1
|
Li W, Wang Y, Zhang M, Zhao S, Wang M, Zhao R, Chen J, Zhang Y, Xia P. Mass Spectrometry-Based Proteomic Analysis of Potential Host Proteins Interacting with GP5 in PRRSV-Infected PAMs. Int J Mol Sci 2024; 25:2778. [PMID: 38474030 DOI: 10.3390/ijms25052778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Mengting Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Ruijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
2
|
Veríssimo A, Castro LFC, Muñoz-Mérida A, Almeida T, Gaigher A, Neves F, Flajnik MF, Ohta Y. An Ancestral Major Histocompatibility Complex Organization in Cartilaginous Fish: Reconstructing MHC Origin and Evolution. Mol Biol Evol 2023; 40:msad262. [PMID: 38059517 PMCID: PMC10751288 DOI: 10.1093/molbev/msad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Cartilaginous fish (sharks, rays, and chimeras) comprise the oldest living jawed vertebrates with a mammalian-like adaptive immune system based on immunoglobulins (Ig), T-cell receptors (TCRs), and the major histocompatibility complex (MHC). Here, we show that the cartilaginous fish "adaptive MHC" is highly regimented and compact, containing (i) a classical MHC class Ia (MHC-Ia) region containing antigen processing (antigen peptide transporters and immunoproteasome) and presenting (MHC-Ia) genes, (ii) an MHC class II (MHC-II) region (with alpha and beta genes) with linkage to beta-2-microglobulin (β2m) and bromodomain-containing 2, (iii) nonclassical MHC class Ib (MHC-Ib) regions with 450 million-year-old lineages, and (iv) a complement C4 associated with the MHC-Ia region. No MHC-Ib genes were found outside of the elasmobranch MHC. Our data suggest that both MHC-I and MHC-II genes arose after the second round of whole-genome duplication (2R) on a human chromosome (huchr) 6 precursor. Further analysis of MHC paralogous regions across early branching taxa from all jawed vertebrate lineages revealed that Ig/TCR genes likely arose on a precursor of the huchr9/12/14 MHC paralog. The β2m gene is linked to the Ig/TCR genes in some vertebrates suggesting that it was present at 1R, perhaps as the donor of C1 domain to the primordial MHC gene. In sum, extant cartilaginous fish exhibit a conserved and prototypical MHC genomic organization with features found in various vertebrates, reflecting the ancestral arrangement for the jawed vertebrates.
Collapse
Affiliation(s)
- Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Janes ME, Kinlein A, Flajnik MF, Du Pasquier L, Ohta Y. Genomic view of the origins of cell-mediated immunity. Immunogenetics 2023; 75:479-493. [PMID: 37735270 PMCID: PMC11019866 DOI: 10.1007/s00251-023-01319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
NKp30 is an activating natural killer cell receptor (NKR) with a single-exon variable (VJ)-type immunoglobulin superfamily (IgSF) domain. Such VJ-IgSF domains predate the emergence of the antigen receptors (immunoglobulin and T cell receptor), which possess the same domain but undergo gene rearrangement. NCR3, the gene encoding NKp30, is present in jawed vertebrates from sharks to mammals; thus, unlike most NKR that are highly divergent among vertebrate taxa, NKp30 is uniquely conserved. We previously hypothesized that an ancestral NCR3 gene was encoded in the proto-major histocompatibility complex (MHC), the region where many immune-related genes have accumulated. Herein, we searched in silico databases to identify NCR3 paralogues and examined their genomic locations. We found a paralogue, NCR3H, in many vertebrates but was lost in mammals. Additionally, we identified a set of voltage-gated sodium channel beta (SCNB) genes as NCR3-distantly-related genes. Like NCR3, both NCR3H and SCNB proteins contain a single VJ-IgSF domain followed by a transmembrane region. These genes map to MHC paralogous regions, originally described in an invertebrate, along with genes encoding cell adhesion molecules involved in NK cell recognition networks. Other genes having no obvious relationship to immunity also map to these paralogous regions. These gene complexes were traced to several invertebrates, suggesting that the foundation of these cellular networks emerged before the genome-wide duplications in early gnathostome history. Here, we propose that this ancestral region was involved in cell-mediated immunity prior to the emergence of adaptive immunity and that NCR3 piggybacked onto this primordial complex, heralding the emergence of vertebrate NK cell/T cells.
Collapse
Affiliation(s)
- Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Louis Du Pasquier
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Major histocompatibility complex genes and locus organization in the Komodo dragon (Varanus komodoensis). Immunogenetics 2021; 73:405-417. [PMID: 33978784 DOI: 10.1007/s00251-021-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
We performed a meta-analysis of the newly assembled Komodo dragon (Varanus komodoensis) genome to characterize the major histocompatibility complex (MHC) of the species. The MHC gene clusters of the Komodo dragon are gene dense, complex, and contain counterparts of many genes of the human MHC. Our analysis identified 20 contigs encompassing ~ 6.9 Mbp of sequence with 223 annotated genes of which many are predicted orthologs to the genes of the human MHC. These MHC contigs range in size from 13.2 kb to 21.5 Mbp, contain an average of one gene per 30 kb, and are thought to occur on at least two chromosomes. Eight contigs, each > 100 kb, could be aligned to the human MHC based on gene content, and these represent gene clusters found in each of the recognized mammalian MHC subregions. The MHC of the Komodo dragon shares organizational features of other non-mammalian taxa. Multiple class Iα and class IIβ genes are indicated, with linkage between classical class I and immunoproteasome genes and between framework class I genes and genes associated with the mammalian class III subregion. These findings are supported in both Komodo genome assemblies and provide new insight into the MHC organization of these unique squamate reptiles.
Collapse
|
6
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
7
|
Calles J, Justice I, Brinkley D, Garcia A, Endy D. Fail-safe genetic codes designed to intrinsically contain engineered organisms. Nucleic Acids Res 2019; 47:10439-10451. [PMID: 31511890 PMCID: PMC6821295 DOI: 10.1093/nar/gkz745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
One challenge in engineering organisms is taking responsibility for their behavior over many generations. Spontaneous mutations arising before or during use can impact heterologous genetic functions, disrupt system integration, or change organism phenotype. Here, we propose restructuring the genetic code itself such that point mutations in protein-coding sequences are selected against. Synthetic genetic systems so-encoded should fail more safely in response to most spontaneous mutations. We designed fail-safe codes and simulated their expected effects on the evolution of so-encoded proteins. We predict fail-safe codes supporting expression of 20 or 15 amino acids could slow protein evolution to ∼30% or 0% the rate of standard-encoded proteins, respectively. We also designed quadruplet-codon codes that should ensure all single point mutations in protein-coding sequences are selected against while maintaining expression of 20 or more amino acids. We demonstrate experimentally that a reduced set of 21 tRNAs is capable of expressing a protein encoded by only 20 sense codons, whereas a standard 64-codon encoding is not expressed. Our work suggests that biological systems using rationally depleted but otherwise natural translation systems should evolve more slowly and that such hypoevolvable organisms may be less likely to invade new niches or outcompete native populations.
