1
|
Vijayakumar P, Cardeira J, Laizé V, Gavaia PJ, Cancela ML. Cells Isolated from Regenerating Caudal Fin of Sparus aurata Can Differentiate into Distinct Bone Cell Lineages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:333-347. [PMID: 32080776 DOI: 10.1007/s10126-019-09937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Teleosts have the ability to regenerate their caudal fin upon amputation. A highly proliferative mass of undifferentiated cells called blastema forms beneath wound epidermis and differentiates to regenerate all missing parts of the fin. To date, the origin and fate of the blastema is not completely understood. However, current hypotheses suggest that the blastema is comprised of lineage-restricted dedifferentiated cells. To investigate the differentiation capacity of regenerating fin-derived cells, primary cultures were initiated from the explants of 2-days post-amputation (dpa) regenerates of juvenile gilthead seabream (Sparus aurata). These cells were subcultured for over 30 passages and were named as BSa2. After 10 passages they were characterized for their ability to differentiate towards different bone cell lineages and mineralize their extracellular matrix, through immunocytochemistry, histology, and RT-PCR. Exogenous DNA was efficiently delivered into these cells by nucleofection. Assessment of lineage-specific markers revealed that BSa2 cells were capable of osteo/chondroblastic differentiation. BSa2 cells were also found to be capable of osteoclastic differentiation, as demonstrated through TRAP-specific staining and pit resorption assay. Here, we describe the development of the first successful cell line viz., BSa2, from S. aurata 2-dpa regenerating caudal fins, which has the ability of multilineage differentiation and is capable of in vitro mineralization. The availability of such in vitro cell systems has the potential to stimulate research on the mechanisms of cell differentiation during fin regeneration and provide new insights into the mechanisms of bone formation.
Collapse
Affiliation(s)
- Parameswaran Vijayakumar
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600 119, India.
| | - João Cardeira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Department of Biomedical Sciences and Medicine (DCBM) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
2
|
RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nat Commun 2018; 9:3896. [PMID: 30254197 PMCID: PMC6156335 DOI: 10.1038/s41467-018-06341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
Langerhans cells (LC) are the prototype langerin-expressing dendritic cells (DC) that reside specifically in the epidermis, but langerin-expressing conventional DCs also reside in the dermis and other tissues, yet the factors that regulate their development are unclear. Because retinoic acid receptor alpha (RARα) is highly expressed by LCs, we investigate the functions of RARα and retinoic acid (RA) in regulating the langerin-expressing DCs. Here we show that the development of LCs from embryonic and bone marrow-derived progenitors and langerin+ conventional DCs is profoundly regulated by the RARα-RA axis. During LC differentiation, RARα is required for the expression of a LC-promoting transcription factor Runx3, but suppresses that of LC-inhibiting C/EBPβ. RARα promotes the development of LCs and langerin+ conventional DCs only in hypo-RA conditions, a function effectively suppressed at systemic RA levels. Our findings identify positive and negative regulatory mechanisms to tightly regulate the development of the specialized DC populations. Langerhans cells (LC) and langerin-expressing conventional dendritic cells are made from distinct progenitors and enriched in the distinct microenvironments of the skin. Here the authors show that these immune cells are regulated by retinoic acid receptor alpha (RARα) via simultaneous induction of LC-promoting Runx3 and repression of LC-inhibiting C/EBPβ.
Collapse
|
3
|
Vijayakumar P, Laizé V, Cardeira J, Trindade M, Cancela ML. Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization. Zebrafish 2013; 10:500-9. [PMID: 23909483 PMCID: PMC3842872 DOI: 10.1089/zeb.2012.0833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of bone formation and skeletal development have been successfully investigated in zebrafish using a variety of in vivo approaches, but in vitro studies have been hindered due to a lack of homologous cell lines capable of producing an extracellular matrix (ECM) suitable for mineral deposition. Here we describe the development and characterization of a new cell line termed ZFB1, derived from zebrafish calcified tissues. ZFB1 cells have an epithelium-like phenotype, grow at 28°C in a regular L-15 medium supplemented with 15% of fetal bovine serum, and are maintained and manipulated using standard methods (e.g., trypsinization, cryopreservation, and transfection). They can therefore be propagated and maintained easily in most cell culture facilities. ZFB1 cells show aneuploidy with 2n=78 chromosomes, indicative of cell transformation. Furthermore, because DNA can be efficiently delivered into their intracellular space by nucleofection, ZFB1 cells are suitable for gene targeting approaches and for assessing gene promoter activity. ZFB1 cells can also differentiate toward osteoblast or chondroblast lineages, as demonstrated by expression of osteoblast- and chondrocyte-specific markers, they exhibit an alkaline phosphatase activity, a marker of bone formation in vivo, and they can mineralize their ECM. Therefore, they represent a valuable zebrafish-derived in vitro system for investigating bone cell differentiation and extracellular matrix mineralization.
