1
|
Shrivastava M, Roy D, Chaba R. Long-chain fatty acids as nutrients for Gram-negative bacteria: stress, proliferation, and virulence. Curr Opin Microbiol 2025; 85:102609. [PMID: 40252293 DOI: 10.1016/j.mib.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
Bacteria use host-derived long-chain fatty acids (LCFAs) as nutrients, signals, and membrane building blocks. Although the impact of LCFAs on the pathogenesis of Gram-negative bacteria via membrane remodeling or signaling is well-documented, their importance as a nutrient source for bacterial proliferation and virulence is an emerging research area with definitive studies reported only for Salmonella Typhimurium, Vibrio cholerae, and Pseudomonas aeruginosa. Moreover, recent studies in Escherichia coli have shown that LCFA degradation confers redox stress. Here, we review the known role of LCFAs as nutrients during infection in Gram-negative human pathogens and the association of LCFA degradation with redox stress and stress response mechanisms. We suggest that for understanding how, as nutrients, LCFAs influence host-bacterial interactions, it is necessary to resolve whether LCFA utilization also causes redox stress in pathogens, with defense mechanisms preconditioning them for challenging host environments, or if pathogens have pre-existing mechanisms that prevent LCFA-induced stress.
Collapse
Affiliation(s)
- Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
2
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
3
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
4
|
Mendez J, Cascales D, Garcia-Torrico AI, Guijarro JA. Temperature-Dependent Gene Expression in Yersinia ruckeri: Tracking Specific Genes by Bioluminescence During in Vivo Colonization. Front Microbiol 2018; 9:1098. [PMID: 29887855 PMCID: PMC5981175 DOI: 10.3389/fmicb.2018.01098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/08/2018] [Indexed: 11/26/2022] Open
Abstract
Yersinia ruckeri is a bacterium causing fish infection processes at temperatures below the optimum for growth. A derivative Tn5 transposon was used to construct a library of Y. ruckeri mutants with transcriptional fusions between the interrupted genes and the promoterless luxCDABE and lacZY operons. In vitro analysis of β-galactosidase activity allowed the identification of 168 clones having higher expression at 18°C than at 28°C. Among the interrupted genes a SAM-dependent methyltransferase, a diguanylated cyclase, three genes involved in legionaminic acid synthesis and three transcriptional regulators were defined. In order to determine, via bioluminescence emission, the in vivo expression of some of these genes, two of the selected mutants were studied. In one of them, the acrR gene coding a repressor involved in regulation of the AcrAB-TolC expulsion pump was interrupted. This mutant was found to be highly resistant to compounds such as chloramphenicol, tetracycline, and ciprofloxacin. Although acrR mutation was not related to virulence in Y. ruckeri, this mutant was useful to analyze acrR expression in fish tissues in vivo. The other gene studied was osmY which is activated under osmotic stress and is involved in virulence. In this case, complemented mutant was used for experiments with fish. In vivo analysis of bioluminescence emission by these two strains showed higher values for acrR in gut, liver and adipose tissue, whereas osmY showed higher luminescence in gut and, at the end of the infection process, in muscle tissue. Similar results were obtained in ex vivo assays using rainbow trout tissues. The results indicated that this kind of approach was useful for the identification of genes related to virulence in Y. ruckeri and also for the in vivo and in vitro studies of each of the selected genes.
Collapse
Affiliation(s)
- Jessica Mendez
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Desirée Cascales
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Ana I Garcia-Torrico
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
5
|
Heterogeneity of Salmonella-host interactions in infected host tissues. Curr Opin Microbiol 2017; 39:57-63. [DOI: 10.1016/j.mib.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 01/24/2023]
|
6
|
Diacovich L, Lorenzi L, Tomassetti M, Méresse S, Gramajo H. The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole. Virulence 2016; 8:975-992. [PMID: 27936347 DOI: 10.1080/21505594.2016.1270493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that causes various host-specific diseases. During their life cycle, Salmonellae survive frequent exposures to a variety of environmental stresses, e.g. carbon-source starvation. The virulence of this pathogen relies on its ability to establish a replicative niche, named Salmonella-containing vacuole, inside host cells. However, the microenvironment of the SCV and the bacterial metabolic pathways required during infection are largely undefined. In this work we developed different biological probes whose expression is modulated by the environment and the physiological state of the bacterium. We constructed transcriptional reporters by fusing promoter regions to the gfpmut3a gene to monitor the expression profile of genes involved in glucose utilization and lipid catabolism. The induction of these probes by a specific metabolic change was first tested in vitro, and then during different conditions of infection in macrophages. We were able to determine that Entner-Doudoroff is the main metabolic pathway utilized by Salmonella during infection in mouse macrophages. Furthermore, we found sub-populations of bacteria expressing genes involved in pathways for the utilization of different sources of carbon. These populations are modified in presence of different metabolizable substrates, suggesting the coexistence of Salmonella with diverse metabolic states during the infection.
Collapse
Affiliation(s)
- Lautaro Diacovich
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Lucía Lorenzi
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Mauro Tomassetti
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Stéphane Méresse
- b Aix Marseille Université, CNRS, INSERM, CIML , Marseille , France
| | - Hugo Gramajo
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| |
Collapse
|
7
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
8
|
Roberfroid S, Vanderleyden J, Steenackers H. Gene expression variability in clonal populations: Causes and consequences. Crit Rev Microbiol 2016; 42:969-84. [PMID: 26731119 DOI: 10.3109/1040841x.2015.1122571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the last decade it has been shown that among cell variation in gene expression plays an important role within clonal populations. Here, we provide an overview of the different mechanisms contributing to gene expression variability in clonal populations. These are ranging from inherent variations in the biochemical process of gene expression itself, such as intrinsic noise, extrinsic noise and bistability to individual responses to variations in the local micro-environment, a phenomenon called phenotypic plasticity. Also genotypic variations caused by clonal evolution and phase variation can contribute to gene expression variability. Consequently, gene expression studies need to take these fluctuations in expression into account. However, frequently used techniques for expression quantification, such as microarrays, RNA sequencing, quantitative PCR and gene reporter fusions classically determine the population average of gene expression. Here, we discuss how these techniques can be adapted towards single cell analysis by integration with single cell isolation, RNA amplification and microscopy. Alternatively more qualitative selection-based techniques, such as mutant screenings, in vivo expression technology (IVET) and recombination-based IVET (RIVET) can be applied for detection of genes expressed only within a subpopulation. Finally, differential fluorescence induction (DFI), a protocol specially designed for single cell expression is discussed.
