1
|
Tserennadmid B, Nam MK, Park JH, Rhim H, Kang S. HAP/ClpP-mediated disaggregation and degradation of Mutant SOD1 aggregates: A potential therapeutic strategy for Amyotrophic lateral sclerosis (ALS). Biochem Biophys Res Commun 2025; 756:151533. [PMID: 40054065 DOI: 10.1016/j.bbrc.2025.151533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by the accumulation of misfolded Cu/Zn superoxide dismutase (SOD1) protein aggregates in motor neurons, leading to progressive motor dysfunction and ultimately death. While the molecular chaperone heat shock protein 104 (Hsp104) has been shown to reduce protein misfolding by disaggregating protein aggregates, fully degrading these disaggregated proteins remains a significant challenge. In this study, we have investigated the effects of Hsp104 and its hyperactive variant, HAP, in combination with caseinolytic protease P (CIpP), on the disaggregation and degradation of SOD1 aggregates. Using laser confocal microscopy, fluorescence loss in photobleaching (FLIP), and biomolecular fluorescence complementation (BiFC)-fluorescence resonance energy transfer (FRET) assays, we demonstrate that Hsp104 effectively disaggregates SOD1 aggregates across 14 different G93 mutants, classified based on the properties of substituted amino acids, thus restoring protein mobility. Notably, the HAP/CIpP system not only disaggregates ALS-associated SOD1G93A aggregates but also promotes their proteolytic degradation, as evidenced by a significant reduction in high-order oligomers observed through BiFC and FRET assays. This dual mechanism of action presents. the HAP/CIpP system holds significant therapeutic potential for ALS and other neurodegenerative diseases characterized by protein aggregates, as it enables both effective disaggregation and degradation of toxic protein aggregates, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Battur Tserennadmid
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min-Kyung Nam
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ju-Hwang Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Bajpai A, Bharathi V, Patel BK. Therapeutic targeting of the oxidative stress generated by pathological molecular pathways in the neurodegenerative diseases, ALS and Huntington's. Eur J Pharmacol 2025; 987:177187. [PMID: 39645221 DOI: 10.1016/j.ejphar.2024.177187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Neurodegenerative disorders are characterized by a progressive decline of specific neuronal populations in the brain and spinal cord, typically containing aggregates of one or more proteins. They can result in behavioral alterations, memory loss and a decline in cognitive and motor abilities. Various pathways and mechanisms have been outlined for the potential treatment of these diseases, where redox regulation is considered as one of the most common druggable targets. For example, in amyotrophic lateral sclerosis (ALS) with superoxide dismutase-1 (SOD1) pathology, there is a downregulation of the antioxidant response nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. TDP-43 proteinopathy in ALS is associated with elevated levels of reactive oxygen species and mitochondrial dyshomeostasis. In ALS with mutant FUS, poly ADP ribose polymerase-dependent X ray repair cross complementing 1/DNA-ligase recruitment to the sites of oxidative DNA damage is affected, thereby causing defects in DNA damage repair. Oxidative stress in Huntington's disease (HD) with mutant huntingtin accumulation manifests as protein oxidation, metabolic energetics dysfunction, metal ion dyshomeostasis, DNA damage and mitochondrial dysfunction. The impact of oxidative stress in the progression of these diseases further warrants studies into the role of antioxidants in their treatment. While an antioxidant, edaravone, has been approved for therapeutics of ALS, numerous antioxidant molecules failed to pass the clinical trials despite promising initial studies. In this review, we summarize the oxidative stress pathways and redox modulators that are investigated in ALS and HD using various models.
Collapse
Affiliation(s)
- Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
3
|
Martin LJ, Koh SJ, Price A, Park D, Kim BW. Nuclear Localization of Human SOD1 in Motor Neurons in Mouse Model and Patient Amyotrophic Lateral Sclerosis: Possible Links to Cholinergic Phenotype, NADPH Oxidase, Oxidative Stress, and DNA Damage. Int J Mol Sci 2024; 25:9106. [PMID: 39201793 PMCID: PMC11354607 DOI: 10.3390/ijms25169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that causes degeneration of motor neurons (MNs) and paralysis. ALS can be caused by mutations in the gene that encodes copper/zinc superoxide dismutase (SOD1). SOD1 is known mostly as a cytosolic antioxidant protein, but SOD1 is also in the nucleus of non-transgenic (tg) and human SOD1 (hSOD1) tg mouse MNs. SOD1's nuclear presence in different cell types and subnuclear compartmentations are unknown, as are the nuclear functions of SOD1. We examined hSOD1 nuclear localization and DNA damage in tg mice expressing mutated and wildtype variants of hSOD1 (hSOD1-G93A and hSOD1-wildtype). We also studied ALS patient-derived induced pluripotent stem (iPS) cells to determine the nuclear presence of SOD1 in undifferentiated and differentiated MNs. In hSOD1-G93A and hSOD1-wildtype tg mice, choline acetyltransferase (ChAT)-positive MNs had nuclear hSOD1, but while hSOD1-wildtype mouse MNs also had nuclear ChAT, hSOD1-G93A mouse MNs showed symptom-related loss of nuclear ChAT. The interneurons had preserved parvalbumin nuclear positivity in hSOD1-G93A mice. hSOD1-G93A was seen less commonly in spinal cord astrocytes and, notably, oligodendrocytes, but as the disease emerged, the oligodendrocytes had increased mutant hSOD1 nuclear presence. Brain and spinal cord subcellular fractionation identified mutant hSOD1 in soluble nuclear extracts of the brain and spinal cord, but mutant hSOD1 was concentrated in the chromatin nuclear extract only in the spinal cord. Nuclear extracts from mutant hSOD1 tg mouse spinal cords had altered protein nitration, footprinting peroxynitrite presence, and the intact nuclear extracts had strongly increased superoxide production as well as the active NADPH oxidase marker, p47phox. The comet assay showed that MNs from hSOD1-G93A mice progressively (6-14 weeks of age) accumulated DNA single-strand breaks. Ablation of the NCF1 gene, encoding p47phox, and pharmacological inhibition of NADPH oxidase with systemic treatment of apocynin (10 mg/kg, ip) extended the mean lifespan of hSOD1-G93A mice by about 25% and mitigated genomic DNA damage progression. In human postmortem CNS, SOD1 was found in the nucleus of neurons and glia; nuclear SOD1 was increased in degenerating neurons in ALS cases and formed inclusions. Human iPS cells had nuclear SOD1 during directed differentiation to MNs, but mutant SOD1-expressing cells failed to establish wildtype MN nuclear SOD1 levels. We conclude that SOD1 has a prominent nuclear presence in the central nervous system, perhaps adopting aberrant contexts to participate in ALS pathobiology.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Shannon J. Koh
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Antionette Price
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Dongseok Park
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Byung Woo Kim
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
4
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
6
|
Wu DD, Jin S, Cheng RX, Cai WJ, Xue WL, Zhang QQ, Yang LJ, Zhu Q, Li MY, Lin G, Wang YZ, Mu XP, Wang Y, Zhang IY, Zhang Q, Chen Y, Cai SY, Tan B, Li Y, Chen YQ, Zhang PJ, Sun C, Yin Y, Wang MJ, Zhu YZ, Tao BB, Zhou JH, Huang WX, Zhu YC. Hydrogen sulfide functions as a micro-modulator bound at the copper active site of Cu/Zn-SOD to regulate the catalytic activity of the enzyme. Cell Rep 2023; 42:112750. [PMID: 37421623 DOI: 10.1016/j.celrep.2023.112750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023] Open
Abstract
The present study examines whether there is a mechanism beyond the current concept of post-translational modifications to regulate the function of a protein. A small gas molecule, hydrogen sulfide (H2S), was found to bind at active-site copper of Cu/Zn-SOD using a series of methods including radiolabeled binding assay, X-ray absorption near-edge structure (XANES), and crystallography. Such an H2S binding enhanced the electrostatic forces to guide the negatively charged substrate superoxide radicals to the catalytic copper ion, changed the geometry and energy of the frontier molecular orbitals of the active site, and subsequently facilitated the transfer of an electron from the superoxide radical to the catalytic copper ion and the breakage of the copper-His61 bridge. The physiological relevance of such an H2S effect was also examined in both in vitro and in vivo models where the cardioprotective effects of H2S were dependent on Cu/Zn-SOD.