Collapse
Affiliation(s)
- Parameswaran Vijayakumar
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - João Cardeira
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Marlene Trindade
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Campus de Gambelas, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| |
Collapse
|
4
|
Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li Y, Luo L, Hayes JD, Wang XJ, Tang X. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 2013; 73:3097-108. [PMID: 23612120 DOI: 10.1158/0008-5472.can-12-3386] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor NRF2 (NFE2L2) is a pivotal activator of genes encoding cytoprotective and detoxifying enzymes that limit the action of cytotoxic therapies in cancer. NRF2 acts by binding antioxidant response elements (ARE) in its target genes, but there is relatively limited knowledge about how it is negatively controlled. Here, we report that retinoic X receptor alpha (RXRα) is a hitherto unrecognized repressor of NRF2. RNAi-mediated knockdown of RXRα increased basal ARE-driven gene expression and induction of ARE-driven genes by the NRF2 activator tert-butylhydroquinone (tBHQ). Conversely, overexpression of RXRα decreased ARE-driven gene expression. Biochemical investigations showed that RXRα interacts physically with NRF2 in cancer cells and in murine small intestine and liver tissues. Furthermore, RXRα bound to ARE sequences in the promoters of NRF2-regulated genes. RXRα loading onto AREs was concomitant with the presence of NRF2, supporting the hypothesis that a direct interaction between the two proteins on gene promoters accounts for the antagonism of ARE-driven gene expression. Mutation analyses revealed that interaction between the two transcription factors involves the DNA-binding domain of RXRα and a region comprising amino acids 209-316 in human NRF2 that had not been defined functionally, but that we now designate as the NRF2-ECH homology (Neh) 7 domain. In non-small cell lung cancer cells where NRF2 levels are elevated, RXRα expression downregulated NRF2 and sensitized cells to the cytotoxic effects of therapeutic drugs. In summary, our findings show that RXRα diminishes cytoprotection by NRF2 by binding directly to the newly defined Neh7 domain in NRF2.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Conceição N, Viegas M, Fidalgo J, Cancela ML. Development and characterization of Xl1, a Xenopus laevis chondrocyte-like cell culture. Mol Cell Biochem 2012; 373:41-51. [PMID: 23054192 DOI: 10.1007/s11010-012-1473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022]
Abstract
We describe the development and characterization of a new cell line, designated Xl1, derived from vertebra and long bones of Xenopus laevis. These cells can mineralize their extracellular matrix upon addition of an inorganic phosphate donor and vitamin C, as characterized by von Kossa staining. In addition they express genes such as matrix gla protein (mgp), alkaline phosphatase, type II collagen, and retinoic acid receptors, representing a valuable tool to analyze expression and regulation of Xenopus cartilage-associated genes. Continuous treatment with retinoic acid (RA) inhibited mineralization, alkaline phosphatase expression and its activity, suggesting that RA is a potential negative regulator of Xl1 cell differentiation. These cells are receptive to efficient transfer of DNA using conventional methods including calcium phosphate, liposome-mediated transfer or electroporation and were found to express basal levels of mgp at least 50-fold higher than the routinely used Xenopus A6 cell line, as seen by transcription assays with the distal X. laevis mgp promoter. Being the first amphibian cell line derived from bone tissue, the Xl1 culture provides an excellent in vitro tool for functional promoter studies, being suitable, among other uses, for identifying promoter elements mediating cartilage-expressed genes as shown here for mgp.
Collapse
Affiliation(s)
- Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
6
|
ESSA1 embryonic stem like cells from gilthead seabream: A new tool to study mesenchymal cell lineage differentiation in fish. Differentiation 2012; 84:240-51. [DOI: 10.1016/j.diff.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
|
7
|
Conceição N, Laizé V, Simões B, Pombinho AR, Cancela ML. Retinoic acid is a negative regulator of matrix Gla protein gene expression in teleost fish Sparus aurata. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:28-39. [PMID: 18078838 DOI: 10.1016/j.bbagrm.2007.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 01/26/2023]
Abstract
Matrix Gla protein (MGP) is an extracellular mineral-binding protein expressed in several tissues while accumulated only in bone and cartilage under physiological conditions. Although the precise molecular mechanism of action of MGP remains unknown, all available evidence indicates that it acts as a physiological inhibitor of mineralization. This work presents the cloning of gilthead seabream MGP gene (SaMGP) and the functional analysis of its promoter. SaMGP gene was found to be organized in five exons and to be under control of a distal and a proximal promoter, both, capable of activating SaMGP transcription in transient transfections. Furthermore, we present strong evidence that retinoic acid down-regulates SaMGP gene transcription by interacting, through binding of its receptor, with a specific region within distal promoter. Interestingly, the presence of repetitive motifs in the proximity of SaMGP gene regulatory regions suggests that they may modulate promoter accessibility to transcription machinery, as already seen for other genes. This work provides additional evidence of the usefulness of non-mammalian model systems to elucidate the complex regulation of MGP gene transcription.
Collapse
Affiliation(s)
- Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
8
|
Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci U S A 2007; 104:19589-94. [PMID: 18048326 DOI: 10.1073/pnas.0709483104] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Isothiocyanates and phenolic antioxidants can prevent cancer through activation of Nrf2 (NF-E2 p45-related factor 2), a transcription factor that controls expression of cytoprotective genes through the antioxidant response element (ARE) enhancer. Using a human mammary MCF7-derived AREc32 reporter cell line, we now report that all-trans retinoic acid (ATRA), and other retinoic acid receptor alpha (RARalpha) agonists, markedly reduces the ability of Nrf2 to mediate induction of ARE-driven genes by cancer chemopreventive agents including the metabolite of butylated hydroxyanisole, tert-butylhydroquinone (tBHQ). The basal and tBHQ-inducible expression of aldo-keto reductase (AKR) AKR1C1 and AKR1C2 genes, which are regulated by Nrf2, was also repressed by ATRA in AREc32 cells. Antagonists of RARalpha augmented induction of ARE-driven gene expression by tBHQ, as did knockdown of RARalpha by using RNAi. The expression of the ARE-gene battery was increased in the small intestine of mice fed on a vitamin A-deficient diet, and this increase was repressed by administration of ATRA. By contrast, in the small intestine of Nrf2 null mice, the expression of ARE-driven genes was not affected by vitamin A status. In MCF7 cells, ATRA did not block the nuclear accumulation of Nrf2 but reduced the binding of Nrf2 to the ARE enhancer as a consequence of forming a complex with RARalpha. These data suggest that cross-talk between Nrf2 and RARalpha could markedly influence the sensitivity of cells to electrophiles and oxidative stressors and, as a consequence, to carcinogenesis.