Collapse
Affiliation(s)
- Stefanie Roberfroid
- a Department of Microbial and Molecular Systems , Centre of Microbial and Plant Genetics, KU Leuven , Leuven , Belgium
| | - Jos Vanderleyden
- a Department of Microbial and Molecular Systems , Centre of Microbial and Plant Genetics, KU Leuven , Leuven , Belgium
| | - Hans Steenackers
- a Department of Microbial and Molecular Systems , Centre of Microbial and Plant Genetics, KU Leuven , Leuven , Belgium
| |
Collapse
|
9
|
Abe H, Kamitani S, Fukui-Miyazaki A, Shinzawa N, Nakamura K, Horiguchi Y. Detection of genes expressed inBordetella bronchisepticacolonizing rat trachea byin vivoexpressed-tag immunoprecipitation method. Microbiol Immunol 2015; 59:249-61. [DOI: 10.1111/1348-0421.12247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Hiroyuki Abe
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Shigeki Kamitani
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
- Graduate School of Comprehensive Rehabilitation; Osaka Prefecture University; 3-7-30 Habikino Habikino Osaka 583-8555 Japan
| | - Aya Fukui-Miyazaki
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Naoaki Shinzawa
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Keiji Nakamura
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology; Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871
| |
Collapse
|
10
|
van den Berg B. Bacterial cleanup: lateral diffusion of hydrophobic molecules through protein channel walls. Biomol Concepts 2015; 1:263-70. [PMID: 25962002 DOI: 10.1515/bmc.2010.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria forms a very efficient barrier against the permeation of both hydrophilic and hydrophobic compounds, owing to the presence of lipopolysaccharides on the outside of the cell. Although much is known about the OM passage of hydrophilic molecules, it is much less clear how hydrophobic molecules cross this barrier. Members of the FadL channel family, which are widespread in Gram-negative bacteria, are so far the only proteins with an established role in the uptake of hydrophobic molecules across the OM. Recent structural and biochemical research has shown that these channels operate according to a unique lateral diffusion mechanism, in which the substrate moves from the lumen of the barrel into the OM via an unusual opening in the wall of the barrel. Understanding how hydrophobic molecules cross the OM is not only of fundamental importance but could also have applications in the design of novel, hydrophobic drugs, biofuel production and the generation of more efficient bacterial biodegrader strains.
Collapse
|
11
|
Navais R, Méndez J, Pérez-Pascual D, Cascales D, Guijarro JA. The yrpAB operon of Yersinia ruckeri encoding two putative U32 peptidases is involved in virulence and induced under microaerobic conditions. Virulence 2014; 5:619-24. [PMID: 24865652 DOI: 10.4161/viru.29363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In an attempt to dissect the virulence mechanisms of Yersinia ruckeri two adjacent genes, yrpA and yrpB, encoding putative peptidases belonging to the U32 family, were analyzed. Similar genes, with the same genetic organization were identified in genomic analysis of human-pathogenic yersiniae. RT-PCR studies indicated that these genes form an operon in Y. ruckeri. Transcriptional studies using an yrpB::lacZY fusion showed high levels of expression of these genes in the presence of peptone in the culture medium, as well as under oxygen-limited conditions. These two factors had a synergic effect on gene induction when both were present simultaneously during bacterial incubation, which indicates the important role that environmental conditions in the fish gut can play in the regulation of specific genes. LD 50 experiments using an yrpA insertional mutant strain demonstrated the participation of this gene in the virulence of Y. ruckeri.
Collapse
Affiliation(s)
- Roberto Navais
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - Jessica Méndez
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - David Pérez-Pascual
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - Desirée Cascales
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - José A Guijarro
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| |
Collapse
|
12
|
Abstract
There is a real crisis in healthcare with the emergence of bacterial pathogens resistant to multiple drugs. The drug discovery industry is faced with the challenge of developing new classes of antibiotics that are effective against resistant organisms. Targeting bacterial virulence is one approach that has yet to be fully exploited, and the last decade or so has seen the development of reagents, screens and approaches that could make this possible. Several processes utilized by bacteria to cause infection are employed in a wide range of pathogens and as such may make attractive targets. Inhibitors of such targets would be unlikely to affect host cells, be cross-resistant to existing therapies and induce resistance themselves.
Collapse
Affiliation(s)
- Andrea Marra
- Pfizer Global Research and Development, Antibacterials Discovery, MS8118W-249 Eastern Point Road Groton, CT 06340, USA.
| |
Collapse
|
13
|
Virulence determinants of Salmonella Gallinarum biovar Pullorum identified by PCR signature-tagged mutagenesis and the spiC mutant as a candidate live attenuated vaccine. Vet Microbiol 2014; 168:388-94. [DOI: 10.1016/j.vetmic.2013.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/16/2022]
|
14
|
Drennan SL, Lama A, Doron B, Cambronne ED. Tractable mammalian cell infections with protozoan-primed bacteria. J Vis Exp 2013. [PMID: 23609210 DOI: 10.3791/50300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many intracellular bacterial pathogens use freshwater protozoans as a natural reservoir for proliferation in the environment. Legionella pneumophila, the causative agent of Legionnaires' pneumonia, gains a pathogenic advantage over in vitro cultured bacteria when first harvested from protozoan cells prior to infection of mammalian macrophages. This suggests that important virulence factors may not be properly expressed in vitro. We have developed a tractable system for priming L. pneumophila through its natural protozoan host Acanthamoeba castellanii prior to mammalian cell infection. The contribution of any virulence factor can be examined by comparing intracellular growth of a mutant strain to wild-type bacteria after protozoan priming. GFP-expressing wild-type and mutant L. pneumophila strains are used to infect protozoan monolayers in a priming step and allowed to reach late stages of intracellular growth. Fluorescent bacteria are then harvested from these infected cells and normalized by spectrophotometry to generate comparable numbers of bacteria for a subsequent infection into mammalian macrophages. For quantification, live bacteria are monitored after infection using fluorescence microscopy, flow cytometry, and by colony plating. This technique highlights and relies on the contribution of host cell-dependent gene expression by mimicking the environment that would be encountered in a natural acquisition route. This approach can be modified to accommodate any bacterium that uses an intermediary host as a means for gaining a pathogenic advantage.
Collapse
Affiliation(s)
- Samuel L Drennan
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, USA
| | | | | | | |
Collapse
|
15
|
Singh A, Hodgson N, Yan M, Joo J, Gu L, Sang H, Gregory-Bryson E, Wood WG, Ni Y, Smith K, Jackson SH, Coleman WG. Screening Helicobacter pylori genes induced during infection of mouse stomachs. World J Gastroenterol 2012; 18:4323-34. [PMID: 22969195 PMCID: PMC3436047 DOI: 10.3748/wjg.v18.i32.4323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of in vivo environment on gene expression in Helicobacter pylori (H. pylori) as it relates to its survival in the host.
METHODS: In vivo expression technology (IVET) systems are used to identify microbial virulence genes. We modified the IVET-transcriptional fusion vector, pIVET8, which uses antibiotic resistance as the basis for selection of candidate genes in host tissues to develop two unique IVET-promoter-screening vectors, pIVET11 and pIVET12. Our novel IVET systems were developed by the fusion of random Sau3A DNA fragments of H. pylori and a tandem-reporter system of chloramphenicol acetyltransferase and beta-galactosidase. Additionally, each vector contains a kanamycin resistance gene. We used a mouse macrophage cell line, RAW 264.7 and mice, as selective media to identify specific genes that H. pylori expresses in vivo. Gene expression studies were conducted by infecting RAW 264.7 cells with H. pylori. This was followed by real time polymerase chain reaction (PCR) analysis to determine the relative expression levels of in vivo induced genes.
