1
|
Li Y, Chen J, Li T, Lin J, Zheng H, Johnson N, Yao X, Ding X. Modeling gastric intestinal metaplasia in 3D organoids using nitrosoguanidine. J Mol Cell Biol 2024; 16:mjae030. [PMID: 39153963 PMCID: PMC11744189 DOI: 10.1093/jmcb/mjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024] Open
Abstract
Gastric intestinal metaplasia (GIM) represents a precancerous stage characterized by morphological and pathophysiological changes in the gastric mucosa, where gastric epithelial cells transform into a phenotype resembling that of intestinal cells. Previous studies have demonstrated that the intragastric administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces both gastric carcinoma and intestinal metaplasia in mice. Here, we show that MNNG induces GIM in three-dimensional (3D) mouse organoids. Our histological analyses reveal that MNNG-induced gastric organoids undergo classical morphological alterations, exhibiting a distinct up-regulation of CDX2 and MUC2, along with a down-regulation of ATP4B and MUC6. Importantly, metaplastic cells observed in MNNG-treated organoids originate from MIST1+ cells, indicating their gastric chief cell lineage. Functional analyses show that activation of the RAS signaling pathway drives MNNG-induced metaplasia in 3D organoids, mirroring the characteristics observed in human GIM. Consequently, modeling intestinal metaplasia using 3D organoids offers valuable insights into the molecular mechanisms and spatiotemporal dynamics of the gastric epithelial lineage during the development of intestinal metaplasia within the gastric mucosa. We conclude that the MNNG-induced metaplasia model utilizing 3D organoids provides a robust platform for developing preventive and therapeutic strategies to mitigate the risk of gastric cancer before precancerous lesions occur.
Collapse
Affiliation(s)
- Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiena Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haocheng Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
2
|
Islam K, Konar MC, Roy A, Biswas B, Nayek K, Middya S. Role of cooked green banana in home management of acute diarrhea in under-5 children. J Trop Pediatr 2022; 69:7000349. [PMID: 36692306 DOI: 10.1093/tropej/fmad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acute diarrhea is an important contributor to under-5 mortality. Green banana is traditionally used as a home-based remedy for diarrhea. OBJECTIVES To identify the effect of green banana on duration, recovery and prevention of severe dehydration in under-5 children with acute watery diarrhea with no/some dehydration. METHODS This study was conducted in the rural field practice area of a tertiary care center between January 2020 and December 2021 in under-5 children presenting with acute diarrhea with no/some dehydration. One hundred fifty-three children were divided into group A (received cooked green banana supplementation along with standard management) and group B (received only standard management). Duration of diarrhea, proportion of children recovered, requirement of hospitalization, development of persistent diarrhea and number of diarrheal episodes in 1 year follow-up period were compared between two groups. RESULTS Green banana supplementation was significantly associated with reduction in duration [median (interquartile range)-4 (1.5) day versus 5.5 (1) day, P < 0.001] of diarrhea, less hospitalization (9.2% versus 22.1%, P = 0.03) and early recovery, both at day 3 (17.1% versus 3.9%, P = 0.007) and day 7 (90.8% versus 77.9%, P = 0.03). Green banana also protected children from the development of persistent diarrhea (7.9% versus 19.5%, P = 0.04). It also reduced future episodes of diarrhea by 40.5%. CONCLUSION Green banana supplementation could be a promising adjunct therapy in acute diarrhea and thereby it might reduce under-5 mortality.
Collapse
Affiliation(s)
- Kamirul Islam
- Department of Pediatrics, Burdwan Medical College, Burdwan, West Bengal 713104, India
| | - Mithun Chandra Konar
- Department of Pediatrics, Kolkata Medical College, Kolkata, West Bengal 700073, India
| | - Atanu Roy
- Department of Pediatrics, Kolkata Medical College, Kolkata, West Bengal 700073, India
| | - Biswajit Biswas
- Department of Pediatrics, Burdwan Medical College, Burdwan, West Bengal 713104, India
| | - Kaustav Nayek
- Department of Pediatrics, Burdwan Medical College, Burdwan, West Bengal 713104, India
| | - Subhasri Middya
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
3
|
Gommers LMM, Hoenderop JGJ, de Baaij JHF. Mechanisms of proton pump inhibitor-induced hypomagnesemia. Acta Physiol (Oxf) 2022; 235:e13846. [PMID: 35652564 PMCID: PMC9539870 DOI: 10.1111/apha.13846] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Proton pump inhibitors (PPIs) reliably suppress gastric acid secretion and are therefore the first-line treatment for gastric acid-related disorders. Hypomagnesemia (serum magnesium [Mg2+ ] <0.7 mmol/L) is a commonly reported side effect of PPIs. Clinical reports demonstrate that urinary Mg2+ excretion is low in PPI users with hypomagnesemia, suggesting a compensatory mechanism by the kidney for malabsorption of Mg2+ in the intestines. However, the exact mechanism by which PPIs cause impaired Mg2+ absorption is still unknown. In this review, we show that current experimental evidence points toward reduced Mg2+ solubility in the intestinal lumen. Moreover, the absorption pathways in both the small intestine and the colon may be reduced by changes in the expression and activity of key transporter proteins. Additionally, the gut microbiome may contribute to the development of PPI-induced hypomagnesemia, as PPI use affects the composition of the gut microbiome. In this review, we argue that the increase of the luminal pH during PPI treatment may contribute to several of these mechanisms. Considering the fact that bacterial fermentation of dietary fibers results in luminal acidification, we propose that targeting the gut microbiome using dietary intervention might be a promising treatment strategy to restore hypomagnesemia in PPI users.
Collapse
Affiliation(s)
- Lisanne M. M. Gommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen the Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen the Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen the Netherlands
| |
Collapse
|
4
|
Zhong Y, Cao J, Ma Y, Zhang Y, Liu J, Wang H. Fecal Microbiota Transplantation Donor and Dietary Fiber Intervention Collectively Contribute to Gut Health in a Mouse Model. Front Immunol 2022; 13:842669. [PMID: 35185934 PMCID: PMC8852624 DOI: 10.3389/fimmu.2022.842669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 12/01/2022] Open
Abstract
Transforming the gut microbiota has turned into the most intriguing target for interventions in multiple gastrointestinal and non-gastrointestinal disorders. Fecal microbiota transplantation (FMT) is a therapeutic tool that administers feces collected from healthy donors into patients to help replenish the gut microbial balance. Considering the random donor selection, to maintain the optimal microbial ecosystem, post-FMT is critical for therapy outcomes but challenging. Aiming to study the interventions of different diets on recipients' gut microbiota post-FMT that originated from donors with different diets, we performed FMT from domestic vs. wild pigs that are living on low-fiber vs. high-fiber diets into the pseudo-GF mouse, followed with fiber-free (FF) or fiber-rich (FR) diets post-FMT. Different patterns of gut microbiota and metabolites were observed when mice FMT from different donors were paired with different dietary fiber contents. Enrichment of bacteria, including Akkermansia and Parabacteroides, together with alteration of metabolites, including palmitic acid, stearic acid, and nicotinic acid, was noted to improve crypt length and mucus layer in the gut in mice FMT from wild pigs fed an FR diet. The results provide novel insight into the different responses of reconstructed gut microbiota by FMT to dietary fiber. Our study highlighted the importance of post-FMT precise dietary interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Haifeng Wang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
5
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
6
|
Growth performance, immune status and intestinal fermentative processes of young turkeys fed diet with additive of full fat meals from Tenebrio molitor and Hermetia illucens. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Jankowski J, Kozłowski K, Zduńczyk Z, Stępniowska A, Ognik K, Kierończyk B, Józefiak D, Juśkiewicz J. The effect of dietary full-fat Hermetia illucens larvae meal on gut physiology and growth performance in young turkeys. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Butyrate Protects Porcine Colon Epithelium from Hypoxia-Induced Damage on a Functional Level. Nutrients 2021; 13:nu13020305. [PMID: 33498991 PMCID: PMC7911740 DOI: 10.3390/nu13020305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The large intestinal epithelium is confronted with the necessity to adapt quickly to varying levels of oxygenation. In contrast to other tissues, it meets this requirement successfully and remains unharmed during (limited) hypoxic periods. The large intestine is also the site of bacterial fermentation producing short-chain fatty acids (SCFA). Amongst these SCFA, butyrate has been reported to ameliorate many pathological conditions. Thus, we hypothesized that butyrate protects the colonocytes from hypoxic damage. We used isolated porcine colon epithelium mounted in Ussing chambers, incubated it with or without butyrate and simulated hypoxia by changing the gassing regime to test this hypothesis. We found an increase in transepithelial conductance and a decrease in short-circuit current across the epithelia when simulating hypoxia for more than 30 min. Incubation with 50 mM butyrate significantly ameliorated these changes to the epithelial integrity. In order to characterize the protective mechanism, we compared the effects of butyrate to those of iso-butyrate and propionate. These two SCFAs exerted similar effects to butyrate. Therefore, we propose that the protective effect of butyrate on colon epithelium under hypoxia is not (only) based on its nutritive function, but rather on the intracellular signaling effects of SCFA.
