1
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
2
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
3
|
Chun J, Ko YH, So KK, Cho SH, Kim DH. A fungal GPI-anchored protein gene functions as a virulence and antiviral factor. Cell Rep 2022; 41:111481. [DOI: 10.1016/j.celrep.2022.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022] Open
|
4
|
Valle-Maldonado MI, Patiño-Medina JA, Pérez-Arques C, Reyes-Mares NY, Jácome-Galarza IE, Ortíz-Alvarado R, Vellanki S, Ramírez-Díaz MI, Lee SC, Garre V, Meza-Carmen V. The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cell Microbiol 2020; 22:e13236. [PMID: 32562333 DOI: 10.1111/cmi.13236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.
Collapse
Affiliation(s)
- Marco Iván Valle-Maldonado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Nancy Yadira Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | | | - Rafael Ortíz-Alvarado
- Facultad de Quimico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Martha Isela Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| |
Collapse
|
5
|
Chun J, Ko YH, Kim DH. Transcriptome Analysis of Cryphonectria parasitica Infected With Cryphonectria hypovirus 1 (CHV1) Reveals Distinct Genes Related to Fungal Metabolites, Virulence, Antiviral RNA-Silencing, and Their Regulation. Front Microbiol 2020; 11:1711. [PMID: 32765480 PMCID: PMC7379330 DOI: 10.3389/fmicb.2020.01711] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Comprehensive transcriptome analysis was conducted to elucidate the molecular basis of the interaction between chestnut blight fungus, Cryphonectria parasitica, and single-stranded RNA (ssRNA) mycovirus Cryphonectria hypovirus 1 (CHV1), using RNA-sequencing (RNA-seq). A total of 1,023 differentially expressed genes (DEGs) were affected by CHV1 infection, of which 753 DEGs were upregulated and 270 DEGs were downregulated. Significant correlations in qRT-PCR analysis of 20 randomly selected DEGs and agreement with previously characterized marker genes validated our RNA-seq analysis as representing global transcriptional profiling of virus-free and -infected isogenic strains of C. parasitica. Gene Ontology (GO) analysis of DEGs indicated that “cellular aromatic compound metabolic process” and “transport” were the two most enriched components in the “biological process.” In addition, “cytoplasm” was the most enriched term in the “cellular component” and “nucleotide binding” and “cation binding” were the two most enriched terms in the “molecular function” category. These results suggested that altered expression of genes encoding numerous intracellular proteins due to hypoviral infection resulted in changes in specific metabolic processes as well as transport processes. Kyoto Encyclopedia of Genes and Genomes function analysis demonstrated that pathways for “biosynthesis of other secondary metabolites,” “amino acid metabolism,” “carbohydrate metabolism,” and “translation” were enriched among the DEGs in C. parasitica. These results demonstrate that hypoviral infection resulted in massive but specific changes in primary and secondary metabolism, of which antiviral fungal metabolites were highly induced. The results of this study provide further insights into the mechanism of fungal gene regulation by CHV1 at the transcriptome level.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Yo-Han Ko
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, South Korea.,Department of Molecular Biology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
6
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
7
|
Bheri M, M Bhosle S, Makandar R. Shotgun proteomics provides an insight into pathogenesis-related proteins using anamorphic stage of the biotroph, Erysiphe pisi pathogen of garden pea. Microbiol Res 2019; 222:25-34. [PMID: 30928027 DOI: 10.1016/j.micres.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023]
Abstract
E. pisi is an ascomycete member causing powdery mildew disease of garden pea. It is a biotrophic pathogen, requiring a living host for its survival. Our understanding of molecular mechanisms underlying its pathogenesis is limited. The identification of proteins expressed in the pathogen is required to gain an insight into the functional mechanisms of an obligate biotrophic fungal pathogen. In this study, the proteome of the anamorphic stage of E. pisi pathogen has been elucidated through the nano LC-MS/MS approach. A total of 328 distinct proteins were detected from Erysiphe isolates infecting the susceptible pea cultivar, Arkel. The proteome is available via ProteomeXchange with identifier PXD010238. The functional classification of protein accessions based on Gene Ontology revealed proteins related to signal transduction, secondary metabolite formation and stress which might be involved in virulence and pathogenesis. The functional validation carried through differential expression of genes encoding G-protein beta subunit, a Cyclophilin (Peptidyl prolyl cis-transisomerase) and ABC transporter in a time course study confirmed their putative role in pathogenesis between resistant and susceptible genotypes, JI2480 and Arkel. The garden pea-powdery mildew pathosystem is largely unexplored, therefore, the identified proteome provides a first-hand information and will form a basis to analyze mechanisms involving pathogen survival, pathogenesis and virulence.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad- 500046, India
| | - Sheetal M Bhosle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad- 500046, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad- 500046, India.
| |
Collapse
|
8
|
Chun J, So KK, Ko YH, Kim JM, Kim DH. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica. Mol Cells 2019; 42:363-375. [PMID: 31091557 PMCID: PMC6530638 DOI: 10.14348/molcells.2019.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 11/27/2022] Open
Abstract
Fungal sectorization is a complex trait that is still not fully understood. The unique phenotypic changes in sporadic sectorization in mutants of CpBck1, a mitogen-activated protein kinase kinase kinase (MAPKKK) gene, and CpSlt2, a mitogen-activated protein kinase (MAPK) gene, in the cell wall integrity pathway of the chestnut blight fungus Cryphonectria parasitica have been previously studied. Although several environmental and physiological factors cause this sectoring phenotype, genetic variants can also impact this complex morphogenesis. Therefore, RNA sequencing analysis was employed to identify candidate genes associated with sectorization traits and understand the genetic mechanism of this phenotype. Transcriptomic analysis of CpBck1 and CpSlt2 mutants and their sectored progeny strains revealed a number of differentially expressed genes (DEGs) related to various cellular processes. Approximately 70% of DEGs were common between the wild-type and each of CpBck1 and CpSlt2 mutants, indicating that CpBck1 and CpSlt2 are components of the same MAPK pathway, but each component governs specific sets of genes. Functional description of the DEGs between the parental mutants and their sectored progenies revealed several key pathways, including the biosynthesis of secondary metabolites, translation, amino acid metabolism, and carbohydrate metabolism; among these, pathways for secondary metabolism and translation appeared to be the most common pathway. The results of this comparative study provide a better understanding of the genetic regulation of sector formation and suggest that complex several regulatory pathways result in interplays between secondary metabolites and morphogenesis.
Collapse
Affiliation(s)
- Jeesun Chun
- Institute for Molecular Biology and Genetics, Chonbuk National University, Chonbuk 54896,
Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Chonbuk National University, Chonbuk 54896,
Korea
| | - Yo-Han Ko
- Department of Bioactive Material Sciences, Chonbuk National University, Chonbuk 54896,
Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Chonbuk 54538,
Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Chonbuk National University, Chonbuk 54896,
Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Chonbuk 54896,
Korea
- Department of Molecular Biology, Chonbuk National University, Chonbuk 54896,
Korea
| |
Collapse
|
9
|
Heterobasidion Partitivirus 13 Mediates Severe Growth Debilitation and Major Alterations in the Gene Expression of a Fungal Forest Pathogen. J Virol 2018; 92:JVI.01744-17. [PMID: 29237832 DOI: 10.1128/jvi.01744-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The fungal genus Heterobasidion includes some of the most devastating conifer pathogens in the boreal forest region. In this study, we showed that the alphapartitivirus Heterobasidion partitivirus 13 from Heterobasidion annosum (HetPV13-an1) is the main causal agent of severe phenotypic debilitation in the host fungus. Based on RNA sequencing using isogenic virus-infected and cured fungal strains, HetPV13-an1 affected the transcription of 683 genes, of which 60% were downregulated and 40% upregulated. Alterations observed in carbohydrate and amino acid metabolism suggest that the virus causes a state of starvation, which is compensated for by alternative synthesis routes. We used dual cultures to transmit HetPV13-an1 into new strains of H. annosum and Heterobasidion parviporum The three strains of H. parviporum that acquired the virus showed noticeable growth reduction on rich culturing medium, while only two of six H. annosum isolates tested showed significant debilitation. Based on reverse transcription-quantitative PCR (RT-qPCR) analysis, the response toward HetPV13-an1 infection was somewhat different in H. annosum and H. parviporum We assessed the effects of HetPV13-an1 on the wood colonization efficacy of H. parviporum in a field experiment where 46 Norway spruce trees were inoculated with isogenic strains with or without the virus. The virus-infected H. parviporum strain showed considerably less growth within living trees than the isolate without HetPV13-an1, indicating that the virus also causes growth debilitation in natural substrates.IMPORTANCE A biocontrol method restricting the spread of Heterobasidion species would be highly beneficial to forestry, as these fungi are difficult to eradicate from diseased forest stands and cause approximate annual losses of €800 million in Europe. We used virus curing and reintroduction experiments and RNA sequencing to show that the alphapartitivirus HetPV13-an1 affects many basic cellular functions of the white rot wood decay fungus Heterobasidion annosum, which results in aberrant hyphal morphology and a low growth rate. Dual fungal cultures were used to introduce HetPV13-an1 into a new host species, Heterobasidion parviporum, and field experiments confirmed the capability of the virus to reduce the growth of H. parviporum in living spruce wood. Taken together, our results suggest that HetPV13-an1 shows potential for the development of a future biocontrol agent against Heterobasidion fungi.