Collapse
Affiliation(s)
- Jonathan Calles
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Isaac Justice
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Detravious Brinkley
- Department of Mathematics and Computer Science, Claflin University, Orangeburg, SC 29115, USA
| | - Alexa Garcia
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Drew Endy
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Ohta Y, Kasahara M, O'Connor TD, Flajnik MF. Inferring the "Primordial Immune Complex": Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1882-1896. [PMID: 31492741 PMCID: PMC6761025 DOI: 10.4049/jimmunol.1900597] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Comparative analyses suggest that the MHC was derived from a prevertebrate "primordial immune complex" (PIC). PIC duplicated twice in the well-studied two rounds of genome-wide duplications (2R) early in vertebrate evolution, generating four MHC paralogous regions (predominantly on human chromosomes [chr] 1, 6, 9, 19). Examining chiefly the amphibian Xenopus laevis, but also other vertebrates, we identified their MHC paralogues and mapped MHC class I, AgR, and "framework" genes. Most class I genes mapped to MHC paralogues, but a cluster of Xenopus MHC class Ib genes (xnc), which previously was mapped outside of the MHC paralogues, was surrounded by genes syntenic to mammalian CD1 genes, a region previously proposed as an MHC paralogue on human chr 1. Thus, this gene block is instead the result of a translocation that we call the translocated part of the MHC paralogous region (MHCtrans) Analyses of Xenopus class I genes, as well as MHCtrans, suggest that class I arose at 1R on the chr 6/19 ancestor. Of great interest are nonrearranging AgR-like genes mapping to three MHC paralogues; thus, PIC clearly contained several AgR precursor loci, predating MHC class I/II. However, all rearranging AgR genes were found on paralogues derived from the chr 19 precursor, suggesting that invasion of a variable (V) exon by the RAG transposon occurred after 2R. We propose models for the evolutionary history of MHC/TCR/Ig and speculate on the dichotomy between the jawless (lamprey and hagfish) and jawed vertebrate adaptive immune systems, as we found genes related to variable lymphocyte receptors also map to MHC paralogues.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201; and
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
9
|
Kasahara M, Flajnik MF. Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics 2019; 71:251-261. [PMID: 30675634 DOI: 10.1007/s00251-019-01105-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/10/2023]
Abstract
Proteasomes are a multi-subunit protease complex that produces peptides bound by major histocompatibility complex (MHC) class I molecules. Phylogenetic studies indicate that two specialized forms of proteasomes, immunoproteasomes and thymoproteasomes, and the proteasome activator PA28αβ emerged in a common ancestor of jawed vertebrates which acquired adaptive immunity based on the MHC, T cell receptors, and B cell receptors ~ 500 million years ago. Comparative genomics studies now provide strong evidence that the genes coding for the immunoproteasome subunits emerged by genome-wide duplication. On the other hand, the gene encoding the thymoproteasome subunit β5t emerged by tandem duplication from the gene coding for the β5 subunit. Strikingly, birds lack immunoproteasomes, thymoproteasomes, and the proteasome activator PA28αβ, raising an interesting question of whether they have evolved any compensatory mechanisms.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 2018; 19:923-931. [PMID: 30104634 DOI: 10.1038/s41590-018-0186-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
The basic principle of adaptive immunity is to strictly discriminate between self and non-self, and a central challenge to overcome is the enormous variety of pathogens that might be encountered. In cell-mediated immunity, immunological discernment takes place at a molecular or cellular level. Central to both mechanisms of discernment is the generation of antigenic peptides associated with MHC class I molecules, which is achieved by a proteolytic complex called the proteasome. To adequately accomplish the discrimination between self and non-self that is essential for adaptive immunity and self-tolerance, two proteasome subtypes have evolved via gene duplication: the immunoproteasome and the thymoproteasome. In this Review, we describe various aspects of these immunity-dedicated proteasomes, from their discovery to recent findings.
Collapse
|
11
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
12
|
Kennedy AE, Ozbek U, Dorak MT. What has GWAS done for HLA and disease associations? Int J Immunogenet 2018; 44:195-211. [PMID: 28877428 DOI: 10.1111/iji.12332] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
The major histocompatibility complex (MHC) is located in chromosome 6p21 and contains crucial regulators of immune response, including human leucocyte antigen (HLA) genes, alongside other genes with nonimmunological roles. More recently, a repertoire of noncoding RNA genes, including expressed pseudogenes, has also been identified. The MHC is the most gene dense and most polymorphic part of the human genome. The region exhibits haplotype-specific linkage disequilibrium patterns, contains the strongest cis- and trans-eQTLs/meQTLs in the genome and is known as a hot spot for disease associations. Another layer of complexity is provided to the region by the extreme structural variation and copy number variations. While the HLA-B gene has the highest number of alleles, the HLA-DR/DQ subregion is structurally most variable and shows the highest number of disease associations. Reliance on a single reference sequence has complicated the design, execution and analysis of GWAS for the MHC region and not infrequently, the MHC region has even been excluded from the analysis of GWAS data. Here, we contrast features of the MHC region with the rest of the genome and highlight its complexities, including its functional polymorphisms beyond those determined by single nucleotide polymorphisms or single amino acid residues. One of the several issues with customary GWAS analysis is that it does not address this additional layer of polymorphisms unique to the MHC region. We highlight alternative approaches that may assist with the analysis of GWAS data from the MHC region and unravel associations with all functional polymorphisms beyond single SNPs. We suggest that despite already showing the highest number of disease associations, the true extent of the involvement of the MHC region in disease genetics may not have been uncovered.
Collapse
Affiliation(s)
- A E Kennedy
- Center for Research Strategy, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - U Ozbek
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M T Dorak
- Head of School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, UK
| |
Collapse
|
13
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
14
|
Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci U S A 2016; 113:E5014-23. [PMID: 27493218 DOI: 10.1073/pnas.1607602113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates.
Collapse
|
15
|
Guan L, Chi W, Xiao W, Chen L, He S. Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish. BMC Evol Biol 2014; 14:192. [PMID: 25205386 PMCID: PMC4162920 DOI: 10.1186/s12862-014-0192-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypoxia-inducible factor (HIF) is a master regulator that mediates major changes in gene expression under hypoxic conditions. Though HIF family has been identified in many organisms, little is known about this family in schizothoracine fish. RESULTS Duplicated hif-α (hif-1αA, hif-1αB, hif-2αA, and hif-2αB) genes were identified in schizothoracine fish. All the deduced HIF-α proteins contain the main domains (bHLH-PAS, ODDD, and TAD), also found in humans. Evidence suggests a Cyprinidae-specific deletion, specifically, a conserved proline hydroxylation motif LxxLAP, in the NODD domain of schizothoracine fish HIF-1αA. In addition, a schizothoracine-specific mutation was observed in the CODD domain of the specialized and highly specialized schizothoracine fish HIF-1αB, which is the proline hydroxylation motif mutated into PxxLAP. Standard and stochastic branch-site codon model analysis indicated that only HIF-1αB has undergone positive selection, which may have led to changes in function. To confirm this hypothesis, HIF-αs tagged with Myc were transfected into HEK 293 T cells. Each HIF-1αB was found to significantly upregulate luciferase activity under normoxic and hypoxic conditions, which indicated that the HIF-1αB protein was more stable than other HIF-αs. CONCLUSIONS All deduced HIF-α proteins of schizothoracine fish contain important domains, like their mammalian counterparts, and each HIF-α is shorter than that of human. Our experiments reveal that teleost-specific duplicated hif-α genes played different roles under hypoxic conditions, and HIF-1αB may be the most important regulator in the adaptation of schizothoracine fish to the environment of the Tibetan Plateau.