RESULTS: In this study, we have identified 31 in vivo induced (ivi) genes in the initial screens. These 31 genes belong to several functional gene families, including several well-known virulence factors that are expressed by the bacterium in infected mouse stomachs. Virulence factors, vacA and cagA, were found in this screen and are known to play important roles in H. pylori infection, colonization and pathogenesis. Their detection validates the efficacy of these screening systems. Some of the identified ivi genes have already been implicated to play an important role in the pathogenesis of H. pylori and other bacterial pathogens such as Escherichia coli and Vibrio cholerae. Transcription profiles of all ivi genes were confirmed by real time PCR analysis of H. pylori RNA isolated from H. pylori infected RAW 264.7 macrophages. We compared the expression profile of H. pylori and RAW 264.7 coculture with that of H. pylori only. Some genes such as cagA, vacA, lpxC, murI, tlpC, trxB, sodB, tnpB, pgi, rbfA and infB showed a 2-20 fold upregulation. Statistically significant upregulation was obtained for all the above mentioned genes (P < 0.05). tlpC, cagA, vacA, sodB, rbfA, infB, tnpB, lpxC and murI were also significantly upregulated (P < 0.01). These data suggest a strong correlation between results obtained in vitro in the macrophage cell line and in the intact animal.
CONCLUSION: The positive identification of these genes demonstrates that our IVET systems are powerful tools for studying H. pylori gene expression in the host environment.
Collapse
|
16
|
Identification of Avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl Environ Microbiol 2012; 78:3343-51. [PMID: 22344666 DOI: 10.1128/aem.07677-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies. Recombination-based in vivo expression technology (RIVET) was used to identify APEC genes specifically expressed during infection in chickens. A total of 21 clones with in vivo-induced promoters were isolated from chicken livers and spleens, indicative of systemic infection. DNA sequencing of the cloned fragments revealed that 12 of the genes were conserved E. coli genes (metH, lysA, pntA, purL, serS, ybjE, ycdK [rutC], wcaJ, gspL, sdsR, ylbE, and yjiY), 6 of the genes were phage related/associated, and 3 genes were pathogen specific (tkt1, irp2, and eitD). These genes are involved in various cellular functions, such as metabolism, cell envelope and integrity, transport systems, and virulence. Others were phage related or have yet-unknown functions.
Collapse
|
17
|
Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol 2011; 11:236. [PMID: 22017966 PMCID: PMC3212961 DOI: 10.1186/1471-2180-11-236] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/21/2011] [Indexed: 01/17/2023] Open
Abstract
Background The Ferric uptake regulator (Fur) is a transcriptional regulator that controls iron homeostasis in bacteria. Although the regulatory role of Fur in Escherichia coli is well characterized, most of the studies were conducted under routine culture conditions, i.e., in ambient oxygen concentration. To reveal potentially novel aspects of the Fur regulon in Salmonella enterica serovar Typhimurium under oxygen conditions similar to that encountered in the host, we compared the transcriptional profiles of the virulent wild-type strain (ATCC 14028s) and its isogenic Δfur strain under anaerobic conditions. Results Microarray analysis of anaerobically grown Δfur S. Typhimurium identified 298 differentially expressed genes. Expression of several genes controlled by Fnr and NsrR appeared to be also dependent on Fur. Furthermore, Fur was required for the activity of the cytoplasmic superoxide disumutases (MnSOD and FeSOD). The regulation of FeSOD gene, sodB, occurred via small RNAs (i.e., the ryhB homologs, rfrA and rfrB) with the aid of the RNA chaperone Hfq. The transcription of sodA was increased in Δfur; however, the enzyme was inactive due to the incorporation of iron instead of manganese in SodA. Additionally, in Δfur, the expression of the gene coding for the ferritin-like protein (ftnB) was down-regulated, while the transcription of the gene coding for the nitric oxide (NO·) detoxifying flavohemoglobin (hmpA) was up-regulated. The promoters of ftnB and hmpA do not contain recognized Fur binding motifs, which indicated their probable indirect regulation by Fur. However, Fur activation of ftnB was independent of Fnr. In addition, the expression of the gene coding for the histone-like protein, H-NS (hns) was increased in Δfur. This may explain the observed down-regulation of the tdc operon, responsible for the anaerobic degradation of threonine, and ftnB in Δfur. Conclusions This study determined that Fur is a positive factor in ftnB regulation, while serving to repress the expression of hmpA. Furthermore, Fur is required for the proper expression and activation of the antioxidant enzymes, FeSOD and MnSOD. Finally, this work identified twenty-six new targets of Fur regulation, and demonstrates that H-NS repressed genes are down-regulated in Δfur.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | | | | | |
Collapse
|
18
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
19
|
Gomez JE, Clatworthy A, Hung DT. Probing bacterial pathogenesis with genetics, genomics, and chemical biology: past, present, and future approaches. Crit Rev Biochem Mol Biol 2011; 46:41-66. [PMID: 21250782 DOI: 10.3109/10409238.2010.538663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classical genetic approaches for studying bacterial pathogenesis have provided a solid foundation for our current understanding of microbial physiology and the interactions between pathogen and host. During the past decade however, advances in several arenas have expanded the ways in which the biology of pathogens can be studied. This review discussed the impact of these advances on bacterial genetics, including the application of genomics and chemical biology to the study of pathogenesis.
Collapse
Affiliation(s)
- James E Gomez
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | |
Collapse
|
20
|
Identification and characterization of novel and potent transcription promoters of Francisella tularensis. Appl Environ Microbiol 2010; 77:1608-18. [PMID: 21193666 DOI: 10.1128/aem.01862-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr). Out of a total of 2,000 chloramphenicol-resistant LVS clones isolated from the cat promoter library, we arbitrarily selected 40 for further analysis. Over 80% of these clones carry unique F. tularensis DNA sequences which appear to drive a wide range of protein expression, as determined by specific chloramphenicol acetyltransferase (CAT) Western dot blot and enzymatic assays. The DNA sequence information for the 33 unique and novel F. tularensis promoters reported here, along with the results of in silico and primer extension analyses, suggest that F. tularensis possesses classical Escherichia coli σ(70)-related promoter motifs. These motifs include the -10 (TATAAT) and -35 [TTGA(C/T)A] domains and an AT-rich region upstream from -35, reminiscent of but distinct from the E. coli upstream region that is termed the UP element. The most efficient promoter identified (Pbfr) appears to be about 10 times more potent than the F. tularensis groEL promoter and is probably among the strongest promoters in F. tularensis. The battery of promoters identified in this work will be useful, among other things, for genetic manipulation in the background of F. tularensis intended to gain better understanding of the mechanisms involved in pathogenesis and virulence, as well as for vaccine development studies.