Collapse
|
9
|
Lan Y, Verstegen M, Tamminga S, Williams B. The role of the commensal gut microbial community in broiler chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200445] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y. Lan
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - M.W.A. Verstegen
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - S. Tamminga
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - B.A. Williams
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
10
|
Dey I, Bradbury NA. Physiology of the Gut: Experimental Models for Investigating Intestinal Fluid and Electrolyte Transport. CURRENT TOPICS IN MEMBRANES 2018; 81:337-381. [PMID: 30243437 DOI: 10.1016/bs.ctm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Once thought to be exclusively an absorptive tissue, the intestine is now recognized as an important secretory tissue, playing a key role in body ion and fluid homeostasis. Given the intestine's role in fluid homeostasis, it is not surprising that important clinical pathologies arise from imbalances in fluid absorption and secretion. Perhaps the most important examples of this can be seen in enterotoxigenic secretory diarrheas with extreme fluid secretion, and Cystic Fibrosis with little or no fluid secretion. A mechanistic understanding of the cellular pathways regulating ion and fluid transport has been obtained from a variety of approaches and model systems. These have ranged from the intact intestine to a single intestinal epithelial cell type. Although for many years a reductionist approach has held sway for investigating intestinal transport, the growing realization that physiologic processes should really be examined within a physiological context has seen a marked increase in studies using models that are essentially mini-intestines in a dish. The aim of this chapter is to provide a historical context for our understanding of intestinal ion and fluid transport, and to highlight the model systems that have been used to acquire this knowledge.
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
11
|
Cruz-Rangel S, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Rodríguez-Menchaca AA, Pérez-Cornejo P, Hartzell HC, Arreola J. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A. J Physiol 2017; 595:1515-1531. [PMID: 27859335 DOI: 10.1113/jp273111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. ABSTRACT Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca2+ -dependent Cl- channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+ ]o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H+ ]o from 10-10 to 10-5.5 m caused a progressive increase in the chloride current (ICl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2+ sensitivity. Noise analysis showed that protons regulate TMEM16A by tuning its open probability without modifying the single channel current. We found a robust reduction of the proton effect at high [Ca2+ ]i . To identify protonation targets we mutated all extracellular glutamate and histidine residues and 4 of 11 aspartates. Most mutants were sensitive to protons. However, mutation that substituted glutamic acid (E) for glutamine (Q) at amino acid position 623 (E623Q) displayed a titration curve shifted to the left relative to wild type channels and the ICl was nearly insensitive to proton concentrations between 10-5.5 and 10-9.0 m. Additionally, ICl of the mutant containing an aspartic acid (D) to asparagine (N) substitution at position 405 (D405N) mutant was partially inhibited by a proton concentration of 10-5.5 m, but 10-9.0 m produced the same effect as in wild type. Based on our findings we propose that external protons titrate glutamic acid 623, which enables voltage activation of TMEM16A at non-saturating [Ca2+ ]i .
Collapse
Affiliation(s)
- Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| | - Iván A Aréchiga-Figueroa
- CONACYT-Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP, 78290, México
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP, 78290, México
| |
Collapse
|
12
|
Abstract
Recent high-profile reports have reignited an interest in acetate metabolism in cancer. Acetyl-CoA synthetases that catalyse the conversion of acetate to acetyl-CoA have now been implicated in the growth of hepatocellular carcinoma, glioblastoma, breast cancer and prostate cancer. In this Review, we discuss how acetate functions as a nutritional source for tumours and as a regulator of cancer cell stress, and how preventing its (re)capture by cancer cells may provide an opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Zachary T Schug
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK
- Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | - Johan Vande Voorde
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK
| | - Eyal Gottlieb
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|
13
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Schumacher MA, Aihara E, Feng R, Engevik A, Shroyer NF, Ottemann KM, Worrell RT, Montrose MH, Shivdasani RA, Zavros Y. The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol 2015; 593:1809-27. [PMID: 25605613 DOI: 10.1113/jphysiol.2014.283028] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS An in vitro approach to study gastric development is primary mouse-derived epithelium cultured as three-dimensional spheroids known as organoids. We have devised two unique gastric fundic-derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Organoids maintained in co-culture with immortalized stomach mesenchymal cells express robust numbers of surface pit, mucous neck, chief, endocrine and parietal cells. Histamine induced a significant decrease in intraluminal pH that was reversed by omeprazole in fundic organoids and indicated functional activity and regulation of parietal cells. Localized photodamage resulted in rapid cell exfoliation coincident with migration of neighbouring cells to the damaged area, sustaining epithelial continuity. We report the use of these models for studies of epithelial cell biology and cell damage and repair. ABSTRACT Studies of gastric function and disease have been limited by the lack of extended primary cultures of the epithelium. An in vitro approach to study gastric development is primary mouse-derived antral epithelium cultured as three-dimensional spheroids known as organoids. There have been no reports on the use of organoids for gastric function. We have devised two unique gastric fundic-derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Both models were generated from single glands dissociated from whole fundic tissue and grown in basement membrane matrix (Matrigel) and organoid growth medium. Model 1 enriches for a stem cell-like niche via simple passage of the organoids. Maintained in Matrigel and growth medium, proliferating organoids expressed high levels of stem cell markers CD44 and Lgr5. Model 2 is a system of gastric organoids co-cultured with immortalized stomach mesenchymal cells (ISMCs). Organoids maintained in co-culture with ISMCs express robust numbers of surface pit, mucous neck, chief, endocrine and parietal cells. Histamine induced a significant decrease in intraluminal pH that was reversed by omeprazole in fundic organoids and indicated functional activity and regulation of parietal cells. Localized photodamage resulted in rapid cell exfoliation coincident with migration of neighbouring cells to the damaged area, sustaining epithelial continuity. Thus, we report the use of these models for studies of epithelial cell biology and cell damage and repair.
Collapse
Affiliation(s)
- Michael A Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matsuki T, Pédron T, Regnault B, Mulet C, Hara T, Sansonetti PJ. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve. PLoS One 2013; 8:e63053. [PMID: 23646174 PMCID: PMC3639975 DOI: 10.1371/journal.pone.0063053] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 03/30/2013] [Indexed: 11/21/2022] Open
Abstract
In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut.