Collapse
|
10
|
Mutation of the Slt2 ortholog from Cryphonectria parasitica results in abnormal cell wall integrity and sectorization with impaired pathogenicity. Sci Rep 2017; 7:9038. [PMID: 28831166 PMCID: PMC5567307 DOI: 10.1038/s41598-017-09383-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022] Open
Abstract
We assessed the biological function of CpSlt2, an ortholog of the cell wall integrity (CWI) MAPK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica. The CpSlt2-null mutant exhibited marked changes in colonial growth, near absence of conidiation and aerial hyphae, and abnormal pigmentation. In addition, the CpSlt2-null mutant exhibited CWI-related phenotypic defects including hypersensitivity to cell wall-disturbing agents and other stresses. Electron microscopy revealed the presence of abnormal hyphae such as intrahyphal hyphae. In addition, virulence assays indicated that the CpSlt2 gene plays an important role in fungal pathogenesis. As cultivation of the mutant strains progressed, the majority of the colonies showed sporadic sectorization and mycelia from the sectored area stably maintained the sectored phenotype. Although mycelial growth was partially recovered, the sectored progeny had dramatically impaired virulence, confirming the CpSlt2 gene has a role in pathogenicity. Compared to a previous mutant of the CpBck1 gene, a MAPKKK gene in CWI pathway, the CpSlt2-null mutant showed similar, although not identical, phenotypic changes and most phenotypic changes were less severe than those of the CpBck1-null mutant. These results suggest that the unique sectorization is CWI pathway-specific, though the components in the same CWI pathway have common and specific functions.
Collapse
|
11
|
Nuskern L, Tkalec M, Ježić M, Katanić Z, Krstin L, Ćurković-Perica M. Cryphonectria hypovirus 1-Induced Changes of Stress Enzyme Activity in Transfected Phytopathogenic Fungus Cryphonectria parasitica. MICROBIAL ECOLOGY 2017; 74:302-311. [PMID: 28160056 DOI: 10.1007/s00248-017-0945-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Cryphonectria parasitica is a phytopathogenic fungus introduced from Eastern Asia to North America and to Europe, where it causes chestnut blight, a devastating disease of chestnut trees. The disease can be biologically controlled utilising the mycovirus Cryphonectria hypovirus 1 (CHV1), which changes the physiology of the host, reducing its virulence towards chestnut. We measured fungal growth in vitro and activities of glutathione S-transferase, catalase and superoxide dismutase, enzymes involved in oxidative stress response, to elucidate the effects of CHV1 infection on the host. Six CHV1 strains of different subtypes and three fungal isolates were used in different combinations to better represent natural conditions, where higher genetic diversity of both fungus and virus is expected. The infection with different CHV1 strains decreased in vitro growth rate of infected fungal isolates and increased activity of their stress enzymes in most of the studied fungus/virus combinations, indicating increased oxidative stress following CHV1 infection. All our field CHV1 strains belong to the Italian subtype, but while strain M56-1 had equal or even stronger effect on its fungal host than prototypic strain EP713 of French subtype F1, strain B11 had no effect. Thus, the severity of the observed effects depended on a particular virus strain, fungal isolate, and the combination of the two, rather than solely on the virus subtype. Since previous research showed discordance between accumulation of mRNA and stress-related proteins in CHV1 infected C. parasitica, our results emphasise the importance of enzymes' activity measurements as an invaluable extension of transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia
| | - Zorana Katanić
- Department of Biology, University of Josip Juraj Strossmayer in Osijek, Ulica cara Hadrijana 8A, 31000, Osijek, Croatia
| | - Ljiljana Krstin
- Department of Biology, University of Josip Juraj Strossmayer in Osijek, Ulica cara Hadrijana 8A, 31000, Osijek, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulicev trg 9a, 10000, Zagreb, Croatia.
| |
Collapse
|
12
|
Wang S, Zhang J, Li P, Qiu D, Guo L. Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection. Int J Mol Sci 2016; 17:ijms17111922. [PMID: 27869679 PMCID: PMC5133918 DOI: 10.3390/ijms17111922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023] Open
Abstract
Fusarium graminearum hypovirus 1 (FgHV1), which is phylogenetically related to Cryphonectria hypovirus 1 (CHV1), is a virus in the family Hypoviridae that infects the plant pathogenic fungus F. graminearum. Although hypovirus FgHV1 infection does not attenuate the virulence of the host (hypovirulence), it results in defects in mycelial growth and spore production. We now report that the vertical transmission rate of FgHV1 through asexual spores reached 100%. Using RNA deep sequencing, we performed genome-wide expression analysis to reveal phenotype-related genes with expression changes in response to FgHV1 infection. A total of 378 genes were differentially expressed, suggesting that hypovirus infection causes a significant alteration of fungal gene expression. Nearly two times as many genes were up-regulated as were down-regulated. A differentially expressed gene enrichment analysis identified a number of important pathways. Metabolic processes, the ubiquitination system, and especially cellular redox regulation were the most affected categories in F. graminearum challenged with FgHV1. The p20, encoded by FgHV1 could induce H2O2 accumulation and hypersensitive response in Nicotiana benthamiana leaves. Moreover, hypovirus FgHV1 may regulate transcription factors and trigger the RNA silencing pathway in F. graminearum.
Collapse
Affiliation(s)
- Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux 5030, Belgium.
| | - Jingze Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
13
|
Kim JM, Lee JG, Yun SH, So KK, Ko YH, Kim YH, Park SM, Kim DH. A Mutant of the Bck1 Homolog from Cryphonectria parasitica Resulted in Sectorization with an Impaired Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:268-276. [PMID: 26757242 DOI: 10.1094/mpmi-08-15-0185-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CpBck1, an ortholog of the cell-wall integrity mitogen-activated protein kinase kinase kinase of Saccharomyces cerevisiae, was cloned and characterized from the chestnut blight fungus Cryphonectria parasitica. The CpBck1-null mutant displayed cell wall integrity-related phenotypic changes such as abnormal cell morphology and wall formation and hypersensitivity to cell wall-disrupting agents. In addition, the mutant showed severely retarded growth without any sign of normal development, such as hyphal differentiation, conidiation, or pigmentation. As the culture proceeded, the mutant colony showed sporadic sectorization. Once sectored, the sectored phenotype of robust mycelial growth without differentiation was stably inherited. Compared with the wild type, both the parental CpBck1-null mutant and the sectored progeny exhibited marked impaired virulence. The present study revealed that a mutation in a signaling pathway component related to cell-wall integrity resulted in sporadic sectorization and these sectored phenotypes were stably inherited, suggesting that this signal transduction pathway is implicated in adaptive genetic changes for sectorization.
