1
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Muro R, Narita T, Nitta T, Takayanagi H. Spleen tyrosine kinase mediates the γδTCR signaling required for γδT cell commitment and γδT17 differentiation. Front Immunol 2023; 13:1045881. [PMID: 36713401 PMCID: PMC9878111 DOI: 10.3389/fimmu.2022.1045881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The γδT cells that produce IL-17 (γδT17 cells) play a key role in various pathophysiologic processes in host defense and homeostasis. The development of γδT cells in the thymus requires γδT cell receptor (γδTCR) signaling mediated by the spleen tyrosine kinase (Syk) family proteins, Syk and Zap70. Here, we show a critical role of Syk in the early phase of γδT cell development using mice deficient for Syk specifically in lymphoid lineage cells (Syk-conditional knockout (cKO) mice). The development of γδT cells in the Syk-cKO mice was arrested at the precursor stage where the expression of Rag genes and αβT-lineage-associated genes were retained, indicating that Syk is required for γδT-cell lineage commitment. Loss of Syk in γδT cells weakened TCR signal-induced phosphorylation of Erk and Akt, which is mandatory for the thymic development of γδT17 cells. Syk-cKO mice exhibited a loss of γδT17 cells in the thymus as well as throughout the body, and thereby are protected from γδT17-dependent psoriasis-like skin inflammation. Collectively, our results indicate that Syk is a key player in the lineage commitment of γδT cells and the priming of γδT17 cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoya Narita
- Department of Pharmacotherapeutics, Research Institute of Pharmaceutical Sciences and Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Takeshi Nitta,
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Hu W, Shang R, Yang J, Chen C, Liu Z, Liang G, He W, Luo G. Skin γδ T Cells and Their Function in Wound Healing. Front Immunol 2022; 13:875076. [PMID: 35479079 PMCID: PMC9035842 DOI: 10.3389/fimmu.2022.875076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
For the skin immune system, γδ T cells are important components, which help in defensing against damage and infection of skin. Compared to the conventional αβ T cells, γδ T cells have their own differentiation, development and activation characteristics. In adult mice, dendritic epidermal T cells (DETCs), Vγ4 and Vγ6 γδ T cells are the main subsets of skin, the coordination and interaction among them play a crucial role in wound repair. To get a clear overview of γδ T cells, this review synopsizes their derivation, development, colonization and activation, and focuses their function in acute and chronic wound healing, as well as the underlining mechanism. The aim of this paper is to provide cues for the study of human epidermal γδ T cells and the potential treatment for skin rehabilitation.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Guangping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
- *Correspondence: Guangping Liang, ; Weifeng He, ; Gaoxing Luo,
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
- *Correspondence: Guangping Liang, ; Weifeng He, ; Gaoxing Luo,
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
- *Correspondence: Guangping Liang, ; Weifeng He, ; Gaoxing Luo,
| |
Collapse
|
4
|
Sudo K, Todoroki T, Ka Y, Takahara K. Vγ5Vδ1 TCR signaling is required to different extents for embryonic versus postnatal development of DETCs. Int Immunol 2022; 34:263-276. [PMID: 35031803 DOI: 10.1093/intimm/dxac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
δγ T cells expressing Vγ5Vδ1 TCR originally develop in the embryonic thymus and migrate to the epidermis, forming dendritic epidermal T cells (DETCs) throughout life. It is thought that a TCR signal is essential for their development; e.g., lack of TCR signal-transducer ZAP70 significantly decreases DETC numbers. On the other hand, lack of ZAP70 does not affect Vγ5Vδ1 + T cells in the embryonic thymus; thus, the involvement of TCR signaling remains elusive. Here, we used SKG mice with attenuated TCR signaling rather than gene-knockout mice. In SKG mice, Vγ5 + T cells showed a marked decrease (10% of wild-type) in adult epidermis; however, there was just a moderate decrease (50% of wild-type) in the embryonic thymus. In early postnatal epidermis in SKG mice, substantial numbers of Vγ5 + T cells were observed (50% of wild-type). Their activation markers including CD122, a component of the IL-15 receptor indispensable for DETC proliferation, were comparable to those of WT. However, the Vγ5 + T cells in SKG mice did not proliferate and form DETCs thereafter. Furthermore, in SKG/+ mice, the number of thymic Vγ5Vδ1 + T cells increased, compared to SKG mice; however, the number of DETCs remained significantly lower than in WT, similar to SKG mice. Our results suggest that signaling via Vγ5Vδ1 TCR is indispensable for DETC development, with distinct contributions to embryonic development and postnatal proliferation.
Collapse
Affiliation(s)
- Koichi Sudo
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| | - Takero Todoroki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| | - Yuyo Ka
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazuhiko Takahara
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Xu Y, Dimitrion P, Cvetkovski S, Zhou L, Mi QS. Epidermal resident γδ T cell development and function in skin. Cell Mol Life Sci 2021; 78:573-580. [PMID: 32803399 PMCID: PMC11073445 DOI: 10.1007/s00018-020-03613-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022]
Abstract
Epidermal resident γδ T cells, or dendritic epidermal T cells (DETCs) in mice, are a unique and conserved population of γδ T cells enriched in the epidermis, where they serve as the regulators of immune responses and sense skin injury. Despite the great advances in the understanding of the development, homeostasis, and function of DETCs in the past decades, the origin and the underlying molecular mechanisms remain elusive. Here, we reviewed the recent research progress on DETCs, including their origin and homeostasis in the skin, especially at transcriptional and epigenetic levels, and discuss the involvement of DETCs in skin diseases.