Collapse
|
9
|
Conceição N, Silva AC, Fidalgo J, Belo JA, Cancela ML. Identification of alternative promoter usage for the matrix Gla protein gene. Evidence for differential expression during early development in Xenopus laevis. FEBS J 2005; 272:1501-10. [PMID: 15752365 DOI: 10.1111/j.1742-4658.2005.04590.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent cloning of the Xenopus laevis (Xl) matrix Gla protein (MGP) gene indicated the presence of a conserved overall structure for this gene between mammals and amphibians but identified an additional 5'-exon, not detected in mammals, flanked by a functional, calcium-sensitive promoter, 3042 bp distant from the ATG initiation codon. DNA sequence analysis identified a second TATA-like DNA motif located at the 3' end of intron 1 and adjacent to the ATG-containing second exon. This putative proximal promoter was found to direct transcription of the luciferase reporter gene in the X. laevis A6 cell line, a result confirmed by subsequent deletion mutant analysis. RT-PCR analysis of XlMGP gene expression during early development identified a different temporal expression of the two transcripts, strongly suggesting differential promoter activation under the control of either maternally inherited or developmentally induced regulatory factors. Our results provide further evidence of the usefulness of nonmammalian model systems to elucidate the complex regulation of MGP gene transcription and raise the possibility that a similar mechanism of regulation may also exist in mammals.
Collapse
|
10
|
Li CY, Zhan YQ, Xu CW, Xu WX, Wang SY, Lv J, Zhou Y, Yue PB, Chen B, Yang XM. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-κB. Cell Death Differ 2004; 11:1299-308. [PMID: 15332117 DOI: 10.1038/sj.cdd.4401490] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Erythroid differentiation-associated gene (EDAG) is considered to be a human hematopoiesis-specific gene. Here, we reported that downregulation of EDAG protein in K562 cells resulted in inhibition of growth and colony formation, and enhancement of sensitivity to erythroid differentiation induced by hemin. Overexpression of EDAG in HL-60 cells significantly blocked the expression of the monocyte/macrophage differentiation marker CD11b after pentahydroxytiglia myristate acetate induction. Moreover, overexpression of EDAG in pro-B Ba/F3 cells prolonged survival and increased the expression of c-Myc, Bcl-2 and Bcl-xL in the absence of interleukin-3 (IL-3). Furthermore, we showed that EDAG enhanced the transcriptional activity of nuclear factor-kappa B (NF-kappa B), and high DNA-binding activity of NF-kappa B was sustained in Ba/F3 EDAG cells after IL-3 was withdrawn. Inhibition of NF-kappa B activity resulted in promoting Ba/F3 EDAG cells death. These results suggest that EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of NF-kappa B.
Collapse
Affiliation(s)
- C Y Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8alpha). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK
| |
Collapse
|
12
|
Méndez-Pertuz M, Sánchez-Pacheco A, Aranda A. The thyroid hormone receptor antagonizes CREB-mediated transcription. EMBO J 2003; 22:3102-12. [PMID: 12805224 PMCID: PMC162147 DOI: 10.1093/emboj/cdg295] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 04/28/2003] [Accepted: 04/28/2003] [Indexed: 11/14/2022] Open
Abstract
Combinatorial regulation of transcription involves binding of transcription factors to DNA as well as protein-protein interactions between them. In this paper, we demonstrate the existence of a mutual transcriptional antagonism between the thyroid hormone receptor (TR) and the cyclic AMP response element binding protein (CREB), which involves a direct association of both transcription factors. TR inhibits transcriptional activity of CREB and represses activation of cAMP response element (CRE)-containing promoters. TR does not bind to the CRE in vitro, but in vivo the liganded receptor is tethered to the promoter through protein-protein interactions. In turn, expression of CREB reduces TR-dependent transcriptional responses. The association of TR with CREB inhibits the ability of protein kinase A to phosphorylate CREB at Ser133, and leads to a reduction in the ligand-dependent recruitment of the p160 coactivators by TR. These results indicate the existence of a transcriptional cross-talk between CREB and TR signalling pathways, which can have important functional consequences.
Collapse
Affiliation(s)
- Marinela Méndez-Pertuz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
13
|
Conceição N, Henriques NM, Ohresser MCP, Hublitz P, Schüle R, Cancela ML. Molecular cloning of the Matrix Gla Protein gene from Xenopus laevis. Functional analysis of the promoter identifies a calcium sensitive region required for basal activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1947-56. [PMID: 11952797 DOI: 10.1046/j.1432-1033.2002.02846.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To analyze the regulation of Matrix Gla Protein (MGP) gene expression in Xenopus laevis, we cloned the xMGP gene and its 5' region, determined their molecular organization, and characterized the transcriptional properties of the core promoter. The Xenopus MGP (xMGP) gene is organized into five exons, one more as its mammalian counterparts. The first two exons in the Xenopus gene encode the DNA sequence that corresponds to the first exon in mammals whereas the last three exons show homologous organization in the Xenopus MGP gene and in the mammalian orthologs. We characterized the transcriptional regulation of the xMGP gene in transient transfections using Xenopus A6 cells. In our assay system the identified promoter was shown to be transcriptionally active, resulting in a 12-fold induction of reporter gene expression. Deletional analysis of the 5' end of the xMGP promoter revealed a minimal activating element in the sequence from -70 to -36 bp. Synthetic reporter constructs containing three copies of the defined regulatory element delivered 400-fold superactivation, demonstrating its potential for the recruitment of transcriptional activators. In gel mobility shift assays we demonstrate binding of X. laevis nuclear factors to an extended regulatory element from -180 to -36, the specificity of the interaction was proven in competition experiments using different fragments of the xMGP promoter. By this approach the major site of factor binding was demonstrated to be included in the minimal activating promoter fragment from -70 to -36 bp. In addition, in transient transfection experiments we could show that this element mediates calcium dependent transcription and increasing concentrations of extracellular calcium lead to a significant dose dependent activation of reporter gene expression.