Collapse
Affiliation(s)
- Dong-Dong Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sheng Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Physiology, Hebei Medical University, 361 Zhongshan Road, Shijiazhuang 050017, China
| | - Ruo-Xiao Cheng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Jie Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wen-Long Xue
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qing-Qing Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Le-Jie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qi Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Pan Mu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Igor Ying Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Sheng-Yang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yun-Qian Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Pu-Juan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China; State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China
| | - Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jia-Hai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wei-Xue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
7
|
Cunha-Oliveira T, Silva DF, Segura L, Baldeiras I, Marques R, Rosenstock T, Oliveira PJ, Silva FSG. Redox profiles of amyotrophic lateral sclerosis lymphoblasts with or without known SOD1 mutations. Eur J Clin Invest 2022; 52:e13798. [PMID: 35467758 DOI: 10.1111/eci.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease that affects motor neurons. This disease is associated with oxidative stress especially in mutant superoxide dismutase 1 (mutSOD1) patients. However, less is known for the most prevalent sporadic ALS form, due to a lack of disease models. Here, we studied oxidative stress profiles in lymphoblasts from ALS patients with mutSOD1 or unknown (undSOD1) mutations. METHODS mutSOD1 and undSOD1 lymphoblasts, as well as sex/age-matched controls (3/group) were obtained from Coriell and divided into 46 years-old-men (C1), 46 years-old-women (C2) or 26/27 years-old-men (C3) cohorts. Growth curves were performed, and several parameters associated with redox homeostasis were evaluated, including SOD activity and expression, general oxidative stress levels, lipid peroxidation, response to oxidative stimulus, glutathione redox cycle, catalase expression, and activity, and Nrf2 transcripts. Pooled (all cohorts) and paired (intra-cohort) statistical analyses were performed, followed by clustering and principal component analyses (PCA). RESULTS Although a high heterogeneity among lymphoblast redox profiles was found between cohorts, clustering analysis based on 7 parameters with high chi-square ranking (total SOD activity, oxidative stress levels, catalase transcripts, SOD1 protein levels, metabolic response to mM concentrations of tert-butyl hydroperoxide, glutathione reductase activity, and Nrf2 transcript levels) provided a perfect cluster segregation between samples from healthy controls and ALS (undSOD1 and mutSOD1), also visualized in the PCA. CONCLUSIONS Our results show distinct redox signatures in lymphoblasts from mutSOD1, undSOD1 and healthy controls that can be used as therapeutic targets for ALS drug development.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Daniela Franco Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Segura
- Santa Casa de São Paulo School of Medical Science, Physiological Sciences, São Paulo, Brazil
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Health School of the Polytechnic Institute of Guarda, Guarda, Portugal
| | - Tatiana Rosenstock
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil.,Sygnature Discovery, In vitro Neuroscience, Nottingham, UK
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filomena S G Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Mitotag Lda, Cantanhede, Portugal
| |
Collapse
|
8
|
Cunha-Oliveira T, Carvalho M, Sardão V, Ferreiro E, Mena D, Pereira FB, Borges F, Oliveira PJ, Silva FSG. Integrative Profiling of Amyotrophic Lateral Sclerosis Lymphoblasts Identifies Unique Metabolic and Mitochondrial Disease Fingerprints. Mol Neurobiol 2022; 59:6373-6396. [PMID: 35933467 DOI: 10.1007/s12035-022-02980-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age-/sex-matched controls. Three groups of lymphoblasts, from mutSOD1 or undSOD1 ALS patients and age-/sex-matched controls, were obtained from Coriell Biobank and divided into 3 age-/sex-matched cohorts. Mitochondria-associated metabolic pathways were analyzed using Seahorse MitoStress and ATP Rate assays, complemented with metabolic phenotype microarrays, metabolite levels, gene expression, and protein expression and activity. Pooled (all cohorts) and paired (intra-cohort) analyses were performed by using bioinformatic tools, and the features with higher information gain values were selected and used for principal component analysis and Naïve Bayes classification. Considering the group as a target, the features that contributed to better segregation of control, undSOD1, and mutSOD1 were found to be the protein levels of Tfam and glycolytic ATP production rate. Metabolic phenotypic profiles in lymphoblasts from ALS patients with mutSOD1 and undSOD1 revealed unique age-dependent different substrate oxidation profiles. For most parameters, different patterns of variation in experimental endpoints in lymphoblasts were found between cohorts, which may be due to the age or sex of the donor. In the present work, we investigated several metabolic and mitochondrial hallmarks in lymphoblasts from each donor, and although a high heterogeneity of results was found, we identified specific metabolic and mitochondrial fingerprints, especially protein levels of Tfam and glycolytic ATP production rate, that may have a diagnostic and therapeutic interest.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Marcelo Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Vilma Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Débora Mena
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Francisco B Pereira
- CISUC-Center for Informatics & Systems, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filomena S G Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Mitotag Lda, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
9
|
SOD1 gains pro-oxidant activity upon aberrant oligomerization: change in enzymatic activity by intramolecular disulfide bond cleavage. Sci Rep 2022; 12:11750. [PMID: 35817830 PMCID: PMC9273606 DOI: 10.1038/s41598-022-15701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Copper-zinc superoxide dismutase (SOD1) has been proposed as one of the causative proteins of amyotrophic lateral sclerosis (ALS). The accumulation of non-native conformers, oligomers, and aggregates of SOD1 in motor neurons is considered responsible for this disease. However, it remains unclear which specific feature of these species induces the onset of ALS. In this study, we showed that disulfide-linked oligomers of denatured SOD1 exhibit pro-oxidant activity. Substituting all the cysteine residues in the free thiol state with serine resulted in the loss of both the propensity to oligomerize and the increase in pro-oxidant activity after denaturation. In contrast, these cysteine mutants oligomerized and acquired the pro-oxidant activity after denaturation in the presence of a reductant that cleaves the intramolecular disulfide bond. These results indicate that one of the toxicities of SOD1 oligomers is the pro-oxidant activity induced by scrambling of the disulfide bonds. Small oligomers such as dimers and trimers exhibit stronger pro-oxidant activity than large oligomers and aggregates, consistent with the trend of the cytotoxicity of oligomers and aggregates reported in previous studies. We propose that the cleavage of the intramolecular disulfide bond accompanied by the oligomerization reduces the substrate specificity of SOD1, leading to the non-native enzymatic activity.