Collapse
Affiliation(s)
- Jung-Mi Kim
- 1 Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk 570-749, Korea
| | - Joong-Gi Lee
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Suk-Hyun Yun
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Kum-Kang So
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Yo-Han Ko
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Young Ho Kim
- 3 Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Seung-Moon Park
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Dae-Hyuk Kim
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| |
Collapse
|
14
|
Shi L, Li R, Liao S, Bai L, Lu Q, Chen B. Prb1, a subtilisin-like protease, is required for virulence and phenotypical traits in the chestnut blight fungus. FEMS Microbiol Lett 2014; 359:26-33. [DOI: 10.1111/1574-6968.12547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Suhuan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Lingyun Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Qunfeng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning China
| |
Collapse
|
15
|
Dawe AL, Nuss DL. Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission. Adv Virus Res 2013; 86:109-47. [PMID: 23498905 DOI: 10.1016/b978-0-12-394315-6.00005-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The idea that viruses can be used to control fungal diseases has been a driving force in mycovirus research since the earliest days. Viruses in the family Hypoviridae associated with reduced virulence (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica, have held a prominent place in this research. This has been due in part to the severity of the chestnut blight epidemics in North America and Europe and early reports of hypovirulence-mediated mitigation of disease in European forests and successful application for control of chestnut blight in chestnut orchards. A more recent contributing factor has been the development of a hypovirus/C. parasitica experimental system that has overcome many of the challenges associated with mycovirus research, stemming primarily from the exclusive intracellular lifestyle shared by all mycoviruses. This chapter will focus on hypovirus molecular biology with an emphasis on the development of the hypovirus/C. parasitica experimental system and its contributions to fundamental and practical advances in mycovirology and the broader understanding of virus-host interactions and fungal pathogenesis.
Collapse
Affiliation(s)
- Angus L Dawe
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
16
|
Liao S, Li R, Shi L, Wang J, Shang J, Zhu P, Chen B. Functional analysis of anS-adenosylhomocysteine hydrolase homolog of chestnut blight fungus. FEMS Microbiol Lett 2012; 336:64-72. [DOI: 10.1111/j.1574-6968.2012.02657.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/23/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Affiliation(s)
- Suhuan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Jinjie Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| |
Collapse
|
17
|
Wang J, Wang F, Feng Y, Mi K, Chen Q, Shang J, Chen B. Comparative vesicle proteomics reveals selective regulation of protein expression in chestnut blight fungus by a hypovirus. J Proteomics 2012; 78:221-30. [PMID: 22954595 DOI: 10.1016/j.jprot.2012.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/28/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
The chestnut blight fungus (Cryphonectria parasitica) and hypovirus constitute a model system to study fungal pathogenesis and mycovirus-host interaction. Knowledge in this field has been gained largely from investigations at gene transcription level so far. Here we report a systematic analysis of the vesicle proteins of the host fungus with/without hypovirus infection. Thirty-three differentially expressed protein spots were identified in the purified vesicle protein samples by two-dimensional electrophoresis and mass spectrometry. Down-regulated proteins were mostly cargo proteins involved in primary metabolism and energy generation and up-regulated proteins were mostly vesicle associated proteins and ABC transporter. A virus-encoded protein p48 was found to have four forms with different molecular mass in vesicles from the virus-infected strain. While a few of the randomly selected differentially expressed proteins were in accordance with their transcription profiles, majority were not in agreement with their mRNA accumulation patterns, suggesting that an extensive post-transcriptional regulation may have occurred in the host fungus upon a hypovirus infection.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, Ministry of Education, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Cho WK, Yu J, Lee KM, Son M, Min K, Lee YW, Kim KH. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics 2012; 13:173. [PMID: 22559730 PMCID: PMC3478160 DOI: 10.1186/1471-2164-13-173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21) is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB) disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. RESULTS Using a 3'-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. CONCLUSION This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together, our data aid in the understanding of how FgV1-DK21 regulates the transcriptional reprogramming of F. graminearum.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Park JA, Kim JM, Park SM, Kim DH. Characterization of CpSte11, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway. MOLECULAR PLANT PATHOLOGY 2012; 13:240-50. [PMID: 22292426 PMCID: PMC6638770 DOI: 10.1111/j.1364-3703.2011.00742.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The gene CpSte11 of Cryphonectria parasitica, which encodes a yeast Ste11 homologue, was cloned and characterized. Gene replacement analysis revealed a high frequency of CpSte11 null mutants. When compared with the wild-type parent strain, CpSte11 null mutants showed no difference in terms of growth rate or pigmentation. However, CpSte11 null mutants showed a marked decrease in both the number and size of stromal pustules on chestnut twigs. The virulence test showed that, in comparison with those of the wild-type and virus-infected hypovirulent strains, CpSte11 null mutants produced necrotic areas of intermediate size. Disruption of the CpSte11 gene also resulted in defects in female fertility. Down-regulation of transcripts for the mating pheromone precursor gene, Mf2/2, and mating response transcription factors, such as cpst12 and pro1, was observed in CpSte11 null mutants. The down-regulation of Mf2/2, cpst12 and pro1 was also observed in the mutant phenotype of Cpmk2, a mating response Fus3-like mitogen-activated protein kinase (MAPK) gene, but not in the mutant of Cpmk1, a high-osmolarity glycerol Hog1-like MAPK gene. These results indicate that the cloned CpSte11 gene is functionally involved in the mating response pathway and acts through downstream targets, including Cpmk2, cpst12, pro1 and Mf2/2. However, the characteristics of the CpSte11 null mutant were fully phenocopied only in the cpst12 null mutant, but not in other studied null mutants of components of the putative mating response pathway.
Collapse
Affiliation(s)
- Jin-Ah Park
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, South Korea
| | | | | | | |
Collapse
|
20
|
Tisch D, Kubicek CP, Schmoll M. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 2011; 48:631-40. [PMID: 21220037 PMCID: PMC3082050 DOI: 10.1016/j.fgb.2010.12.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 11/26/2022]
Abstract
Sensing of environmental signals is often mediated by G-protein coupled receptors and their cognate heterotrimeric G-proteins. In Trichoderma reesei (Hypocrea jecorina) the signals transmitted via the G-protein alpha subunits GNA1 and GNA3 cause considerable modulation of cellulase transcript levels and the extent of this adjustment is dependent on the light status. We therefore intended to elucidate the underlying mechanism connecting light response and heterotrimeric G-protein signaling. Analysis of double mutant strains showed that constitutive activation of GNA1 or GNA3 in the absence of the PAS/LOV domain protein ENVOY (ENV1) leads to the phenotype of constitutive G-alpha activation in darkness. In light, however the deletion-phenotype of Δenv1 was observed with respect to growth, conidiation and cellulase gene transcription. Additionally deletion of env1 causes decreased intracellular cAMP accumulation, even upon constitutive activation of GNA1 or GNA3. While supplementation of cAMP caused an even more severe growth phenotype of all strains lacking env1 in light, addition of the phosphodiesterase inhibitor caffeine rescued the growth phenotype of these strains. ENV1 is consequently suggested to connect the light response pathway with nutrient signaling by the heterotrimeric G-protein cascade by adjusting transcript levels of gna1 and gna3 and action on cAMP levels - presumably through inhibition of a phosphodiesterase.
Collapse
Affiliation(s)
| | | | - Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a/1665, A-1060 Wien, Austria
| |
Collapse
|
21
|
Chen MM, Jiang M, Shang J, Lan X, Yang F, Huang J, Nuss DL, Chen B. CYP1, a hypovirus-regulated cyclophilin, is required for virulence in the chestnut blight fungus. MOLECULAR PLANT PATHOLOGY 2011; 12:239-46. [PMID: 21355996 PMCID: PMC3313458 DOI: 10.1111/j.1364-3703.2010.00665.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cyclophilins are peptidyl-prolyl cis-trans isomerases that are highly conserved throughout eukaryotes and are the cellular target of the immunosuppressive drug cyclosporin A (CsA). We cloned cyp1, a cyclophilin A-encoding gene in the phytopathogenic fungus Cryphonectria parasitica, and showed that this gene was downregulated following infection by a virulence-attenuating hypovirus. The function of cyp1 was further investigated by construction of a cyp1 deletion mutant. Although the wild-type C. parasitica strain EP155 was sensitive to CsA, the Δcyp1 strain was highly tolerant to CsA, indicating that CYP1 was the target of CsA. Deletion of cyp1 resulted in reduced virulence when inoculated to chestnut stems. Transcriptional analysis revealed that deletion of cyp1 also reduced transcript levels for genes encoding key components of the heterotrimeric guanosine triphosphate-binding protein signalling pathway that are essential for sensing environmental cues and are involved in C. parasitica development and virulence.
