 2000; 63:1006-13. [PMID: 10993821 DOI: 10.1095/biolreprod63.4.1006] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-II/cation-independent mannose 6-phosphate (IGF-II/M6P) receptor transduces signals after binding IGF-II or M6P-bearing growth factors. We hypothesized that this receptor relays paracrine signals between Sertoli cells and spermatogonia in the basal compartment of the seminiferous epithelium. For these studies spermatogonia were isolated from 8-day-old mice with purity >95% and viability >85% after overnight culture. The IGF-II/M6P receptors were present on the surface of spermatogonia, as detected by indirect immunofluorescence. We determined that both IGF-II and M6P-glycoproteins in Sertoli cell conditioned medium (SCM) modulate gene expression in isolated spermatogonia. The IGF-II produced dose-dependent increases in both rRNA and c-fos mRNA. These effects were mediated specifically by IGF-II/M6P receptors, as shown by studies using IGF-II analogues that are specific agonists for either IGF-I or IGF-II receptors. The SCM treatment also induced dose-dependent increases in rRNA levels, and M6P competition showed that this response required interaction with IGF-II/M6P receptors. The M6P-glycoproteins isolated from SCM by IGF-II/M6P receptor affinity chromatography increased spermatogonial rRNA levels at much lower concentrations than required by SCM treatment, providing further evidence for the paracrine activity of Sertoli M6P-glycoproteins. These results demonstrate that Sertoli cells secrete paracrine factors that modulate spermatogonial gene expression after interacting with cell-surface IGF-II/M6P receptors.
Collapse
Affiliation(s)
- J K Tsuruta
- The Laboratories for Reproductive Biology, Departments of Pediatrics and Cell Biology & Anatomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
15
|
Sarbassov DD, Peterson CA. Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -independent signaling pathways during myogenic differentiation. Mol Endocrinol 1998; 12:1870-8. [PMID: 9849961 DOI: 10.1210/mend.12.12.0205] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the insulin-like growth factor (IGF) autocrine loop is required for myogenic differentiation and results in sustained activation of extracellular signal-regulated kinases-1 and -2 (ERK-1 and -2). We show here that insulin receptor substrate-1 (IRS-1) phosphorylation on tyrosine and serine residues and association with phosphatidylinositol 3-kinase (PI 3-kinase) are also associated with IGF-dependent myogenic differentiation. Down-regulation of IRS-1 is linked to its serine phosphorylation dependent on PI 3-kinase activity and appears required for differentiation to occur, as IRS-1 is not modified and continues to accumulate in a nondifferentiating myoblast cell line. Furthermore, inhibition of PI 3-kinase activity with LY294002 blocks differentiation, as demonstrated by inhibition of myogenin and myosin heavy chain expression and ERK activation. Blocking the Raf/MEK/ERK cascade with PD98059 does not block myogenic differentiation; however, myotubes do not survive. Thus, PI 3-kinase, in association with IRS-1, is involved in an ERK-independent signaling pathway in myoblasts required for IGF-dependent myogenic differentiation and in inducing sustained activation of ERKs necessary for later stages of differentiation.
Collapse
Affiliation(s)
- D D Sarbassov
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences and The Geriatric Research, Education, and Clinical Center, McClellan Veterans Hospital, Little Rock 72205, USA
| | | |
Collapse
|
16
|
Taylor JM, Dupont-Versteegden EE, Davies JD, Hassell JA, Houlé JD, Gurley CM, Peterson CA. A role for the ETS domain transcription factor PEA3 in myogenic differentiation. Mol Cell Biol 1997; 17:5550-8. [PMID: 9271430 PMCID: PMC232403 DOI: 10.1128/mcb.17.9.5550] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of adult myoblasts called satellite cells during muscle degeneration is an important aspect of muscle regeneration. Satellite cells are believed to be the only myogenic stem cells in adult skeletal muscle and the source of regenerating muscle fibers. Upon activation, satellite cells proliferate, migrate to the site of degeneration, and become competent to fuse and differentiate. We show here that the transcription factor polyomavirus enhancer activator 3 (PEA3) is expressed in adult myoblasts in vitro when they are proliferative and during the early stages of differentiation. Overexpression of PEA3 accelerates differentiation, whereas blocking of PEA3 function delays myoblast fusion. PEA3 activates gene expression following binding to the ets motif most efficiently in conjunction with the transcription factor myocyte enhancer factor 2 (MEF2). In vivo, PEA3 is expressed in satellite cells only after muscle degeneration. Taken together, these results suggest that PEA3 is an important regulator of activated satellite cell function.
Collapse
Affiliation(s)
- J M Taylor
- Department of Medicine and Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rohrer DK, Blau HM. Defective myogenesis in NFB-s mutant associated with a saturable suppression of MYF5 activity. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:349-61. [PMID: 9039845 DOI: 10.1007/bf02369892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myogenic cell lines have proved to be useful tools for investigating the molecular mechanisms that control cellular differentiation. NFB-s is a mutant myogenic cell line which fails to differentiate in vitro, and can repress differentiation in normal myogenic cells when fused to form heterokaryons. The NFB-s cell line was used here to study the molecular mechanisms underlying such myogenic repression. Using muscle-specific reporter genes, we show that NFB-s cells fail to activate fully the muscle differentiation program at a transcriptional level, although muscle-specific transcription can be enhanced by regulators of differentiation such as pertussis toxin. Paradoxically we find that the myogenic regulator myf5 is expressed at constitutively high levels in NFB-s cells, and retains DNA binding activity. Expression plasmids encoding NFB-derived myf5 cDNA can rescue the myogenic phenotype in NFB-s cells, demonstrating that a threshold level of positive regulators must be reached before the myogenic program is activated. Thus, the dominant negative phenotype does not appear to result from defective myf5, but is due to a dosage-dependent saturable mechanism that interferes with myf5 function. These studies demonstrate that the stoichiometric ratio of positive and negative regulators is critical for determining the myogenic differentiation state.
Collapse
Affiliation(s)
- D K Rohrer
- Department of Molecular Pharmacology, Stanford University Medical Center, California 94305-5332, USA
| | | |
Collapse
|