Collapse
Affiliation(s)
- Takahiro Matsuki
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Thierry Pédron
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U 786, Institut Pasteur, Paris, France
| | | | - Céline Mulet
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U 786, Institut Pasteur, Paris, France
| | - Taeko Hara
- Yakult Central Institute for Microbiological Research, Tokyo, Japan
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U 786, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Cohen L, Asraf H, Sekler I, Hershfinkel M. Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39). J Biol Chem 2012; 287:33339-50. [PMID: 22879599 DOI: 10.1074/jbc.m112.372441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zinc activates a specific Zn(2+)-sensing receptor, ZnR/GPR39, and thereby triggers cellular signaling leading to epithelial cell proliferation and survival. Epithelial cells that express ZnR, particularly colonocytes, face frequent changes in extracellular pH that are of physiological and pathological implication. Here we show that the ZnR/GPR39-dependent Ca(2+) responses in HT29 colonocytes were maximal at pH 7.4 but were reduced by about 50% at pH 7.7 and by about 62% at pH 7.1 and were completely abolished at pH 6.5. Intracellular acidification did not attenuate ZnR/GPR39 activity, indicating that the pH sensor of this protein is located on an extracellular domain. ZnR/GPR39-dependent activation of extracellular-regulated kinase (ERK)1/2 or AKT pathways was abolished at acidic extracellular pH of 6.5. A similar inhibitory effect was monitored for the ZnR/GPR39-dependent up-regulation of Na(+)/H(+) exchange activity at pH 6.5. Focusing on residues putatively facing the extracellular domain, we sought to identify the pH sensor of ZnR/GPR39. Replacing the histidine residues forming the Zn(2+) binding site, His(17) or His(19), or other extracellular-facing histidines to alanine residues did not abolish the pH dependence of ZnR/GPR39. In contrast, replacing Asp(313) with alanine resulted in similar Ca(2+) responses triggered by ZnR/GPR39 at pH 7.4 or 6.5. This mutant also showed similar activation of ERK1/2 and AKT pathways, and ZnR-dependent up-regulation of Na(+)/H(+) exchange at pH 7.4 and pH 6.5. Substitution of Asp(313) to His or Glu residues restored pH sensitivity of the receptor. This indicates that Asp(313), which was shown to modulate Zn(2+) binding, is an essential residue of the pH sensor of GPR39. In conclusion, ZnR/GPR39 is tuned to sense physiologically relevant changes in extracellular pH that thus regulate ZnR-dependent signaling and ion transport activity.
Collapse
Affiliation(s)
- Limor Cohen
- Department of Morphology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
17
|
Liu J, Walker NM, Cook MT, Ootani A, Clarke LL. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am J Physiol Cell Physiol 2012; 302:C1492-503. [PMID: 22403785 DOI: 10.1152/ajpcell.00392.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.
Collapse
Affiliation(s)
- Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
18
|
Sandoval M, Burgos J, Sepúlveda FV, Cid LP. Extracellular pH in restricted domains as a gating signal for ion channels involved in transepithelial transport. Biol Pharm Bull 2011; 34:803-9. [PMID: 21628875 DOI: 10.1248/bpb.34.803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The importance of intracellular pH (pH(i)) in the regulation of diverse cellular activities ranging from cell proliferation and differentiation to cell cycle, migration and apoptosis has long been recognised. More recently, extracellular pH (pH₀), in particular that of relatively inaccessible compartments or domains that occur between cells in tissues, has begun to be acknowledged as a relevant signal in cell regulation. This should not be surprising given the abundant reports highlighting the pH₀-dependence of the activity of membrane proteins facing the extracellular space such as receptors, transporters, ion channels and enzymes. Changes in pH affect the ionisation state of proteins through the effect on their titratable groups. There are proteins, however, which respond to pH shifts with conformational changes that are crucial for catalysis or transport activity. In such cases protons act as signalling molecules capable of eliciting fast and localised responses. We provide examples of ion channels that appear fastidiously designed to respond to extracellular pH in a manner that suggests specific functions in transporting epithelia. We shall also present ideas as to how these channels participate in complex transepithelial transport processes and provide preliminary experiments illustrating a new way to gauge pH₀ in confined spaces of native epithelial tissue.
Collapse
|
19
|
Guan YF, Pritts TA, Montrose MH. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury. World J Gastrointest Pathophysiol 2010; 1:137-43. [PMID: 21607154 PMCID: PMC3097957 DOI: 10.4291/wjgp.v1.i4.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/29/2010] [Accepted: 10/06/2010] [Indexed: 02/06/2023] Open
Abstract
Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance.
Collapse
|
20
|
Urra J, Sandoval M, Cornejo I, Barros LF, Sepúlveda FV, Cid LP. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells. Pflugers Arch 2008; 457:233-42. [PMID: 18427834 DOI: 10.1007/s00424-008-0497-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/03/2008] [Accepted: 03/17/2008] [Indexed: 02/05/2023]
Abstract
Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.
Collapse
Affiliation(s)
- Javier Urra
- Centro de Estudios Científicos, Av. Arturo Prat 514, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
21
|
Busche R, von Engelhardt W. pH gradients and a mirco-pore filter at the luminal surface affect fluxes of propionic acid across guinea pig large intestine. J Comp Physiol B 2007; 177:821-31. [PMID: 17639416 DOI: 10.1007/s00360-007-0182-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/12/2007] [Accepted: 06/22/2007] [Indexed: 01/05/2023]
Abstract
A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J(Pr)) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J(ms)(Pr) ) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J (ms) (Pr) was not or only little elevated at the lower pH. Without bicarbonate J(ms)(Pr) was clearly higher. We conclude that the higher J(ms)(Pr) after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J(ms)(Pr) is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J(ms)(Pr) was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30-60% of J(ms)(Pr) results from non-ionic diffusion.
Collapse
Affiliation(s)
- Roger Busche
- Department of Biochemistry, School of Veterinary Medicine, Hannover, Germany.
| | | |
Collapse
|
22
|
Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2006; 33:547-62. [PMID: 17146590 DOI: 10.1007/s00726-006-0477-9] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/09/2006] [Indexed: 02/07/2023]
Abstract
Depending on the amount of alimentary proteins, between 6 and 18 g nitrogenous material per day enter the large intestine lumen through the ileocaecal junction. This material is used as substrates by the flora resulting eventually in the presence of a complex mixture of metabolites including ammonia, hydrogen sulfide, short and branched-chain fatty acids, amines; phenolic, indolic and N-nitroso compounds. The beneficial versus deleterious effects of these compounds on the colonic epithelium depend on parameters such as their luminal concentrations, the duration of the colonic stasis, the detoxication capacity of epithelial cells in response to increase of metabolite concentrations, the cellular metabolic utilization of these metabolites as well as their effects on colonocyte intermediary and oxidative metabolism. Furthermore, the effects of metabolites on electrolyte movements through the colonic epithelium must as well be taken into consideration for such an evaluation. The situation is further complicated by the fact that other non-nitrogenous compounds are believed to interfere with these various phenomenons. Finally, the pathological consequences of the presence of excessive concentrations of these compounds are related to the short- and, most important, long-term effects of these compounds on the rapid colonic epithelium renewing and homeostasis.