Collapse
Affiliation(s)
- Min-Mei Chen
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, The Key Laboratory of Ministry of Education of China for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Popov AP, Belov AA, Ivanushkina NE, Tsvetkov IL, Konichev AS. Molecular genetic determinants of intraspecific polymorphism of the phytopathogenic fungus Cryphonectria parasitica. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Rostagno L, Prodi A, Turina M. Cpkk1, MAPKK of Cryphonectria parasitica, is necessary for virulence on chestnut. PHYTOPATHOLOGY 2010; 100:1100-1110. [PMID: 20839945 DOI: 10.1094/phyto-02-10-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
ABSTRACT The role of Cpkk1, a mitogen-activated protein kinase from Cryphonectria parasitica, was investigated by generating a number of mutant strains that overexpress, under the control of the cryparin promoter, both the wild-type protein and its allele with an extensive deletion in the catalytic domain. Furthermore, a hairpin construct was built and expressed to cause specific silencing of Cpkk1 mRNA transcripts. Specific mRNA silencing or overexpression was confirmed on both Northern and Western blot analysis. Selected C. parasitica strains with Cpkk1 either silenced or overexpressed were evaluated for their biological characteristics, including virulence on European chestnut, growth on different substrates, conidial sporulation, and resistance to cell-wall-degrading enzymes. Silencing of Cpkk1 and the overexpression of a defective Cpkk1 correlated with a marked reduction in virulence on 3-year-old chestnut trees, with no statistically significant effect on fungal growth in the various conditions tested.
Collapse
|
24
|
Kumar A, Tripathi K, Rana M, Purwar S, Garg GR. Dibutyryl c-AMP as an inducer of sporidia formation: biochemical and antigenic changes during morphological differentiation of Karnal bunt (Tilletia indica) pathogen in axenic culture. J Biosci 2009; 29:23-31. [PMID: 15286400 DOI: 10.1007/bf02702558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Effect of dibutyryl adenosine 3',5'-cyclic monophosphate (dbc-AMP), an analogue of c-AMP, was investigated on growth and morphological differentiation of Tilletia indica. Exponential growth was observed up to 21 days in both presence and absence of dbc-AMP; however, increasing concentration of dbc-AMP was deleterious to mycelial growth in liquid culture. A slow increase of mycelial biomass up to 21 days and decline at 30 days in the presence of 2.5 mM dbc-AMP was observed, therefore, this concentration was chosen in subsequent investigations. The inhibitory influence of dbc-AMP was further substantiated by decrease in soluble protein. The fungus on exposure to dbc-AMP experienced morphological differentiation from vegetative mycelial phase to sporogenous mycelial phase, and was induced to produce filiform sporidia. Use of quantitative ELISA further suggested that sporidia formation took more than 21 days in the presence of dbc-AMP. Variations of proteins during different stages of T. indica grown in the presence and absence of dbc-AMP suggested the expression of stage-specific proteins or differential expression of proteins induced by dbc-AMP. The changes in expression of cell surface antigens as evidenced from decrease and increase binding of anti-mycelial and anti-sporidial antibodies in dbc-AMP treated culture by ELISA was further interpreted on the basis of morphological differentiation from mycelial to sporidial phase
Collapse
Affiliation(s)
- Anil Kumar
- Department of Molecular Biology and Genetic Engineering, GB Pan University of Agriculture and Technology, Pantnagar, India.
| | | | | | | | | |
Collapse
|
25
|
G(alpha) and Gbeta proteins regulate the cyclic AMP pathway that is required for development and pathogenicity of the phytopathogen Mycosphaerella graminicola. EUKARYOTIC CELL 2009; 8:1001-13. [PMID: 19411619 DOI: 10.1128/ec.00258-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified and functionally characterized genes encoding three Galpha proteins and one Gbeta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Galpha(i) and Galpha(s) families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.
Collapse
|
26
|
Hypovirus-responsive transcription factor gene pro1 of the chestnut blight fungus Cryphonectria parasitica is required for female fertility, asexual spore development, and stable maintenance of hypovirus infection. EUKARYOTIC CELL 2008; 8:262-70. [PMID: 19114501 DOI: 10.1128/ec.00338-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report characterization of the gene encoding putative transcription factor PRO1, identified in transcriptional profiling studies as being downregulated in the chestnut blight fungus Cryphonectria parasitica in response to infection by virulence-attenuating hypoviruses. Sequence analysis confirmed that pro1 encodes a Zn(II)(2)Cys(6) binuclear cluster DNA binding protein with significant sequence similarity to the pro1 gene product that controls fruiting body development in Sordaria macrospora. Targeted disruption of the C. parasitica pro1 gene resulted in two phenotypic changes that also accompany hypovirus infection, a significant reduction in asexual sporulation that could be reversed by exposure to high light intensity, and loss of female fertility. The pro1 disruption mutant, however, retained full virulence. Although hypovirus CHV1-EP713 infection was established in the pro1 disruption mutant, infected colonies continually produced virus-free sectors, suggesting that PRO1 is required for stable maintenance of hypovirus infection. These results complement the recent characterization of the hypovirus-responsive homologue of the Saccharomyces cerevisiae Ste12 C(2)H(2) zinc finger transcription factor gene, cpst12, which was shown to be required for C. parasitica female fertility and virulence.
Collapse
|
27
|
Chung HJ, Kwon BR, Kim JM, Park SM, Park JK, Cha BJ, Yang MS, Kim DH. A tannic acid-inducible and hypoviral-regulated Laccase3 contributes to the virulence of the chestnut blight fungus Cryphonectria parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1582-1590. [PMID: 18986254 DOI: 10.1094/mpmi-21-12-1582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new laccase gene (lac3) from the chestnut blight fungus Cryphonectria parasitica was induced by the presence of tannic acid, which is abundant in the bark of chestnut trees and is assumed to be one of the major barriers against pathogen infection. However, other commonly known laccase inducers, including ferulic acid, 2,5-xylidine, catechol, and pH, did not induce lac3 transcription. Moreover, the hypovirus modulated the induction of lac3 transcription, abolishing the transcriptional induction of the lac3 gene by tannic acid. A functional analysis of lac3 using a lac3-null mutant indicated that fungal growth and other morphological characteristics, including pigmentation and sporulation, were not affected. However, a virulence assay indicated that the loss of function of a tannic acid-inducible and hypoviral-regulated laccase resulted in reduced virulence without detectable changes in the morphological features. The constitutive expression of lac3 resulted in no significant differences in the necrotic lesions from those caused by the wild type, but its expression in the presence of the hypovirus led to larger lesions than those caused by the hypovirulent strain. These results suggest that the lac3 gene product may not be the only determinant of fungal virulence in chestnut trees but is an important factor.
Collapse
Affiliation(s)
- Hea-Jong Chung
- Division of Natural Sciences and Technology, Wonkwang University, Iksan, Chonbuk 570-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramsdale M. Programmed cell death in pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1369-80. [DOI: 10.1016/j.bbamcr.2008.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/27/2023]
|
29
|
Shang J, Wu X, Lan X, Fan Y, Dong H, Deng Y, Nuss DL, Chen B. Large-scale expressed sequence tag analysis for the chestnut blight fungus Cryphonectria parasitica. Fungal Genet Biol 2008; 45:319-27. [DOI: 10.1016/j.fgb.2007.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 11/01/2007] [Accepted: 11/16/2007] [Indexed: 11/25/2022]
|
30
|
Deng F, Allen TD, Nuss DL. Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. EUKARYOTIC CELL 2006; 6:235-44. [PMID: 17114597 PMCID: PMC1797951 DOI: 10.1128/ec.00302-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A putative homologue of the Saccharomyces cerevisiae Ste12 transcription factor was identified in a series of expressed sequence tag-based microarray analyses as being down-regulated in strains of the chestnut blight fungus, Cryphonectria parasitica, infected by virulence-attenuating hypoviruses. Cloning of the corresponding gene, cpst12, confirmed a high level of similarity to Ste12 homologues of other filamentous fungi. Disruption of cpst12 resulted in no alterations in in vitro growth characteristics or colony morphology and an increase in the production of asexual spores, indicating that CpST12 is dispensable for vegetative growth and conidiation on artificial medium. However, the disruption mutants showed a very substantial reduction in virulence on chestnut tissue and a complete loss of female fertility, two symptoms normally conferred by hypovirus infection. Both virulence and female fertility were restored by complementation with the wild-type cpst12 gene. Analysis of transcriptional changes caused by cpst12 gene disruption with a custom C. parastica cDNA microaray chip identified 152 responsive genes. A significant number of these putative CpST12-regulated genes were also responsive to hypovirus infection. Thus, cpst12 encodes a cellular transcription factor, CpST12, that is down-regulated by hypovirus infection and required for female fertility, virulence and regulated expression of a subset of hypovirus responsive host genes.