Collapse
|
21
|
Abstract
As the genomics era matures, the availability of complete microbial genome sequences is facilitating computational approaches to understand bacterial genomes and DNA structure/function relationships. From the genome of pathogens, we can derive invaluable information on potential targets for new antimicrobial agents. Advancements in high-throughput 'omics' technologies and the availability of multiple isolates of the same species have significantly changed the time frame and scope for identifying novel therapeutic targets. This article aims to discuss selected aspects of the bacterial genome, and advocates 'omics'-based techniques to advance the discovery of new therapeutic targets against extracellular bacterial pathogens.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
22
|
A novel cdsAB operon is involved in the uptake of L-cysteine and participates in the pathogenesis of Yersinia ruckeri. J Bacteriol 2010; 193:944-51. [PMID: 21169490 DOI: 10.1128/jb.01058-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Application of in vivo expression technology (IVET) to Yersinia ruckeri, an important fish pathogen, allowed the identification of two adjacent genes that represent a novel bacterial system involved in the uptake and degradation of l-cysteine. Analysis of the translational products of both genes showed permease domains (open reading frame 1 [ORF1]) and amino acid position identities (ORF2) with the l-cysteine desulfidase from Methanocaldococcus jannaschii, a new type of enzyme involved in the breakdown of l-cysteine. The operon was named cdsAB (cysteine desulfidase) and is found widely in anaerobic and facultative bacteria. cdsAB promoter analysis using lacZY gene fusion showed highest induction in the presence of l-cysteine. Two cdsA and cdsB mutant strains were generated. The limited toxic effect and the low utilization of l-cysteine observed in the cdsA mutant, together with radiolabeled experiments, strongly suggested that CdsA is an l-cysteine permease. Fifty percent lethal dose (LD(50)) and competence index experiments showed that both the cdsA and cdsB loci were involved in the pathogenesis of the bacteria. In conclusion, this study has shown for the first time in bacteria the existence of an l-cysteine uptake system that together with an additional l-cysteine desulfidase-encoding gene constitutes a novel operon involved in bacterial virulence.
Collapse
|
23
|
Shin HS, Kim YJ, Yoo IH, Lee HS, Jin S, Ha UH. Autoinduction of a genetic locus encoding putative acyltransferase in Corynebacterium glutamicum. Biotechnol Lett 2010; 33:97-102. [PMID: 20821248 DOI: 10.1007/s10529-010-0395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
A genetic locus, encoding putative acyltransferase, was induced by autoinducers in Corynebacterium glutamicum. The autoinducers were maximally produced by the bacterium after 24 h culture. Those molecules are resistant to proteinase K treatment (300 μg ml(-1)) for 30 min at 37°C or at 121°C for 15 min, and remained stable after extensive storage at 4°C. Autoinducers in the cell-free culture fluids from Corynebacterium ammoniagenes and Pseudomonas aeruginosa also induced the expression of acyltransferase in C. glutamicum, suggesting possible cross-recognition of the autoinducers by C. glutamicum. C. glutamicum thus possesses an autoinduction system which secretes autoinducers during growth, triggering the expression of downstream genes, exemplified by the putative acyltransferase gene.
Collapse
Affiliation(s)
- Hee-Sung Shin
- Department of Biotechnology and Bioinformatics, Korea University, Yeongi, Chungnam, 339-700, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Hanin A, Sava I, Bao Y, Huebner J, Hartke A, Auffray Y, Sauvageot N. Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS One 2010; 5:e11879. [PMID: 20686694 PMCID: PMC2912369 DOI: 10.1371/journal.pone.0011879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/05/2010] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is part of the commensal microbiota of humans and its main habitat is the gastrointestinal tract. Although harmless in healthy individuals, E. faecalis has emerged as a major cause of nosocomial infections. In order to better understand the transformation of a harmless commensal into a life-threatening pathogen, we developed a Recombination-based In VivoExpression Technology for E. faecalis. Two R-IVET systems with different levels of sensitivity have been constructed in a E. faecalis V583 derivative strain and tested in the insect model Galleria mellonella, during growth in urine, in a mouse bacteremia and in a mouse peritonitis model. Our combined results led to the identification of 81 in vivo activated genes. Among them, the ef_3196/7 operon was shown to be strongly induced in the insect host model. Deletion of this operonic structure demonstrated that this two-component system was essential to the E. faecalis pathogenic potential in Galleria. Gene ef_0377, induced in insect and mammalian models, has also been further analyzed and it has been demonstrated that this ankyrin-encoding gene was also involved in E. faecalis virulence. Thus these R-IVET screenings led to the identification of new E. faecalis factors implied in in vivo persistence and pathogenic potential of this opportunistic pathogen.
Collapse
Affiliation(s)
- Aurelie Hanin
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
| | - Irina Sava
- Division of Infection Diseases, Department of Medicine, University Medical Center, Freiburg, Germany
| | - YinYin Bao
- Division of Infection Diseases, Department of Medicine, University Medical Center, Freiburg, Germany
| | - Johannes Huebner
- Division of Infection Diseases, Department of Medicine, University Medical Center, Freiburg, Germany
| | - Axel Hartke
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
| | - Yanick Auffray
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
| | - Nicolas Sauvageot
- Laboratoire de Microbiologie de l'Environnement, EA956 USC INRA2017, Université de Caen, Caen, France
- * E-mail:
| |
Collapse
|
25
|
Identification of a Novel Virulence-Related Gene in Streptococcus suis Type 2 Strains. Curr Microbiol 2010; 61:494-9. [DOI: 10.1007/s00284-010-9643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/30/2010] [Indexed: 02/03/2023]
|
26
|
Hu Y, Cong Y, Li S, Rao X, Wang G, Hu F. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection. ACTA ACUST UNITED AC 2009; 52:942-8. [PMID: 19911130 DOI: 10.1007/s11427-009-0127-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
During infectious disease episodes, pathogens express distinct subsets of virulence factors which allow them to adapt to different environments. Hence, genes that are expressed or upregulated in vivo are implicated in pathogenesis. We used in vivo induced antigen technology (IVIAT) to identify antigens which are expressed during infection with Salmonella enterica serovar Typhi. We identified 7 in vivo induced (IVI) antigens, which included BcfD (a fimbrial structural subunit), GrxC (a glutaredoxin 3), SapB (an ABC-type transport system), T3663 (an ABC-type uncharacterized transport system), T3816 (a putative rhodanese-related sulfurtransferase), T1497 (a probable TonB-dependent receptor) and T3689 (unknown function). Of the 7 identified antigens, 5 antigens had no cross-immunoreactivity in adsorbed control sera from healthy subjects. These 5 included BcfD, GrxC, SapB, T3663 and T3689. Antigens identified in this study are potential targets for drug and vaccine development and may be utilized as diagnostic agents.
Collapse
Affiliation(s)
- Yong Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
27
|
Are essential genes really essential? Trends Microbiol 2009; 17:433-8. [DOI: 10.1016/j.tim.2009.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/18/2022]
|
28
|
Durand JMB, Björk GR. Metabolic control through ornithine and uracil of epithelial cell invasion by Shigella flexneri. Microbiology (Reading) 2009; 155:2498-2508. [DOI: 10.1099/mic.0.028191-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This paper shows that compounds in defined growth media strongly influence the expression of the effectors of virulence in the human invasive pathogen Shigella flexneri. Ornithine in conjunction with uracil reduces the haemolytic ability of wild-type cultures more than 20-fold and the expression of the type III secretion system more than 8-fold, as monitored by an mxiC : : lacZ transcriptional reporter. mxiC gene expression is further decreased by the presence of methionine or branched-chain amino acids (15-fold or 25-fold at least, respectively). Lysine and a few other aminated metabolites (cadaverine, homoserine and diaminopimelate) counteract the ornithine-mediated inhibition of haemolytic activity and of the expression of a transcriptional activator virF reporter. The complete abolition of invasion of HeLa cells by wild-type bacteria by ornithine, uracil, methionine or branched-chain amino acids establishes that these metabolites are powerful effectors of virulence. These findings provide a direct connection between metabolism and virulence in S. flexneri. The inhibitory potential exhibited by the nutritional environment is stronger than temperature, the classical environmental effector of virulence. The implications and practical application of this finding in prophylaxis and treatment of shigellosis are discussed.