Collapse
|
14
|
Stehlin C, Wurtz JM, Steinmetz A, Greiner E, Schüle R, Moras D, Renaud JP. X-ray structure of the orphan nuclear receptor RORbeta ligand-binding domain in the active conformation. EMBO J 2001; 20:5822-31. [PMID: 11689423 PMCID: PMC125710 DOI: 10.1093/emboj/20.21.5822] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Revised: 09/17/2001] [Accepted: 09/17/2001] [Indexed: 11/13/2022] Open
Abstract
The retinoic acid-related orphan receptor beta (RORbeta) exhibits a highly restricted neuronal-specific expression pattern in brain, retina and pineal gland. So far, neither a natural RORbeta target gene nor a functional ligand have been identified, and the physiological role of the receptor is not well understood. We present the crystal structure of the ligand-binding domain (LBD) of RORbeta containing a bound stearate ligand and complexed with a coactivator peptide. In the crystal, the monomeric LBD adopts the canonical agonist-bound form. The fatty acid ligand-coactivator peptide combined action stabilizes the transcriptionally active conformation. The large ligand-binding pocket is strictly hydrophobic on the AF-2 side and more polar on the beta-sheet side where the carboxylate group of the ligand binds. Site-directed mutagenesis experiments validate the significance of the present structure. Homology modeling of the other isotypes will help to design isotype-selective agonists and antagonists that can be used to characterize the physiological functions of RORs. In addition, our crystallization strategy can be extended to other orphan nuclear receptors, providing a powerful tool to delineate their functions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/physiology
- Crystallography, X-Ray
- Histone Acetyltransferases
- Ligands
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nuclear Receptor Coactivator 1
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Structure, Tertiary/physiology
- Rats
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear
- Sequence Alignment
- Sequence Homology, Amino Acid
- Stearic Acids/chemistry
- Structure-Activity Relationship
- Transcription Factors/chemistry
Collapse
Affiliation(s)
| | | | | | - Erich Greiner
- Laboratoire de Biologie et Génomique Structurales (CNRS Unité Propre de Recherche 9004), Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/Université Louis Pasteur), 1 rue Laurent Fries, BP 163, 67404 Illkirch, France and
Universitäts-Frauenklinik, Zentrum fur Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg, Germany Present address: German Cancer Research Center, Division of Molecular Biology of the Cell, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Roland Schüle
- Laboratoire de Biologie et Génomique Structurales (CNRS Unité Propre de Recherche 9004), Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/Université Louis Pasteur), 1 rue Laurent Fries, BP 163, 67404 Illkirch, France and
Universitäts-Frauenklinik, Zentrum fur Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg, Germany Present address: German Cancer Research Center, Division of Molecular Biology of the Cell, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Dino Moras
- Laboratoire de Biologie et Génomique Structurales (CNRS Unité Propre de Recherche 9004), Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/Université Louis Pasteur), 1 rue Laurent Fries, BP 163, 67404 Illkirch, France and
Universitäts-Frauenklinik, Zentrum fur Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, D-79106 Freiburg, Germany Present address: German Cancer Research Center, Division of Molecular Biology of the Cell, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | | |
Collapse
|
15
|
Kung HJ, Xia L, Brunovskis P, Li D, Liu JL, Lee LF. Meq: an MDV-specific bZIP transactivator with transforming properties. Curr Top Microbiol Immunol 2001; 255:245-60. [PMID: 11217425 DOI: 10.1007/978-3-642-56863-3_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- H J Kung
- Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Phosducin (Phd) and Phd-like proteins (PhLPs) selectively bind guanine nucleotide protein (G protein) betagamma subunits (Gbetagamma), while Phd-like orphan proteins (PhLOPs) lack the major functional domain for the binding of Gbetagamma. A retina- and pineal gland-specific transcription factor, cone-rod homeobox (CRX), was identified by a yeast two-hybrid screen using PhLOP1 as the bait. Direct protein-protein interactions between Phd or PhLOP1 and CRX were demonstrated using a beta-galactosidase quantitative assay in the yeast two-hybrid system and were confirmed by an in vitro binding assay and a glutathione S-transferase (GST) pull-down assay. To determine if the interaction with Phd or PhLOP1 affected CRX transactivation, a 120-bp interphotoreceptor retinoid binding protein (IRBP) promoter-luciferase reporter construct containing a CRX consensus element (GATTAA) was cotransfected into either COS-7 or retinoblastoma Weri-Rb-1 cells with expression constructs for CRX and either Phd or PhLOP1. Phd and PhLOP1 inhibited the transcriptional activation activity of CRX by 50% during transient cotransfection in COS-7 cells and by 70% in Weri-Rb-1 cells and COS-7 cells stably transfected with CRX. Phd inhibited CRX transactivation in a dose-dependent manner. Whereas Phd is a cytoplasmic phosphoprotein, coexpression of Phd with CRX results in Phd being localized both in the cytoplasm and nucleus. By contrast, PhLOP1 is found in the nucleus even without CRX coexpression. To address the physiological relevance of these potential protein interacting partners, we identified immunoreactive proteins for Phd and CRX in retinal cytosolic and nuclear fractions. Immunohistochemical analysis of bovine retinas reveals colocalization of Phd isoforms with CRX predominantly in the inner segment of cone cells, with additional costaining in the outer nuclear layer and the synaptic region. Our findings demonstrate that both Phd and PhLOP1 interact directly with CRX and that each diminishes the transactivation activity of CRX on the IRBP promoter. A domain that interacts with CRX is found in the carboxyl terminus of the Phd isoforms. Phd antibody-immunoreactive peptides are seen in light-adapted mouse retinal cytosolic and nuclear extracts. Neither Phd nor PhLOP1 affected CRX binding to its consensus DNA element in electrophoretic mobility shift assays. A model that illustrates separate functional roles for interactions between Phd and either SUG1 or CRX is proposed. The model suggests further a mechanism by which Phd isoforms could inhibit CRX transcriptional activation.