Collapse
Affiliation(s)
- Fuyou Deng
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Shady Grove Campus, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | |
Collapse
|
31
|
Turina M, Zhang L, Van Alfen NK. Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkk1, a mitogen-activated protein kinase kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genet Biol 2006; 43:764-74. [PMID: 16814579 DOI: 10.1016/j.fgb.2006.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 04/06/2006] [Accepted: 05/18/2006] [Indexed: 11/19/2022]
Abstract
We screened Cryphonectria parasitica genomic and cDNA libraries with a probe obtained from the amplification of a conserved region among the sequence of known mitogen activated protein kinase kinases (MAPKK) and obtained genomic and cDNA clones. Sequence comparisons of the clones obtained confirmed the identification of a C. parasitica homologue to other fungal MAPKK, which we named Cpkk1. Polyclonal antibodies raised against a purified Cpkk1 fusion protein expressed in Escherichia coli were used to detect Cpkk1 protein in extracts of CHV1-infected and uninfected C. parasitica grown in liquid culture. Differences in the dynamics of phosphorylation and dephosphorylation were noticed. Under the conditions investigated, Cpkk1 protein expression is associated with active mycelial growth, before the onset of a senescent developmental stage. We hypothesize that differences in Cpkk1 phosphorylation state between CHV1 infected and virus free strains are due to a delay of the onset of the developmental stage caused by the presence of the virus.
Collapse
Affiliation(s)
- M Turina
- Department of Plant Pathology, University of California, One Shield Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
32
|
Chung HJ, Kim MJ, Lim JY, Park SM, Cha BJ, Kim YH, Yang MS, Kim DH. A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression. Fungal Genet Biol 2006; 43:326-36. [PMID: 16540355 DOI: 10.1016/j.fgb.2005.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 11/13/2005] [Accepted: 12/27/2005] [Indexed: 10/24/2022]
Abstract
Hypovirus infection of the chestnut blight fungus Cryphonectria parasitica is known to downregulate the fungal laccase1 (lac1), the modulation of which is tightly governed by the inositol triphosphate (IP(3)) and calcium second messenger system in a virus-free strain. We cloned the gene cplc1 encoding a phosphatidyl inositol-specific phospholipase C (PLC), to investigate the regulation of lac1 expression and to better characterize fungal gene regulation by hypovirus. Sequence analysis of the cplc1 gene indicated that the protein product contained both the X and Y domains, which are the two conserved regions found in all known PLCs, with a 133 amino acid extension between the 2nd beta-strand and the alpha-helix in the X domain. In addition, the gene organization appeared to be highly similar to that of a delta-type PLC. Disruption of the cplc1 gene resulted in slow growth and produced colonies characterized by little aerial mycelia and deep orange in color. Accordingly, reduced virulence of the cplc1-null mutant as compared to the wild-type was observed, which can be ascribed to the growth defect. However, other PLC-associated characteristics including temperature sensitivity and osmosensitivity did not differ from the wild-type strain. Northern blot analysis revealed no accumulation of the lac1 gene transcript due to the disruption of the cplc1 gene. Functional complementation of the cplc1-null mutant with the PLC1 gene from Saccharomyces cerevisiae restored lac1 expression, which suggests that the cloned gene encodes PLC activity. The present study indicates that the cplc1 gene is required for normal mycelial growth rate and colony morphology, and that it regulates the lac1 expression, which is also modulated by the hypovirus. Although several PLC genes have been identified in various simple eukaryotic organisms, the deletion analysis of the cplc1 gene in this study appears to be the first report on the functional analysis of PLC in filamentous fungi.
Collapse
MESH Headings
- Amino Acid Sequence
- Ascomycota/cytology
- Ascomycota/enzymology
- Ascomycota/genetics
- Ascomycota/physiology
- Blotting, Northern
- Cloning, Molecular
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Fungal Proteins/biosynthesis
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genetic Complementation Test
- Growth/genetics
- Laccase/biosynthesis
- Molecular Sequence Data
- Morphogenesis/genetics
- Mutagenesis, Insertional
- Mycelium/genetics
- Pigmentation/genetics
- Plant Bark/microbiology
- Plant Diseases/microbiology
- Protein Structure, Tertiary
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Sequence Alignment
- Sequence Analysis, DNA
- Type C Phospholipases/genetics
- Type C Phospholipases/metabolism
- Virulence/genetics
Collapse
Affiliation(s)
- Hea-Jong Chung
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S. The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 2005; 42:749-60. [PMID: 15964222 DOI: 10.1016/j.fgb.2005.04.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/15/2005] [Accepted: 04/27/2005] [Indexed: 11/30/2022]
Abstract
Trichoderma mycoparasitism includes recognition, attack, overgrowth and lysis of the host fungus accompanied by morphological changes and secretion of hydrolytic enzymes and antibiotics. Studying the underlying signal transduction pathways, the tga1 gene encoding a Galpha subunit of Trichoderma atroviride P1 was analysed. A Deltatga1 mutant showed continuous sporulation and elevated internal steady-state cAMP levels. tga1 gene deletion resulted in a complete loss of mycoparasitic overgrowth and lysis of Rhizoctonia solani, Botrytis cinerea, and Sclerotinia sclerotiorum during direct confrontation, although infection structure formation was unaffected. The reduced mycoparasitic abilities were reflected by strongly decreased chitinase activities and reduced nag1 and ech42 gene transcription. Furthermore, production of 6-pentyl-alpha-pyrone and of metabolites with sesquiterpene structure was reduced in the Deltatga1 mutant. Regardless of these deficiencies, the mutant displayed an enhanced growth inhibition of the host fungi by over-producing other low molecular weight antifungal metabolites, suggesting opposite roles of Tga1 in regulating the biosynthesis of different antifungal substances in T. atroviride.
Collapse
MESH Headings
- Antifungal Agents/metabolism
- Ascomycota/growth & development
- Botrytis/growth & development
- Chitinases/biosynthesis
- Chitinases/chemistry
- Cloning, Molecular
- Cyclic AMP/analysis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- Gene Deletion
- Gene Expression
- Genes, Fungal
- Molecular Sequence Data
- Mutation
- Pest Control, Biological
- Pyrones/metabolism
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Rhizoctonia/growth & development
- Sequence Analysis, DNA
- Spores, Fungal
- Transcription, Genetic
- Trichoderma/enzymology
- Trichoderma/genetics
- Trichoderma/metabolism
Collapse
Affiliation(s)
- Barbara Reithner
- Research Area Gene Technology and Applied Biochemistry, Working Group Molecular Biochemistry of Fungi, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, A-1060 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
34
|
Choi ES, Chung HJ, Kim MJ, Park SM, Cha BJ, Yang MS, Kim DH. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica. MICROBIOLOGY-SGM 2005; 151:1349-1358. [PMID: 15870445 DOI: 10.1099/mic.0.27796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Cryphonectria parasitica gene cpmk2, which encodes a mitogen-activated protein kinase belonging to the yeast extracellular signalling-regulated kinase (YERK1) subfamily, was isolated and its biological function was examined. Disruption of cpmk2 resulted in impaired pigmentation and abolished conidiation. Growth defects were observed in the cpmk2 mutant grown on solid plates, but growth of the mutant appeared normal in liquid media, including EP complete and PD broth, suggesting that the cpmk2 gene is involved in sensing and responding to growth conditions. The mutant's production of laccase, as measured by the size of the coloured area produced on tannic-acid-supplemented plates, was significantly reduced compared with the wild-type, but the intensity of the coloured area was unchanged, suggesting that the reduced laccase activity was owing to reduced growth on solid media rather than transcriptional downregulation. A dramatic reduction observed in the canker area produced by the cpmk2 mutant compared with the wild-type, even more severe than that of a hypovirulent strain, can also be ascribed to defective growth on solid surfaces rather than to impairments in a virulence factor(s). Downregulation of the pheromone gene Mf2/1 was also observed in the mutant, indicating a possible explanation for the regulation of the pheromone precursor gene in filamentous fungi and suggesting the presence of the yeast-like pheromone-responsive pathway in C. parasitica. Immunoblot analyses revealed that the phosphorylation level of CpMK2 increased in both virus-free and virus-containing strains in liquid cultures of up to 5 days old and decreased in older cultures. Moreover, the CpMK2 phosphorylation level increased in both strains after transfer from liquid to solid medium. However, levels of phosphorylated CpMK2 were similar in the two strains, suggesting that CpMK2, unlike CpMK1, is not under the direct control of a hypovirus.