Collapse
Affiliation(s)
| | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, S-90 187 Umeå, Sweden
| |
Collapse
|
29
|
Hsiao A, Zhu J. Genetic tools to study gene expression during bacterial pathogen infection. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:297-314. [PMID: 19245943 DOI: 10.1016/s0065-2164(08)01009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of bacterial pathogenesis is in many ways the study of the regulatory mechanisms at work in the microbe during infection. The astonishing flexibility and adaptability of the bacterial cell has enabled many pathogenic species to freely transition between dramatically different environmental conditions. The transcriptional changes that underlie this ability can determine the success of the pathogen in the host. Many techniques have been devised to examine the transcriptional repertoire of bacteria in vivo during infection. Here, we review a class of technologies known as in vivo expression technology (IVET), which use promoter-trapping with a variety of different reporter constructs to allow researchers to probe the transcriptional changes taking place in bacteria under various environmental conditions. Using IVET techniques, researchers have been able to catalogue a wide variety of virulence factors in the host for several important human pathogens, as well as examining the timing of virulence gene regulation. Most recently, IVET techniques have also been used to identify transcriptional repression events in vivo, such as the suppression of anti-colonization factors deleterious to infection. As the array of IVET reporters and promoter-trapping strategies grow, researchers are increasingly able to illuminate the myriad transcriptional activities that allow bacteria to survive and cause disease in the host.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Andrews-Polymenis HL, Santiviago CA, McClelland M. Novel genetic tools for studying food-borne Salmonella. Curr Opin Biotechnol 2009; 20:149-57. [PMID: 19285855 DOI: 10.1016/j.copbio.2009.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.
Collapse
Affiliation(s)
- Helene L Andrews-Polymenis
- Texas A&M University System Health Science Center, College of Medicine, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
31
|
A chromosomally located traHIJKCLMN operon encoding a putative type IV secretion system is involved in the virulence of Yersinia ruckeri. Appl Environ Microbiol 2008; 75:937-45. [PMID: 19088314 DOI: 10.1128/aem.01377-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide sequence analysis of the region surrounding the pIVET8 insertion site in Yersinia ruckeri 150RiviXII, previously selected by in vivo expression technology (IVET), revealed the presence of eight genes (traHIJKCLMN [hereafter referred to collectively as the tra operon or tra cluster]), which are similar both in sequence and organization to the tra operon cluster found in the virulence-related plasmid pADAP from Serratia entomophila. Interestingly, the tra cluster of Y. ruckeri is chromosomally encoded, and no similar tra cluster has been identified yet in the genomic analysis of human pathogenic yersiniae. A traI insertional mutant was obtained by homologous recombination. Coinfection experiments with the mutant and the parental strain, as well as 50% lethal dose determinations, indicate that this operon is involved in the virulence of this bacterium. All of these results suggest the implication of the tra cluster in a virulence-related type IV secretion/transfer system. Reverse transcriptase PCR studies showed that this cluster is transcribed as an operon from a putative promoter located upstream of traH and that the mutation of traI had a polar effect. A traI::lacZY transcriptional fusion displayed higher expression levels at 18 degrees C, the temperature of occurrence of the disease, and under nutrient-limiting conditions. PCR detection analysis indicated that the tra cluster is present in 15 Y. ruckeri strains from different origins and with different plasmid profiles. The results obtained in the present study support the conclusion, already suggested by different authors, that Y. ruckeri is a very homogeneous species that is quite different from the other members of the genus Yersinia.
Collapse
|
32
|
Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice. J Bacteriol 2008; 190:7633-44. [PMID: 18835990 DOI: 10.1128/jb.01016-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the DeltafadR mutation was complemented in trans with the wild-type gene. Further characterization of the DeltafadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the DeltafadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.
Collapse
|
33
|
Dudley EG. In VivoExpression Technology and Signature-Tagged Mutagenesis Screens for Identifying Mechanisms of Survival of Zoonotic Foodborne Pathogens. Foodborne Pathog Dis 2008; 5:473-85. [DOI: 10.1089/fpd.2008.0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Edward G. Dudley
- Department of Food Science, Penn State University, University Park, Pennsylvania
| |
Collapse
|
34
|
Srivastava V, Jain A, Srivastava BS, Srivastava R. Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice. Tuberculosis (Edinb) 2007; 88:171-7. [PMID: 18054522 DOI: 10.1016/j.tube.2007.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/26/2007] [Accepted: 10/23/2007] [Indexed: 11/30/2022]
Abstract
In sequel to previous report [Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS. Macrophage-specific Mycobacterium tuberculosis genes: identification by green fluorescent protein and kanamycin resistance selection. Microbiology 2007;153:659-66], the genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice were identified in an in vivo expression system based on kanamycin resistance. A promoter library of M. tuberculosis was constructed in a promoter trap shuttle vector pLL192 containing an artificial bicistronic operon composed of promoterless green fluorescent protein gene followed by kanamycin resistance gene. The library was introduced in M. bovis BCG and then infected in mice by intravenous route. Mice were treated twice daily with 40 mg/kg dose of kanamycin by intramuscular route for 21 days. Recombinant BCG recovered from the lungs were reinfected in mice to enrich clones surviving kanamycin treatment in the lung but sensitive to killing by kanamycin in vitro. After nucleotide sequencing of inserts from these clones, 20 genes belonging to fatty acids metabolism, membrane transport, nitric oxide defence and PE_PGRS/PPE family were identified. Real-time PCR analysis using RNA isolated from M. tuberculosis grown in vitro and from the lungs, confirmed upregulation of genes from 2 to 20-fold in vivo compared to growth in vitro. Several of these select 20 genes were also found upregulated ex vivo in macrophage-like cell line J774A.1, thus, suggesting a correlation in mycobacterial gene expression between ex vivo and in vivo conditions.
Collapse
Affiliation(s)
- Vikas Srivastava
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India.
| | | | | | | |
Collapse
|
35
|
Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. MICROBIOLOGY-SGM 2007; 153:2689-2699. [PMID: 17660433 DOI: 10.1099/mic.0.2007/006585-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-negative proteobacterium Burkholderia pseudomallei can survive and multiply within a variety of eukaryotic cells, including macrophages. This property is believed to be important for its ability to cause the disease melioidosis in a wide range of animal species, including humans. To identify determinants that are important for the ability of B. pseudomallei to survive within macrophages, in vivo expression technology (IVET) was employed. Several putative macrophage-inducible genes were identified that are likely to contribute to the virulence of B. pseudomallei, including three genes (tssH-5, tssI-5 and tssM-5) located within the same type VI secretion system cluster (tss-5), mntH, encoding a natural resistance-associated macrophage protein (NRAMP)-like manganese ion transporter, and a haem acquisition gene, bhuT. The macrophage-inducibility of the tss-5 gene cluster was confirmed by reporter gene analysis. Construction of tssH-5 and bhuT null mutants indicated that expression of the tss-5 unit and the bhu operon were not required for intramacrophage survival. A further five tss units were identified within the B. pseudomallei genome that, together with tss-5, account for approximately 2.3 % of the total genome size. The presence of six type VI secretion systems in this organism is likely to be an important factor in making this bacterium such a versatile pathogen.