Collapse
|
10
|
Yamashita H, Komine O, Fujimori-Tonou N, Yamanaka K. Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Front Cell Neurosci 2022; 16:1045647. [PMID: 36687517 PMCID: PMC9846815 DOI: 10.3389/fncel.2022.1045647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Non-cell autonomous mechanisms are involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), an adult neurodegenerative disease characterized by selective motor neuron loss. While the emerging role of glial cells in ALS has been noted, the detailed cell-type-specific role of glial cells has not been clarified. Here, we examined mRNA expression changes using microarrays of the spinal cords of three distinct lines of mutant superoxide dismutase (SOD) 1 transgenic mice, an established ALS model. Our analysis used a transcriptome database of component cell types in the central nervous system (CNS), as well as SOD1 G93A cell-type transcriptomes. More than half of the differentially expressed genes (DEGs) were highly expressed in microglia, and enrichment analysis of DEGs revealed that immunological reactions were profoundly involved and some transcription factors were upregulated. Our analysis focused on DEGs that are highly expressed in each cell type, as well as chemokines, caspases, and heat shock proteins. Disease-associated microglial genes were upregulated, while homeostatic microglial genes were not, and galectin-3 (Mac2), a known activated microglial marker, was predicted to be ectopically expressed in astrocytes in mutant SOD1 mice. In mutant SOD1 mice, we developed a prediction model for the pathophysiology of different cell types related to TREM2, apolipoprotein E, and lipoproteins. Our analysis offers a viable resource to understand not only the molecular pathologies of each CNS constituent cell type, but also the cellular crosstalk between different cell types under both physiological and pathological conditions in model mice for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Hirofumi Yamashita
- Department of Neurology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan.,Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Noriko Fujimori-Tonou
- Support Unit for Bio-Material Analysis, RRD, RIKEN Center for Brain Science, Wako, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
12
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
13
|
Liguori F, Amadio S, Volonté C. Where and Why Modeling Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22083977. [PMID: 33921446 PMCID: PMC8070525 DOI: 10.3390/ijms22083977] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Over the years, researchers have leveraged a host of different in vivo models in order to dissect amyotrophic lateral sclerosis (ALS), a neurodegenerative/neuroinflammatory disease that is heterogeneous in its clinical presentation and is multigenic, multifactorial and non-cell autonomous. These models include both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs and, more recently, non-human primates. Despite their obvious differences and peculiarities, only the concurrent and comparative analysis of these various systems will allow the untangling of the causes and mechanisms of ALS for finally obtaining new efficacious therapeutics. However, harnessing these powerful organisms poses numerous challenges. In this context, we present here an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of the disease have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression. We describe common features as well as discrepancies among these models, highlighting new insights and emerging roles for experimental organisms in ALS.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI—CNR), 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3084
| |
Collapse
|
14
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
15
|
Martin LJ, Wong M. Skeletal Muscle-Restricted Expression of Human SOD1 in Transgenic Mice Causes a Fatal ALS-Like Syndrome. Front Neurol 2020; 11:592851. [PMID: 33381076 PMCID: PMC7767933 DOI: 10.3389/fneur.2020.592851] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal heterogeneous neurodegenerative disease that causes motor neuron (MN) loss and skeletal muscle paralysis. It is uncertain whether this degeneration of MNs is triggered intrinsically and is autonomous, or if the disease initiating mechanisms are extrinsic to MNs. We hypothesized that skeletal muscle is a primary site of pathogenesis in ALS that triggers MN degeneration. Some inherited forms of ALS are caused by mutations in the superoxide dismutase-1 (SOD1) gene, that encodes an antioxidant protein, so we created transgenic (tg) mice expressing wild-type-, G37R-, and G93A-human SOD1 gene variants only in skeletal muscle. Presence of human SOD1 (hSOD1) protein in skeletal muscle was verified by western blotting, enzyme activity gels, and immunofluorescence in myofibers and satellite cells. These tg mice developed limb weakness and paresis with motor deficits, limb and chest muscle wasting, diaphragm atrophy, and age-related fatal disease with a lifespan shortening of 10–16%. Brown and white adipose tissue also became wasted. Myofibers of tg mice developed crystalline-like inclusions, individualized sarcomere destruction, mitochondriopathy with vesiculation, DNA damage, and activated p53. Satellite cells became apoptotic. The diaphragm developed severe loss of neuromuscular junction presynaptic and postsynaptic integrity, including decreased innervation, loss of synaptophysin, nitration of synaptophysin, and loss of nicotinic acetylcholine receptor and scaffold protein rapsyn. Co-immunoprecipitation identified hSOD1 interaction with rapsyn. Spinal cords of tg mice developed gross atrophy. Spinal MNs formed cytoplasmic and nuclear inclusions, axonopathy, mitochondriopathy, accumulated DNA damage, activated p53 and cleaved caspase-3, and died. Tg mice had a 40–50% loss of MNs. This work shows that hSOD1 in skeletal muscle is a driver of pathogenesis in ALS, that involves myofiber and satellite cell toxicity, and apparent muscle-adipose tissue disease relationships. It also identifies a non-autonomous mechanism for MN degeneration explaining their selective vulnerability as likely a form of target-deprivation retrograde neurodegeneration.
Collapse
Affiliation(s)
- Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Margaret Wong
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
17
|
Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet 2020; 34:527-548. [DOI: 10.1080/01677063.2020.1803302] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph J. H. Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Issa A. McKinnon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Liu L, Killoy KM, Vargas MR, Yamamoto Y, Pehar M. Effects of RAGE inhibition on the progression of the disease in hSOD1 G93A ALS mice. Pharmacol Res Perspect 2020; 8:e00636. [PMID: 32776498 PMCID: PMC7415959 DOI: 10.1002/prp2.636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes play a key role in the progression of amyotrophic lateral sclerosis (ALS) by actively inducing the degeneration of motor neurons. Motor neurons isolated from receptor for advanced glycation end products (RAGE)-knockout mice are resistant to the neurotoxic signal derived from ALS-astrocytes. Here, we confirmed that in a co-culture model, the neuronal death induced by astrocytes over-expressing the ALS-linked mutant hSOD1G93A is prevented by the addition of the RAGE inhibitors FPS-ZM1 or RAP. These inhibitors also prevented the motor neuron death induced by spinal cord extracts from symptomatic hSOD1G93A mice. To evaluate the relevance of this neurotoxic mechanism in ALS pathology, we assessed the therapeutic potential of FPS-ZM1 in hSOD1G93A mice. FPS-ZM1 treatment significantly improved hind-limb grip strength in hSOD1G93A mice during the progression of the disease, reduced the expression of atrophy markers in the gastrocnemius muscle, improved the survival of large motor neurons, and reduced gliosis in the ventral horn of the spinal cord. However, we did not observe a statistically significant effect of the drug in symptoms onset nor in the survival of hSOD1G93A mice. Maintenance of hind-limb grip strength was also observed in hSOD1G93A mice with RAGE haploinsufficiency [hSOD1G93A ;RAGE(+/-)], further supporting the beneficial effect of RAGE inhibition on muscle function. However, no benefits were observed after complete RAGE ablation. Moreover, genetic RAGE ablation significantly shortened the median survival of hSOD1G93A mice. These results indicate that the advance of new therapies targeting RAGE in ALS demands a better understanding of its physiological role in a cell type/tissue-specific context.
Collapse
Affiliation(s)
- Liping Liu
- Biomedical Sciences Training ProgramDepartment of Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | - Kelby M. Killoy
- Biomedical Sciences Training ProgramDepartment of Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | | | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular BiologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Mariana Pehar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- Geriatric Research Education Clinical CenterVeterans Affairs Medical CenterMadisonWIUSA
| |
Collapse
|
19
|
Clark EM, Nonarath HJT, Bostrom JR, Link BA. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech 2020; 13:dmm.041426. [PMID: 31852729 PMCID: PMC6994954 DOI: 10.1242/dmm.041426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of endoplasmic reticulum (ER) stress is associated with diverse developmental and degenerative diseases. Modified ER homeostasis causes activation of conserved stress pathways at the ER called the unfolded protein response (UPR). ATF6 is a transcription factor activated during ER stress as part of a coordinated UPR. ATF6 resides at the ER and, upon activation, is transported to the Golgi apparatus, where it is cleaved by proteases to create an amino-terminal cytoplasmic fragment (ATF6f). ATF6f translocates to the nucleus to activate transcriptional targets. Here, we describe the establishment and validation of zebrafish reporter lines for ATF6 activity. These transgenic lines are based on a defined and multimerized ATF6 consensus site, which drives either eGFP or destabilized eGFP, enabling dynamic study of ATF6 activity during development and disease. The results show that the reporter is specific for the ATF6 pathway, active during development and induced in disease models known to engage UPR. Specifically, during development, ATF6 activity is highest in the lens, skeletal muscle, fins and gills. The reporter is also activated by common chemical inducers of ER stress, including tunicamycin, thapsigargin and brefeldin A, as well as by heat shock. In models for amyotrophic lateral sclerosis and cone dystrophy, ATF6 reporter expression is induced in spinal cord interneurons or photoreceptors, respectively, suggesting a role for ATF6 response in multiple neurodegenerative diseases. Collectively our results show that these ATF6 reporters can be used to monitor ATF6 activity changes throughout development and in zebrafish models of disease. This article has an associated First Person interview with the first author of the paper. Summary: In this study, we validate transgenic zebrafish generated to specifically report the activity of ATF6, representing a major branch of the endoplasmic reticulum stress pathway with functions in development and disease.