Collapse
Affiliation(s)
- Yingping Xu
- Experimental Research Center, Dermatology Hospital of Southern Medical University, and Guangdong Provincial Dermatology Hospital, Guangzhou, China
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA
| | - Steven Cvetkovski
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
6
|
Thelen F, Witherden DA. Get in Touch With Dendritic Epithelial T Cells! Front Immunol 2020; 11:1656. [PMID: 32849572 PMCID: PMC7403176 DOI: 10.3389/fimmu.2020.01656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Innate and adaptive immune systems continuously interchange information and orchestrate their immune responses to protect the host. γδT cells play crucial roles, as they incorporate both innate and adaptive immune characteristics. Dendritic epidermal T cells (DETC) are specialized γδT cells, which are uniquely positioned to rapidly respond to skin wounds and infections. Their elongated dendrite morphology allows them to be in continuous contact with multiple neighboring keratinocytes and Langerhans cells. Cellular interactions are fundamental to the formation, activation and maintenance of immune cell functions during steady state and pathology. Recent technological advances, especially in the field of cellular imaging, have contributed greatly to the characterization of complex cellular interactions in a spatiotemporally resolved manner. In this review, we will highlight the often-underappreciated function of DETC and other γδT cells during steady state and an ongoing immune response. More specifically, we discuss how DETC-precursors are shaped in the fetal thymus during embryogenesis as well as how direct cell-cell interactions of DETC with neighboring epidermal cells shape skin homeostasis and effector functions. Furthermore, we will discuss seminal work and recent discoveries made in the γδT cell field, which have highlighted the importance of γδT cells in the skin, both in humans and mice.
Collapse
Affiliation(s)
- Flavian Thelen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Deborah A Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
7
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
8
|
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest 2017; 128:415-426. [PMID: 29202478 DOI: 10.1172/jci95837] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17-producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ-producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tadashi Okamura
- Department of Laboratory Animal Medicine, and.,Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
9
|
Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci U S A 2016; 113:14805-14810. [PMID: 27911843 DOI: 10.1073/pnas.1617793113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αβ+ and γδ+ intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling-weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages.
Collapse
|
10
|
Puri KD, Di Paolo JA, Gold MR. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 2014; 32:397-427. [PMID: 23886342 DOI: 10.3109/08830185.2013.818140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.
Collapse
|
11
|
Wencker M, Turchinovich G, Di Marco Barros R, Deban L, Jandke A, Cope A, Hayday AC. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat Immunol 2014; 15:80-7. [PMID: 24241693 PMCID: PMC6485477 DOI: 10.1038/ni.2773] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022]
Abstract
The subclassification of immunology into innate and adaptive immunity is challenged by innate-like T lymphocytes that use innate receptors to respond rapidly to stress despite expressing T cell antigen receptors (TCRs), a hallmark of adaptive immunity. In studies that explain how such cells can straddle innate and adaptive immunity, we found that signaling via antigen receptors, whose conventional role is to facilitate clonal T cell activation, was critical for the development of innate-like T cells but then was rapidly attenuated, which accommodated the cells' innate responsiveness. These findings permitted the identification of a previously unknown innate-like T cell subset and indicate that T cell hyporesponsiveness, a state traditionally linked to tolerance, may be fundamental to T cells entering the innate compartment and thereby providing lymphoid stress surveillance.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Animals, Newborn
- Cells, Cultured
- Flow Cytometry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunity, Innate/immunology
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- ZAP-70 Protein-Tyrosine Kinase/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Melanie Wencker
- London Research Institute, Cancer Research UK, UK
- Peter Gorer Dept of Immunobiology, King’s College London, UK
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, UK
- Peter Gorer Dept of Immunobiology, King’s College London, UK
| | | | - Livija Deban
- London Research Institute, Cancer Research UK, UK
| | - Anett Jandke
- London Research Institute, Cancer Research UK, UK
| | - Andrew Cope
- Centre for the Molecular and Cell Biology of Inflammation, King’s College London, UK
| | - Adrian C Hayday
- London Research Institute, Cancer Research UK, UK
- Peter Gorer Dept of Immunobiology, King’s College London, UK
| |
Collapse
|
12
|
Abstract
T cells employ a cell surface heterodimeric molecule, the T cell receptor (TCR), to recognize specific antigens (Ags) presented by major histocompatibility complex (MHC) molecules and carry out adaptive immune responses. Most T cells possess a TCR with an α and a β chain. However, a TCR constituted by a γ and a δ chain has been described, defining a novel subset of T cells. γδ TCRs specific for a wide variety of ligands, including bacterial phosphoantigens, nonclassical MHC-I molecules and unprocessed proteins, have been found, greatly expanding the horizons of T cell immune recognition. This review aims to provide background in γδ T cell history and function in mouse and man, as well as to provide a critical view of some of the latest developments on this still enigmatic class of immune cells.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Molecular and Cellular Biology and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
13
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
14
|
Witherden DA, Havran WL. Molecular aspects of epithelial γδ T cell regulation. Trends Immunol 2011; 32:265-71. [PMID: 21481636 PMCID: PMC3109268 DOI: 10.1016/j.it.2011.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 11/28/2022]
Abstract
γδ T cells lie at the interface between innate and adaptive immunity, sharing features with both arms of the immune system. The vast majority of γδ T cells reside in epithelial layers of tissues such as skin, gut, lung, tongue and reproductive tract where they provide a first line of defense against environmental attack. The existence of epithelium-resident γδ T cells has been known for over 20 years but our understanding of the molecular events regulating development and function of these cells is incomplete. We review recent advances in the field, with particular emphasis on the γδ T cell population resident in mouse epidermis. These studies have enhanced our knowledge and understanding of the life cycle of this enigmatic population of cells.