Collapse
Affiliation(s)
- X Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, and Department of Cell & Neurobiology, the Keck School of Medicine of the University of Southern California, Los Angeles, California 90089-9112, USA
| | | |
Collapse
|
17
|
Greiner EF, Kirfel J, Greschik H, Huang D, Becker P, Kapfhammer JP, Schüle R. Differential ligand-dependent protein-protein interactions between nuclear receptors and a neuronal-specific cofactor. Proc Natl Acad Sci U S A 2000; 97:7160-5. [PMID: 10860982 PMCID: PMC16516 DOI: 10.1073/pnas.97.13.7160] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors are transcription factors that require multiple protein-protein interactions to regulate target gene expression. We have cloned a 27-kDa protein, termed NIX1 (neuronal interacting factor X 1), that directly binds nuclear receptors in vitro and in vivo. Protein-protein interaction between NIX1 and ligand-activated or constitutive active nuclear receptors, including retinoid-related orphan receptor beta (RORbeta) (NR1F2), strictly depends on the conserved receptor C-terminal activation function 2 (AF2-D). NIX1 selectively binds retinoic acid receptor (RAR) (NR1A) and thyroid hormone receptor (TR) (NR1B) in a ligand-dependent manner, but does not interact with retinoid X receptor (RXR) (NR2B) or steroid hormone receptors. Interestingly, NIX1 down-regulates transcriptional activation by binding to ligand-bound nuclear receptors. A 39-aa domain within NIX1 was found to be necessary and sufficient for protein-protein interactions with nuclear receptors. Northern blot analysis demonstrates low-abundance RNA messages only in brain and neuronal cells. In situ hybridization and immunohistochemistry revealed that NIX1 expression is restricted to the central nervous system and could be confined to neurons in the dentate gyrus of the hippocampus, the amygdala, thalamic, and hypothalamic regions. In summary, protein-protein interactions between the neuronal protein NIX1 and ligand-activated nuclear receptors are both specific and selective. By suppressing receptor-mediated transcription, NIX1 implements coregulation of nuclear receptor functions in brain.
Collapse
Affiliation(s)
- E F Greiner
- Institute for Experimental Cancer Research, Tumor Biology Center, and Universitäts-Frauenklinik, Abteilung Frauenheilkunde und Geburtshilfe I, Universität Freiburg, Breisacherstrasse 117, 79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Baumann M, Gires O, Kolch W, Mischak H, Zeidler R, Pich D, Hammerschmidt W. The PKC targeting protein RACK1 interacts with the Epstein-Barr virus activator protein BZLF1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3891-901. [PMID: 10849009 DOI: 10.1046/j.1432-1327.2000.01430.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phorbol esters reactivate Epstein-Barr virus (EBV) from latently infected cells via transcriptional activation of the viral immediate-early gene BZLF1. BZLF1 is a member of the extended AP-1 family of transcription factors that binds to specific BZLF1-binding motifs within early EBV promoters and to consensus AP-1 sites. Regulation of BZLF1's activity is achieved at the transcriptional level as well as through post-translational modifications. Recently, we reported that the transcriptional activity of BZLF1 is augmented by TPA [Baumann, M., Mischak, H., Dammeier, S., Kolch, W., Gires, O., Pich, D., Zeidler, R., Delecluse, H. J. & Hammerschmidt, W., (1998) J. Virol. 72, 8105-8114]. The increase of BZLF1's activity depends on a single serine residue (S186) that is phosphorylated by protein kinase C (PKC) in vitro and in vivo after stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). Here, we identified RACK1 as a binding partner of BZLF1 in a yeast interaction trap assay. RACK stands for receptor of activated C-kinase and is involved in targeting activated PKCs and other signaling proteins. In vivo, RACK1 binds directly to the transactivation domain of BZLF1. Although a functional relationship between BZLF1 and PKC could be mediated by RACKs, RACK1 did not have a detectable effect on the phosphorylation status of BZLF1 in in vitro or in vivo phosphorylation assays. We suggest that RACK1 may act as a scaffolding protein on BZLF1 independently of activated PKCs.
Collapse
Affiliation(s)
- M Baumann
- GSF-National Research Center for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, Department of Gene Vectors, München, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Höhne M, Thaler S, Dudda JC, Groner B, Schnierle BS. Truncation of the human immunodeficiency virus-type-2 envelope glycoprotein allows efficient pseudotyping of murine leukemia virus retroviral vector particles. Virology 1999; 261:70-8. [PMID: 10441556 DOI: 10.1006/viro.1999.9847] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incorporation of human immunodeficiency virus-type-2 (HIV-2) envelope glycoprotein into murine leukemia virus (MuLV) particles was studied in a transient transfection packaging cell system. We observed that wild-type HIV-2 envelope protein or a frameshift mutant with 187 unrelated carboxyl-terminal residues did not allow the formation of infectious retroviral particles. In view of recent findings that an HIV-1 envelope protein variant with a shortened cytoplasmic domain was incorporated into MuLV particles, we constructed carboxyl-terminal truncations of the HIV-2 envelope protein. An envelope variant with 18 cytoplasmic amino acids formed only very few viral pseudotypes. The further removal of an additional 11 amino acids allowed the efficient pseudotyping of MuLV particles. As with the HIV-1 envelope protein, an HIV-2 envelope variant with 7 cytoplasmic amino acids was incorporated into functional MuLV particles. The pseudotyped vectors obtained are able to infect human CD4/CXCR4-expressing cells. Cell lines expressing human CD4 and other coreceptors could not be infected. This retroviral vector will prove useful for the study of HIV infection events mediated by the HIV-2 envelope glycoproteins, as well as for the targeting of CD4+ cells in the context of gene therapy of AIDS.