Collapse
Affiliation(s)
- Lihong Guan
- />Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei P. R. China
- />University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wei Chi
- />College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei P. R. China
| | - Wuhan Xiao
- />Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei P. R. China
| | - Liangbiao Chen
- />College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, P. R. China
| | - Shunping He
- />Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei P. R. China
| |
Collapse
|
16
|
Suurväli J, Jouneau L, Thépot D, Grusea S, Pontarotti P, Du Pasquier L, Rüütel Boudinot S, Boudinot P. The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. THE JOURNAL OF IMMUNOLOGY 2014; 193:2891-901. [DOI: 10.4049/jimmunol.1401177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Kasthuri SR, Umasuthan N, Whang I, Lim BS, Jung HB, Oh MJ, Jung SJ, Yeo SY, Kim SY, Lee J. Molecular characterization and expressional affirmation of the beta proteasome subunit cluster in rock bream immune defense. Mol Biol Rep 2014; 41:5413-27. [PMID: 24867079 DOI: 10.1007/s11033-014-3413-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
Abstract
Immunoproteasomes are primarily induced upon infection and formed by replacing constitutive beta subunits with inducible beta subunits which possess specific cleavage properties that aid in the release of peptides necessary for MHC class I antigen presentation. In this study, we report the molecular characterization and expression analysis of the inducible immunosubunits PSMB8, PSMB9, PSMB9-L, and PSMB10 from rock bream, Oplegnathus fasciatus. The three subunits shared common active site residues and were placed in close proximity to fish homologues in the reconstructed phylogenetic tree, in which the mammalian homologues formed separate clades, indicating a common ancestral origin. The rock bream immunosubunits possessed higher identity and similarity with the fish homologues. RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 were multi-exonic genes with 6, 6, 7 and 8 exons, respectively. These four genes were constitutively expressed in all the examined tissues. Immunostimulants such as lipopolysaccharide and poly I:C induced RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 in liver and head kidney, suggesting their possible involvement in immune defense in rock bream.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju, 690-756, Jeju Self-Governing Province, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tacchi L, Misra M, Salinas I. Anti-viral immune responses in a primitive lung: characterization and expression analysis of interferon-inducible immunoproteasome subunits LMP2, LMP7 and MECL-1 in a sarcopterygian fish, the Nigerian spotted lungfish (Protopterus dolloi). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:657-665. [PMID: 23932981 PMCID: PMC3963498 DOI: 10.1016/j.dci.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Lungfishes (Dipnoi) represent the closest ancestor of tetrapods. Dipnoi have dual breathing modes extracting oxygen from water and air. The primitive lungs of lungfishes are exposed to external antigens including viruses. To date, the immune response of lungfishes against viruses has not been investigated. During viral immune responses, cell exposure to type I interferon induces the replacement of the constitutive proteasome with LMP2, LMP7 and MECL-1 beta subunits forming the immunoproteasome and enhancing antigen presentation to MHC class I molecules. In order to study the immune defense system of the lungfish lung, we have characterized for the first time the three immunoproteasome subunits in the sarcopterygian fish, the Nigerian spotted lungfish (Protopterus dolloi). LMP2, LMP7 and MECL-1 were identified in P. dolloi and their sequences encoded predicted proteins of 216, 275 and 278 amino acids, respectively. The mRNA of these three genes was expressed in multiple tissues, including the lung, with the highest abundance observed in kidney and post-pyloric spleen. In vitro stimulation of lungfish lung and kidney primary cell cultures with PolyI:C for 4 and 12 h resulted in increased LMP2, LMP7 and MECL-1 expression in both tissues. These results suggest a central role of these genes in the activation of an antiviral immune response in lungfish. Importantly, they indicate that the primitive lung of the common ancestor of all tetrapods is capable of inducing the expression of these genes in response to viral stimulation.
Collapse
Affiliation(s)
- Luca Tacchi
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Milind Misra
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
19
|
Tomaru U, Kasahara M. Thymoproteasome: Role in Thymic Selection and Clinical Significance as a Diagnostic Marker for Thymic Epithelial Tumors. Arch Immunol Ther Exp (Warsz) 2013; 61:357-65. [DOI: 10.1007/s00005-013-0234-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/26/2013] [Indexed: 11/24/2022]
|
20
|
Manousaki T, Feiner N, Begemann G, Meyer A, Kuraku S. Co-orthology of Pax4 and Pax6 to the fly eyeless gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evol Dev 2013; 13:448-59. [PMID: 23016906 DOI: 10.1111/j.1525-142x.2011.00502.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functional equivalence of Pax6/eyeless genes across distantly related animal phyla has been one of central findings on which evo-devo studies is based. In this study, we show that Pax4, in addition to Pax6, is a vertebrate ortholog of the fly eyeless gene (and its duplicate, twin of eyeless [toy] gene, unique to Insecta). Molecular phylogenetic trees published to date placed the Pax4 gene outside the Pax6/eyeless subgroup as if the Pax4 gene originated from a gene duplication before the origin of bilaterians. However, Pax4 genes had only been reported for mammals. Our molecular phylogenetic analysis, including previously unidentified teleost fish pax4 genes, equally supported two scenarios: one with the Pax4-Pax6 duplication early in vertebrate evolution and the other with this duplication before the bilaterian radiation. We then investigated gene compositions in the genomic regions containing Pax4 and Pax6, and identified (1) conserved synteny between these two regions, suggesting that the Pax4-Pax6 split was caused by a large-scale duplication and (2) its timing within early vertebrate evolution based on the duplication timing of the members of neighboring gene families. Our results are consistent with the so-called two-round genome duplications in early vertebrates. Overall, the Pax6/eyeless ortholog is merely part of a 2:2 orthology relationship between vertebrates (with Pax4 and Pax6) and the fly (with eyeless and toy). In this context, evolution of transcriptional regulation associated with the Pax4-Pax6 split is also discussed in light of the zebrafish pax4 expression pattern that is analyzed here for the first time.
Collapse
Affiliation(s)
- Tereza Manousaki
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | | | | | | | | |
Collapse
|
21
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
22
|
R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group. Immunogenetics 2012; 65:145-56. [PMID: 23129146 DOI: 10.1007/s00251-012-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100-115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.