Collapse
Affiliation(s)
- Deborah A Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
15
|
Xia M, Qi Q, Jin Y, Wiest DL, August A, Xiong N. Differential roles of IL-2-inducible T cell kinase-mediated TCR signals in tissue-specific localization and maintenance of skin intraepithelial T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6807-14. [PMID: 20483745 DOI: 10.4049/jimmunol.1000453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-specific innate-like gammadelta T cells are important components of the immune system critical for the first line of defense, but mechanisms underlying their tissue-specific development are poorly understood. Our study with prototypical skin-specific intraepithelial gammadeltaT lymphocytes (sIELs) found that among different thymic gammadelta T cell subsets fetal thymic precursors of sIELs specifically acquire a unique skin-homing property after positive selection, suggesting an important role of the TCR selection signaling in "programming" them for tissue-specific development. In this study, we identified IL-2-inducible T cell kinase (ITK) as a critical signal molecule regulating the acquirement of the skin-homing property by the fetal thymic sIEL precursors. In ITK knockout mice, the sIEL precursors could not undergo positive selection-associated upregulation of thymus-exiting and skin-homing molecules sphingosine-1-phosphate receptor 1 and CCR10 and accumulated in the thymus. However, the survival and expansion of sIELs in the skin did not require ITK-transduced TCR signaling, whereas its persistent activation impaired sIEL development by inducing apoptosis. These findings provide insights into molecular mechanisms underlying differential requirements of TCR signaling in peripheral localization and maintenance of the tissue-specific T cells.
Collapse
Affiliation(s)
- Mingcan Xia
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The spleen tyrosine kinase (Syk) and ζ-associated protein of 70 kD (ZAP-70) tyrosine kinases are both expressed during early thymocyte development, but their unique thymic functions have remained obscure. No specific role for Syk during β-selection has been established, and no role has been described for ZAP-70 before positive selection. We show that Syk and ZAP-70 provide thymocytes with unique and separable fitness advantages during early development. Syk-deficient, but not ZAP-70–deficient, thymocytes are specifically impaired in initial pre-TCR signaling at the double-negative (DN) 3 β selection stage and show reduced cell-cycle entry. Surprisingly, and despite overlapping expression of both kinases, only ZAP-70 appears to promote sustained pre-TCR/TCR signaling during the DN4, immature single-positive, and double-positive stages of development before thymic selection occurs. ZAP-70 promotes survival and cell-cycle progression of developing thymocytes before positive selection, as also shown by in vivo anti-CD3 treatment of recombinase-activating gene 1–deficient mice. Our results establish a temporal separation of Syk family kinase function during early thymocyte development and a novel role for ZAP-70. We propose that pre-TCR signaling continues during DN4 and later stages, with ZAP-70 dynamically replacing Syk for continued pre-TCR signaling.
Collapse
Affiliation(s)
- Emil H Palacios
- Department of Medicine, the Rosalind Russell Medical Research Center for Arthritis, University of California-San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
17
|
Abstract
Since the discovery of gammadelta T cells two decades ago, considerable effort has been made to understand their developmental program, their antigen specificity, and their contribution to the immune response. In this review, we focus on what is known about gammadelta T-cell development and on the advances that have been made in determining which genes are required. In addition, we compare the genetic requirements for alphabeta and gammadelta T-cell development with the hope of gaining a better picture of the signaling pathways that govern the development of gammadelta lineage cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Sandra M Hayes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
18
|
Endo Y, Ishikawa O, Negishi I. Zeta-chain-associated protein-70 molecule is essential for the proliferation and the final maturation of dendritic epidermal T cells. Exp Dermatol 2005; 14:188-93. [PMID: 15740591 DOI: 10.1111/j.0906-6705.2005.00264.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult murine epidermis contains members of the epithelial gammadelta T-cell family called dendritic epidermal T cells (DETCs). Their development and maturation have been the subjects of investigations, but the details are still unclear. T-cell receptor (TCR) zeta-chain-associated protein-70 (ZAP-70), one of the protein tyrosine kinases required for TCR signaling, plays a pivotal role in the development of alphabeta T cells. In mice lacking ZAP-70, thymic development of alphabeta T cells was completely arrested at the immature CD4(+)CD8(+) TCR(low) stage. Here, we examined whether or not the development and maturation of DETCs were altered in ZAP-70-deficient mice. Immunohistochemical analyses of epidermal sheets revealed that the number of DETCs was reduced and their characteristic dendrites were lost or markedly shortened in ZAP-70(-/-) mice. In flow cytometric analyses, the expression levels of gammadelta TCR and Thy-1.2 on the ZAP-70(-/-) DETCs were lower than those on ZAP-70(+/-) DETCs. The expression of a very early activation antigen, CD69, was not detected on ZAP-70(-/-) DETCs, whereas CD69 was expressed on ZAP-70(+/-) DETCs. Furthermore, ZAP-70(-/-) DETCs showed markedly reduced proliferation and no IL-2 gene expression in response to anti-CD3epsilon or concanavalin A stimulation. These results suggest that ZAP-70 is essential for TCR signaling which induces the proliferation and the final maturation of DETCs in the epidermis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD3 Complex/immunology
- Cell Count
- Cell Proliferation
- Cells, Cultured
- Cellular Senescence/physiology