Collapse
Affiliation(s)
- Gil Shalom
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jonathan G Shaw
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S Thomas
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
36
|
Kenyon WJ, Nicholson KL, Rezuchova B, Homerova D, Garcia-Del Portillo F, Finlay BB, Pallen MJ, Kormanec J, Spector MP. Sigma(s)-Dependent carbon-starvation induction of pbpG (PBP 7) is required for the starvation-stress response in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2007; 153:2148-2158. [PMID: 17600059 DOI: 10.1099/mic.0.2007/005199-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbon-energy source starvation is a commonly encountered stress that can influence the epidemiology and virulence of Salmonella enterica serovars. Salmonella responds to C-starvation by eliciting the starvation-stress response (SSR), which allows for long-term C-starvation survival and cross-resistance to other stresses. The stiC locus was identified as a C-starvation-inducible, sigma(S)-dependent locus required for a maximal SSR. We report here that the stiC locus is an operon composed of the yohC (putative transport protein) and pbpG (penicillin-binding protein-7/8) genes. yohC pbpG transcription is initiated from a sigma(S)-dependent C-starvation-inducible promoter upstream of yohC. Another (sigma(S)-independent) promoter, upstream of pbpG, drives lower constitutive pbpG transcription, primarily during exponential phase. C-starvation-inducible pbpG expression was required for development of the SSR in 5 h, but not 24 h, C-starved cells; yohC was dispensable for the SSR. Furthermore, the yohC pbpG operon is induced within MDCK epithelial cells, but was not essential for oral virulence in BALB/c mice. Thus, PBP 7 is required for physiological changes, occurring within the first few hours of C-starvation, essential for the development of the SSR. Lack of PBP 7, however, can be compensated for by further physiological changes developed in 24 h C-starved cells. This supports the dynamic overlapping and distinct nature of resistance pathways within the Salmonella SSR.
Collapse
Affiliation(s)
- William J Kenyon
- Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688, USA
| | - Kristy L Nicholson
- Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688, USA
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava 45, Slovak Republic
| | - Dagmar Homerova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava 45, Slovak Republic
| | - Francisco Garcia-Del Portillo
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-CSIC, C/ Darwin 3, 28049 Madrid, Spain
| | - B Brett Finlay
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Mark J Pallen
- Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava 45, Slovak Republic
| | - Michael P Spector
- Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
37
|
Fernández L, Méndez J, Guijarro JA. Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Vet Microbiol 2007; 125:1-10. [PMID: 17651924 DOI: 10.1016/j.vetmic.2007.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 11/21/2022]
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease or yersiniosis, which affects mainly salmonids. This microorganism has been consistently causing economic losses in the aquaculture industry since its first description; but the early development of a vaccine allowed a relative control of the disease. This might be the reason why the specific pathogenicity mechanisms of this bacterium remained elusive until recently, when the results obtained with traditional microbiology have been complemented with those provided by molecular biology. The data obtained by using these novel techniques, which are the main subject of this review, have started to shed light on the virulence of this pathogen. Thus, iron acquisition by the siderophore ruckerbactin, proteolytic and haemolytic activities, and resistance to immune mechanisms, were proved to be involved in the virulence of this bacterium. Additionally, these data will, in the long term, help clarify the controversial taxonomic status of this microorganism and allow the development of novel ways to prevent outbreaks, which is particularly interesting nowadays, given that commercial vaccines seem to be ineffective against some new isolates.
Collapse
Affiliation(s)
- Lucía Fernández
- Area de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
38
|
Persson J, Vance RE. Genetics-squared: combining host and pathogen genetics in the analysis of innate immunity and bacterial virulence. Immunogenetics 2007; 59:761-78. [PMID: 17874090 DOI: 10.1007/s00251-007-0248-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 12/16/2022]
Abstract
The interaction of bacterial pathogens with their hosts' innate immune systems can be extremely complex and is often difficult to disentangle experimentally. Using mouse models of bacterial infections, several laboratories have successfully applied genetic approaches to identify novel host genes required for innate immune defense. In addition, a variety of creative bacterial genetic schemes have been developed to identify key bacterial genes involved in triggering or evading host immunity. In cases where both the host and pathogen are amenable to genetic manipulation, a combination of host and pathogen genetic approaches can be used. Focusing on bacterial infections of mice, this review summarizes the benefits and limitations of applying genetic analysis to the study of host-pathogen interactions. In particular, we consider how prokaryotic and eukaryotic genetic strategies can be combined, or "squared," to yield new insights in host-pathogen biology.
Collapse
|
39
|
Simon R, Samuel CE. Innate interferon response in macrophage and epithelial cells infected with wild-type compared to DNA adenine methylase and flagellin mutant Salmonella enterica serovar Typhimurium. J Interferon Cytokine Res 2007; 27:317-27. [PMID: 17477819 DOI: 10.1089/jir.2006.0141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is highly virulent and mediates robust interferon (IFN)-stimulated gene (ISG) induction, whereas bacterial mutants that lack the DNA adenine methylase (Dam) are attenuated, elicit a reduced ISG activation profile, and establish immunity to murine typhoid fever. We show here that in contrast to observations in mice, infection of macrophage cell cultures with either wild-type (WT) or dam(-) mutant Salmonella resulted in surprisingly similar kinetics and amplitudes of induction of IFN-beta, the type I IFN-alpha,beta beacon gene Mx, and the type II IFN-gamma beacon inducible nitric oxide synthase (iNOS). Likewise, activation of NF-kappaB-dependent gene expression in epithelial cells was comparable with WT and dam(-) mutant Salmonella. In contrast, the flagellin-deficient flhC(-) mutant did not activate NF-kappaB in epithelial cells but activated ISG expression comparable to that of WT Salmonella in macrophage cells. WT and dam(-) strains displayed a similar Toll-like receptor 5 (TLR5)-dependent NF-kappaB activation, whereas the flhC(-) mutant lacked this activity. UV-inactivated Salmonella elicited similar ISG induction to that of viable Salmonella in macrophages and mediated the establishment of a functional antiviral state but displayed decreased cytocidal activity. These results establish that the inherent IFN system-inducing capacities of dam(-) and WT Salmonella strains in cultured macrophage and epithelial cells, unlike the mouse, are indistinguishable.
Collapse
Affiliation(s)
- Raphael Simon
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
40
|
Stack HM, Gahan CGM, Hill C. A novel promoter trap identifies Listeria monocytogenes promoters expressed at a low pH within the macrophage phagosome. FEMS Microbiol Lett 2007; 274:139-47. [PMID: 17608802 DOI: 10.1111/j.1574-6968.2007.00832.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Gram-positive pathogen Listeria monocytogenes encounters acid environments in low-pH foods, during passage through the stomach and within the macrophage phagosome during systemic infection. A novel promoter-trap system termed pGAD-HLY was developed, based on a plasmid containing a promoterless copy of gadB (required for survival at low pH) and hly (whose product facilitates escape from the macrophage phagosome) to identify loci that are induced under different stress conditions in vitro as well as identifying in vivo inducible promoters expressed during intracellular infection. This system facilitated the identification of 11 acid-inducible genes in L. monocytogenes. Transcriptional analysis and acid tolerance response assays confirmed the low-pH induction of these loci, validating this promoter-trap system. Macrophage assays revealed the phagosomal induction of three clones, corresponding to lmo0095, lmo2565 and lmo2371, with two of these clones (lmo0095 and lmo2565) also being induced during murine infection. However, virulence studies did not show any significant difference between strains carrying insertional mutations in these genes and the wild type strain. Although the loci that were identified by this screening procedure do not appear to be central to listerial pathogenesis, it is evident from studies that they contribute to the 'fitness' of this pathogen in adverse acid conditions.