Collapse
Affiliation(s)
- F Blachier
- Unité Mixte de Recherche de Physiologie de la Nutrition et du Comportement Alimentaire, Institut National de la Recherche Agronomique - Institut National Agronomique Paris-Grignon, Paris, France.
| | | | | | | |
Collapse
|
23
|
Iordache C, Duszyk M. Sodium 4-phenylbutyrate upregulates ENaC and sodium absorption in T84 cells. Exp Cell Res 2006; 313:305-11. [PMID: 17098230 DOI: 10.1016/j.yexcr.2006.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 10/11/2006] [Accepted: 10/16/2006] [Indexed: 11/26/2022]
Abstract
Butyrate and other short-chain fatty acids (SCFA), produced by colonic bacterial flora, affect numerous epithelial cell functions. To better understand how SCFA regulate ion transport, we investigated the effects of 4-phenylbutyrate (4-PBA) on Na(+) absorption in T84 cells. Under standard cell culture conditions, the short circuit current did not display any amiloride-sensitive Na(+) absorption and was wholly representative of Cl(-) secretion. However, when T84 cells were grown in the presence of 5 mM 4-PBA, a gradual appearance of amiloride-sensitive Na(+) channel (ENaC) activity was observed that reached a plateau after 24 h. Quantitative RT-PCR and Western blot studies of ENaC subunit expression indicated that 4-PBA stimulated alpha and gamma subunits. Trichostatin A, an inhibitor of histone deacetylase, mimicked the effects of 4-PBA, suggesting that 4-PBA affects ENaC expression by inhibiting deacetylases. 4-PBA had no effect on ENaC expression in airway epithelial cells indicating tissue-specific effect. We conclude that butyrate plays an important role in regulating colonic Na(+) absorption by increasing ENaC transcription and activity.
Collapse
Affiliation(s)
- Claudiu Iordache
- Department of Physiology, University of Alberta, 7-46 Med Sci Bldg., Edmonton, Alberta, Canada
| | | |
Collapse
|
24
|
Chapter 4 Carboxylic acids as bioregulators and gut growth promoters in nonruminants. BIOLOGY OF GROWING ANIMALS 2006. [DOI: 10.1016/s1877-1823(09)70091-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Azriel-Tamir H, Sharir H, Schwartz B, Hershfinkel M. Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem 2004; 279:51804-16. [PMID: 15355987 DOI: 10.1074/jbc.m406581200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular zinc promotes cell proliferation and its deficiency leads to impairment of this process, which is particularly important in epithelial cells. We have recently characterized a zinc-sensing receptor (ZnR) linking extracellular zinc to intracellular release of calcium. In the present study, we addressed the role of extracellular zinc, acting via the ZnR, in regulating the MAP kinase pathway and Na+/H+ exchange in colonocytes. We demonstrate that Ca2+ release, mediated by the ZnR, induces phosphorylation of ERK1/2, which is highly metal-specific, mediated by physiological concentrations of extracellular Zn2+ but not by Cd2+, Fe2+, Ni2+, or Mn2+. Desensitization of the ZnR by Zn2+, is followed by approximately 90% inhibition of the Zn2+ -dependent ERK1/2 phosphorylation, indicating that the ZnR is a principal link between extracellular Zn2+ and ERK1/2 activation. Application of both the IP3 pathway and PI 3-kinase antagonists largely inhibited Zn2+ -dependent ERK1/2 phosphorylation. The physiological significance of the Zn2+ -dependent activation of ERK1/2 was addressed by monitoring Na+/H+ exchanger activity in HT29 cells and in native colon epithelium. Preincubation of the cells with zinc was followed by robust activation of Na+/H+ exchange, which was eliminated by cariporide (0.5 microm); indicating that zinc enhances the activity of NHE1. Activation of NHE1 by zinc was totally blocked by the ERK1/2 inhibitor, U0126. Prolonged acidification, in contrast, stimulates NHE1 by a distinct pathway that is not affected by extracellular Zn2+ or inhibitors of the MAP kinase pathway. Desensitization of ZnR activity eliminates the Zn2+ -dependent, but not the prolonged acidification-dependent activation of NHE1, indicating that Zn2+ -dependent activation of H+ extrusion is specifically mediated by the ZnR. Our results support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways that affect pH homeostasis in colonocytes. Furthermore activation of both, ERK and NHE1, by extracellular zinc may provide the mechanism linking zinc to enhanced cell proliferation.
Collapse
Affiliation(s)
- Hagit Azriel-Tamir
- Department of Morphology, Zlotowski Center for Neuroscience and the Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND AND AIMS The early responses of the oesophageal mucosa to acid perfusion may predict subsequent pathology. Mucosal responses to luminal acid may result either from acid permeating through the mucosa or from other unknown transduction mechanisms. In order to better understand the dynamics of acid permeation into the oesophageal mucosa, we measured interstitial pH (pH(int)) of the oesophageal basal epithelial layer, pre-epithelial layer thickness, and blood flow in rats in vivo during luminal acid challenge. A novel confocal microscopic technique was used in vitro to measure pH(int) from defined cellular sites in response to luminal and basolateral acidification. METHODS 5-(and-6)-Carboxyfluorescein (CF) and carboxy-seminapthorhodofluor-1 (SNARF-1) fluorescence was used to measure pH(int) by conventional and confocal microscopy, respectively, in urethane anaesthetised rats. Pre-epithelial layer thickness was measured optically with carbon particles as markers. Blood flow was measured with laser Doppler flowmetry. RESULTS Luminal acidification failed to alter pH(int) in vivo and in vitro, but pH(int) was lowered by modest serosal acidification. Pre-epithelial layer thickness and blood flow increased significantly during luminal surface acid perfusion. Indomethacin had no effect on any acid related response. CONCLUSION In this first dynamic measurement of oesophageal acid permeation and pre-epithelial layer thickness, pH(int) was preserved in spite of high luminal acidity by two complementary techniques. Despite the apparent permeability barrier to acid permeation, oesophageal blood flow and thickness responded to luminal acid perfusion.
Collapse
Affiliation(s)
- S Tanaka
- West Los Angeles Veterans Affairs Medical Centre, CURE: Digestive Diseases Research Centre, and Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, CA, 90073, USA
| | - S Chu
- Department of Physiology, Indiana University, School of Medicine, Indianapolis, Indiana, 46202, USA
| | - M Hirokawa
- West Los Angeles Veterans Affairs Medical Centre, CURE: Digestive Diseases Research Centre, and Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, CA, 90073, USA
| | - M H Montrose
- Department of Physiology, Indiana University, School of Medicine, Indianapolis, Indiana, 46202, USA
| | - J D Kaunitz
- West Los Angeles Veterans Affairs Medical Centre, CURE: Digestive Diseases Research Centre, and Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, CA, 90073, USA
| |
Collapse
|
27
|
Busche R, Dittmann J, Meyer zu Düttingdorf HD, Glockenthör U, von Engelhardt W, Sallmann HP. Permeability properties of apical and basolateral membranes of the guinea pig caecal and colonic epithelia for short-chain fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:55-63. [PMID: 12225852 DOI: 10.1016/s0005-2736(02)00505-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unidirectional fluxes of short-chain fatty acids (SCFA) indicated marked segmental differences in the permeability of apical and basolateral membranes. The aim of our study was to prove these differences in membrane permeability for a lipid-soluble substance and to understand the factors affecting these differences. Apical and basolateral membrane fractions from guinea pig caecal and colonic epithelia were isolated. Membrane compositions were determined and the permeability of membrane vesicles for the protonated SCFA was measured in a stopped-flow device. Native vesicles from apical membranes of the caecum and proximal colon have a much lower permeability than the corresponding vesicles from the basolateral membranes. For the distal colon, membrane permeabilities of native apical and basolateral vesicles are similar. In vesicles prepared from lipid extracts, the permeabilities for the protonated SCFA are negatively correlated to cholesterol content, whereas no such correlation was observed in native vesicles. Our findings confirm that the apical membrane in the caecum and proximal colon of guinea pig is an effective barrier against a rapid diffusion of small lipid-soluble substances such as SCFAH. Besides cholesterol and membrane proteins, there are further factors that contribute to this barrier property.