- Concanavalin A/pharmacology
- Dendritic Cells/cytology
- Dendritic Cells/physiology
- Epidermal Cells
- Gene Expression
- Interleukin-2/genetics
- Lectins, C-Type
- Mice
- Mice, Knockout
- Nuclear Proteins/metabolism
- Phenotype
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/physiology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Yukie Endo
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa machi, Maebashi Gunma 371-8511, Japan
| | | | | |
Collapse
|
19
|
Hallal-Calleros C, Agramonte-Hevia J, Garay-Canales C, Oliver JM, Guerra-Araiza C, Heras D, Camacho-Arroyo I, Soto-Cruz I, Ortega E. Syk and Lyn phosphorylation induced by FcγRI and FγRII crosslinking is determined by the differentiation state of U-937 monocytic cells. Immunol Lett 2005; 99:169-79. [PMID: 16009267 DOI: 10.1016/j.imlet.2005.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/16/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Fcgamma receptor (FcgammaR)-mediated phagocytosis by mononuclear phagocytes is an essential function in host defense. This process is initiated by crosslinking of membrane FcgammaRs, which induces phosphorylation and activation of Src and Syk tyrosine kinases. Activation of these enzymes is essential for initiating the biochemical cascade that results in the cytoskeletal and membrane changes involved in phagocytosis. Phagocytic capacity and other effector functions of mononuclear phagocytes change during differentiation/maturation of these cells. This is a complex process governed by different soluble and micro-environmental factors, giving rise to populations of cells with distinct phenotypic characteristics. Several agents, including calcitriol, have been shown to induce in vitro differentiation-related phenotypic changes in monocytic cell lines. In this paper, we characterized the changes in the initial biochemical signals associated with the increase in FcgammaR-mediated phagocytosis induced by calcitriol in monocytic U-937 cells. The 10-fold increase in phagocytic capacity is not accompanied by an increase in FcgammaR expression. However, the phosphorylation levels of Lyn and Syk after FcgammaRI or FcgammaRII crosslinking are increased after calcitriol treatment. Our results suggest that signaling induced by FcgammaR in mononuclear phagocytes is not only dependent on the quantity of FcgammaRs aggregated by a stimulus, but it is highly dependent on the cell's differentiation state.
Collapse
Affiliation(s)
- Claudia Hallal-Calleros
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México - UNAM, D.F
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agramonte-Hevia J, Hallal C, Garay-Canales C, Guerra-Araiza C, Camacho-Arroyo I, Ortega Soto E. 1alpha, 25-dihydroxy-vitamin D3 alters Syk activation through FcgammaRII in monocytic THP-1 cells. J Cell Biochem 2003; 89:1056-76. [PMID: 12874838 DOI: 10.1002/jcb.10575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In monocytes and macrophages, activation of the tyrosine kinase Syk is an essential step in the biochemical cascade linking aggregation of receptors for immunoglobulin G (FcgammaR) to initiation of effector functions. An increase in Syk activation during differentiation of myeloid cells by different agents has been reported. We studied the activation state of Syk in response to FcgammaRII crosslinking in monocytic cells before and after in vitro differentiation with 1alpha, 25-dihydroxy-vitamin D3. We show here that while in undifferentiated THP-1 cells clustering of FcgammaRII induces significant phosphorylation and activation of Syk, in THP-1 cells differentiated in vitro by 1alpha, 25-dihydroxy-vitamin D3, FcgammaRII crosslinking induced a decrease in Syk activity. In vitro differentiation did not induce changes in the expression of FcgammaRII isoforms. The observed effect on Syk activation though FcgammaRII could be mediated by differentiation-induced changes in the expression and basal activation level of Syk, as well as changes in the association of Syk with the tyrosine phosphatase SHP-1. These results suggest that the biochemical signaling pathways induced by FcgammaRII could be dependent on the differentiation state of the cell.
Collapse
Affiliation(s)
- José Agramonte-Hevia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cuidad Universitaria, D. F., 04510 México
| | | | | | | | | | | |
Collapse
|
21
|
Goodman PA, Burkhardt N, Juran B, Tibbles HE, Uckun FM. Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia. Oncogene 2003; 22:2504-14. [PMID: 12717427 DOI: 10.1038/sj.onc.1206313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sequence analysis of the noncoding first exon (exon 1) of the Syk gene demonstrated the presence of a previously cloned CpG island (GenBank #Z 65706). Transient transfection analysis in Daudi cells demonstrated promoter activity (18-fold increase over parental luciferase plasmid) for a 348 bp BstXI-BsrBI fragment containing this island. This region exhibits a high GC content (approximately 75%), contains several SP1 binding sites and a potential initiator sequence, but lacks a strong TATA consensus. Bisulfite sequencing and methylation-specific PCR (MSP) of this region demonstrated that the Syk promoter CpG island was largely unmethylated in B-lineage leukemia cell lines, control peripheral blood cells, human thymocytes and CD3(+) T lymphocytes. However, dense methylation was seen in four T-lineage leukemia cell lines, Jurkat, H9, Molt 3 and HUT 78. MSP screening of leukemia cells from six T-lineage acute lymphoblastic leukemia (ALL) patients demonstrated methylation of the Syk promoter CpG island in one T-lineage ALL patient. Promoter methylation was correlated with reduced to absent expression of Syk mRNA and SYK protein in the T-lineage leukemia cell lines. Treatment of the leukemia lines Ha and Molt 3, with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) resulted in increased Syk mRNA expression. The presence of a methylated promoter sequence in these T-lineage leukemia cell lines and in one T-lineage patient suggests a potential role for SYK as a tumor suppressor in T-ALL.