Collapse
Affiliation(s)
- Eun-Sil Choi
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Hea-Jong Chung
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Myoung-Ju Kim
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Seung-Moon Park
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Byeong-Jin Cha
- Department of Agricultural Biology, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Moon-Sik Yang
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| |
Collapse
|
35
|
Linder-Basso D, Dynek JN, Hillman BI. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 2005; 337:192-203. [PMID: 15914232 DOI: 10.1016/j.virol.2005.03.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 03/17/2005] [Accepted: 03/31/2005] [Indexed: 11/18/2022]
Abstract
Many different viruses that reduce virulence and alter the phenotype to varying extents have been identified in the chestnut blight fungus Cryphonectria parasitica. Most viruses identified in this fungus fall within the Hypoviridae family of positive-sense RNA viruses, which contains one genus and four species. Different species predominate in different geographic locations in chestnut-growing areas around the world. In this paper, we describe the genome organization and some variants of Cryphonectria hypovirus 4 (CHV-4), the species most commonly found in eastern North America. CHV-4 is distinguished from other hypoviruses by having little effect on fungal virulence and colony morphology. The 9.1-kb genome of strain CHV-4/SR2 is the smallest of any member of the family characterized to date. Like the recently characterized species CHV-3, a single ORF was predicted from deduced translations of CHV-4/SR2. Sequence analysis revealed the presence of a putative glucosyltransferase domain in both CHV-4 and in CHV-3, but no such homolog was detected in the more thoroughly examined CHV-1 or in CHV-2. Alignments with 8 other CHV-4 isolates from different regions of eastern North America revealed sequence diversity within the species and the likelihood that RNA recombination has led to this diversity.
Collapse
Affiliation(s)
- Daniela Linder-Basso
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | | |
Collapse
|
36
|
Zhang R, Dickminson MJ, Pryor AJ. The Gene Product Specified by a Double Stranded RNA in the Flax Rust (Melampsora lini) is Expressed during Rust Growth. Virus Genes 2004; 29:297-301. [PMID: 15550768 DOI: 10.1007/s11262-004-7431-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Strain SP6 of the flax rust (Melampsora lini) contains 11 double-stranded RNAs (dsRNAs) of unknown function. A large open-reading frame (B3ORF1 in dsRNA B3 encodes a polypeptide of 614 amino acids, and using an antiserum raised against the B3ORF1-glutathione S-transferase fusion protein prepared from a bacterial expression system, we have detected the presence of a 67 kDa polypeptide in rust urediospores. This polypeptide, identical in size to that of the predicted translation product of B3ORF1 , was not detected in spores from either a fungal strain lacking the B3 dsRNA or an isogenic strain containing no dsRNA. These data indicate that B3ORF1 present in the flax rust B3 dsRNA is expressed in vivo which warrants farther investigation in search for its function during rust development.
Collapse
Affiliation(s)
- Ren Zhang
- CSIRO, Division of Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
37
|
Allen TD, Dawe AL, Nuss DL. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. EUKARYOTIC CELL 2004; 2:1253-65. [PMID: 14665460 PMCID: PMC326648 DOI: 10.1128/ec.2.6.1253-1265.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoviruses are a family of cytoplasmically replicating RNA viruses of the chestnut blight fungus Cryphonectria parasitica. Members of this mycovirus family persistently alter virulence (hypovirulence) and related fungal developmental processes, including asexual and sexual sporulation. In order to gain a better understanding of the molecular basis for these changes, we have developed a C. parasitica cDNA microarray to monitor global transcriptional responses to hypovirus infection. In this report, a spotted DNA microarray representing approximately 2,200 C. parasitica genes was used to monitor changes in the transcriptional profile after infection by the prototypic hypovirus CHV1-EP713. Altered transcript abundance was identified for 295 clones (13.4% of the 2,200 unique cDNAs) as a result of CHV1-EP713 infection-132 up-regulated and 163 down-regulated. In comparison, less than 20 specific C. parasitica genes were previously identified by Northern analysis and mRNA differential display as being responsive to hypovirus infection. A 93% validation rate was achieved between real-time reverse transcription-PCR results and microarray predictions. Differentially expressed genes represented a broad spectrum of biological functions, including stress responses, carbon metabolism, and transcriptional regulation. These findings are consistent with the view that infection by a 12.7-kbp hypovirus RNA results in a persistent reprogramming of a significant portion of the C. parasitica transcriptome. The potential impact of microarray studies on current and future efforts to establish links between hypovirus-mediated changes in cellular gene expression and phenotypes is discussed.
Collapse
Affiliation(s)
- Todd D Allen
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742-4450, USA
| | | | | |
Collapse
|
38
|
Allen TD, Nuss DL. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J Virol 2004; 78:4145-55. [PMID: 15047830 PMCID: PMC374289 DOI: 10.1128/jvi.78.8.4145-4155.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the use of a cDNA microarray to monitor global transcriptional responses of the chestnut blight fungus, Cryphonectria parasitica, to infection by mild and severe isolates of virulence-attenuating hypoviruses that share 87 to 93% and 90 to 98% identity at the nucleotide and amino acid levels, respectively. Infection by the mild hypovirus isolate CHV1-Euro7 resulted in differential expression of 166 of the ca. 2,200 genes represented on the microarray (90 upregulated and 76 downregulated). This is roughly half the number of genes scored as differentially expressed after infection by the severe isolate, CHV1-EP713 (295 genes; 132 upregulated and 163 downregulated). Comparison of the lists of genes responsive to infection by the two hypovirus isolates revealed 80 virus-common responsive genes. Infection by CHV1-EP713 also caused changes in gene transcript accumulation that were, in general, of greater magnitude than those observed with CHV1-Euro7 infections. Thus, the host transcriptional response to infection by severe hypovirus CHV1-EP713 appears to be considerably more dynamic than the response to infection by the mild isolate CHV1-Euro7. Real-time reverse transcription-PCR was performed on 39 different clones, with false-positive rates of 3 and 8% observed for the microarray-predicted list of genes responsive to CHV1-EP713 and CHV1-Euro7 infections, respectively. This analysis has allowed an initial assignment for ca. 2,200 unique C. parasitica-expressed genes as being unresponsive to hypovirus infection, selectively responsive to a specific hypovirus, or generally responsive to hypovirus infection.
Collapse
Affiliation(s)
- Todd D Allen
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742-4450, USA
| | | |
Collapse
|
39
|
Hillman BI, Supyani S, Kondo H, Suzuki N. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the coltivirus genus of animal pathogens. J Virol 2004; 78:892-8. [PMID: 14694120 PMCID: PMC368758 DOI: 10.1128/jvi.78.2.892-898.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA viruses of filamentous fungi fall into two broad categories, those that contain double-stranded RNA (dsRNA) genomes in rigid particles and those that are more closely related to positive-sense, single-stranded RNA viruses with dsRNA replicative intermediates found within lipid vesicles. Effective infectivity systems have been described for the latter, using RNA transcripts, but not for the former. We report the characterization of a reovirus from Cryphonectria parasitica, the filamentous fungus that causes chestnut blight disease. The virus substantially reduces the virulence of the fungus and results in dramatically altered colony morphology, as well as changes in other associated fungal traits, relative to the virus-free isogenic strain. Virus particles from infected mycelium contained 11 segments of dsRNA and showed characteristics typical of the family Reoviridae. Sequences of the largest three segments revealed that the virus is closely related to the Coltivirus genus of animal pathogens, which includes the human pathogen Colorado tick fever virus. The introduction of purified virus particles into protoplasts from virus-free isolates of the fungus resulted in a newly infected mycelium with the same morphology and virus composition as the original virus-infected isolate. This represents the completion of Koch's postulates for a true dsRNA virus from a filamentous fungus and the description of a definitive fungal member of the family Reoviridae.