Collapse
Affiliation(s)
- Helena M Stack
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Leptospirosis is among the most important zoonotic diseases worldwide. Completion of the genomic sequences of leptospires has facilitated advances in diagnosis and prevention of the disease, and yielded insight into its pathogenesis. This article reviews this research, emphasizing recent progress. RECENT FINDINGS Leptospirosis is caused by a group of highly invasive spiral bacteria (spirochetes) that can infect both people and animals. Spirochetes can survive in the environment and host, and therefore outer membrane and secretory proteins that interact with the host are of considerable interest in leptospire research. The genetic approach to studying pathogenesis is hindered by fastidious growth of pathogenic leptospires. Integrated genomic and proteomic approaches, however, have yielded enhanced understanding of the pathogenesis of leptospirosis. Furthermore, studies of innate immune response to the organism have enhanced our understanding of host susceptibility and resistance to infection. In-silico analysis and high-throughput cloning and expression have had major impacts on efforts to develop vaccine candidates and diagnostic reagents. SUMMARY In the future, we must effectively utilize the wealth of genetic information to combat the disease. More studies into genetics, immune mechanisms that may be exploited to prevent leptospirosis, and pathogenesis of the disease are necessary.
Collapse
Affiliation(s)
- Raghavan U M Palaniappan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
42
|
Fernández L, Prieto M, Guijarro JA. The iron- and temperature-regulated haemolysin YhlA is a virulence factor of Yersinia ruckeri. MICROBIOLOGY-SGM 2007; 153:483-489. [PMID: 17259619 DOI: 10.1099/mic.0.29284-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yersinia ruckeri causes the enteric redmouth disease or yersiniosis, an important systemic fish infection. In an attempt to dissect the virulence mechanisms of this bacterium, a gene encoding a putative protein involved in the secretion/activation of a haemolysin (yhlB), which had been previously identified by in vivo expression technology, was further analysed. The gene yhlB precedes another ORF (yhlA) encoding a Serratia-type haemolysin. Other toxins belonging to this group have been identified in genomic analyses of human-pathogenic yersiniae, although their role and importance in pathogenicity have not been defined yet. In spite of its being an in vivo-induced gene, the expression of yhlA can be induced under certain in vitro conditions similar to those encountered in the host, as deduced from the results obtained by using a yhlB : : lacZY fusion. Thus, higher levels of expression were obtained at 18 degrees C, the temperature of occurrence of disease outbreaks, than at 28 degrees C, the optimal growth temperature. The expression of the haemolysin also increased under iron-starvation conditions. This confirmed the decisive role of iron and temperature as environmental cues that regulate and coordinate the expression of genes encoding extracellular factors involved in the virulence of Y. ruckeri. LD(50) and cell culture experiments, using yhlB and yhlA insertional mutant strains, demonstrated the participation of the haemolysin in the virulence of Y. ruckeri and also its cytolytic properties against the BF-2 fish cell line. Finally, a screening for the production of haemolytic activity and the presence of yhlB and yhlA genes in 12 Y. ruckeri strains proved once more the genetic homogeneity of this species, since all possessed both haemolytic activity and the yhlB and yhlA genes.
Collapse
Affiliation(s)
- Lucía Fernández
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Miguel Prieto
- Laboratorio de Sanidad Animal de Jove, Serida, 33299 Gijón, Asturias, Spain
| | - José A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
43
|
Dubail I, Bigot A, Lazarevic V, Soldo B, Euphrasie D, Dupuis M, Charbit A. Identification of an essential gene of Listeria monocytogenes involved in teichoic acid biogenesis. J Bacteriol 2006; 188:6580-91. [PMID: 16952950 PMCID: PMC1595501 DOI: 10.1128/jb.00771-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular gram-positive bacterium responsible for severe opportunistic infections in humans and animals. We had previously identified a gene encoding a putative UDP-N-acetylglucosamine 2-epimerase, a precursor of the teichoic acid linkage unit, in the genome of L monocytogenes strain EGD-e. This gene, now designated lmo2537, encodes a protein that shares 62% identity with the cognate epimerase MnaA of Bacillus subtilis and 55% identity with Cap5P of Staphylococcus aureus. Here, we addressed the role of lmo2537 in L. monocytogenes pathogenesis by constructing a conditional knockout mutant. The data presented here demonstrate that lmo2537 is an essential gene of L. monocytogenes that is involved in teichoic acid biogenesis. In vivo, the conditional mutant is very rapidly eliminated from the target organs of infected mice and thus is totally avirulent.
Collapse
Affiliation(s)
- Iharilalao Dubail
- Faculté de Médecine Necker, 156, Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Marra A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D 2006; 7:1-16. [PMID: 16620133 DOI: 10.2165/00126839-200607010-00001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The antibacterial drug discovery industry is fast losing participants; at the same time it is facing the challenge of developing new antibiotics that are effective against frequently occurring and multiply resistant organisms. One intriguing approach is to target bacterial virulence, and the last decade or so has seen a focus on bacterial pathogenesis along with the development of reagents and strategies that could make this possible. Several processes utilised by a range of bacteria to cause infection may be conserved enough to make attractive targets; indeed it is known that mammalian cells can affect bacterial gene expression and vice versa. Interesting targets involving virulence include type III secretion systems, two-component signal transduction systems, quorum sensing, and biofilm formation. In order to better understand these systems and strategies, investigators have developed novel strategies of their own, involving negative selections, surrogate models of infection, and screens for gene induction and antigenicity. Inhibitors of such targets would be unlikely to adversely affect patients, be cross-resistant to existing therapies, or cause resistance themselves. It might be the case that virulence target-based therapies would not be powerful enough to clear an existing infection alone, but if they are instead considered as adjunct therapy to existing antibiotics, or potentiators of the host immune response, they may show efficacy in a non-traditional way.
Collapse
|
45
|
Alvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA. A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microbiol 2006; 72:4044-53. [PMID: 16751514 PMCID: PMC1489658 DOI: 10.1128/aem.00128-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Flavobacterium psychrophilum is a psychrotrophic, fish-pathogenic bacterium belonging to the Cytophaga-Flavobacterium-Bacteroides group. Tn4351-induced mutants deficient in gliding motility, growth on iron-depleted media, and extracellular proteolytic activity were isolated. Some of these mutants were affected in only one of these characteristics, whereas others had defects in two or more. FP523, a mutant deficient in all of these properties, was studied further. FP523 had a Tn4351 insertion in tlpB (thiol oxidoreductase-like protein gene), which encodes a 41.4-kDa protein whose sequence does not exhibit high levels of similar to the sequences of proteins having known functions. TlpB has two domains; the N-terminal domains has five transmembrane regions, whereas the C-terminal domains has the Cys-X-X-Cys motif and other conserved motifs characteristic of thiol:disulfide oxidoreductases. Quantitative analysis of the thiol groups of periplasmic proteins revealed that TlpB is required for reduction of these groups. The tlpB gene is part of the fpt (F. psychrophilum thiol oxidoreductase) operon that contains two other genes, tlpA and tpiA, which encode a thiol:disulfide oxidoreductase and a triosephosphate isomerase, respectively. FP523 exhibited enhanced biofilm formation and decreased virulence and cytotoxicity. Complementation with the tlpB loci restored the wild-type phenotype. Gliding motility and biofilm formation appear to be antagonistic properties, which are both affected by TlpB.