Collapse
Affiliation(s)
- Patricia A Goodman
- Department of Molecular Genetics, Parker Hughes Institute and Parker Hughes Cancer Center, 2699 Patton Road, St Paul, MN 55113, USA
| | | | | | | | | |
Collapse
|
22
|
Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003; 371:15-27. [PMID: 12485116 PMCID: PMC1223257 DOI: 10.1042/bj20021637] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/12/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
23
|
Lambolez F, Azogui O, Joret AM, Garcia C, von Boehmer H, Di Santo J, Ezine S, Rocha B. Characterization of T cell differentiation in the murine gut. J Exp Med 2002; 195:437-49. [PMID: 11854357 PMCID: PMC2193617 DOI: 10.1084/jem.20010798] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gut intraepithelial CD8 T lymphocytes (T-IEL) are distinct from thymus-derived cells and are thought to derive locally from cryptopatch (CP) precursors. The intermediate stages of differentiation between CP and mature T-IEL were not identified, and the local differentiation process was not characterized. We identified and characterized six phenotypically distinct lineage-negative populations in the CP and the gut epithelium: (a) we determined the kinetics of their generation from bone marrow precursors; (b) we quantified CD3-epsilon, recombination activating gene (Rag)-1, and pre-Talpha mRNAs expression at single cell level; (c) we characterized TCR-beta, -gamma, and -alpha locus rearrangements; and (d) we studied the impact of different mutations on the local differentiation. These data allowed us to establish a sequence of T cell precursor differentiation in the gut. We also observed that the gut differentiation varied from that of the thymus by a very low frequency of pre-Talpha chain mRNA expression, a different kinetics of Rag-1 mRNA expression, and a much higher impact of CD3 epsilon/delta and pre-Talpha deficiencies. Finally, only 3% of CP cells were clearly involved in T cell differentiation, suggesting that these structures may have additional physiological roles in the gut.
Collapse
Affiliation(s)
- Florence Lambolez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U345, Institut Necker, Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
In the past decade, advances in genetic engineering and mouse knockout technology have transformed our understanding of the immune system. In particular, new perspectives on T-cell development, co-stimulation and activation have emerged from the study of single and multiple gene-knockout animals, as well as from conditional knockout and 'knock-in' mutants. Analysis of these animals has clarified important intracellular signalling pathways and has shed light on the regulatory mechanisms that govern normal immune responses and autoimmunity.
Collapse
Affiliation(s)
- T W Mak
- Amgen Research Institute, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
26
|
Douglas NC, Jacobs H, Bothwell AL, Hayday AC. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol 2001; 2:307-15. [PMID: 11276201 DOI: 10.1038/86308] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
c-Myc is associated with cell growth and cycling in many tissues and its deregulated expression is causally implicated in cancer, particularly lymphomagenesis. However, the contribution of c-Myc to lymphocyte development is unresolved. We show here that the formation of normal lymphocytes by c-Myc-/- cells is selectively defective. c-Myc-/- cells are inefficient, in an age-dependent manner, at populating the thymus, and subsequent thymocyte maturation is ineffective: they fail to grow and proliferate normally at the late double-negative (DN) CD4-CD8- stage. Because N-Myc expression in thymocytes usually declines at the late DN stage, these results confirm that the nonredundant contributions of Myc family members to development are related to their distinct patterns of developmental gene expression.
Collapse
Affiliation(s)
- N C Douglas
- Department of Molecular Cell and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
27
|
Syk-deficient eosinophils show normal interleukin-5–mediated differentiation, maturation, and survival but no longer respond to FcγR activation. Blood 2000. [DOI: 10.1182/blood.v96.7.2506.h8002506_2506_2510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosine kinase Syk has been proposed to play a critical role in the antiapoptotic effect of interleukin (IL)-5 in human eosinophils. However, little is known about the involvement of Syk in other IL-5–mediated activation events. To further address these questions, the role of Syk in IL-5–induced eosinophil differentiation, activation, and survival was analyzed using cells obtained from Syk-deficient mice. We could demonstrate that Syk-deficient fetal liver cells differentiate into mature eosinophils in response to IL-5 at the same rate as wild-type fetal liver cells and generate the same total number of eosinophils. Moreover, no difference in IL-5–induced survival of mature eosinophils between Syk−/− and wild-type eosinophils could be demonstrated, suggesting that the antiapoptotic effect of IL-5 does not require Syk despite the activation of this tyrosine kinase upon IL-5 receptor ligation. In contrast, eosinophils derived from Syk-deficient but not wild-type mice were incapable of generating reactive oxygen intermediates in response to Fcγ receptor (FcγR) engagement. Taken together, these data clearly demonstrate no critical role for Syk in IL-5–mediated eosinophil differentiation or survival but underline the importance of this tyrosine kinase in activation events induced by FcγR stimulation.
Collapse
|
28
|
Syk-deficient eosinophils show normal interleukin-5–mediated differentiation, maturation, and survival but no longer respond to FcγR activation. Blood 2000. [DOI: 10.1182/blood.v96.7.2506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The tyrosine kinase Syk has been proposed to play a critical role in the antiapoptotic effect of interleukin (IL)-5 in human eosinophils. However, little is known about the involvement of Syk in other IL-5–mediated activation events. To further address these questions, the role of Syk in IL-5–induced eosinophil differentiation, activation, and survival was analyzed using cells obtained from Syk-deficient mice. We could demonstrate that Syk-deficient fetal liver cells differentiate into mature eosinophils in response to IL-5 at the same rate as wild-type fetal liver cells and generate the same total number of eosinophils. Moreover, no difference in IL-5–induced survival of mature eosinophils between Syk−/− and wild-type eosinophils could be demonstrated, suggesting that the antiapoptotic effect of IL-5 does not require Syk despite the activation of this tyrosine kinase upon IL-5 receptor ligation. In contrast, eosinophils derived from Syk-deficient but not wild-type mice were incapable of generating reactive oxygen intermediates in response to Fcγ receptor (FcγR) engagement. Taken together, these data clearly demonstrate no critical role for Syk in IL-5–mediated eosinophil differentiation or survival but underline the importance of this tyrosine kinase in activation events induced by FcγR stimulation.