Collapse
|
23
|
The research of W.E. Mayer (1953-2012): a spectrum of immune systems. Immunogenetics 2012; 64:849-54. [PMID: 23053060 DOI: 10.1007/s00251-012-0654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
Over a period of some 20 years, Werner Eugen Mayer played a significant role in establishing a framework for molecular studies of Mhc genes in multiple vertebrates. His work largely concerned gene isolation, sequencing, and related bioinformatic analyses both for the Mhc and for immune system genes of about 200 species, ranging from apes, monkeys, rodents, and marsupials, through to birds, bony fishes, and lampreys. In addition to his exploration of diverse Mhc genes, Werner is remembered for playing a critical role in the development of two important insights into the evolution of immune systems. His was among the first published DNA sequence-based descriptions of trans-species evolution of Mhc alleles, including the first description of the long-lived polymorphisms shared by humans and chimpanzees. This research opened the way for using Mhc polymorphisms in demographic analyses. The second important insight in which he played a prominent role involved the characterization of immune cells and their expressed genes in the lamprey, a jawless vertebrate. His findings helped to indicate the considerable degree to which extant immune mechanisms were co-opted in the creation of the adaptive immune system of jawed vertebrates.
Collapse
|
24
|
The emergence of the major histocompatilibility complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:277-89. [PMID: 22399385 DOI: 10.1007/978-1-4614-1680-7_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The Major Histocompatibility Complex (MHC) is a genomic region that contains genes that encode proteins involved with antigen presentation and, therefore, plays an important role in the adaptive immune system. The origin of these genes was probably an ancestral MHC that appeared before the emergence of the adaptive immune system and contained genes related to immunity. The organization of MHC genes varies in different groups of vertebrates; although, there are some characteristics that are maintained in all groups, which indicates that they confer some evolutionary advantage: Organization of the genes to form clusters and genetic polymorphisms. The study of how the MHC appeared during evolution and how it is organized in different species can help us clarify what features are essential in their participation in self-nonself recognition.
Collapse
|
25
|
Kuraku S, Meyer A. Detection and phylogenetic assessment of conserved synteny derived from whole genome duplications. Methods Mol Biol 2012; 855:385-95. [PMID: 22407717 DOI: 10.1007/978-1-61779-582-4_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of intragenomic conservation of gene compositions in multiple chromosomal segments led to evidence of whole genome (WGDs) duplications. The process by which WGDs have been maintained and decayed provides us with clues for understanding how the genome evolves. In this chapter, we summarize current understanding of phylogenetic distribution and evolutionary impact of WGDs, introduce basic procedures to detect conserved synteny, and discuss typical pitfalls, as well as biological insights.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan.
| | | |
Collapse
|
26
|
Sutoh Y, Kondo M, Ohta Y, Ota T, Tomaru U, Flajnik MF, Kasahara M. Comparative genomic analysis of the proteasome β5t subunit gene: implications for the origin and evolution of thymoproteasomes. Immunogenetics 2012; 64:49-58. [PMID: 21748441 PMCID: PMC3805029 DOI: 10.1007/s00251-011-0558-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/27/2011] [Indexed: 12/22/2022]
Abstract
The thymoproteasome is a recently discovered, specialized form of 20S proteasomes expressed exclusively in the thymic cortex. Although the precise molecular mechanism by which the thymoproteasome exerts its function remains to be elucidated, accumulating evidence indicates that it plays a crucial role in positive selection of T cells. In the present study, we analyzed the evolution of the β5t subunit, a β-type catalytic subunit uniquely present in thymoproteasomes. The gene coding for the β5t subunit, designated PSMB11, was identified in the cartilaginous fish, the most divergent group of jawed vertebrates compared to the other jawed vertebrates, but not in jawless vertebrates or invertebrates. Interestingly, teleost fish have two copies of apparently functional PSMB11 genes, designated PSMB11a and PSMB11b, that encode β5t subunits with distinct amino acids in the S1 pocket. BLAST searches of genome databases suggest that birds such as chickens, turkey, and zebra finch lost the PSMB11 gene, and have neither thymoproteasomes nor immunoproteasomes. In mammals, reptiles, amphibians, and teleost fishes, the PSMB11 gene (the PSMB11a gene in teleost fish) is located next to the PSMB5 gene coding for the β5 subunit of the standard 20S proteasome, indicating that the PSMB11 gene arose by tandem duplication from the evolutionarily more ancient PSMB5 gene. The general absence of introns in PSMB11 and an unusual exon-intron structure of jawed vertebrate PSMB5 suggest that PSMB5 lost introns and duplicated in tandem in a common ancestor of jawed vertebrates, with PSMB5 subsequently gaining two introns and PSMB11 remaining intronless.
Collapse
Affiliation(s)
- Yoichi Sutoh
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan
| | - Mizuho Kondo
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan,
| |
Collapse
|
27
|
Boudinot P, van der Aa LM, Jouneau L, Du Pasquier L, Pontarotti P, Briolat V, Benmansour A, Levraud JP. Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish. PLoS One 2011; 6:e22022. [PMID: 21789205 PMCID: PMC3137616 DOI: 10.1371/journal.pone.0022022] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/12/2011] [Indexed: 11/19/2022] Open
Abstract
Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets--adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described--all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC.
Collapse
Affiliation(s)
- Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Lieke M. van der Aa
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Basel, Switzerland
| | - Pierre Pontarotti
- Equipe Evolution Biologique et Modélisation UMR 6632 Université de Aix Marseille I/CNRS, Centre St Charles, Marseille, France
| | - Valérie Briolat
- Unité Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
- URA 2578 du Centre National de la Recherche Scientifique, Paris, France
| | - Abdenour Benmansour
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Jean-Pierre Levraud
- Unité Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
- URA 2578 du Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
28
|
Denis GV. Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. DISCOVERY MEDICINE 2010; 10:489-499. [PMID: 21189220 PMCID: PMC3025494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Double bromodomain proteins bind to acetylated lysines in histones, bringing associated histone modification and nucleosome remodeling activity to chromatin. The ability of bromodomain regulators to alter chromatin status and control gene expression has long been appreciated to be important in the development of certain human cancers. However, bromodomain proteins have now been found also to be critical, non-redundant players in diverse, non-malignant phenotypes, directing transcriptional programs that control adipogenesis, energy metabolism and inflammation. The fact that such different processes are functionally linked by the same molecular machinery suggests a common epigenetic basis to understand and interpret the origins of several important co-morbidities, such as asthma or cancer that occurs in obesity, and complex inflammatory diseases like cardiovascular disease, systemic lupus erythematosus, rheumatoid arthritis and insulin resistance that may be built on a common pro-inflammatory foundation.