Collapse
Affiliation(s)
- Eric M Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Hannah J T Nonarath
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| |
Collapse
|
20
|
Calabria E, Scambi I, Bonafede R, Schiaffino L, Peroni D, Potrich V, Capelli C, Schena F, Mariotti R. ASCs-Exosomes Recover Coupling Efficiency and Mitochondrial Membrane Potential in an in vitro Model of ALS. Front Neurosci 2019; 13:1070. [PMID: 31680811 PMCID: PMC6811497 DOI: 10.3389/fnins.2019.01070] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneurons death. Mutations in the superoxide dismutase 1 (SOD1) protein have been identified to be related to the disease. Beyond the different altered pathways, the mitochondrial dysfunction is one of the major features that leads to the selective death of motoneurons in ALS. The NSC-34 cell line, overexpressing human SOD1(G93A) mutant protein [NSC-34(G93A)], is considered an optimal in vitro model to study ALS. Here we investigated the energy metabolism in NSC-34(G93A) cells and in particular the effect of the mutated SOD1(G93A) protein on the mitochondrial respiratory capacity (complexes I-IV) by high resolution respirometry (HRR) and cytofluorimetry. We demonstrated that NSC-34(G93A) cells show a reduced mitochondrial oxidative capacity. In particular, we found significant impairment of the complex I-linked oxidative phosphorylation, reduced efficiency of the electron transfer system (ETS) associated with a higher rate of dissipative respiration, and a lower membrane potential. In order to rescue the effect of the mutated SOD1 gene on mitochondria impairment, we evaluated the efficacy of the exosomes, isolated from adipose-derived stem cells, administrated on the NSC-34(G93A) cells. These data show that ASCs-exosomes are able to restore complex I activity, coupling efficiency and mitochondrial membrane potential. Our results improve the knowledge about mitochondrial bioenergetic defects directly associated with the SOD1(G93A) mutation, and prove the efficacy of adipose-derived stem cells exosomes to rescue the function of mitochondria, indicating that these vesicles could represent a valuable approach to target mitochondrial dysfunction in ALS.
Collapse
Affiliation(s)
- Elisa Calabria
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniele Peroni
- Department of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Valentina Potrich
- Department of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Carlo Capelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Physical Perfomances, Norwegian School of Sport Sciences, Oslo, Norway
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Aras A, Bursal E, Türkan F, Tohma H, Kılıç Ö, Gülçin İ, Köksal E. Phytochemical Content, Antidiabetic, Anticholinergic, and Antioxidant Activities of Endemic
Lecokia cretica
Extracts. Chem Biodivers 2019; 16:e1900341. [DOI: 10.1002/cbdv.201900341] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and ArtsIgdır University 76100 Igdır Turkey
| | - Ercan Bursal
- Department of Nursing, School of HealthMuş Alparslan University 49250 Mus Turkey
| | - Fikret Türkan
- Health Services Vocational SchoolIgdır University 76100 Igdır Turkey
| | - Hatice Tohma
- Department of Chemistry, Faculty of ScienceErzincan University 26100 Erzincan Turkey
| | - Ömer Kılıç
- Department of Pharmaceutical Professional Sciences, Pharmacy FacultyAdıyaman University 02100 Adıyaman Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of ScienceAtatürk University 25100 Erzurum Turkey
| | - Ekrem Köksal
- Department of Chemistry, Faculty of ScienceErzincan University 26100 Erzincan Turkey
| |
Collapse
|
22
|
Molecular Docking and Site-Directed Mutagenesis of Dichloromethane Dehalogenase to Improve Enzyme Activity for Dichloromethane Degradation. Appl Biochem Biotechnol 2019; 190:487-505. [DOI: 10.1007/s12010-019-03106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
23
|
A potassium channel β-subunit couples mitochondrial electron transport to sleep. Nature 2019; 568:230-234. [PMID: 30894743 DOI: 10.1038/s41586-019-1034-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain's sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections to the dorsal fan-shaped body (dFB) adjust their electrical output to sleep need4, via the antagonistic regulation of two potassium conductances: the leak channel Sandman imposes silence during waking, whereas increased A-type currents through Shaker support tonic firing during sleep5. Here we show that oxidative byproducts of mitochondrial electron transport6,7 regulate the activity of dFB neurons through a nicotinamide adenine dinucleotide phosphate (NADPH) cofactor bound to the oxidoreductase domain8,9 of Shaker's KVβ subunit, Hyperkinetic10,11. Sleep loss elevates mitochondrial reactive oxygen species in dFB neurons, which register this rise by converting Hyperkinetic to the NADP+-bound form. The oxidation of the cofactor slows the inactivation of the A-type current and boosts the frequency of action potentials, thereby promoting sleep. Energy metabolism, oxidative stress, and sleep-three processes implicated independently in lifespan, ageing, and degenerative disease6,12-14-are thus mechanistically connected. KVβ substrates8,15,16 or inhibitors that alter the ratio of bound NADPH to NADP+ (and hence the record of sleep debt or waking time) represent prototypes of potential sleep-regulatory drugs.
Collapse
|
24
|
Proteomic analysis of protein homeostasis and aggregation. J Proteomics 2018; 198:98-112. [PMID: 30529741 DOI: 10.1016/j.jprot.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) refers to the ability of cells to preserve the correct balance between protein synthesis, folding and degradation. Proteostasis is essential for optimal cell growth and survival under stressful conditions. Various extracellular and intracellular stresses including heat shock, oxidative stress, proteasome malfunction, mutations and aging-related modifications can result in disturbed proteostasis manifested by enhanced misfolding and aggregation of proteins. To limit protein misfolding and aggregation cells have evolved various strategies including molecular chaperones, proteasome system and autophagy. Molecular chaperones assist folding of proteins, protect them from denaturation and facilitate renaturation of the misfolded polypeptides, whereas proteasomes and autophagosomes remove the irreversibly damaged proteins. The impairment of proteostasis results in protein aggregation that is a major pathological hallmark of numerous age-related disorders, such as cataract, Alzheimer's, Parkinson's, Huntington's, and prion diseases. To discover protein markers and speed up diagnosis of neurodegenerative diseases accompanied by protein aggregation, proteomic tools have increasingly been used in recent years. Systematic and exhaustive analysis of the changes that occur in the proteomes of affected tissues and biofluids in humans or in model organisms is one of the most promising approaches to reveal mechanisms underlying protein aggregation diseases, improve their diagnosis and develop therapeutic strategies. Significance: In this review we outline the elements responsible for maintaining cellular proteostasis and present the overview of proteomic studies focused on protein-aggregation diseases. These studies provide insights into the mechanisms responsible for age-related disorders and reveal new potential biomarkers for Alzheimer's, Parkinson's, Huntigton's and prion diseases.