Collapse
Affiliation(s)
- M Höhne
- Institute for Experimental Cancer Research, Tumor Biology Center, Breisacherstrasse 117, Freiburg, D-79106, Germany
| | | | | | | | | |
Collapse
|
20
|
Greschik H, Wurtz JM, Hublitz P, Köhler F, Moras D, Schüle R. Characterization of the DNA-binding and dimerization properties of the nuclear orphan receptor germ cell nuclear factor. Mol Cell Biol 1999; 19:690-703. [PMID: 9858592 PMCID: PMC83926 DOI: 10.1128/mcb.19.1.690] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The orphan receptor germ cell nuclear factor (GCNF) is a member of the superfamily of nuclear receptors. During development, GCNF exhibits a restricted brain-specific expression pattern, whereas GCNF expression in the adult is germ cell specific. Therefore, the receptor may participate in the regulation of neurogenesis and reproductive functions. No natural GCNF target gene has yet been identified, but recent data demonstrate specific and high-affinity binding of GCNF either to the direct repeat DNA element AGGTCAAGGTCA (DR0) or to extended half-sites, such as TCAAGGTCA. In this study, we show that murine GCNF (mGCNF) can bind as a homodimer to extended half-sites, thus describing a novel property within the nuclear receptor superfamily. Homodimeric binding to extended half-sites requires the presence of a dimerization function within the mGCNF DNA-binding domain (DBD) and a novel dimerization surface encompassing the putative helix 3 and the helix 12 region of the mGCNF ligand-binding domain (LBD). In addition, the mGCNF LBD has the potential to adopt different conformations with distinct dimerization properties. The helix 12 region of the mGCNF LBD not only regulates the switch between these dimerization conformations but also dictates the DNA-binding behavior and transcriptional properties of the different dimerization conformations. In summary, our findings describe unique DNA-binding and dimerization properties of a nuclear receptor and suggest a novel mechanism that allows mGCNF to modulate target gene activity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Binding, Competitive
- COUP Transcription Factor I
- Cell Line
- Cell Line, Transformed
- Cricetinae
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dimerization
- Humans
- Ligands
- Mice
- Molecular Sequence Data
- Mutagenesis
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Protein Conformation
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/chemistry
- Retinoid X Receptors
- Sequence Homology, Amino Acid
- Transcription Factors/chemistry
- Transcription, Genetic
Collapse
Affiliation(s)
- H Greschik
- Institut für Experimentelle Krebsforschung, Klinik für Tumorbiologie an der Universität Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD. The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 1998; 72:8559-67. [PMID: 9765394 PMCID: PMC110266 DOI: 10.1128/jvi.72.11.8559-8567.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 07/02/1998] [Indexed: 01/13/2023] Open
Abstract
The Epstein-Barr virus transactivator Zta triggers lytic gene expression and is essential for replication of the lytic origin, oriLyt. Previous analysis indicated that the Zta activation domain contributed a replication-specific function. We now show that the Zta activation domain interacts with components of the EBV helicase-primase complex. The three helicase-primase proteins BBLF4 (helicase), BSLF1 (primase), and BBLF2/3 (primase-associated factor) were expressed fused to the Myc epitope. When expression plasmids for BBLF4 or BBLF2/3 plus BSLF1 (primase subcomplex) were separately transfected, the proteins localized to the cytoplasm. Interaction between Zta and the components of the helicase-primase complex was tested by examining the ability of Zta to alter the intracellular localization of these proteins. Cotransfection of Zta with Myc-BBLF4 resulted in nuclear translocation of Myc-BBLF4; similarly, cotransfection of Zta with the primase subcomplex led to nuclear translocation of the Myc-BSLF1 and Myc-BBLF2/3 proteins. This relocalization provides evidence for an interaction between Zta and the helicase and Zta and the primase subcomplex. An affinity assay using glutathione S-transferase-Zta fusion proteins demonstrated that Myc-BBLF4 and Myc-BBLF2/3 plus BSLF1 bound to the Zta activation domain (amino acids 1 to 133). In the nuclear relocalization assay, the amino-terminal 25 amino acids of Zta were required for efficient interaction with the primase subcomplex but not for interaction with BBLF4. Evidence for interaction between oriLyt bound Zta and the helicase-primase complex was obtained in a superactivation assay using an oriLyt-chloramphenicol acetyltransferase (CAT) reporter. Zta activated expression from a CAT reporter containing the complete oriLyt region and regulated by the oriLyt BHLF1 promoter. Cotransfection of the helicase-primase proteins, one of which was fused to a heterologous activation domain, led to Zta-dependent superactivation of CAT expression. This assay also provided evidence for an interaction between the single-stranded DNA binding protein, BALF2, and the Zta-tethered helicase-primase complex. The helicase-primase interaction is consistent with a role for Zta in stabilizing the formation of an origin-bound replication complex.