Collapse
Affiliation(s)
- Roger Busche
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559, Hanover, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Urbach V, Hélix N, Renaudon B, Harvey BJ. Cellular mechanisms for apical ATP effects on intracellular pH in human bronchial epithelium. J Physiol 2002; 543:13-21. [PMID: 12181278 PMCID: PMC2290491 DOI: 10.1113/jphysiol.2001.015180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of external ATP on intracellular pH (pH(i)) was investigated using a pH imaging system in a human bronchial epithelial cell line (16HBE14o-) loaded with BCECF-AM. The steady-state pH(i) of 16HBE14o- epithelial monolayers was 7.137 +/- 0.027 (n = 46). Apical addition of ATP (10(-4) M) to epithelial monolayers induced a rapid and sustained pH(i) decrease of 0.164 +/- 0.024 pH units (n = 17; P < 0.001). The intracellular acidification was rapidly reversed upon removal of external ATP. In contrast, the non-hydrolysable ATP analogue AMP-PNP did not produce any significant change in pH(i). Inhibition of purinoreceptors by suramin did not affect the acidification induced by apical ATP. Inhibition of Na+-H+ exchange by apical Na+ removal or addition of amiloride (0.5 mM) reduced the apical ATP-induced pH(i) decrease, suggesting the involvement of a Na+-H+ exchanger or surface pH effects on the ATP-induced pH(i) response. Inhibitors of proton channels such as ZnCl2 (10(-4) M) also partially inhibited the ATP response. The pH(i) response to ATP was dependent on the external pH (pH(o)), with increasing acidification produced at lower pH(o) values. Neither the basal pH(i) nor the ATP-induced intracellular acidification was affected by thapsigargin (a Ca2+-ATPase inhibitor), chelerythrine chloride (a protein kinase C (PKC) inhibitor), RpcAMP (a protein kinase A (PKA) inhibitor) or PMA (a PKC activator). Therefore, the intracellular acidification of human bronchial epithelial cells induced by apical ATP does not involve signalling via Ca2+, PKC or PKA nor binding to a purinoreceptor. We interpret the effect of ATP to produce an intracellular acidification as a three step process: activation of H+ channels, inhibition of Na+-H+ exchange and influx of protonated ATP.
Collapse
Affiliation(s)
- V Urbach
- INSERM U454, CHU A. de Villeneuve, 34295 Montpellier, France.
| | | | | | | |
Collapse
|
29
|
Chu J, Chu S, Montrose MH. Apical Na+/H+ exchange near the base of mouse colonic crypts. Am J Physiol Cell Physiol 2002; 283:C358-72. [PMID: 12055105 DOI: 10.1152/ajpcell.01380.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Colonic crypts can absorb fluid, but the identity of the absorptive transporters remains speculative. Near the crypt base, the epithelial cells responsible for vectorial transport are relatively undifferentiated and often presumed to mediate only Cl- secretion. We have applied confocal microscopy in combination with an extracellular fluid marker [Lucifer yellow (LY)] or a pH-sensitive dye (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) to study mouse colonic crypt epithelial cells directly adjacent to the crypt base within an intact mucosal sheet. Measurements of intracellular pH report activation of colonocyte Na+/H+ exchange in response to luminal or serosal Na+. Studies with LY demonstrate the presence of a paracellular fluid flux, but luminal Na+ does not activate Na+/H+ exchange in the nonepithelial cells of the lamina propria, and studies with LY suggest that the fluid bathing colonocyte basolateral membranes is rapidly refreshed by serosal perfusates. The apical Na+/H+ exchange in crypt colonocytes is inhibited equivalently by luminal 20 microM ethylisopropylamiloride and 20 microM HOE-694 but is not inhibited by luminal 20 microM S-1611. Immunostaining reveals the presence of epitopes from NHE1 and NHE2, but not NHE3, in epithelial cells near the base of colonic crypts. Comparison of apical Na+/H+ exchange activity in the presence of Cl- with that in the absence of Cl- (substitution by gluconate or nitrate) revealed no evidence of the Cl--dependent Na+/H+ exchange that had been previously reported as the sole apical Na+/H+ exchange activity in the colonic crypt. Results suggest the presence of an apical Na+/H+ exchanger near the base of crypts with functional attributes similar to those of the cloned NHE2 isoform.
Collapse
Affiliation(s)
- Jingsong Chu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
30
|
Thwaites DT, Kennedy DJ, Raldua D, Anderson CMH, Mendoza ME, Bladen CL, Simmons NL. H/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na/H exchanger. Gastroenterology 2002; 122:1322-33. [PMID: 11984519 DOI: 10.1053/gast.2002.32992] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS For optimal nutrient absorption to occur, the enterocyte must express a range of specialist ion-driven carrier proteins that function cooperatively in a linked and mutually dependent fashion. Thus, absorption via the human intestinal H(+)-coupled di/tripeptide transporter (hPepT1) is dependent on maintenance of the trans-apical driving force (the H(+)-electrochemical gradient) established, in part, by brush-border Na(+)/H(+) exchanger (NHE3) activity. This study aimed to examine whether physiologic regulation of NHE3 activity can limit hPepT1 capacity and, therefore, protein absorption after a meal. METHODS hPepT1 and NHE3 activities were determined in intact human intestinal epithelial Caco-2 cell monolayers by measurements of [(14)C]glycylsarcosine transport and uptake, (22)Na(+)-influx, H(+)-influx, and H(+)-efflux. Expression of NHE regulatory factors was determined by reverse-transcriptase polymerase chain reaction. RESULTS Optimal dipeptide transport was observed in the presence of a transapical pH gradient and extracellular Na(+). At apical pH 6.5, and only in Na(+)-containing media, protein kinase A activation (by forskolin or vasoactive intestinal peptide) or selective NHE3 inhibition (by S1611) reduced transepithelial dipeptide transport and cellular accumulation by a reduction in the capacity (without effect on affinity) of dipeptide uptake. CONCLUSIONS Protein kinase A-mediated modulation of intestinal dipeptide absorption is indirect via effects on the apical Na(+)/H(+) exchanger.
Collapse
Affiliation(s)
- David T Thwaites
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hershfinkel M, Moran A, Grossman N, Sekler I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci U S A 2001; 98:11749-54. [PMID: 11573009 PMCID: PMC58801 DOI: 10.1073/pnas.201193398] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Indexed: 11/18/2022] Open
Abstract
Changes in extracellular zinc concentration participate in modulating fundamental cellular processes such as proliferation, secretion, and ion transport in a mechanism that is not well understood. Here, we show that a micromolar concentration of extracellular zinc triggers a massive release of calcium from thapsigargin-sensitive intracellular pools in the colonocytic cell line HT29. Calcium release was blocked by a phospholipase-C inhibitor, indicating that formation of inositol 1,4,5-triphosphate is required for zinc-dependent calcium release. Zinc influx was not observed, indicating that extracellular zinc triggered the release. The Ca(i)2+ release was zinc specific and could not be triggered by other heavy metals. Furthermore, zinc failed to activate the Ca(2+)-sensing receptor heterologously expressed in HEK293 cells. The zinc-induced Ca(i)2+ rise stimulated the activity of the Na(+)/H(+) exchanger in HT29 cells. Our results indicate that a previously uncharacterized extracellular, G protein-coupled, Zn(2+)-sensing receptor is functional in colonocytes. Because Ca(i)2+ rise is known to regulate key cellular and signal-transduction processes, the zinc-sensing receptor may provide the missing link between extracellular zinc concentration changes and the regulation of cellular processes.