Collapse
Affiliation(s)
- Gerald V Denis
- Cancer Research Center, Boston University School of Medicine, 72 East Concord Street, K520, Boston, Massachusetts 02118, USA.
| |
Collapse
|
29
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2009; 11:47-59. [PMID: 19997068 DOI: 10.1038/nrg2703] [Citation(s) in RCA: 609] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS - including two lymphoid cell lineages - arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
31
|
Wang Z, Zhang Q. Genome-wide identification and evolutionary analysis of the animal specific ETS transcription factor family. Evol Bioinform Online 2009; 5:119-31. [PMID: 20011068 PMCID: PMC2789578 DOI: 10.4137/ebo.s2948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ETS proteins are a family of transcription factors (TFs) that regulate a variety of biological processes. We made genome-wide analyses to explore the classification of the ETS gene family. We identified 207 ETS genes which encode 321 ETS TFs from ten animal species. Of the 321 ETS TFs, 155 contain only an ETS domain, about 50% contain a ETS_PEA3_N or a SAM_PNT domain in addition to an ETS domain, the rest (only four) contain a second ETS domain or a second ETS_PEA3_N domain or an another domain (AT_hook or DNA_pol_B). A Neighbor-Joining phylogenetic tree was constructed using the amino acid sequences of the ETS domain of the ETS TFs. The results revealed that the ETS genes of the ten species can be divided into two distinct groups. Group I contains one nematode ETS gene and 18 vertebrate animal ETS genes. Group II contains the majority of the ETS TFs and can be further divided into eleven subgroups. The sequence motifs outside the DNA-binding domain and the conservation of the exon-intron structural patterns of the ETS TFs in human, cattle, and chicken further support the phylogenetic classification among these ETS TFs. Extensive duplication of the ETS genes was found in the genome of each species. The duplicated ETS genes account for ~69% of the total of ETS genes. Furthermore, we also found there are ETS gene clusters in all of the ten animal species. Statistical analysis of the Gene Ontology annotations of the ETS genes showed that the ETS proteins tend to be related to RNA biosynthetic process, biopolymer metabolic process and macromolecule metabolic process expected from the common GO categories of transcriptional factors. We also discussed the functional conservation and diversification of ETS TFs.
Collapse
Affiliation(s)
- Zhipeng Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
32
|
Park HJ, Kim JY, Jung KI, Kim TJ. Characterization of a Novel Gene in the Extended MHC Region of Mouse, NG29/Cd320, a Homolog of the Human CD320. Immune Netw 2009; 9:138-46. [PMID: 20157601 PMCID: PMC2816947 DOI: 10.4110/in.2009.9.4.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 12/01/2022] Open
Abstract
Background The MHC region of the chromosome contains a lot of genes involved in immune responses. Here we have investigated the mouse NG29/Cd320 gene in the centrometrically extended MHC region of chromosome 17. Methods We cloned the NG29 gene by RT-PCR and confirmed the tissue distribution of its gene expression by northern blot hybridization. We generated the NG29 gene expression constructs and polyclonal antibody against the NG29 protein to perform the immunofluorescence, immunoprecipitation and flow cytometric analysis. Results The murine NG29 gene and its human homologue, the CD320/8D6 gene, were similar in the gene structure and tissue expression patterns. We cloned the NG29 gene and confirmed its expression in plasma membrane and intracellular compartments by transfecting its expresssion constructs into HEK 293T cells. The immunoprecipitation studies with rabbit polyclonal antibody raised against the NG29-NusA fusion protein indicated that NG29 protein was a glycoprotein of about 45 kDa size. A flow cytometric analysis also showed the NG29 expression on the surface of Raw 264.7 macrophage cell line. Conclusion These findings suggested that NG29 gene in mouse extended MHC class II region was the orthologue of human CD320 gene even though human CD320/8D6 gene was located in non-MHC region, chromosome 19p13.
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
33
|
Abstract
Xenopus laevis is the model of choice for evolutionary, comparative, and developmental studies of immunity, and invaluable research tools including MHC-defined clones, inbred strains, cell lines, and monoclonal antibodies are available for these studies. Recent efforts to use Silurana (Xenopus) tropicalis for genetic analyses have led to the sequencing of the whole genome. Ongoing genome mapping and mutagenesis studies will provide a new dimension to the study of immunity. Here we review what is known about the immune system of X. laevis integrated with available genomic information from S. tropicalis. This review provides compelling evidence for the high degree of similarity and evolutionary conservation between Xenopus and mammalian immune systems. We propose to build a powerful and innovative comparative biomedical model based on modern genetic technologies that takes take advantage of X. laevis and S. tropicalis, as well as the whole Xenopus genus. Developmental Dynamics 238:1249-1270, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
| | | |
Collapse
|
34
|
Tanaka K. The proteasome: overview of structure and functions. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:12-36. [PMID: 19145068 PMCID: PMC3524306 DOI: 10.2183/pjab.85.12] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The proteasome is a highly sophisticated protease complex designed to carry out selective, efficient and processive hydrolysis of client proteins. It is known to collaborate with ubiquitin, which polymerizes to form a marker for regulated proteolysis in eukaryotic cells. The highly organized proteasome plays a prominent role in the control of a diverse array of basic cellular activities by rapidly and unidirectionally catalyzing biological reactions. Studies of the proteasome during the past quarter of a century have provided profound insights into its structure and functions, which has appreciably contributed to our understanding of cellular life. Many questions, however, remain to be elucidated.
Collapse
Affiliation(s)
- Keiji Tanaka
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Japan.
| |
Collapse
|
35
|
Prachumwat A, Li WH. Gene number expansion and contraction in vertebrate genomes with respect to invertebrate genomes. Genome Res 2007; 18:221-32. [PMID: 18083775 DOI: 10.1101/gr.7046608] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Where did vertebrate genes come from? Here we address this question by analyzing eight completely sequenced land vertebrate genomes and six completely sequenced invertebrate genomes. Approximately 70% of the vertebrate genes can be found in the six invertebrate genomes with the standard homology search criteria (denoted as V.MCL), another approximately 6% can be found with relaxed search criteria, and an additional approximately 2% can be found in sequenced fungal and bacterial genomes. Thus, a substantial proportion of vertebrate genes (approximately 22%) cannot be found in the nonvertebrate genomes studied (denoted as Vonly). Interestingly, genes in Vonly are predominantly singletons, while the majority of genes in the other three groups belong to gene families. The proteins of Vonly tend to evolve faster than those of V.MCL. Surprisingly, in many cases the family sizes in V.MCL are only as large as or even smaller than their counterparts in the invertebrates, contrary to the general perception of a larger family size in vertebrates. Interestingly, in comparison with the family size in invertebrates, vertebrate gene families involved in regulation, signal transduction, transcription, protein transport, and protein modification tend to be expanded, whereas those involved in metabolic processes tend to be contracted. Furthermore, for almost all of the functional categories with family size expansion in vertebrates, the number of gene types (i.e., the number of singletons plus the number of gene families) tends to be over-represented in Vonly, but under-represented in V.MCL. Our study suggests that gene function is a major determinant of gene family size.