Collapse
Affiliation(s)
- B Alvarez
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
46
|
Soto SM, Jimenez de Anta MT, Vila J. Quinolones induce partial or total loss of pathogenicity islands in uropathogenic Escherichia coli by SOS-dependent or -independent pathways, respectively. Antimicrob Agents Chemother 2006; 50:649-53. [PMID: 16436722 PMCID: PMC1366871 DOI: 10.1128/aac.50.2.649-653.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most common microorganism causing urinary tract infections. Quinolone-resistant E. coli strains have fewer virulence factors than quinolone-susceptible strains. Several urovirulence genes are located in pathogenicity islands (PAIs). We investigated the capacity of quinolones to induce loss of virulence factors such as hemolysin, cytotoxic necrotizing factor 1, P fimbriae, and autotransporter Sat included in PAIs in three uropathogenic E. coli strains. In a multistep selection, all strains lost hemolytic capacity at between 1 and 4 passages when they were incubated with subinhibitory concentrations of ciprofloxacin, showing a partial or total loss of the PAI containing the hly (hemolysin) and cnf-1 (cytotoxic necrotizing factor 1) genes. RecA(-) mutants were obtained from the two E. coli strains with partial or total loss of the PAI. The inactivation of the RecA protein affected only the partial loss of the PAI induced by quinolones. No spontaneous loss of PAIs was observed on incubation in the absence of quinolones in either the wild-type or mutant E. coli strains. Quinolones induce partial or total loss of PAIs in vitro in uropathogenic E. coli by SOS-dependent or -independent pathways, respectively.
Collapse
Affiliation(s)
- S M Soto
- Servei de Microbiología, Centre de Diagnostic Biomèdic, Hospital Clinic, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
47
|
Pucci MJ. Use of genomics to select antibacterial targets. Biochem Pharmacol 2006; 71:1066-72. [PMID: 16412986 DOI: 10.1016/j.bcp.2005.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/29/2005] [Accepted: 12/06/2005] [Indexed: 01/08/2023]
Abstract
The problem of antibiotic resistance has eroded the usefulness of our arsenal of effective antibiotics. There is a need for new strategies to discover and develop new, effective drugs. The advent of the microbial genomics era has provided a wealth of information on a variety of microorganisms. This has allowed the identification and/or validation of a number of gene products that could serve as targets for the discovery of novel antibacterial agents. New genetic techniques and approaches have arisen in an attempt to exploit this newly available genomic data. Both random and targeted gene disruption efforts have proven effective in this process. Many of these methods would have been difficult to accomplish without DNA sequence and bioinformatics analyses. Several targets have been selected to further characterize and screen for inhibitors and one has yielded two clinical candidates.
Collapse
Affiliation(s)
- Michael J Pucci
- Achillion Pharmaceuticals, Inc., 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
48
|
Ku YW, McDonough SP, Palaniappan RUM, Chang CF, Chang YF. Novel attenuated Salmonella enterica serovar Choleraesuis strains as live vaccine candidates generated by signature-tagged mutagenesis. Infect Immun 2006; 73:8194-203. [PMID: 16299315 PMCID: PMC1307036 DOI: 10.1128/iai.73.12.8194-8203.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis is a host-adapted pathogen that causes swine paratyphoid. Signature-tagged mutagenesis (STM) was used to understand the pathogenicity of S. enterica serovar Choleraesuis in its natural host and also to develop novel attenuated live vaccine candidates against this disease. A library of 960 signature-tagged mutants of S. enterica serovar Choleraesuis was constructed and screened for attenuation in pigs. Thirty-three mutants were identified by the STM screening, and these mutants were further screened for attenuation by in vivo and in vitro competitive growth. Of these, 20 mutants targeting the outer membrane, type III secretion, transporter, lipopolysaccharide biosynthesis, and other unknown proteins were confirmed for attenuation. Five highly attenuated mutants (SC2D2 [ssaV], SC4A9 [gifsy-1], SC6F9 [dgoT], SC12B12 [ssaJ], and SC10B1[spiA]) were selected and evaluated for safety and protective efficacy in pigs by comparison with a commercially available vaccine strain. STM-attenuated live vaccine strains SC4A9 (gifsy-1) and SC2D2 (ssaV) were superior to commercially available live vaccine because they provided both safety and a protective immune response against challenge in pigs.
Collapse
Affiliation(s)
- Yu-We Ku
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
49
|
Pucci MJ. Overview of antibacterial target selection. CURRENT PROTOCOLS IN PHARMACOLOGY 2006; Chapter 13:Unit13A.2. [PMID: 21953397 DOI: 10.1002/0471141755.ph13a02s31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Michael J Pucci
- Achillion Pharmaceuticals, Inc., New Haven, Connecticut, USA
| |
Collapse
|
50
|
Kudva IT, Griffin RW, Garren JM, Calderwood SB, John M. Identification of a protein subset of the anthrax spore immunome in humans immunized with the anthrax vaccine adsorbed preparation. Infect Immun 2005; 73:5685-96. [PMID: 16113286 PMCID: PMC1231109 DOI: 10.1128/iai.73.9.5685-5696.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified spore targets of Anthrax Vaccine Adsorbed (AVA)-induced immunity in humans by screening recombinant clones of a previously generated, limited genomic Bacillus anthracis Sterne (pXO1(+), pXO2(-)) expression library of putative spore surface (spore-associated [SA]) proteins with pooled sera from human adults immunized with AVA (immune sera), the anthrax vaccine currently approved for use by humans in the United States. We identified 69 clones that reacted specifically with pooled immune sera but not with pooled sera obtained from the same individuals prior to immunization. Positive clones expressed proteins previously identified as localized on the anthrax spore surface, proteins highly expressed during spore germination, orthologs of proteins of diverse pathogens under investigation as drug targets, and orthologs of proteins contributing to the virulence of both gram-positive and gram-negative pathogens. Among the reactive clones identified by this immunological screen was one expressing a 15.2-kDa hypothetical protein encoded by a gene with no significant homology to sequences contained in databases. Further studies are required to define the subset of SA proteins identified in this study that contribute to the virulence of this pathogen. We hypothesize that optimal delivery of a subset of SA proteins identified by such studies to the immune system in combination with protective antigen (PA), the principal immunogen in AVA, might facilitate the development of defined, nonreactogenic, more-efficacious PA-based anthrax vaccines. Future studies might also facilitate the identification of SA proteins with potential to serve as targets for drug design, spore inactivation, or spore detection strategies.
Collapse
Affiliation(s)
- Indira T Kudva
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|