Collapse
|
25
|
Yang M, Xu Y, Heisner JS, Sun J, Stowe DF, Kwok WM, Camara AKS. Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria. Mitochondrion 2018; 46:380-392. [PMID: 30391711 DOI: 10.1016/j.mito.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022]
Abstract
Cardiac ischemia and reperfusion (IR) injury induces excessive emission of deleterious reactive O2 and N2 species (ROS/RNS), including the non-radical oxidant peroxynitrite (ONOO-) that can cause mitochondria dysfunction and cell death. In this study, we explored whether IR injury in isolated hearts induces tyrosine nitration of adenine nucleotide translocase (ANT) and alters its interaction with the voltage-dependent anion channel 1 (VDAC1). We found that IR injury induced tyrosine nitration of ANT and that exposure of isolated cardiac mitochondria to ONOO- induced ANT tyrosine, Y81, nitration. The exposure of isolated cardiac mitochondria to ONOO- also led ANT to form high molecular weight proteins and dissociation of ANT from VDAC1. We found that IR injury in isolated hearts, hypoxic injury in H9c2 cells, and ONOO- treatment of H9c2 cells and isolated mitochondria, each decreased mitochondrial bound-hexokinase II (HK II), which suggests that ONOO- caused HK II to dissociate from mitochondria. Moreover, we found that mitochondria exposed to ONOO- induced VDAC1 oligomerization which may decrease its binding with HK II. We have reported that ONOO- produced during cardiac IR injury induced tyrosine nitration of VDAC1, which resulted in conformational changes of the protein and increased channel conductance associated with compromised cardiac function on reperfusion. Thus, our results imply that ONOO- produced during IR injury and hypoxic stress impeded HK II association with VDAC1. ONOO- exposure nitrated mitochondrial proteins and also led to cytochrome c (cyt c) release from mitochondria. In addition, in isolated mitochondria exposed to ONOO- or obtained after IR, there was significant compromise in mitochondrial respiration and delayed repolarization of membrane potential during oxidative (ADP) phosphorylation. Taken together, ONOO- produced during cardiac IR injury can nitrate tyrosine residues of two key mitochondrial membrane proteins involved in bioenergetics and energy transfer to contribute to mitochondrial and cellular dysfunction.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yanji Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Sun
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Institute of Clinical Medicine Research, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China; Department of Gastroenterology and Hepatology, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Baseggio Conrado A, Maina S, Moseley H, Francioso A, Mosca L, Capuozzo E, Fontana M. Carbonate Anion Radical Generated by the Peroxidase Activity of Copper-Zinc Superoxide Dismutase: Scavenging of Radical and Protection of Enzyme by Hypotaurine and Cysteine Sulfinic Acid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:551-561. [PMID: 28849481 DOI: 10.1007/978-94-024-1079-2_43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Copper-zinc superoxide dismutase (SOD) is considered one of the most important mammalian antioxidant defenses and plays a relevant role due to its main function in catalyzing the dismutation of superoxide anion to oxygen and hydrogen peroxide. However, interaction between SOD and H2O2 produced a strong copper-bound oxidant (Cu(II)•OH) that seems able to contrast the self-inactivation of the enzyme or oxidize other molecules through its peroxidase activity. The bicarbonate presence enhances the peroxidase activity and produces the carbonate anion radical (CO3•-). CO3•- is a freely diffusible reactive species capable of oxidizing several molecules that are unwieldy to access into the reactive site of the enzyme. Cu(II)•OH oxidizes bicarbonate to the CO3•-, which spreads out of the binding site and oxidizes hypotaurine and cysteine sulfinic acid to the respective sulfonates through an efficient reaction. These findings suggest a defense role for sulfinates against the damage caused by CO3•- . The effect of hypotaurine and cysteine sulfinic acid on the CO3•--mediated oxidation of the peroxidase probe ABTS to ABTS cation radical (ABTS•+) has been studied. Both sulfinates are able to inhibit the oxidation of ABTS mediated by CO3•-. The effect of hypotaurine and cysteine sulfinic acid against SOD inactivation by H2O2 (~42% protection of enzyme activity) has also been investigated. Interestingly, hypotaurine and cysteine sulfinic acid partially avoid the H2O2-mediated SOD inactivation, suggesting that the two sulfinates may have access to the SOD reactive site and preserve it by reacting with the copper-bound oxidant. In this way hypotaurine and cysteine sulfinic acid not only intercept CO3•- which could move out from the reactive site and cause oxidative damage, but also prevents the inactivation of SOD.
Collapse
Affiliation(s)
- Alessia Baseggio Conrado
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Piazzale Aldo Moro, Rome, Italy.
- Photobiology Unit, University of Dundee, Ninewells Hospital and School of Mecine, Dundee, DD1 9SY, UK.
| | - Simonetta Maina
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Piazzale Aldo Moro, Rome, Italy
| | - Harry Moseley
- Photobiology Unit, University of Dundee, Ninewells Hospital and School of Mecine, Dundee, DD1 9SY, UK
| | - Antonio Francioso
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Piazzale Aldo Moro, Rome, Italy
| | - Luciana Mosca
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Piazzale Aldo Moro, Rome, Italy
| | - Elisabetta Capuozzo
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Piazzale Aldo Moro, Rome, Italy
| | - Mario Fontana
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Piazzale Aldo Moro, Rome, Italy
| |
Collapse
|
27
|
Activation of Phosphotyrosine-Mediated Signaling Pathways in the Cortex and Spinal Cord of SOD1 G93A, a Mouse Model of Familial Amyotrophic Lateral Sclerosis. Neural Plast 2018; 2018:2430193. [PMID: 30154836 PMCID: PMC6098854 DOI: 10.1155/2018/2430193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/06/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Degeneration of cortical and spinal motor neurons is the typical feature of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease for which a pathogenetic role for the Cu/Zn superoxide dismutase (SOD1) has been demonstrated. Mice overexpressing a mutated form of the SOD1 gene (SOD1G93A) develop a syndrome that closely resembles the human disease. The SOD1 mutations confer to this enzyme a “gain-of-function,” leading to increased production of reactive oxygen species. Several oxidants induce tyrosine phosphorylation through direct stimulation of kinases and/or phosphatases. In this study, we analyzed the activities of src and fyn tyrosine kinases and of protein tyrosine phosphatases in synaptosomal fractions prepared from the motor cortex and spinal cord of transgenic mice expressing SOD1G93A. We found that (i) protein phosphotyrosine level is increased, (ii) src and fyn activities are upregulated, and (iii) the activity of tyrosine phosphatases, including the striatal-enriched tyrosine phosphatase (STEP), is significantly decreased. Moreover, the NMDA receptor (NMDAR) subunit GluN2B tyrosine phosphorylation was upregulated in SOD1G93A. Tyrosine phosphorylation of GluN2B subunits regulates the NMDAR function and the recruitment of downstream signaling molecules. Indeed, we found that proline-rich tyrosine kinase 2 (Pyk2) and ERK1/2 kinase are upregulated in SOD1G93A mice. These results point out an involvement of tyrosine kinases and phosphatases in the pathogenesis of ALS.