Collapse
Affiliation(s)
- Anuphap Prachumwat
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
36
|
Abstract
The recognition more than a decade ago that lipids presented by CD1 could function as T cell antigens revealed a startling and previously unappreciated complexity to the adaptive immune system. The initial novelty of lipid antigen presentation by CD1 has since given way to a broader perspective of the immune system's capacity to sense and respond to a diverse array of macromolecules. Some immune recognition systems such as Toll-like receptors can trace their origins back into the deep history of sea urchins and arthropods. Others such as the major histocompatibility complex (MHC) appear relatively recently and interestingly, only in animals that also possess a jaw. The natural history of CD1 is thus part of the wider story of immune system evolution and should be considered in this context. Most evidence indicates that CD1 probably evolved from a classical MHC class I (MHC I) gene at some point during vertebrate evolution. This chapter reviews the evidence for this phylogenetic relationship and attempts to connect CD1 to existing models of MHC evolution. This endeavor is facilitated today by the recent availability of whole genome sequence data from a variety of species. Investigators have used these data to trace the ultimate origin of the MHC to a series of whole genome duplications that occurred roughly 500 million years ago. Sequence data have also revealed homologs of the mammalian MHC I and MHC II gene families in virtually all jawed vertebrates including sharks, bony fishes, reptiles, and birds. In contrast, CD1 genes have thus far been found only in a subset of these animal groups. This pattern of CD1 occurrence in the genomes of living species suggests the emergence of CD 1 in an early terrestrial vertebrate.
Collapse
Affiliation(s)
- C C Dascher
- Center for Immunobiology, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1630, New York, NY 10029, USA.
| |
Collapse
|
37
|
Abstract
Charles Darwin proposed that evolution occurs primarily by natural selection, but this view has been controversial from the beginning. Two of the major opposing views have been mutationism and neutralism. Early molecular studies suggested that most amino acid substitutions in proteins are neutral or nearly neutral and the functional change of proteins occurs by a few key amino acid substitutions. This suggestion generated an intense controversy over selectionism and neutralism. This controversy is partially caused by Kimura's definition of neutrality, which was too strict (|2Ns|< or =1). If we define neutral mutations as the mutations that do not change the function of gene products appreciably, many controversies disappear because slightly deleterious and slightly advantageous mutations are engulfed by neutral mutations. The ratio of the rate of nonsynonymous nucleotide substitution to that of synonymous substitution is a useful quantity to study positive Darwinian selection operating at highly variable genetic loci, but it does not necessarily detect adaptively important codons. Previously, multigene families were thought to evolve following the model of concerted evolution, but new evidence indicates that most of them evolve by a birth-and-death process of duplicate genes. It is now clear that most phenotypic characters or genetic systems such as the adaptive immune system in vertebrates are controlled by the interaction of a number of multigene families, which are often evolutionarily related and are subject to birth-and-death evolution. Therefore, it is important to study the mechanisms of gene family interaction for understanding phenotypic evolution. Because gene duplication occurs more or less at random, phenotypic evolution contains some fortuitous elements, though the environmental factors also play an important role. The randomness of phenotypic evolution is qualitatively different from allele frequency changes by random genetic drift. However, there is some similarity between phenotypic and molecular evolution with respect to functional or environmental constraints and evolutionary rate. It appears that mutation (including gene duplication and other DNA changes) is the driving force of evolution at both the genic and the phenotypic levels.
Collapse
Affiliation(s)
- Masatoshi Nei
- Department of Biology, Institute of Molecular Evolutionary Genetics, , Pennsylvania State University, USA.
| |
Collapse
|
38
|
Bos DH. Natural selection during functional divergence to LMP7 and proteasome subunit X (PSMB5) following gene duplication. J Mol Evol 2005; 60:221-8. [PMID: 15785850 DOI: 10.1007/s00239-004-0120-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 09/09/2004] [Indexed: 11/29/2022]
Abstract
The LMP7 and PSMB5 genes were created through an ancient gene duplication event of their ancestral locus. These proteins contain an active site of proteolysis, and LMP7 replaces PSMB5 as a component of the 20S proteasome after stimulation of cells by interferon-gamma. Replacement of PSMB5 by LMP7 changes the profile of the products of 20S proteasome processing, predisposing digested peptides for transport to and display by the immune system. The purpose of this study is to investigate evolutionary forces influencing functional divergence between LMP7 and PSMB5 following duplication. Levels of synonymous and nonsynonymous substitution rates are estimated to infer differences in levels of natural selection. Estimates of substitution rates indicate that natural selection elevated rates of nonsynonymous substitution in LMP7 following gene duplication, whereas PSMB5 experienced an increase in substitution rate that was not likely due to diversifying natural selection following duplication. Following initial divergence, nearly neutral mutations have dominated gene evolution in both lineages. The LMP7 gene locus provides a rare example of a protein with specialized function arising from duplication and divergence of a housekeeping protein by way of natural selection.
Collapse
Affiliation(s)
- David H Bos
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
39
|
Rogers SL, Göbel TW, Viertlboeck BC, Milne S, Beck S, Kaufman J. Characterization of the Chicken C-Type Lectin-Like Receptors B-NK and B-lec Suggests That the NK Complex and the MHC Share a Common Ancestral Region. THE JOURNAL OF IMMUNOLOGY 2005; 174:3475-83. [PMID: 15749883 DOI: 10.4049/jimmunol.174.6.3475] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sequencing of the chicken MHC led to the identification of two open reading frames, designated B-NK and B-lec, that were predicted to encode C-type lectin domains. C-type lectin domains are not encoded in the MHC of any animal described to date; therefore, this observation was completely unexpected, particularly given that the chicken has a "minimal essential MHC." In this study, we describe the initial characterization of the B-NK and B-lec genes, and show that they share greatest homology with C-type lectin-like receptors encoded in the human NK complex (NKC), in particular NKR-P1 and lectin-like transcript 1 (LLT1), respectively. In common with NKR-P1 and LLT1, B-NK and B-lec are located next to each other and transcribed in opposite orientation. Like human NKR-P1, B-NK has a functional inhibitory signaling motif in the cytoplasmic tail and is expressed in NK cells. In contrast, B-lec contains an endocytosis motif in the cytoplasmic tail, and like LLT1, is an early activation Ag. Further analysis leads us to propose that there are four subgroups of C-type lectin-like receptors in the NKC, which arose as a result of duplication events. Moreover, this analysis suggests that the NKC may be considered a fifth paralogous region, and therefore shares an ancient common origin with the MHC. This provides evidence that C-type lectin-like receptors were present in the preduplication, primordial MHC region, and suggests that an original function of MHC molecules was for recognition by NK cell receptors encoded nearby.