Collapse
Affiliation(s)
- Bradley I Hillman
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520, USA
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Bradley I Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
41
|
Nishimura M, Park G, Xu JR. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 2003; 50:231-43. [PMID: 14507377 DOI: 10.1046/j.1365-2958.2003.03676.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trimeric G-proteins transmit extracellular signals to various downstream effectors (e.g. MAP kinases) in eukaryotes. In the rice blast fungus Magnaporthe grisea, the Pmk1 MAP kinase is essential for appressorium formation and infectious growth. The pmk1 deletion mutant fails to form appressoria but still responds to exogenous cAMP for tip deformation. Since gene disruption mutants of three Galpha subunits still form appressoria and are phenotypically different from pmk1 mutants, it is likely that the Pmk1 pathway is activated by Gbeta in M. grisea. In this study, we isolated and characterized the MGB1 gene that encodes the G subunit in M. grisea. Mutants disrupted in MGB1 were reduced in conidiation. Conidia from mgb1 mutants were defective in appressorium formation and failed to penetrate or grow invasively on rice leaves. Exogenous cAMP induced appressorium formation in mgb1 mutants, but these appressoria were abnormal in shape and could not penetrate. The intracellular cAMP level was reduced in mgb1 mutants and the defects in conidiation and hyphal growth were partially suppressed with 1 mM cAMP. Transformants expressing multiple copies of MGB1 were able to form appressoria on hydrophilic surfaces. Our results suggest that MGB1 may be involved in the cAMP signalling for regulating conidiation, surface recognition and appressorium formation. The Pmk1 pathway may be the downstream target of MGB1 for regulating penetration and infectious hyphae growth in M. grisea.
Collapse
Affiliation(s)
- Marie Nishimura
- National Institute of Agrobiological Sciences, 2-1-2, Kan' non dai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | |
Collapse
|
42
|
Dawe AL, McMains VC, Panglao M, Kasahara S, Chen B, Nuss DL. An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2373-2384. [PMID: 12949163 DOI: 10.1099/mic.0.26371-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cryphonectria parasitica, the causative agent of chestnut blight, has proven to be a tractable experimental system for studying fungal pathogenesis. Moreover, the development of infectious cDNA clones of C. parasitica hypoviruses, capable of attenuating fungal virulence, has provided the opportunity to examine molecular aspects of fungal plant pathogenesis in the context of biological control. In order to establish a genomic base for future studies of C. parasitica, the authors have analysed a collection of expressed sequences. A mixed cDNA library was prepared from RNA isolated from wild-type (virus-free) and hypovirus-infected C. parasitica strains. Plasmid DNA was recovered from individual transformants and sequenced from the 5' end of the insert. Contig analysis of the collected sequences revealed that they represented approximately 2200 individual ORFs. An assessment of functional diversity present in this collection was achieved by using the BLAST software utilities and the NCBI protein database. Candidate genes were identified with significant potential relevance to C. parasitica growth, development, pathogenesis and vegetative incompatibility. Additional investigations of a 12.9 kbp genomic region revealed microsynteny between C. parasitica and both Neurospora crassa and Magnaporthe grisea, two closely related fungi. These data represent the largest collection of sequence information currently available for C. parasitica and are now forming the basis of further studies using microarray analyses to determine global changes in transcription that occur in response to hypovirus infection.
Collapse
Affiliation(s)
- Angus L Dawe
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA
| | - Vanessa C McMains
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA
| | - Maria Panglao
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA
| | - Shin Kasahara
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA
| | - Baoshan Chen
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA
| | - Donald L Nuss
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA
| |
Collapse
|
43
|
Lee N, D'Souza CA, Kronstad JW. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:399-427. [PMID: 12651963 DOI: 10.1146/annurev.phyto.41.052002.095728] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cAMP regulates morphogenesis and virulence in a wide variety of fungi including the plant pathogens. In saprophytic yeasts such as Saccharomyces cerevisiae, cAMP signaling plays an important role in nutrient sensing. In filamentous saprophytes, the cAMP pathway appears to play an integral role in vegetative growth and sporulation, with possible connections to mating. Infection-related morphogenesis includes sporulation (conidia and teliospores), formation of appressoria, infection hyphae, and sclerotia. Here, we review studies of cAMP signaling in a variety of plant fungal pathogens. The primary fungi to be considered include Ustilago maydis, Magnaporthe grisea, Cryphonectria parasitica, Colletotrichum and Fusarium species, and Erisyphe graminis. We also include related information on Trichoderma species that act as mycoparasites and biocontrol agents of phytopathogenic fungi. We point out similarities in infection mechanisms, conservation of signaling components, as well as instances of cross-talk with other signaling pathways.
Collapse
Affiliation(s)
- Nancy Lee
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3;
| | | | | |
Collapse
|
44
|
Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A. Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. EUKARYOTIC CELL 2002; 1:594-605. [PMID: 12456007 PMCID: PMC117994 DOI: 10.1128/ec.1.4.594-605.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The soil fungus Trichoderma atroviride, a mycoparasite, responds to a number of external stimuli. In the presence of a fungal host, T. atroviride produces hydrolytic enzymes and coils around the host hyphae. In response to light or nutrient depletion, asexual sporulation is induced. In a biomimetic assay, different lectins induce coiling around nylon fibers; coiling in the absence of lectins can be induced by applying cyclic AMP (cAMP) or the heterotrimeric G-protein activator mastoparan. We isolated a T. atroviride G-protein alpha-subunit (Galpha) gene (tgal) belonging to the fungal subfamily with the highest similarity to the Galpha1 class. Generated transgenic lines that overexpress Galpha show very delayed sporulation and coil at a higher frequency. Furthermore, transgenic lines that express an activated mutant protein with no GTPase activity do not sporulate and coil at a higher frequency. Lines that express an antisense version of the gene are hypersporulating and coil at a much lower frequency in the biomimetic assay. The loss of Tgal in these mutants correlates with the loss of GTPase activity stimulated by the peptide toxin Mas-7. The application of Mas-7 to growing mycelial colonies raises intracellular cAMP levels, suggesting that Tgal can activate adenylyl cyclase. In contrast, cAMP levels and cAMP-dependent protein kinase activity drop when diffusible host signals are encountered and the mycoparasitism-related genes ech42 and prb1 are highly expressed. Mycoparasitic signaling is unlikely to be a linear pathway from host signals to increased cAMP levels. Our results demonstrate that the product of the tga1 gene is involved in both coiling and conidiation.
Collapse
Affiliation(s)
- Víctor Rocha-Ramirez
- Department of Plant Genetic Engineering, Centro de Investigación y Estudios Avanzados, Unidad Irapuato, 36500 Irapuato, Guanajuato, México
| | | | | | | | | |
Collapse
|
45
|
Kim MJ, Choi JW, Park SM, Cha BJ, Yang MS, Kim DH. Characterization of a fungal protein kinase from Cryphonectria parasitica and its transcriptional upregulation by hypovirus. Mol Microbiol 2002; 45:933-41. [PMID: 12180914 DOI: 10.1046/j.1365-2958.2002.03079.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chestnut blight fungus Cryphonectria parasitica and its hypovirus comprise useful model system to study the mechanisms of hypoviral infection. We used degenerate primers based on fungal protein kinases to isolate a gene, cppk1, which encodes a novel Ser/Thr protein kinase of C. parasitica. The gene showed highest homology to ptk1, a Ser/Thr protein kinase from Trichoderma reesei. The encoded protein had a predicted mass of 70.5 kDa and a pI of 7.45. Northern blot analyses revealed that the cppk1 transcript was expressed from the beginning of culture, with a slight increase by 5 days of culture. However, its expression was specifically affected by the presence of virus, and it was transcriptionally upregulated in the fungal strain infected with the hypovirus. A kinase assay using Escherichia coli-derived CpPK1 revealed CpPK1-specific phosphorylated proteins with estimated masses of 50 kDa and 44 kDa. In addition, the phosphorylation of both proteins was higher in a cell-free extract from the hypovirulent strain. The increased expression of cppk1 by the introduction of an additional copy results in a subset of viral symptoms of reduced pigmentation and conidiation in a virus-free isolate. cppk1 overexpression also causes the downregulation of mating factor genes Mf2/1 and Mf2/2, resulting in female sterility. The present study suggests that the hypovirus disturbs fungal signalling by transcriptional upregulation of cppk1, which results in reduced pigmentation and conidiation and female sterility.