Collapse
|
28
|
Liu Y, Wang YM, Sedano S, Jiang Q, Duan Y, Shen W, Jiang JH, Zhong W. Encapsulation of ionic nanoparticles produces reactive oxygen species (ROS)-responsive microgel useful for molecular detection. Chem Commun (Camb) 2018; 54:4329-4332. [PMID: 29637948 DOI: 10.1039/c8cc01432a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Encapsulation of ionic nanoparticles in a hydrogel microparticle, i.e. microgel, produces a target-stimulated probe for molecular detection. Selective reactive oxygen species (ROS) release the enclosed cations from the microgel which subsequently turn on the fluorogenic dyes to emit intense fluorescence, permitting rapid detection of ROS or ROS-producing molecules. The ROS-responsive microgel provides the advantages of simple fabrication, bright and stable signals, easy handling, and rapid response, carrying great promise in biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Environmental Toxicology Program, University of California, Riverside 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Arredondo M, González M, Latorre M. Copper. TRACE ELEMENTS AND MINERALS IN HEALTH AND LONGEVITY 2018. [DOI: 10.1007/978-3-030-03742-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 2017; 5:378-387. [PMID: 28133653 PMCID: PMC5592724 DOI: 10.1039/c6bm00921b] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is now well understood that once in contact with biological fluids, nanoscale objects lose their original identity and acquire a new biological character, referred to as a protein corona. The protein corona changes many of the physicochemical properties of nanoparticles, including size, surface charge, and aggregation state. These changes, in turn, affect the biological fate of nanoparticles, including their pharmacokinetics, biodistribution, and therapeutic efficacy. It is progressively being accepted that even slight variations in the composition of a protein source (e.g., plasma and serum) can substantially change the composition of the corona formed on the surface of the exact same nanoparticles. Recently it has been shown that the protein corona is strongly affected by the patient's specific disease. Therefore, the same nanomaterial incubated with plasma proteins of patients with different pathologies adsorb protein coronas with different compositions, giving rise to the concept of personalized protein corona. Herein, we review this concept along with recent advances on the topic, with a particular focus on clinical relevance.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mateen Tabatabaei
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Mondola P, Damiano S, Sasso A, Santillo M. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme. Front Physiol 2016; 7:594. [PMID: 27965593 PMCID: PMC5126113 DOI: 10.3389/fphys.2016.00594] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2, and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS).
Collapse
Affiliation(s)
- Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Anna Sasso
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
32
|
Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100:153-163. [PMID: 27352979 PMCID: PMC5145801 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is increasing evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of many of the major neurodegenerative and neuroinflammatory diseases, suggesting that mitochondrial and antioxidant pathways may represent potential novel therapeutic targets. Recent years have seen a rapidly growing interest in the use of therapeutic strategies that can limit the defects in, or even to restore, mitochondrial function while reducing free radical generation. The peroxisome proliferation-activated receptor gamma (PPARγ), a ligand-activated transcription factor, has a wide spectrum of biological functions, regulating mitochondrial function, mitochondrial turnover, energy metabolism, antioxidant defence and redox balance, immune responses and fatty acid oxidation. In this review, we explore the evidence for potential beneficial effects of PPARγ agonists in a number of neurological disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington's disease, ischaemia, autoimmune encephalomyelitis and neuropathic pain. We discuss the mechanisms underlying those beneficial effects in particular in relation to mitochondrial function, antioxidant defence, cell death and inflammation, and suggest that the PPARγ agonists show significant promise as therapeutic agents in otherwise intractable neurological disease.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
33
|
Choi JS, Kim K, Lee DH, Cho S, Ha JD, Park BC, Kim S, Park SG, Kim JH. cIAPs promote the proteasomal degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2016; 480:422-428. [PMID: 27773815 DOI: 10.1016/j.bbrc.2016.10.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Although the ubiquitin-proteasome system is believed to play an important role in the pathogenesis of familial amyotrophic lateral sclerosis (FALS), caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1), the mechanism of how mutant SOD1 protein is regulated in cells is still poorly understood. Here we have demonstrated that cellular inhibitor of apoptosis proteins (cIAPs) are specifically associated with FALS-linked mutant SOD1 (mSOD1) and that this interaction promotes the ubiquitin-dependent proteasomal degradation of mutant SOD1. By utilizing cumate inducible SOD1 cells, we also showed that knock-down or pharmacologic depletion of cIAPs leads to H2O2 induced cytotoxicity in mSOD1 expressing cells. Altogether, our results reveal a novel role of cIAPs in FALS-associated mutant SOD1 regulation.
Collapse
Affiliation(s)
- Jin Sun Choi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea
| | - Kidae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Do Hee Lee
- Department of Biotechnology, Seoul Women's University, Seoul, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Du Ha
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 305-600, Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| | - Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.
Collapse
Affiliation(s)
- Sarah Kreuz
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Wolfgang Fischle
- King Abdullah University of Science & Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
35
|
Obál I, Klausz G, Mándi Y, Deli M, Siklós L, Engelhardt JI. Intraperitoneally administered IgG from patients with amyotrophic lateral sclerosis or from an immune-mediated goat model increase the levels of TNF-α, IL-6, and IL-10 in the spinal cord and serum of mice. J Neuroinflammation 2016; 13:121. [PMID: 27220674 PMCID: PMC4879728 DOI: 10.1186/s12974-016-0586-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/21/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that involves the selective loss of the upper and lower motor neurons (MNs). Neuroinflammation has been implicated in the pathogenesis of the sporadic form of the disease. We earlier developed immune-mediated animal models of ALS and demonstrated humoral and cellular immune reactions in the nervous system and in the sera of patients and animals. The accumulation of immunoglobulin G (IgG), an elevated intracellular level of calcium, ultrastructural alterations in the MNs, and activation of the microglia were noted in the spinal cord of ALS patients. Similar alterations developed in mice inoculated intraperitoneally with IgG from ALS patients or from an immune-mediated goat model. Methods We have now examined whether the intraperitoneal injection of mice with IgG from sporadic ALS patients or from immunized goats with the homogenate of the anterior horn of the bovine spinal cord is associated with changes in the pro-inflammatory (TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines in the spinal cord and serum of the mice. The levels of cytokines were measured by ELISA. Results Intraperitoneally administered IgG from the ALS patients induced subclinical signs of MN disease, while the injection of IgG from immunized goats resulted in a severe respiratory dysfunction and limb paralysis 24 h after the injections. Significantly increased levels of TNF-α and IL-10 were detected in the spinal cord of the mice injected with the human ALS IgG. The level of IL-6 increased primarily in the serum. The IgG from the immunized goats induced highly significant increases in the levels of all three cytokines in the serum and the spinal cord of mice. Conclusions Our earlier experiments had proved that when ALS IgG or IgG from immune-mediated animal models was inoculated into mice, it was taken up in the MNs and had the ability to initiate damage in them. The pathological process was paralleled by microglia recruitment and activation in the spinal cord. The present experiment revealed that these forms of IgG cause significant increases in certain cytokine levels locally in the spinal cord and in the serum of the inoculated mice. These results suggest that IgG directed to the MNs may be an initial element in the damage to the MNs both in human ALS and in its immune-mediated animal models.
Collapse
Affiliation(s)
- Izabella Obál
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Gergely Klausz
- Second Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Yvette Mándi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Mária Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - László Siklós
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | |
Collapse
|
36
|
Zhang B, Jia D, Gao Z, Dong Q, He L. Physiological responses to low temperature in spring and winter wheat varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1967-73. [PMID: 26095741 DOI: 10.1002/jsfa.7306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Northward expansion of winter wheat is an efficient means to improve crop yield and quality in many countries. However, inadequate cold hardiness restricts the northward expansion of winter wheat. This study aimed to investigate cold adaption of different wheat varieties and underlying physiological mechanism. RESULTS In the field experiment, soluble sugar and proline content, relative electric conductivity (EC) and malondialdehyde (MDA) content were higher in wheat varieties in the overwintering period than those in the pre-wintering period. Superoxide dismutase (SOD) activity was lower in the overwintering period than in the pre-wintering period and spring growth period. Photosynthetic rate was reduced dramatically in the winter variety (Suyin 10), weak winter variety (Lumai 22) and spring (Jinchun 9) variety after low-temperature treatment. Cold treatment inhibited stomatal conductance (Gs) and transpiration rate (Tr). Influences of high-temperature treatment and cold acclimation after vernalization were further analyzed in the greenhouse in wheat variety Jinghe 1. High-temperature treatment after vernalization significantly inhibited SOD and peroxidase activities in the vernalized plants, while cold acclimation after vernalization enhanced peroxidase activity. CONCLUSION Cold tolerance of wheat varieties may be associated with effective osmoregulation ability, photosynthetic capacity, Gs and Tr , as well as activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Bin Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dong Jia
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Qi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
37
|
Leukemia Inhibitory Factor Protects Neurons from Ischemic Damage via Upregulation of Superoxide Dismutase 3. Mol Neurobiol 2016; 54:608-622. [PMID: 26746670 PMCID: PMC5026633 DOI: 10.1007/s12035-015-9587-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Leukemia inhibitory factor (LIF) has been shown to protect oligodendrocytes from ischemia by upregulating endogenous antioxidants. The goal of this study was to determine whether LIF protects neurons during stroke by upregulating superoxide dismutase 3 (SOD3). Animals were administered phosphate-buffered saline (PBS) or 125 μg/kg LIF at 6, 24, and 48 h after middle cerebral artery occlusion or sham surgery. Neurons were isolated from rat pups on embryonic day 18 and used between 7 and 15 days in culture. Cells were treated with LIF and/or 10 μM Akt inhibitor IV with PBS and 0.1 % DMSO acting as vehicle controls. Neurons transfected with scrambled or SOD3 small interfering RNA (siRNA) were subjected to 24-h ischemia after PBS or LIF treatment. LIF significantly increased superoxide dismutase activity and SOD3 expression in ipsilateral brain tissue compared to PBS. Following 24-h ischemia, LIF reduced cell death and increased SOD3 messenger RNA (mRNA) in vitro compared to PBS. Adding Akt inhibitor IV with LIF counteracted the decrease in cell death. Partially silencing the expression of SOD3 using siRNA prior to LIF treatment counteracted the protective effect of LIF-alone PBS treatment. These results indicate that LIF protects neurons in vivo and in vitro via upregulation of SOD3.