Collapse
Affiliation(s)
- M Hershfinkel
- Department of Physiology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
32
|
Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G687-93. [PMID: 11254495 DOI: 10.1152/ajpgi.2001.280.4.g687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short-chain fatty acids (SCFA), produced by colonic bacterial flora fermentation of dietary carbohydrates, promote colonic Na absorption through mechanisms not well understood. We hypothesized that SCFA promote increased expression of apical membrane Na/H exchange (NHE), serving as luminal physiological cues for regulating colonic Na absorptive capacity. Studies were performed in human colonic C2/bbe (C2) monolayers and in vivo. In C2 cells exposed to butyrate, acetate, proprionate, or the poorly metabolized SCFA isobutyrate, apical membrane NHE3 activity and protein expression increased in a time- and concentration-dependent manner, whereas no changes were observed for NHE2. In contrast, no significant changes in brush-border hydrolase or villin expression were noted. Analogous to the in vitro findings, rats fed the soluble fiber pectin exhibited a time-dependent increase in colonic NHE3, but not NHE2, protein, mRNA, and brush-border activity. These changes were region-specific, as no changes were observed in the ileum. We conclude that luminal SCFA are important physiological cues for regulating colonic Na absorptive function, allowing the colon to adapt to chronic changes in dietary carbohydrate and Na loads.
Collapse
Affiliation(s)
- M W Musch
- The Martin Boyer Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
33
|
Emenaker NJ, Basson MD. Short chain fatty acids differentially modulate cellular phenotype and c-myc protein levels in primary human nonmalignant and malignant colonocytes. Dig Dis Sci 2001; 46:96-105. [PMID: 11270800 DOI: 10.1023/a:1005661809250] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Short chain fatty acids may protect colonic mucosa against neoplastic transformation by modulating colonocyte phenotype, DNA synthesis, and c-myc levels. To test this hypothesis, nonmalignant and malignant human colonocytes were isolated from surgical specimens and treated with 10 mM acetate, propionate, or butyrate. Markers of cellular phenotype, DNA synthesis, and c-myc protein levels were assayed by alkaline phosphatase and dipeptidyl dipeptidase IV activities, [3H]thymidine labeling, and western blotting, respectively. Butyrate, in particular, exerted discordant effects on alkaline phosphatase (P < 0.05), and c-myc levels (P < 0.05, N > or = 6) in nonmalignant and malignant human colonocytes. DPDD was unaffected by any of the short chain fatty acids tested. [3H]Thymidine labeling was differentially stimulated by short chain fatty acids in both cell types and greater DNA synthesis rates were observed in malignant colonocytes (P < 0.005, N = 16). These data suggest that in vitro, butyrate, in particular, may differentially modulate phenotype, DNA synthesis, and c-myc in nonmalignant and malignant human colonocytes.
Collapse
Affiliation(s)
- N J Emenaker
- Department of Surgery, Yale University, New Haven, Connecticut 06520-8062, USA
| | | |
Collapse
|
34
|
Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 2000; 279:G775-80. [PMID: 11005765 DOI: 10.1152/ajpgi.2000.279.4.g775] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The short-chain fatty acid butyrate was readily taken up by Caco-2 cells. Transport exhibited saturation kinetics, was enhanced by low extracellular pH, and was Na(+) independent. Butyrate uptake was unaffected by DIDS; however, alpha-cyano-4-hydroxycinnamate and the butyrate analogs propionate and L-lactate significantly inhibited uptake. These results suggest that butyrate transport by Caco-2 cells is mediated by a transporter belonging to the monocarboxylate transporter family. We identified five isoforms of this transporter, MCT1, MCT3, MCT4, MCT5, and MCT6, in Caco-2 cells by PCR, and MCT1 was found to be the most abundant isoform by RNase protection assay. Transient transfection of MCT1, in the antisense orientation, resulted in significant inhibition of butyrate uptake. The cells fully recovered from this inhibition by 5 days after transfection. In conclusion, our data showed that the MCT1 transporter may play a major role in the transport of butyrate into Caco-2 cells.
Collapse
Affiliation(s)
- C Hadjiagapiou
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago and the West Side Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
35
|
Maouyo D, Chu S, Montrose MH. pH heterogeneity at intracellular and extracellular plasma membrane sites in HT29-C1 cell monolayers. Am J Physiol Cell Physiol 2000; 278:C973-81. [PMID: 10794671 DOI: 10.1152/ajpcell.2000.278.5.c973] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the colonic mucosa, short-chain fatty acids change intracellular pH (pH(i)) and extracellular pH (pH(e)). In this report, confocal microscopy and dual-emission ratio imaging of carboxyseminaphthorhodofluor-1 were used for direct evaluation of pH(i) and pH(e) in a simple model epithelium, HT29-C1 cells. Live cell imaging along the apical-to-basal axis of filter-grown cells allowed simultaneous measurement of pH in the aqueous environment near the apical membrane, the lateral membrane, and the basal membrane. Subapical cytoplasm reported the largest changes in pH(i) after isosmotic addition of 130 mM propionate or 30 mM NH(4)Cl. In resting cells and cells with an imposed acid load, lateral membranes had pH(i) values intermediate between the relatively acidic subapical region (pH 6.3-6.9) and the relatively alkaline basal pole of the cells (pH 7.4-7.1). Transcellular pH(i) gradients were diminished or eliminated during an induced alkaline load. Propionate differentially altered pH(e) near the apical membrane, in lateral intracellular spaces between adjacent cells, and near the basal membrane. Luminal or serosal propionate caused alkalinization of the cis compartment (where propionate was added) but acidification of the trans compartment only in response to luminal propionate. Addition of NH(4)Cl produced qualitatively opposite pH(e) excursions. The microscopic values of pH(i) and pH(e) can explain a portion of the selective activation of polarized Na/H exchangers observed in HT29-C1 cells in the presence of transepithelial propionate gradients.
Collapse
Affiliation(s)
- D Maouyo
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
36
|
Thwaites DT, Ford D, Glanville M, Simmons NL. H(+)/solute-induced intracellular acidification leads to selective activation of apical Na(+)/H(+) exchange in human intestinal epithelial cells. J Clin Invest 1999; 104:629-35. [PMID: 10487777 PMCID: PMC408543 DOI: 10.1172/jci7192] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport.
Collapse
Affiliation(s)
- D T Thwaites
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Genz AK, v Engelhardt W, Busche R. Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. J Physiol 1999; 517 ( Pt 2):507-19. [PMID: 10332098 PMCID: PMC2269347 DOI: 10.1111/j.1469-7793.1999.0507t.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. The fluorescent dye 5-N-hexadecanoyl-aminofluorescein (HAF) was used to study the mechanisms involved in maintaining a relatively constant luminal surface pH (pHs) in the distal colon of the guinea-pig. The fatty acyl chain of the HAF molecule inserts into the apical membrane of epithelial cells. This allows a continuous measurement of the surface pH for several hours. 2. The localization of HAF was confirmed by confocal laser-scanning microscopy and by using monoclonal antibodies against fluorescein. The insertion of HAF into the apical membrane of the colonocytes did not change the transepithelial conductance or the short-circuit current of the epithelium. 3. With the HAF method a pH microclimate was confirmed at the colonic surface. Although the pH of the bulk luminal solution was decreased in bicarbonate-containing solution from 7.4 to 6.4 the pHs changed only in the range 7.54-6.98. 4. In the absence of bicarbonate pHs almost followed changes of bulk luminal pH. In the presence of bicarbonate there was a decrease in pHs after removal of chloride from the luminal side and an increase in pHs after addition of butyrate to the luminal solution. This suggests the involvement of a bicarbonate-anion exchange in bicarbonate secretion: a Cl--HCO3- as well as a short-chain fatty acid--HCO3- exchange. 5. The apical K+-H+-ATPase in the distal colon of guinea-pig has little influence on pHs in the presence of physiological buffer concentrations. 6. Our findings indicate that bicarbonate plays a major role in maintaining the pH microclimate at the colonic surface.