Collapse
Affiliation(s)
- Myoung-Ju Kim
- Institute of Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Chonbuk, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Zuber S, Hynes MJ, Andrianopoulos A. G-protein signaling mediates asexual development at 25 degrees C but has no effect on yeast-like growth at 37 degrees C in the dimorphic fungus Penicillium mameffei. EUKARYOTIC CELL 2002; 1:440-7. [PMID: 12455992 PMCID: PMC118015 DOI: 10.1128/ec.1.3.440-447.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ascomycete Penicillium marneffei is an opportunistic human pathogen exhibiting a temperature-dependent dimorphic switch. At 25 degrees C, P. marneffei grows as filamentous multinucleate hyphae and undergoes asexual development, producing uninucleate spores. At 37 degrees C, it forms uninucleate yeast cells which divide by fission. We have cloned a gene encoding a G alpha subunit of a heterotrimeric G protein from P. marneffei named gasA with high similarity to fadA in Aspergillus nidulans. Through the characterization of a delta gasA strain and mutants carrying a dominant activating or a dominant interfering gasA allele, we show that GasA is a key regulator of asexual development but seems to play no role in the regulation of growth. A dominant activating gasA mutant whose mutation results in a G42-to-R change (gasA(G42R)) does not express brlA, the conidiation-specific regulatory gene, and is locked in vegetative growth, while a dominant interfering gasA(G203R) mutant shows inappropriate brlA expression and conidiation. Interestingly, the gasA mutants have no apparent defect in dimorphic switching or yeast-like growth at 37 degrees C. Growth tests on dibutyryl cyclic AMP (dbcAMP) and theophylline suggest that a cAMP-protein kinase A cascade may be involved in the GasA signaling pathway.
Collapse
Affiliation(s)
- Sophie Zuber
- Department of Genetics, University of Melbourne, 3010 Victoria, Australia
| | | | | |
Collapse
|
47
|
Parsley TB, Chen B, Geletka LM, Nuss DL. Differential modulation of cellular signaling pathways by mild and severe hypovirus strains. EUKARYOTIC CELL 2002; 1:401-13. [PMID: 12455988 PMCID: PMC118008 DOI: 10.1128/ec.1.3.401-413.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoviruses persistently alter multiple phenotypic traits, stably modify gene expression, and attenuate virulence (hypovirulence) of their pathogenic fungal host, the chestnut blight fungus Cryphonectria parasitica. The pleiotropic nature of these changes is consistent with hypovirus-mediated perturbation of one or more cellular signal transduction pathways. We now report that two hypoviruses that differ in the severity of symptom expression differentially perturb specific cellular signaling pathways. The C. parasitica 13-1 gene, originally identified as a hypovirus-inducible and cyclic AMP (cAMP)-regulated gene, was used to design a promoter-GFP reporter construct with which to monitor perturbation of cAMP-mediated signaling. Virus-mediated modulation of calcium/calmodulin/inositol trisphosphate-dependent signaling was monitored by measuring transcript accumulation from the C. parasitica laccase gene, lac-1. Infection by the severe hypovirus strain CHV1-EP713 caused a substantial induction of 13-1 promoter activity and a reduction of total extracellular laccase enzymatic activity (LAC-1 and LAC-3). In contrast, 13-1 promoter activity and total laccase activity were only marginally altered upon infection with the mild hypovirus strain CHV1-Euro7. However, examination of lac-1-specific transcript accumulation under previously defined culture conditions revealed that both CHV1-EP713 and CHV1-Euro7 perturbed calcium/calmodulin/inositol trisphosphate-dependent signaling. CHV1-EP713/CHV1-Euro7 chimeric viruses were used to map viral determinants responsible for modulation of cAMP-dependent signaling to domains within the central portion of the second open reading frame.
Collapse
Affiliation(s)
- Todd B Parsley
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742-4450, USA
| | | | | | | |
Collapse
|
48
|
Dawe AL, Nuss DL. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 2002; 35:1-29. [PMID: 11700275 DOI: 10.1146/annurev.genet.35.102401.085929] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungal viruses are considered unconventional because they lack an extracellular route of infection and persistently infect their hosts, often in the absence of apparent symptoms. Because mycoviruses are limited to intracellular modes of transmission, they can be considered as intrinsic fungal genetic elements. Such long-term genetic interactions, even involving apparently asymptomatic mycoviruses, are likely to have an impact on fungal ecology and evolution. One of the clearest examples supporting this view is the phenomenon of hypovirulence (virulence attenuation) observed for strains of the chestnut blight fungus, Cryphonectria parasitica, harboring members of the virus family Hypoviridae. The goal of this chapter is to document recent advances in hypovirus molecular genetics and to provide examples of how that progress is leading to the identification of virus-encoded determinants responsible for altering fungal host phenotype, insights into essential and dispensable elements of hypovirus replication, revelations concerning the role of G-protein signaling in fungal pathogenesis, and new avenues for enhancing biological control potential.
Collapse
Affiliation(s)
- A L Dawe
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742-4450, USA.
| | | |
Collapse
|
49
|
Ahn IP, Lee YH. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:496-507. [PMID: 11310737 DOI: 10.1094/mpmi.2001.14.4.496] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Double-stranded RNAs (dsRNAs) are widespread in plant pathogenic fungi, but their functions in fungal hosts remain mostly unclear, with a few exceptions. We analyzed dsRNAs from Nectria radicicola, the causal fungus of ginseng root rot. Four distinct sizes of dsRNAs, 6.0, 5.0, 2.5, and 1.5 kbp, were detected in 24 out of the 81 strains tested. Curing tests of individual dsRNAs suggested that the presence of 6.0-kbp dsRNA was associated with high levels of virulence, sporulation, laccase activity, and pigmentation in this fungus. The 6.0-kbp dsRNA-cured strains completely lost virulence-related phenotypes. This 6.0-kbp dsRNA was reintroduced by hyphal anastomosis to a dsRNA-cured strain marked with hygromycin resistance, which resulted in the restoration of virulence-related phenotypes. These results strongly suggest that 6.0-kbp dsRNA up regulates fungal virulence in N. radicicola. Sequencing of several cDNA clones derived from 6.0-kbp dsRNA revealed the presence of a RNA-dependent RNA polymerase (RDRP) gene. Phylogenetic analysis showed that this gene is closely related to those of plant cryptic viruses. Biochemical analyses suggested that the 6.0-kbp dsRNA may regulate fungal virulence through signal-transduction pathways involving cyclic AMP-dependent protein kinase and protein kinase C.
Collapse
Affiliation(s)
- I P Ahn
- School of Agricultural Biotechnology and Research Center for New Bio-Materials in Agriculture, Seoul National University, Korea
| | | |
Collapse
|
50
|
Shimizu K, Keller NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 2001; 157:591-600. [PMID: 11156981 PMCID: PMC1461531 DOI: 10.1093/genetics/157.2.591] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the filamentous fungus Aspergillus nidulans, a heterotrimeric G protein alpha-subunit and an RGS domain protein, encoded by fadA and flbA, respectively, regulate production of the carcinogenic metabolite sterigmatocystin (ST) and asexual spores (i.e., conidia). We investigated the genetic involvement of the cAMP-dependent protein kinase catalytic subunit (PkaA), a potential downstream target of FadA activity, in ST production and conidiation. Relative to wild type, sporulation was decreased in the pkaA overexpression strain but was not totally absent, as occurs in DeltaflbA or fadA(G42R) (fadA-dominant active) strains. Deletion of pkaA resulted in a hyper-conidiating strain with limited radial growth. This phenotype was epistatic to mutation in flbA or fadA; the double mutants DeltapkaA; DeltaflbA and DeltapkaA; fadA(G42R) recovered sporulation and their radial growth was severely restricted. PkaA overexpression also negatively regulated AflR, the ST biosynthesis-specific transcription factor, both transcriptionally and post-transcriptionally. Deletion of pkaA restored ST production in the DeltaflbA background but not in the fadA(G42R) background. These data provide genetic evidence that the FlbA/FadA signaling pathway regulating ST production and morphological development is partially mediated through PkaA.
Collapse
Affiliation(s)
- K Shimizu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | | |
Collapse
|