Collapse
Affiliation(s)
- Z Gao
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ragoczy T, Heston L, Miller G. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 1998; 72:7978-84. [PMID: 9733836 PMCID: PMC110133 DOI: 10.1128/jvi.72.10.7978-7984.1998] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition of Epstein-Barr virus (EBV) from latency into the lytic cycle is associated with the expression of two immediate-early viral genes, BZLF1 and BRLF1. Overexpression of ZEBRA, the product of BZLF1, is sufficient to disrupt latency in B lymphocytes and epithelial cells by stimulating expression of lytic cycle genes, including BRLF1. The BRLF1 product Rta functions as a transcriptional activator in both B lymphocytes and epithelial cells. However, Rta has recently been reported to disrupt latency in an epithelial specific manner (S. Zalani, E. Holley-Guthrie, and S. Kenney, Proc. Natl. Acad. Sci. USA 93:9194-9199, 1996). Here we demonstrate that expression of Rta is also sufficient for disruption of latency in a permissive B-cell line. In HH514-16 cells, transfection of Rta leads to synthesis of ZEBRA, viral DNA replication, and late gene expression. However, Rta by itself is less potent than ZEBRA in the ability to activate most early and late lytic cycle genes. In light of previous work implicating ZEBRA in the activation of Rta, we suggest a cooperative model for EBV entry into the lytic cycle. Expression of either BZLF1 or BRLF1 triggers expression of the other immediate-early factor, and together these activators act individually or in synergy on downstream targets to activate the viral lytic cycle.
Collapse
Affiliation(s)
- T Ragoczy
- Departments of Molecular Biophysics and Biochemistry, Pediatrics, and Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
23
|
Pfitzner E, Kirfel J, Becker P, Rolke A, Schüle R. Physical interaction between retinoic acid receptor and the oncoprotein myb inhibits retinoic acid-dependent transactivation. Proc Natl Acad Sci U S A 1998; 95:5539-44. [PMID: 9576918 PMCID: PMC20413 DOI: 10.1073/pnas.95.10.5539] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1997] [Accepted: 12/22/1997] [Indexed: 02/07/2023] Open
Abstract
The c-myb protooncogene is predominantly expressed in hematopoietic cells and plays a vital role in hematopoiesis. Retinoic acid (RA) is able to induce differentiation of several hematopoietic cells. This differentiation is linked to decreased c-myb expression, suggesting that retinoid receptors (RAR/RXR) may down-regulate c-myb gene expression. Furthermore, recent data indicate that RAR inhibits the function of the Myb protein itself. In addition, the Myb-Ets oncogenic fusion protein has been shown to inhibit transcriptional activation by RAR and thyroid hormone receptor. Myb-Ets also antagonizes the biological response of erythrocytic progenitor cells to RA and thyroid hormone. This prompted us to investigate a possible cross talk between RAR and Myb. Here, we demonstrate that RA inhibits the expression of the endogenous Myb target gene tom-1. Conversely, Myb functions as a potent inhibitor of RA-induced biological responses. Functional analysis of Myb mutants in transfection studies revealed that the Myb DNA-binding domain (DBD) is necessary for repression whereas the transactivation domain is dispensable. Furthermore, we show that v-Myb and RAR interact in vitro and in vivo. This interaction requires the DBD of RAR. In contrast, glutathione S-transferase-pulldown assays with v-Myb mutants indicate that the DBD and the C terminus of Myb directly interact with RAR. Our results suggest that the physical interaction between Myb and RAR may play a role in the regulation of hematopoietic gene expression.
Collapse
Affiliation(s)
- E Pfitzner
- Institut für Experimentelle Krebsforschung, Klinik für Tumorbiologie an der Universität Freiburg, Breisacherstrasse 117, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Noben-Trauth K, Naggert JK, Nishina PM. Cloning and expression analysis of mouse Cclp1, a new gene encoding a coiled-coil-like protein. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:133-7. [PMID: 9199242 DOI: 10.1016/s0167-4781(97)00050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we describe the nucleotide sequence and expression pattern of a novel gene termed Coiled-coil-like protein 1 (Cclp1). A 2646bp open reading frame encodes a 882 amino acid protein with a predicted coiled-coil domain at the amino terminus. Cclp1 is expressed in a variety of adult tissues and during different stages of embryogenesis. The broad expression pattern suggests a general cellular function of CCLP1.
Collapse
|
25
|
Affiliation(s)
- P Ghazal
- Departments of Immunology and Neuropharmacology, Division of Virology R307B, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
26
|
Kirfel J, Kelter M, Cancela LM, Price PA, Schüle R. Identification of a novel negative retinoic acid responsive element in the promoter of the human matrix Gla protein gene. Proc Natl Acad Sci U S A 1997; 94:2227-32. [PMID: 9122176 PMCID: PMC20069 DOI: 10.1073/pnas.94.6.2227] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1996] [Accepted: 12/24/1996] [Indexed: 02/04/2023] Open
Abstract
The vitamin K-dependent matrix Gla protein (MGP) is synthesized in a wide variety of tissues such as lung, heart, kidney, cartilage, and bone. Expression of the MGP gene is regulated by various growth factors, steroid hormones, and the vitamin A metabolite retinoic acid (RA). In this report, we present evidence that RA down-regulates MGP gene expression in different rat and human cell lines via endogenous retinoid receptors [RA receptor (RAR) and retinoid X receptor (RXR)]. Repression of the human MGP (hMGP) gene is specifically mediated by ligand-activated RAR and RXR. Deletion analysis led to the identification of a novel negative response element (NRE) within the hMGP promoter. DNA binding studies performed with bacterially expressed RAR/RXR reveal the formation of a specific heterodimer/NRE complex. Furthermore, electrophoretic mobility-shift assays performed with proteins from RA-treated cells show that endogenous RAR/RXR binds to the NRE. We demonstrate that the NRE contains a CCAAT box and that both RAR/RXR and CCAAT-binding proteins such as c/EBP beta recognize this common regulatory sequence in the hMGP promoter. Our results indicate that RA-mediated repression of the hMGP gene is due to binding of liganded RAR/RXR to a novel negative RA response element.