Collapse
|
29
|
Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18:975-1026. [PMID: 10837080 DOI: 10.1146/annurev.immunol.18.1.975] [Citation(s) in RCA: 848] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The tripartite subdivision of lymphocytes into B cells, alphabeta T cells, and gammadelta cells has been conserved seemingly since the emergence of jawed vertebrates, more than 450 million years ago. Yet, while we understand much about B cells and alphabeta T cells, we lack a compelling explanation for the evolutionary conservation of gammadelta cells. Such an explanation may soon be forthcoming as advances in unraveling the biochemistry of gammadelta cell interactions are reconciled with the abnormal phenotypes of gammadelta-deficient mice and with the striking differences in gammadelta cell activities in different strains and species. In this review, the properties of gammadelta cells form a basis for understanding gammadelta cell interactions with antigens and other cells that in turn form a basis for understanding immunoprotective and regulatory functions of gammadelta cells in vivo. We conclude by considering which gammadelta cell functions may be most critical.
Collapse
Affiliation(s)
- A C Hayday
- Department of Immunobiology, Guy's King's St. Thomas' Medical School, King's College, University of London, United Kingdom.
| |
Collapse
|
30
|
Colucci F, Guy-Grand D, Wilson A, Turner M, Schweighoffer E, Tybulewicz VL, Di Santo JP. A new look at Syk in alpha beta and gamma delta T cell development using chimeric mice with a low competitive hematopoietic environment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5140-5. [PMID: 10799872 DOI: 10.4049/jimmunol.164.10.5140] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Syk protein tyrosine kinase (PTK) is essential for B, but not T or NK, cell development, although certain T cell subsets (i.e., gamma delta T cells of intestine and skin) appear to be dependent on Syk. In this report, we have re-evaluated the role of Syk in T cell development in hematopoietic chimeras generated by using Syk-deficient fetal liver hematopoietic stem cells (FL-HSC). We found that Syk-/- FL-HSC were vastly inferior to wild-type FL-HSC in reconstituting T cell development in recombinant-activating gene 2 (RAG2)-deficient mice, identifying an unexpected and nonredundant role for Syk in this process. This novel function of Syk in T cell development was mapped to the CD44-CD25+ stage. According to previous reports, development of intestinal gamma delta T cells was arrested in Syk-/- -->RAG2-/- chimeras. In striking contrast, when hosts were the newly established alymphoid RAG2 x common cytokine receptor gamma-chain (RAG2/gamma c) mice, Syk-/- chimeras developed intestinal gamma delta T cells as well as other T cell subsets (including alpha beta T cells, NK1.1+ alpha beta T cells, and splenic and thymic gamma delta T cells). However, all Syk-deficient T cell subsets were reduced in number, reaching about 25-50% of controls. These results attest to the utility of chimeric mice generated in a low competitive hematopoietic environment to evaluate more accurately the impact of lethal mutations on lymphoid development. Furthermore, they suggest that Syk intervenes in early T cell development independently of ZAP-70, and demonstrate that Syk is not essential for the intestinal gamma delta T cell lineage to develop.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Enzyme Precursors/deficiency
- Enzyme Precursors/genetics
- Fetal Tissue Transplantation/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intracellular Signaling Peptides and Proteins
- Liver Transplantation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Radiation Chimera/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Syk Kinase
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- F Colucci
- Institut National de la Santé et de la Recherche Médicale U429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Matsuda T, Yamamoto T, Kishi H, Yoshimura A, Muraguchi A. SOCS-1 can suppress CD3zeta- and Syk-mediated NF-AT activation in a non-lymphoid cell line. FEBS Lett 2000; 472:235-40. [PMID: 10788618 DOI: 10.1016/s0014-5793(00)01444-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To elucidate T cell antigen receptor (TCR) signaling leading to activation nuclear factor of activated T cells (NF-AT), we reconstituted TCR signaling to activate NF-AT in a non-lymphoid cell line, 293T. We demonstrated that co-expression of CD8/zeta and Syk were necessary for NF-AT activation in 293T. This NF-AT response was completely inhibited by the addition of cyclosporin A or FK506, but markedly enhanced by the additional expression of Tec protein tyrosine kinase. We also show that the cytokine signaling suppressor, suppressor of cytokine signaling 1, potently inhibited this response by interacting with Syk and immunoreceptor tyrosine-based activation motifs in CD8/zeta. These results imply that this novel system may provide a useful tool to delineate or identify the regulatory molecules for CD3zeta/Syk-mediated NF-AT activation.
Collapse
Affiliation(s)
- T Matsuda
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, Japan.
| | | | | | | | | |
Collapse
|
32
|
Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. IMMUNOLOGY TODAY 2000; 21:148-54. [PMID: 10689303 DOI: 10.1016/s0167-5699(99)01574-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The tyrosine kinase SYK plays critical roles in signalling through immune receptors. Gene-targeting studies have identified the cell types that require SYK for development and function, and the receptors that use SYK as well as their downstream signalling effectors. There is also evidence of a role for SYK in non-immune cells and in the maintenance of vascular integrity.