Collapse
|
38
|
Fujimaki N, Miura T, Nakabayashi T. The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity. Phys Chem Chem Phys 2016; 18:4468-75. [DOI: 10.1039/c5cp07729j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the Cu2+-binding site of denatured apo-SOD1 mutant (H43R) was investigated to clarify the mechanism of the acquisition of the pro-oxidant activity.
Collapse
Affiliation(s)
- Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Takashi Miura
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | | |
Collapse
|
39
|
Cavaleri F. Review of Amyotrophic Lateral Sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med Hypotheses 2015; 85:779-90. [DOI: 10.1016/j.mehy.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023]
|
40
|
Chen D, Wang Y, Chin ER. Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice. Front Cell Neurosci 2015; 9:170. [PMID: 26041991 PMCID: PMC4435075 DOI: 10.3389/fncel.2015.00170] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase (SOD1) are one of the genetic causes of Amyotrophic Lateral Sclerosis (ALS). Although the primary symptom of ALS is muscle weakness, the link between SOD1 mutations, cellular dysfunction and muscle atrophy and weakness is not well understood. The purpose of this study was to characterize cellular markers of ER stress in skeletal muscle across the lifespan of G93A*SOD1 (ALS-Tg) mice. Muscles were obtained from ALS-Tg and age-matched wild type (WT) mice at 70d (pre-symptomatic), 90d and 120–140d (symptomatic) and analyzed for ER stress markers. In white gastrocnemius (WG) muscle, ER stress sensors PERK and IRE1α were upregulated ~2-fold at 70d and remained (PERK) or increased further (IRE1α) at 120–140d. Phospho-eIF2α, a downstream target of PERK and an inhibitor of protein translation, was increased by 70d and increased further to 12.9-fold at 120–140d. IRE1α upregulation leads to increased splicing of X-box binding protein 1 (XBP-1) to the XBP-1s isoform. XBP-1s transcript was increased at 90d and 120–140d indicating activation of IRE1α signaling. The ER chaperone/heat shock protein Grp78/BiP was upregulated 2-fold at 70d and 90d and increased to 6.1-fold by 120–140d. The ER-stress-specific apoptotic signaling protein CHOP was upregulated 2-fold at 70d and 90d and increased to 13.3-fold at 120–140d indicating progressive activation of an apoptotic signal in muscle. There was a greater increase in Grp78/BiP and CHOP in WG vs. the more oxidative red gastrocnemius (RG) ALS-Tg at 120–140d indicating greater ER stress and apoptosis in fast glycolytic muscle. These data show that the ER stress response is activated in skeletal muscle of ALS-Tg mice by an early pre-symptomatic age and increases with disease progression. These data suggest a mechanism by which myocellular ER stress leads to reduced protein translation and contributes to muscle atrophy and weakness in ALS.
Collapse
Affiliation(s)
- Dapeng Chen
- School of Public Health, University of Maryland MD, USA
| | - Yan Wang
- Proteomics Core Facility, College of Computer, Mathematics and Natural Sciences, University of Maryland MD, USA
| | - Eva R Chin
- School of Public Health, University of Maryland MD, USA
| |
Collapse
|
41
|
Oliván S, Calvo AC, Rando A, Muñoz MJ, Zaragoza P, Osta R. Comparative study of behavioural tests in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Exp Anim 2014; 64:147-53. [PMID: 25736480 PMCID: PMC4427729 DOI: 10.1538/expanim.14-0077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In preclinical trials, a sensitive functional test is required to detect changes in the
motor behaviour of the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We
evaluated changes in body weight and motor impairment in behavioural tests, such as the
rotarod, the hanging-wire test and the treadmill, of transgenic and wild type mice. We
found differences in detection of the onset of symptoms and progression of the disease
between the different tests assessed. Moreover, the data showed significant gender
differences in the motor behaviour of this mouse model. The rotarod and the hanging-wire
test were more sensitive to detect early motor impairment. Moreover, the results suggested
that the rotarod and hanging-wire became the most accurate tests rather than treadmill to
characterise the ALS disease phenotype.
Collapse
Affiliation(s)
- Sara Oliván
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Ross EK, Winter AN, Wilkins HM, Sumner WA, Duval N, Patterson D, Linseman DA. A Cystine-Rich Whey Supplement (Immunocal(®)) Delays Disease Onset and Prevents Spinal Cord Glutathione Depletion in the hSOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2014; 3:843-65. [PMID: 26785244 PMCID: PMC4665503 DOI: 10.3390/antiox3040843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/22/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022] Open
Abstract
Depletion of the endogenous antioxidant, glutathione (GSH), underlies progression of the devastating neurodegenerative disease, amyotrophic lateral sclerosis (ALS). Thus, strategies aimed at elevating GSH may yield new therapeutics for ALS. Here, we investigated the effects of a unique non-denatured whey protein supplement, Immunocal(®), in the transgenic Gly position 93 to Ala (G93A) mutant hSOD1 (hSOD1(G93A)) mouse model of ALS. Immunocal(®) is rich in the GSH precursor, cystine, and is therefore capable of bolstering GSH content. Transgenic hSOD1(G93A) mice receiving Immunocal(®) displayed a significant delay in disease onset compared to untreated hSOD1(G93A) controls. Additionally, Immunocal(®) treatment significantly decreased the rate of decline in grip strength and prevented disease-associated reductions in whole blood and spinal cord tissue GSH levels in end-stage hSOD1(G93A) mice. However, Immunocal(®) did not extend survival, likely due to its inability to preserve the mitochondrial GSH pool in spinal cord. Combination treatment with Immunocal(®) and the anti-glutamatergic compound, riluzole, delayed disease onset and extended survival in hSOD1(G93A) mice. These findings demonstrate that sustaining tissue GSH with Immunocal(®) only modestly delays disease onset and slows the loss of skeletal muscle strength in hSOD1(G93A) mice. Moreover, the inability of Immunocal(®) to rescue mitochondrial GSH in spinal cord provides a possible mechanism for its lack of effect on survival and is a limiting factor in the potential utility of this supplement as a therapeutic for ALS.
Collapse
Affiliation(s)
- Erika K Ross
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Aimee N Winter
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Heather M Wilkins
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Whitney A Sumner
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Nathan Duval
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - David Patterson
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Daniel A Linseman
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
- Research Service, Veterans Affairs Medical Center, 1055 Clermont St., Denver, CO 80220, USA.
- Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver, 12700 E 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Sui Y, Zhao Z, Liu R, Cai B, Fan D. Adenosine monophosphate-activated protein kinase activation enhances embryonic neural stem cell apoptosis in a mouse model of amyotrophic lateral sclerosis. Neural Regen Res 2014; 9:1770-8. [PMID: 25422638 PMCID: PMC4238165 DOI: 10.4103/1673-5374.143421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1(G93A) individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dismutase 1 mutant (SOD1(G93A)) and wild-type (SOD1(WT)) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by flow cytometry. Moreover, we evaluated the expression of the adenosine monophosphate-activated protein kinase (AMPK) α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1(WT) cells, SOD1(G93A) embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKα in SOD1(G93A) cells was higher than that in SOD1(WT) cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKα phosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1(G93A) mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.
Collapse
Affiliation(s)
- Yanling Sui
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Zichun Zhao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Rong Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Bin Cai
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
44
|
Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 2014; 111:E4568-76. [PMID: 25316790 DOI: 10.1073/pnas.1308531111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu(2+) binding site and defined cross-dimer copper-copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.
Collapse
|
45
|
Chin ER, Chen D, Bobyk KD, Mázala DAG. Perturbations in intracellular Ca2+ handling in skeletal muscle in the G93A*SOD1 mouse model of amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2014; 307:C1031-8. [PMID: 25252949 DOI: 10.1152/ajpcell.00237.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by skeletal muscle atrophy and weakness, ultimately leading to respiratory failure. The purpose of this study was to assess changes in skeletal muscle excitation-contraction (E-C) coupling and intracellular Ca(2+) handling during disease progression in the G93A*SOD1 ALS transgenic (ALS Tg) mouse model. To assess E-C coupling, single muscle fibers were electrically stimulated (10-150 Hz), and intracellular free Ca(2+) concentration was assessed using fura-2. There were no differences in peak fura-2 ratio at any stimulation frequency at 70 days (early presymptomatic). However, at 90 days (late presymptomatic) and 120-140 days (symptomatic), fura-2 ratio was increased at 10 Hz in ALS Tg compared with wild-type (WT) fibers (0.670 ± 0.02 vs. 0.585 ± 0.02 for 120-140 days; P < 0.05). There was also a significant increase in resting fura-2 ratio at 90 days (0.351 ± 0.008 vs. 0.390 ± 0.009 in WT vs. ALS Tg; P < 0.05) and 120-140 days (0.374 ± 0.001 vs. 0.415 ± 0.003 in WT vs. ALS Tg; P < 0.05). These increases in intracellular Ca(2+) in ALS Tg muscle were associated with reductions in the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase proteins SERCA1 (to 54% and 19% of WT) and SERCA2 (to 56% and 11% of WT) and parvalbumin (to 80 and 62% of WT) in gastrocnemius muscle at 90 and 120-140 days, respectively. There was no change in dihydropyridine receptor/l-type Ca(2+) channel at any age. Overall, these data demonstrate minimal changes in electrically evoked Ca(2+) transients but elevations in intracellular Ca(2+) attributable to decreased Ca(2+)-clearance proteins. These data suggest that elevations in cellular Ca(2+) could contribute to muscle weakness during disease progression in ALS mice.
Collapse
Affiliation(s)
- Eva R Chin
- School of Public Health, University of Maryland, College Park, Maryland
| | - Dapeng Chen
- School of Public Health, University of Maryland, College Park, Maryland
| | | | - Davi A G Mázala
- School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
46
|
Affiliation(s)
- Laura K. Wood
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Steven J. Langford
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Mechanistic study of CuZn-SOD from Ipomoea carnea mutated at dimer interface: Enhancement of peroxidase activity upon monomerization. Biochimie 2014; 97:181-93. [DOI: 10.1016/j.biochi.2013.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
|
48
|
|
49
|
Wild-type Cu/Zn superoxide dismutase stabilizes mutant variants by heterodimerization. Neurobiol Dis 2013; 62:479-88. [PMID: 24200866 DOI: 10.1016/j.nbd.2013.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) are responsible for a subset of amyotrophic lateral sclerosis cases presumably by the acquisition of as yet unknown toxic properties. Additional overexpression of wild-type SOD1 in mutant SOD1 transgenic mice did not improve but rather accelerated the disease course. Recently, it was documented that the presence of wild-type SOD1 (SOD(WT)) reduced the aggregation propensity of mutant SOD1 by the formation of heterodimers between mutant and SOD1(WT) and that these heterodimers displayed at least a similar toxicity in cellular and animal models. In this study we investigated the biochemical and biophysical properties of obligate SOD1 dimers that were connected by a peptide linker. Circular dichroism spectra indicate an increased number of unstructured residues in SOD1 mutants. However, SOD1(WT) stabilized the folding of heterodimers compared to mutant homodimers as evidenced by an increase in resistance against proteolytic degradation. Heterodimerization also reduced the affinity of mutant SOD1 to antibodies detecting misfolded SOD1. In addition, the formation of obligate dimers resulted in a detection of substantial dismutase activity even of the relatively labile SOD1(G85R) mutant. These data indicate that soluble, dismutase-active SOD1 dimers might contribute at least partially to mutant SOD1 toxicity.
Collapse
|
50
|
Peixoto PM, Kim HJ, Sider B, Starkov A, Horvath TL, Manfredi G. UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis. Mol Cell Neurosci 2013; 57:104-10. [PMID: 24141050 PMCID: PMC3891658 DOI: 10.1016/j.mcn.2013.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/26/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction leading to deficits in energy production, Ca(2+) uptake capacity, and free radical generation has been implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS) caused by mutations in Cu,Zn superoxide dismutase (SOD1). Numerous studies link UCP2, a member of the uncoupling protein family, to protection of neurons from mitochondrial dysfunction and oxidative damage in various mouse models of acute stress and neurodegeneration, including Parkinson's disease. Here, we tested the potential neuroprotective effects of UCP2 and its ability to modulate mitochondrial function, in the G93A mutant SOD1 mouse model of familial ALS. Disease phenotype, mitochondrial bioenergetics, and Ca(2+) uptake capacity were investigated in the central nervous system of double transgenic mice, expressing both human mutant G93A SOD1 and human UCP2 (hUCP2). Unexpectedly, hUCP2 expression accelerated the disease course of SOD1 mutant mice. In addition, we did not observe a classical uncoupling effect of hUCP2 in G93A brain mitochondria, although we did detect a decrease in reactive oxygen species (ROS) production from mitochondria challenged with the respiratory chain inhibitors rotenone and antimycin A. We also found that mitochondrial Ca(2+) uptake capacity was decreased in the double transgenic mice, as compared to G93A mice. In summary, our results indicate that the neuroprotective role of UCP2 in neurodegeneration is disease-specific and that, while a mild uncoupling by UCP2 in brain mitochondria may protect against neurodegeneration in some injury paradigms, the mitochondrial damage and the disease caused by mutant SOD1 cannot be ameliorated by UCP2 overexpression.
Collapse
Affiliation(s)
- Pablo M Peixoto
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61 St, New York, NY, 10065
- Department of Natural Sciences, Baruch College, City University of New York (CUNY), 17 Lexington Avenue, New York, NY, 10010
| | - Hyun-Jeong Kim
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61 St, New York, NY, 10065
| | - Brittany Sider
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61 St, New York, NY, 10065
| | - Anatoly Starkov
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61 St, New York, NY, 10065
| | - Tamas L Horvath
- Department of Neurobiology, Yale University School of Medicine and Kavli Institute for Neuroscience, 310 Cedar St, New Haven, CT, 06520
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61 St, New York, NY, 10065
| |
Collapse
|