Collapse
Affiliation(s)
- J Kirfel
- Fakultät für Biologie der Universität Freiburg, Institut für Experimentelle Krebsforschung, Germany
| | | | | | | | | |
Collapse
|
27
|
Cheng X, Reginato MJ, Andrews NC, Lazar MA. The transcriptional integrator CREB-binding protein mediates positive cross talk between nuclear hormone receptors and the hematopoietic bZip protein p45/NF-E2. Mol Cell Biol 1997; 17:1407-16. [PMID: 9032267 PMCID: PMC231865 DOI: 10.1128/mcb.17.3.1407] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Thyroid hormone (T3) and retinoic acid (RA) play important roles in erythropoiesis. We found that the hematopoietic cell-specific bZip protein p45/NF-E2 interacts with T3 receptor (TR) and RA receptor (RAR) but not retinoid X receptor. The interaction is between the DNA-binding domain of the nuclear receptor and the leucine zipper region of p45/NF-E2 but is markedly enhanced by cognate ligand. Remarkably, ligand-dependent transactivation by TR and RAR is markedly potentiated by p45/NF-E2. This effect of p45/NF-E2 is prevented by maf-like protein p18, which functions positively as a heterodimer with p45/NF-E2 on DNA. Potentiation of hormone action by p45/NF-E2 requires its activation domain, which interacts strongly with the multifaceted coactivator cyclic AMP response element protein-binding protein (CBP). The region of CBP which interacts with p45/NF-E2 is the same interaction domain that mediates inhibition of hormone-stimulated transcription by AP1 transcription factors. Overexpression of the bZip interaction domain of CBP specifically abolishes the positive cross talk between TR and p45/NF-E2. Thus, positive cross talk between p45/NF-E2 and nuclear hormone receptors requires direct protein-protein interactions between these factors and with CBP, whose integration of positive signals from two transactivation domains provides a novel mechanism for potentiation of hormone action in hematopoietic cells.
Collapse
Affiliation(s)
- X Cheng
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6149, USA
| | | | | | | |
Collapse
|
28
|
Pscherer A, Dörflinger U, Kirfel J, Gawlas K, Rüschoff J, Buettner R, Schüle R. The helix-loop-helix transcription factor SEF-2 regulates the activity of a novel initiator element in the promoter of the human somatostatin receptor II gene. EMBO J 1996; 15:6680-90. [PMID: 8978694 PMCID: PMC452492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The effects of somatostatin hormones are mediated by a family of five different seven-helix transmembrane spanning receptors (SSTR1-5). The expression of the five different SSTR subtypes displays a complex temporal- and tissue-specific pattern. To investigate the molecular mechanisms controlling the different expression patterns of the SSTRs, we cloned the 5'-flanking region of the human SSTR2 gene. Characterization of the SSTR2 promoter resulted in the identification of a novel initiator element (SSTR2inr). Transcriptional activity of the SSTR2inr is dependent on the presence of a binding site (E-box) for basic helix-loop-helix (bHLH) transcription factors. By screening a mouse brain cDNA expression library we isolated a cDNA coding for the bHLH transcription factor SEF-2. SEF-2 binds to the E-box present in the SSTR2inr, both in vitro and in vivo and activates transcription from the SSTR2inr. A single point mutation within the E-box eliminates binding of SEF-2 and results in a complete loss of transcriptional activity of the SSTR2inr. Furthermore, DNA binding studies demonstrate that the basal transcription factor TFIIB can be tethered to the SSTR2inr through physical interaction with SEF-2. In summary, the SSTR2inr represents a novel type of initiator element that confers gene expression in the absence of a TATA-box or binding sites for other known initiator factors, like YY-1 or USF.
Collapse
Affiliation(s)
- A Pscherer
- Institut für Pathologie, Universität Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Greiner EF, Kirfel J, Greschik H, Dörflinger U, Becker P, Mercep A, Schüle R. Functional analysis of retinoid Z receptor beta, a brain-specific nuclear orphan receptor. Proc Natl Acad Sci U S A 1996; 93:10105-10. [PMID: 8816759 PMCID: PMC38344 DOI: 10.1073/pnas.93.19.10105] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The retinoid Z receptor beta (RZR beta), an orphan receptor, is a member of the retinoic acid receptor (RAR)/thyroid hormone receptor (TR) subfamily of nuclear receptors. RZR beta exhibits a highly restricted brain-specific expression pattern. So far, no natural RZR beta target gene has been identified and the physiological role of the receptor in transcriptional regulation remains to be elucidated. Electrophoretic mobility shift assays reveal binding of RZR beta to monomeric response elements containing the sequence AnnTAGGTCA, but RZR beta-mediated transactivation of reporter genes is only achieved with two property spaced binding sites. We present evidence that RZR beta can function as a cell-type-specific transactivator. In neuronal cells, GaI-RZR beta fusion proteins function as potent transcriptional activators, whereas no transactivation can be observed in nonneuronal cells. Mutational analyses demonstrate that the activation domain (AF-2) of RZR beta and RAR alpha are functionally interchangeable. However, in contrast to RAR and TR, the RZR beta AF-2 cannot function autonomously as a transactivation domain. Furthermore, our data define a novel repressor function for the C-terminal part of the putative ligand binding domain. We propose that the transcriptional activity of RZR beta is regulated by an interplay of different receptor domains with coactivators and corepressors.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Binding Sites
- Brain/metabolism
- Cell Line
- DNA Primers
- Genes, Reporter
- Humans
- Luciferases/biosynthesis
- Mice
- Neurons/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Oligonucleotide Probes
- Polymerase Chain Reaction
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Receptors, Retinoic Acid
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Trans-Activators/metabolism
- Transcriptional Activation
- Transfection
- beta-Galactosidase/biosynthesis
Collapse
Affiliation(s)
- E F Greiner
- Klinik für Tumorbiologie, Universität Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|