Collapse
Affiliation(s)
- M Turner
- Molecular Immunology Programme, The Babraham Institute, Cambridge, UK CB2 4AT.
| | | | | | | | | |
Collapse
|
33
|
Witherden DA, Rieder SE, Boismenu R, Havran WL. A role for epithelial gamma delta T cells in tissue repair. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:265-81. [PMID: 11116957 DOI: 10.1007/s002810000045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- D A Witherden
- Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
34
|
Chu DH, van Oers NSC, Malissen M, Harris J, Elder M, Weiss A. Pre-T Cell Receptor Signals Are Responsible for the Down-Regulation of Syk Protein Tyrosine Kinase Expression. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Thymocyte development proceeds through two critical checkpoints that involve signaling events through two different receptors, the TCR and the pre-TCR. These receptors employ two families of protein tyrosine kinases to propagate their signals, the Src and Syk families. Genetic and biochemical evidence has shown that the Src family kinases are critical for normal T cell maturation. ZAP-70, a Syk family kinase, has similarly been implicated as a critical component in thymocyte development. Although genetic evidence has suggested that Syk is involved during thymocyte development, a definitive study of Syk expression has not been performed. In this paper we report our reanalysis of Syk expression in subpopulations of murine and human thymocytes by intracellular staining and flow cytometry using anti-Syk mAbs. Syk is expressed at increased levels during the stages in which pre-TCR signaling occurs. Furthermore, Syk is down-regulated after the pre-TCR checkpoint has been passed. Syk may play an important role in thymic development during pre-TCR signal transduction. Finally, incomplete down-regulation of Syk expression was noted in human thymocytes, offering a possible explanation for the distinct phenotypes of mice and humans deficient in ZAP-70.
Collapse
Affiliation(s)
| | | | - Marie Malissen
- §Centre d’Immunologie Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique de Marseille-Luminy, Marseille, France
| | | | | | - Arthur Weiss
- *Microbiology and Immunology,
- ‡Medicine and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143; and
| |
Collapse
|
35
|
Colucci F, Turner M, Schweighoffer E, Guy-Grand D, Di Bartolo V, Salcedo M, Tybulewicz VLJ, Di Santo JP. Redundant Role of the Syk Protein Tyrosine Kinase in Mouse NK Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Syk and ZAP-70 subserve nonredundant functions in B and T lymphopoiesis. In the absence of Syk, B cell development is blocked, while T cell development is arrested in the absence of ZAP-70. The receptors and the signaling molecules required for differentiation of NK cells are poorly characterized. Here we investigate the role of the Syk protein tyrosine kinase in NK cell differentiation. Hemopoietic chimeras were generated by reconstituting alymphoid (B−, T−, NK−) recombinase-activating gene-2 × common cytokine receptor γ-chain double-mutant mice with Syk−/− fetal liver cells. The phenotypically mature Syk−/− NK cells that developed in this context were fully competent in natural cytotoxicity and in calibrating functional inhibitory receptors for MHC molecules. Syk-deficient NK cells demonstrated reduced levels of Ab-dependent cellular cytotoxicity. Nevertheless, Syk−/− NK cells could signal through NK1.1 and 2B4 activating receptors and expressed ZAP-70 protein. We conclude that the Syk protein tyrosine kinase is not essential for murine NK cell development, and that compensatory signaling pathways (including those mediated through ZAP-70) may sustain most NK cell functions in the absence of Syk.
Collapse
Affiliation(s)
- Francesco Colucci
- *Institut National de la Santé et de la Recherche Médicale, Unit 429, Hôpital Necker-Enfants Malades, Paris, France
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - Martin Turner
- †National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom; and
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - Edina Schweighoffer
- †National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom; and
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - Delphine Guy-Grand
- *Institut National de la Santé et de la Recherche Médicale, Unit 429, Hôpital Necker-Enfants Malades, Paris, France
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - Vincenzo Di Bartolo
- ‡Institute Pasteur, Paris, France
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - Margarita Salcedo
- ‡Institute Pasteur, Paris, France
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - Victor L. J. Tybulewicz
- †National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom; and
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| | - James P. Di Santo
- *Institut National de la Santé et de la Recherche Médicale, Unit 429, Hôpital Necker-Enfants Malades, Paris, France
- 2 Current address: Babraham Institute, Babraham, Cambridge, U.K
| |
Collapse
|
36
|
Hunter S, Sato N, Kim MK, Huang ZY, Chu DH, Park JG, Schreiber AD. Structural requirements of Syk kinase for Fcgamma receptor-mediated phagocytosis. Exp Hematol 1999; 27:875-84. [PMID: 10340404 DOI: 10.1016/s0301-472x(99)00025-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tyrosine kinase Syk plays a critical role in the phagocytic pathway mediated by Fcgamma receptors (FcgammaR). In transfected COS1 cells co-expression of Syk enhances FcgammaR mediated phagocytosis. The other member of the Syk kinase family, the highly homologous tyrosine kinase Zap70, also plays a role in signaling by immunoglobulin gene family receptors, but does not increase the phagocytic efficiency of FcgammaRs. The homologous tandem SH2 and kinase domains of Syk and Zap70 are separated by a nonhomologous region referred to as the unique domain. Zap70's inability to enhance phagocytosis was not due to unique domain tyrosine 292, previously implicated in negative regulation of Zap70 function. We determined the regions of Syk important for its interaction with the phagocytic pathway. An intact kinase domain was required for Syk's effect on phagocytosis. Furthermore, the Syk variant SykB, lacking 23 amino acids in the unique region, signaled for phagocytosis as efficiently as did Syk. We then constructed exchange chimeras between Syk and Zap70 and determined the contributions of the SH2, unique and kinase domains to phagocytic signaling. Our data suggest that the Syk kinase domain, which has high intrinsic kinase activity, is important for facilitating phagocytic signaling by FcgammaRI and FcgammaRIIIA.