Collapse
Affiliation(s)
- Sally L Rogers
- Institute for Animal Health, Compton, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Stock DW. The Dlx gene complement of the leopard shark, Triakis semifasciata, resembles that of mammals: implications for genomic and morphological evolution of jawed vertebrates. Genetics 2005; 169:807-17. [PMID: 15489533 PMCID: PMC1449088 DOI: 10.1534/genetics.104.031831] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 10/29/2004] [Indexed: 11/18/2022] Open
Abstract
Extensive gene duplication is thought to have occurred in the vertebrate lineage after it diverged from cephalochordates and before the divergence of lobe- and ray-finned fishes, but the exact timing remains obscure. This timing was investigated by analysis of the Dlx gene family of a representative cartilaginous fish, the leopard shark, Triakis semifasciata. Dlx genes encode homeodomain transcription factors and are arranged in mammals as three convergently transcribed bigene clusters. Six Dlx genes were cloned from Triakis and shown to be orthologous to single mammalian Dlx genes. At least four of these are arranged in bigene clusters. Phylogenetic analyses of Dlx genes were used to propose an evolutionary scenario in which two genome duplications led to four Dlx bigene clusters in a common ancestor of jawed vertebrates, one of which was lost prior to the diversification of the group. Dlx genes are known to be involved in jaw development, and changes in Dlx gene number are mapped to the same branch of the vertebrate tree as the origin of jaws.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
41
|
Klein J, Nikolaidis N. The descent of the antibody-based immune system by gradual evolution. Proc Natl Acad Sci U S A 2004; 102:169-74. [PMID: 15618397 PMCID: PMC544055 DOI: 10.1073/pnas.0408480102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antibody-based immune system (AIS) is one of many means by which organisms protect themselves against pathogens and parasites. The AIS is present in jawed vertebrates (gnathostomes) but absent in all other taxa, including jawless vertebrates (agnathans). We argue that the AIS has been assembled from elements that have primarily evolved to serve other functions and incorporated existing molecular cascades, resulting in the appearance of new organs and new types of cells. Some molecules serving other functions have been appropriated by the AIS, whereas others have been modified to serve new functions, either after the duplication of their encoding genes or through the acquisition of an additional function without gene duplication. A few molecules may have been created de novo. The deployment and integration of the ready-made elements gives the impression of a sudden origin of the AIS. In reality, however, the AIS is an example of an organ system that has evolved gradually through a series of small steps over an extended period.
Collapse
Affiliation(s)
- Jan Klein
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
42
|
Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2004; 56:683-95. [PMID: 15605248 DOI: 10.1007/s00251-004-0717-7] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a gene dense region found in all jawed vertebrates examined to date. The MHC contains a high percentage of immune genes, in particular genes involved in antigen presentation, which are generally highly polymorphic. The region plays an important role in disease resistance. The clustering of MHC genes could be advantageous for co-evolution or regulation, and its study in many species is desirable. Even though some linkage of MHC genes is apparent in all gnathostomes, the genomic organization can differ greatly by species, suggesting rapid evolution of MHC genes after divergence from a common ancestor. Previous reviews of comparative MHC organization have been written when relatively fragmentary sequence and mapping data were available on many species. This review compares maps of MHC gene orders in commonly studied species, where extensive sequencing has been performed.
Collapse
Affiliation(s)
- James Kelley
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | |
Collapse
|
43
|
Abstract
The neuropeptide Y (NPY) system consists in mammals of three peptides and 4-5 G-protein-coupled receptors called Y receptors that are involved in a variety of physiological functions such as appetite regulation, circadian rhythm and anxiety. Both the receptor family and the peptide family display unexpected evolutionary complexity and flexibility as shown by information from different classes of vertebrates. The vertebrate ancestor most likely had a single peptide gene and three Y receptor genes, the progenitors of the Y1, Y2 and Y5 subfamilies. The receptor genes were probably located in the same chromosomal segment. Additional gene copies arose through the chromosome quadruplication that took place before the emergence of jawed vertebrates (gnathostomes) whereupon differential losses of the gene copies ensued. The inferred ancestral gnathostome gene repertoire most likely consisted of two peptide genes, NPY and PYY, and no less than seven Y receptor genes: four Y1-like (Y1, Y4/a, Y6, and Yb), two Y2-like (Y2 and Y7), and a single Y5 gene. Whereas additional peptide genes have arisen in various lineages, the most common trend among the Y receptor genes has been further losses. Mammals have lost Yb and Y7 (the latter still exists in frogs) and Y6 is a pseudogene in several mammalian species but appears to be still functional in some. One challenge is to find out if mammals have been deprived of any functions through these gene losses. Teleost fishes like zebrafish and pufferfish, on the other hand, have lost the two major appetite-stimulating receptors Y1 and Y5. Nevertheless, teleost fishes seem to respond to NPY with increased feeding why some other subtype probably mediates this effect. Another challenge is to deduce how Y2 and Y4 came to evolve an inhibitory effect on appetite. Changes in anatomical distribution of receptor expression may have played an important part in such functional switching along with changes in receptor structures and ligand preferences.
Collapse
Affiliation(s)
- D Larhammar
- Department of Neuroscience, Unit of Pharmacology, Box 593 Uppsala University, SE-75124 Uppsala, Sweden.
| | | |
Collapse
|
44
|
Suda T, Kamiyama S, Suzuki M, Kikuchi N, Nakayama KI, Narimatsu H, Jigami Y, Aoki T, Nishihara S. Molecular cloning and characterization of a human multisubstrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection. J Biol Chem 2004; 279:26469-74. [PMID: 15082721 DOI: 10.1074/jbc.m311353200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide-sugar transporters are crucial components in the synthesis of glycoconjugates. We identified a novel human nucleotide-sugar transporter gene, hfrc1, which is homologous to Drosophila melanogaster fringe connection, Caenorhabditis elegans sqv-7, and human UGTrel7. HFRC1 was localized within the Golgi apparatus following its transient expression in HCT116 cells. In human tissues, hfrc1 and UGTrel7 exhibited similar tissue distributions, although hfrc1 transcripts showed a 10 times greater abundance than those of UGTrel7. The heterologous expression of HFRC1 in the yeast revealed the multisubstrate specific transport activity of HFRC1 (for UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-glucose (UDP-Glc), and GDP-mannose (GDP-Man), with apparent K(m) values of 8.0, 2.1, and 0.14 microm, respectively). In the mammalian cells, HFRC1 transported UDP-GlcNAc and UDP-Glc, but not GDP-Man. Overexpression of the hfrc1 gene in HCT116 cells modulated the cell surface heparan sulfate expression status. These results suggest that HFRC1 takes part in the synthesis of heparan sulfate by regulating the level of UDP-GlcNAc, a donor substrate for the heparan sulfate synthases.