Collapse
Affiliation(s)
- A K Genz
- Department of Physiology, School of Veterinary Medicine, D-30157 Hannover, Germany
| | | | | |
Collapse
|
38
|
Sellin JH. SCFAs: The Enigma of Weak Electrolyte Transport in the Colon. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 1999; 14:58-64. [PMID: 11390821 DOI: 10.1152/physiologyonline.1999.14.2.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-chain fatty acids are the predominant luminal anions in the colon (>75 mM) and thus create a rather unique environment for transporting epithelium. The colon absorbs short-chain fatty acids, either by diffusion of the protonated species across the apical membrane or by an anion exchange process with bicarbonate. Additionally, short-chain fatty acids modulate Na absorption, Cl secretion, intracellular pH, and cell volume.
Collapse
Affiliation(s)
- Joseph H. Sellin
- University of Texas Medical School at Houston, PO Box 20708, Houston, TX 77225, USA
| |
Collapse
|
39
|
Chu S, Tanaka S, Kaunitz JD, Montrose MH. Dynamic regulation of gastric surface pH by luminal pH. J Clin Invest 1999; 103:605-12. [PMID: 10074477 PMCID: PMC408122 DOI: 10.1172/jci5217] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 01/20/1999] [Indexed: 11/17/2022] Open
Abstract
In vivo confocal imaging of the mucosal surface of rat stomach was used to measure pH noninvasively under the mucus gel layer while simultaneously imaging mucus gel thickness and tissue architecture. When tissue was superfused at pH 3, the 25 microm adjacent to the epithelial surface was relatively alkaline (pH 4.1 +/- 0.1), and surface alkalinity was enhanced by topical dimethyl prostaglandin E2 (pH 4.8 +/- 0.2). Luminal pH was changed from pH 3 to pH 5 to mimic the fasted-to-fed transition in intragastric pH in rats. Under pH 5 superfusion, surface pH was relatively acidic (pH 4.2 +/- 0.2). This surface acidity was enhanced by pentagastrin (pH 3.5 +/- 0.2) and eliminated by omeprazole, implicating parietal cell H,K-ATPase as the dominant regulator of surface pH under pH 5 superfusion. With either pH 5 or pH 3 superfusion (a) gastric pit lumens had the most divergent pH from luminal superfusates; (b) qualitatively similar results were observed with and without superfusion flow; (c) local mucus gel thickness was a poor predictor of surface pH values; and (d) no channels carrying primary gastric gland fluid through the mucus were observed. The model of gastric defense that includes an alkaline mucus gel and viscous fingering of secreted acid through the mucus may be appropriate at the intragastric pH of the fasted, but not fed, animal.
Collapse
Affiliation(s)
- S Chu
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | | | |
Collapse
|
40
|
Gonda T, Maouyo D, Rees SE, Montrose MH. Regulation of intracellular pH gradients by identified Na/H exchanger isoforms and a short-chain fatty acid. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G259-70. [PMID: 9887003 DOI: 10.1152/ajpgi.1999.276.1.g259] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Colonic luminal short-chain fatty acids (SCFA) stimulate electroneutral sodium absorption via activation of apical Na/H exchange. HT29-C1 cells were used previously to demonstrate that transepithelial SCFA gradients selectively activate polarized Na/H exchangers. Fluorometry and confocal microscopy (with BCECF and carboxy SNARF-1, respectively) are used to measure intracellular pH (pHi) in HT29-C1 cells, to find out which Na/H exchanger isoforms are expressed and if results are due to pHi gradients. Inhibition of Na/H exchange by HOE-694 identified 1) two inhibitory sites [50% inhibitory dose (ID50) = 1.6 and 0.05 microM] in suspended cells and 2) one inhibitory site each in the apical and basolateral membranes of filter-attached cells (apical ID50 = 1.4 microM, basolateral ID50 = 0.3 microM). RT-PCR detected mRNA of Na/H exchanger isoforms NHE1 and NHE2 but not of NHE3. Confocal microscopy of filter-attached cells reported HOE-694-sensitive pHi recovery in response to luminal or serosal 130 mM propionate. Confocal analysis along the apical-to-basal axis revealed that 1) luminal or serosal propionate establishes transcellular pHi gradients and 2) the predominant site of pHi acidification and pHi recovery is the apical portion of cells. Luminal propionate produced a significantly greater acidification of the apical vs. basal portion of the cell (compared with serosal propionate), but no other dependence on the orientation of the SCFA gradient was observed. Results provide direct evidence for a subcellular response that assures robust activation of apical NHE2 and dampening of basolateral NHE1 during pHi regulation.
Collapse
Affiliation(s)
- T Gonda
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Short chain fatty acids (SCFAs) have been the subject of much research over the past few decades. They play a vital role in maintenance of colonic integrity and metabolism. They are produced when dietary fibre is fermented by colonic bacteria. SCFAs are avidly absorbed in the colon, at the same time as sodium and water absorption and bicarbonate secretion. Once absorbed, SCFAs are used preferentially as fuel for colonic epithelial cells and have trophic effects on the epithelium. Clinically, SCFAs have been studied as possible therapeutic agents in diversion colitis, ulcerative colitis, radiation proctitis, pouchitis and antibiotic-associated diarrhoea. Although some promising effects have been observed in uncontrolled studies, a specific therapeutic role for SCFAs remains to be defined. SCFAs may be the effector of the beneficial role of fibre in prevention of colon cancer.
Collapse
Affiliation(s)
- S I Cook
- Division of Gastroenterology, The University of Texas-Houston Medical School, USA
| | | |
Collapse
|
42
|
von Engelhardt W, Bartels J, Kirschberger S, zu Düttingdorf HM, Busche R. Role of short‐chain fatty acids in the hind gut. Vet Q 1998. [DOI: 10.1080/01652176.1998.9694970] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
43
|
Abstract
The mechanism of fluid transport by leaky epithelia and the route taken by the transported fluid are in dispute. A consideration of current mathematical models for coupling of solutes and water, as well as the methodologies for the study of fluid transport, shows that local osmosis best accounts for water movement. Although it seems virtually certain that the tight junctions are water permeable, the fraction of absorbed fluid that crosses the tight junction cannot yet be determined with confidence.
Collapse
Affiliation(s)
- K R Spring
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-1603, USA.
| |
Collapse
|
44
|
Moore MA, Park CB, Tsuda H. Soluble and insoluble fiber influences on cancer development. Crit Rev Oncol Hematol 1998; 27:229-42. [PMID: 9649935 DOI: 10.1016/s1040-8428(98)00006-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- M A Moore
- Chemotherapy Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | |
Collapse
|
45
|
Charney AN, Micic L, Egnor RW. Nonionic diffusion of short-chain fatty acids across rat colon. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G518-24. [PMID: 9530153 DOI: 10.1152/ajpgi.1998.274.3.g518] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acid (SCFA) transport across the colon may occur by nonionic diffusion and/or via apical membrane SCFA-/HCO3- exchange. To examine the relative importance of these processes, stripped segments of rat (Ratus ratus) proximal and distal colon were studied in Ussing chambers, and the unidirectional fluxes of radiolabeled SCFA butyrate, propionate, or weakly metabolized isobutyrate were measured. In N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) or 1 or 5 mM HCO3- Ringer, decreases in mucosal pH stimulated mucosal-to-serosal flux (Jm-->s) of all SCFA, decreases in serosal pH stimulated serosal-to-mucosal flux (Js-->m), and bilateral pH decreases stimulated both fluxes equally. These effects were observed whether the SCFA was present on one or both sides of the tissue, in both proximal and distal colon, in the absence of luminal Na+, and in the presence of either luminal or serosal ouabain. Changes in intracellular pH or intracellular [HCO3-] did not account for the effects of extracellular pH. Luminal Cl- removal, to evaluate the role of apical membrane Cl-/SCFA- exchange, had no effect on Jm-->s but decreased Js-->m 32% at pH 6.5 and 22% at 7.2. Increasing SCFA concentration from 1 to 100 mM, at pH 6.4 or 7.4, caused a linear increase in Jm-->s. We conclude that SCFA are mainly transported across the rat colon by nonionic diffusion.
Collapse
Affiliation(s)
- A N Charney
- Nephrology Section, Veterans Affairs Medical Center, New York University School of Medicine, New York 10010, USA
| | | | | |
Collapse
|
46
|
Rajendran VM, Singh SK, Geibel J, Binder HJ. Differential localization of colonic H(+)-K(+)-ATPase isoforms in surface and crypt cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G424-9. [PMID: 9486199 DOI: 10.1152/ajpgi.1998.274.2.g424] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two distinct colonic H(+)-K(+)-adenosinetriphosphatase (H(+)-K(+)-ATPase) isoforms can be identified in part on the basis of their sensitivity to ouabain. The colonic H(+)-K(+)-ATPase alpha-subunit (HKc alpha) was recently cloned, and its message and protein are present in surface (and the upper 20% of crypt) cells in the rat distal colon. These studies were performed to establish the spatial distribution of the ouabain-sensitive and ouabain-insensitive components of both H(+)-K(+)-ATPase activity in apical membranes prepared from surface and crypt cells and K(+)-dependent intracellular pH (pHi) recovery from an acid load both in isolated perfused colonic crypts and in surface epithelial cells. Whereas H(+)-K(+)-ATPase activity in apical membranes from surface cells was 46% ouabain sensitive, its activity in crypt apical membranes was 96% ouabain sensitive. Similarly, K(+)-dependent pHi recovery in isolated crypts was completely ouabain sensitive, whereas in surface cells K(+)-dependent pHi recovery was insensitive to ouabain. These studies provide compelling evidence that HKc alpha encodes the colonic ouabain-insensitive H(+)-K(+)-ATPase and that a colonic ouabain-sensitive H(+)-K(+)-ATPase isoform is present in colonic crypts and remains to be cloned and identified.
Collapse
Affiliation(s)
- V M Rajendran
- Department of Internal Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells.
Collapse
Affiliation(s)
- K K Kaysinger
- Baxter Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | |
Collapse
|
48
|
Chu S, Montrose MH. Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:403-5. [PMID: 9366080 DOI: 10.1016/s0300-9629(96)00329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied pH regulation in both intracellular and extracellular compartments of mouse colonic crypts, using distal colonic mucosa with intact epithelial architecture. In this work, we question how transepithelial SCFA gradients affect intracellular pH (pHi) and examine interactions between extracellular pH (pHo) and pHi regulation in crypts of distal colonic epithelium from mouse. We studied pH regulation in three adjacent compartments of distal colonic epithelium (crypt lumen, crypt epithelial cell cytosol, and lamina propria) with SNARF-1 (a pH sensitive fluorescent dye), digital imaging microscopy (for pHi), and confocal microscopy (for pHo). Combining results from the three compartments allows us to find how pHi and pHo are regulated and related under the influence of physiological transepithelial SCFA gradients, and develop a better understanding of pH regulation mechanisms in colonic crypts. Results suggest a complex interdependency between SCFA fluxes and pHo values, which can directly affect how strongly SCFAs acidify colonocytes.
Collapse
Affiliation(s)
- S Chu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
49
|
Montrose MH, Chu S. Transepithelial SCFA gradients regulate polarized Na/H exchangers and pH microdomains in colonic epithelia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:389-93. [PMID: 9366077 DOI: 10.1016/s0300-9629(96)00326-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Short chain fatty acids (SCFAs) stimulate electroneutral sodium absorption by activation of apical Na/H exchange in colonocytes. It is often assumed that activation of Na/H exchange is via an intracellular acidification caused by SCFA uptake. These lecture notes review shortcomings in this model of SCFA-stimulated sodium absorption, revealed by recent reports in the literature. This is supplemented by information generated in our laboratory using both a tissue culture model of colonocytes (HT29-C1 cells) and a native tissue preparation (mouse distal colonic mucosa). In both preparations, evidence suggests that physiologic SCFA gradients may generate pH heterogeneity in aqueous microdomains near the plasma membrane of colonocytes. Finally, direct observation of such extracellular microdomains with confocal microscopy is used to support a new model, in which pH microdomains play an important role in regulating both SCFA fluxes and sodium absorption.
Collapse
Affiliation(s)
- M H Montrose
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
50
|
Hamra FK, Eber SL, Chin DT, Currie MG, Forte LR. Regulation of intestinal uroguanylin/guanylin receptor-mediated responses by mucosal acidity. Proc Natl Acad Sci U S A 1997; 94:2705-10. [PMID: 9122260 PMCID: PMC20153 DOI: 10.1073/pnas.94.6.2705] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Guanylin and uroguanylin are intestinal peptides that stimulate chloride secretion by activating a common set of receptor-guanylate cyclase signaling molecules located on the mucosal surface of enterocytes. High mucosal acidity, similar to the pH occurring within the fluid microclimate domain at the mucosal surface of the intestine, markedly enhances the cGMP accumulation responses of T84 human intestinal cells to uroguanylin. In contrast, a mucosal acidity of pH 5.0 renders guanylin essentially inactive. T84 cells were used as a model epithelium to further explore the concept that mucosal acidity imposes agonist selectivity for activation of the intestinal receptors for uroguanylin and guanylin, thus providing a rationale for the evolution of these related peptides. At an acidic mucosal pH of 5.0, uroguanylin is 100-fold more potent than guanylin, but at an alkaline pH of 8.0 guanylin is more potent than uroguanylin in stimulating intracellular cGMP accumulation and transepithelial chloride secretion. The relative affinities of uroguanylin and guanylin for binding to receptors on the mucosal surface of T84 cells is influenced dramatically by mucosal acidity, which explains the strong pH dependency of the cGMP and chloride secretion responses to these peptides. The guanylin-binding affinities for peptide-receptor interaction were reduced by 100-fold at pH 5 versus pH 8, whereas the affinities of uroguanylin for these receptors were increased 10-fold by acidic pH conditions. Deletion of the N-terminal acidic amino acids in uroguanylin demonstrated that these residues are responsible for the increase in binding affinities that are observed for uroguanylin at acidic pH. We conclude that guanylin and uroguanylin evolved distinctly different structures, which enables both peptides to regulate, in a pH-dependent fashion, the activity of receptors that control intestinal salt and water transport via cGMP.
Collapse
Affiliation(s)
- F K Hamra
- Department of Pharmacology, Missouri University, Columbia 65212, USA
| | | | | | | | | |
Collapse
|