Collapse
Affiliation(s)
- Takeshi Suda
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kasahara M, Suzuki T, Pasquier LD. On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol 2004; 25:105-11. [PMID: 15102370 DOI: 10.1016/j.it.2003.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When and how adaptive immunity emerged is one of the fundamental questions in immunology. Accumulated evidence suggests that the key components of adaptive immunity, rearranging receptor genes and the MHC, are unique to jawed vertebrates. Recent studies in protochordates, in particular, the draft genome sequence of the ascidian Ciona intestinalis, are providing important clues for understanding the origin of antigen receptors and the MHC. We discuss a group of newly identified protochordate genes along with some cold-blooded vertebrate genes, the ancestors of which might have provided key elements of antigen receptors. The organization of the proto-MHCs in protochordates provides convincing evidence that the MHC regions of jawed vertebrates emerged as a result of two rounds of chromosomal duplication.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Biosystems Science, School of Advanced Sciences, The Graduate University for Advanced Studies (Sokendai), Shonan Village, Hayama 240-0193, Japan.
| | | | | |
Collapse
|
46
|
Vienne A, Shiina T, Abi-Rached L, Danchin E, Vitiello V, Cartault F, Inoko H, Pontarotti P. Evolution of the proto-MHC ancestral region: more evidence for the plesiomorphic organisation of human chromosome 9q34 region. Immunogenetics 2003; 55:429-36. [PMID: 14530884 DOI: 10.1007/s00251-003-0601-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 07/28/2003] [Indexed: 11/26/2022]
Abstract
The present day structure of the vertebrate major histocompatibility complex (MHC) and its three paralogous regions has always been a focus of interest. In a recent study, nine human anchor genes located in the MHC region were cloned from a Branchiostoma floridae (amphioxus) cosmid library. The identification and analysis of 31 surrounding genes led to the most probable model of two rounds of en bloc duplication giving rise to these regions. These events were estimated to have occurred after the cephalochordata-craniata divergence [approximately 766 million years ago (Mya)] and before the Gnathostomata radiation (approximately 528 Mya). Furthermore, it was also shown that after this large-scale duplication one of these regions, corresponding to the human 9q33-q34, had retained an ancestral organisation. In the present study, four new cosmids in the amphioxus proto-MHC region were identified by the chromosomal walking technique. These cosmids were sequenced, and their structural annotation was performed, leading to the prediction of eleven genes. Their phylogenetic relationships among species corroborate the results obtained previously and provide more evidence for the plesiomorphic state of the human chromosome 9q33-34 MHC paralogous region.
Collapse
Affiliation(s)
- Alexandre Vienne
- EA Biodiversité 2202, Université de Provence, Place V. Hugo, 13331 Marseille cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lundin LG, Larhammar D, Hallböök F. Numerous groups of chromosomal regional paralogies strongly indicate two genome doublings at the root of the vertebrates. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 3:53-63. [PMID: 12836685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The appearance of the vertebrates demarcates some of the most far-reaching changes of structure and function seen during the evolution of the metazoans. These drastic changes of body plan and expansion of the central nervous system among other organs coincide with increased gene numbers. The presence of several groups of paralogous chromosomal regions in the human genome is a reflection of this increase. The simplest explanation for the existence of these paralogies would be two genome doublings with subsequent silencing of many genes. It is argued that gene localization data and the delineation of paralogous chromosomal regions give more reliable information about these types of events than dendrograms of gene families as gene relationships are often obscured by uneven replacement rates as well as other factors. Furthermore, the topographical relations of some paralogy groups are discussed.
Collapse
Affiliation(s)
- Lars-Gustav Lundin
- Department of Neuroscience, BMC, Uppsala University, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
48
|
Hokamp K, McLysaght A, Wolfe KH. The 2R hypothesis and the human genome sequence. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 3:95-110. [PMID: 12836689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
One theory formalised in 1970 proposes that the complexity of vertebrate genomes originated by means of genome duplication at the base of the vertebrate lineage. Since then, the theory has remained both popular and controversial. Here we review the theory, and present preliminary results from our analysis of duplications in the draft human genome sequence. We find evidence for extensive duplication of parts of the genome. We also question the validity of the 'parsimony test' that has been used in other analyses.
Collapse
Affiliation(s)
- Karsten Hokamp
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
49
|
Kasahara M, Watanabe Y, Sumasu M, Nagata T. A family of MHC class I-like genes located in the vicinity of the mouse leukocyte receptor complex. Proc Natl Acad Sci U S A 2002; 99:13687-92. [PMID: 12370446 PMCID: PMC129743 DOI: 10.1073/pnas.212375299] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Indexed: 11/18/2022] Open
Abstract
Some members of the major histocompatibility complex (MHC) class I gene family are encoded outside the MHC. Here we describe a family of mouse class I-like genes mapping to the vicinity of the leukocyte receptor complex (LRC) on chromosome 7. This family, which we call Mill (MHC class I-like located near the LRC), has two members designated Mill1 and Mill2. Both genes are predicted to encode membrane glycoproteins with domain organization essentially similar to that of MHC class I heavy chains. The following features of Mill are noteworthy. (i) The deduced MILL proteins lack most of the residues known to be involved in the docking of peptides in classical MHC class I molecules. (ii) Among the known members of the class I gene family, MILL1 and MILL2 are related most closely to MICA/MICB encoded in the human MHC. (iii) Unlike all other known members of the class I gene family, Mill1 and Mill2 have an exon between those coding for the signal peptide and the alpha1 domain. (iv) Mill1 has a more restricted expression profile than Mill2. (v) The gene orthologous to Mill1 or Mill2 apparently is absent in the human. (vi) Mill1 and Mill2 show a limited degree of polymorphism in laboratory mice. The observation that the Mill family is related most closely to the MIC family, together with its apparent absence in the human, suggests its involvement in innate immunity.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies (Sokendai), Shonan Village, Hayama 240-0193, Japan.
| | | | | | | |
Collapse
|
50
|
Samonte IE, Sato A, Mayer WE, Shintani S, Klein J. Linkage relationships of genes coding for alpha2-macroglobulin, C3 and C4 in the zebrafish: implications for the evolution of the complement and Mhc systems. Scand J Immunol 2002; 56:344-52. [PMID: 12234255 DOI: 10.1046/j.1365-3083.2002.01154.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha2-macroglobulin (A2M) and the complement components C3 and C4 are related proteins derived from a common ancestor. Theoretically, this derivation could have occurred either by tandem duplications of their encoding genes or by polyploidization involving chromosomal segments, a chromosome or the whole genome. In tetrapods the A2M-, C3- and C4-encoding genes are generally each located on a different chromosome. This observation has been interpreted as supporting their origin by polyploidization. We identified and mapped (with the help of a radiation hybrid panel of cell lines) the A2M, C3 and C4 loci in the zebrafish, Danio rerio. Each of the three types of loci is present in the zebrafish in multiple copies, but all of the identified copies of a given type map to the same region in linkage groups 1 (C3) and 15 (A2M, C4). The A2M and C4 loci are mapped in the same region not linked to any of the class I or class II major histocompatibility complex (Mhc) loci. These observations are interpreted as supporting the origin of the A2M family of genes by tandem duplications, followed by the dispersal of the copies to different chromosomes. It is also argued that the association of C4 with the class I/II loci in tetrapods is accidental and without functional significance.
Collapse
Affiliation(s)
- I E Samonte
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|