Collapse
Affiliation(s)
- S Hunter
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhang W, Sommers CL, Burshtyn DN, Stebbins CC, DeJarnette JB, Trible RP, Grinberg A, Tsay HC, Jacobs HM, Kessler CM, Long EO, Love PE, Samelson LE. Essential role of LAT in T cell development. Immunity 1999; 10:323-32. [PMID: 10204488 DOI: 10.1016/s1074-7613(00)80032-1] [Citation(s) in RCA: 449] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The linker molecule LAT is a substrate of the tyrosine kinases activated following TCR engagement. Phosphorylated LAT binds many critical signaling molecules. The central role of this molecule in TCR-mediated signaling has been demonstrated by experiments in a LAT-deficient cell line. To probe the role of LAT in T cell development, the LAT gene was disrupted by targeting. LAT-deficient mice appeared healthy. Flow cytometric analysis revealed normal B cell populations but the absence of any mature peripheral T cells. Intrathymic development was blocked within the CD4- CD8- stage. No gross abnormality of NK or platelet function was observed. LAT is thus critical to both T cell activation and development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/physiology
- Cell Differentiation/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/physiology
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- W Zhang
- Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kadlecek TA, van Oers NSC, Lefrancois L, Olson S, Finlay D, Chu DH, Connolly K, Killeen N, Weiss A. Differential Requirements for ZAP-70 in TCR Signaling and T Cell Development. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The Syk/ZAP-70 family of protein tyrosine kinases is indispensable for normal lymphoid development. Syk is necessary for the development of B cells and epithelial γδ T cells, whereas ZAP-70 is essential for the normal development of T cells and TCR signaling. In this study, we show that although development of the αβ lineage was arrested in the thymus, CD3-positive T cells, primarily of the γδ lineage, were present in the lymph nodes of mice lacking ZAP-70. Moreover, in the absence of ZAP-70, dendritic epidermal T cells were fewer in number and of abnormal morphology, and intestinal intraepithelial lymphocytes, normally containing a large proportion of γδ T cells, were markedly reduced. These data suggest that γδ T cells show a variable dependence upon ZAP-70 for their development. Biochemical analyses of thymocytes revealed a lack of basal ζ-chain tyrosine phosphorylation. However, several other substrates were inducibly tyrosine phosphorylated following TCR stimulation. Thus, TCR-mediated signaling in ZAP-70-deficient thymocytes is only partially impaired. These studies suggest that Syk compensates only partially for the loss of ZAP-70, and that there is an absolute requirement of ZAP-70 for αβ T cells and epithelial γδ T cells, but not for some γδ T cells in peripheral lymphoid tissues.
Collapse
Affiliation(s)
| | | | - Leo Lefrancois
- §Division of Rheumatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Sara Olson
- §Division of Rheumatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | | | - David H. Chu
- *Howard Hughes Medical Institute, Department of Medicine,
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | | | - Nigel Killeen
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | - Arthur Weiss
- *Howard Hughes Medical Institute, Department of Medicine,
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| |
Collapse
|
39
|
Abstract
T cells undergo a defined program of phenotypic and genetic changes during differentiation within the thymus. These changes define commitment of T-cell receptor (TCR) gamma delta and TCR alpha beta cells and lineage differentiation into CD4+ T helper and CD8+ cytotoxic T cells. T-cell differentiation and selection in the thymus constitute a tightly co-ordinated multistep journey through a network that can be envisaged as a three-dimensional informational highway made up of stromal cells and extracellular matrix molecules. This intrathymic journey is controlled by information exchange, with thymocytes depending on two-way cellular interactions with thymic stromal cells in order to receive essential signals for maturation and selection. Genetic inactivation of surface receptors, signal transduction molecules, and transcription factors using homologous recombination has provided novel insight into the signaling cascades that relay surface receptor engagement to gene transcription and subsequent progression of the developmental program. In this review we discuss molecular mechanisms of T lymphocyte development in mice that harbour genetic mutations in the guanine nucleotide exchange factor Vav and the interferon regulatory transcription factor 1 (IRF-1). We also propose a novel model of T-cell selection based on TCR alpha chain-directed signals for allelic exclusion and TCR alpha-based selection for single receptor usage.
Collapse
Affiliation(s)
- J M Penninger
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
40
|
Chu DH, Morita CT, Weiss A. The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol Rev 1998; 165:167-80. [PMID: 9850860 DOI: 10.1111/j.1600-065x.1998.tb01238.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The processes of T-cell development and activation employ similar immature and mature receptors as well as similar signal transduction pathways to achieve different outcomes. Many signaling molecules are shared between the receptor signaling pathways, including two families of cytoplasmic protein tyrosine kinases, the Src family and the Syk family. The two Syk family members expressed in T cells, Syk and ZAP-70, are structurally similar but are expressed at different times during thymic development and during T-cell activation. These two kinases, although they share many physical features, differ in terms of biochemical activity and regulation. We discuss the overlapping and distinct characteristics of Syk and ZAP-70 in T-cell signaling and the potential biological importance of their differences.
Collapse
Affiliation(s)
- D H Chu
- Department of Microbiology and Immunology, University of California, San Francisco, USA
| | | | | |
Collapse
|
41
|
Sugawara T, Di Bartolo V, Miyazaki T, Nakauchi H, Acuto O, Takahama Y. An Improved Retroviral Gene Transfer Technique Demonstrates Inhibition of CD4−CD8− Thymocyte Development by Kinase-Inactive ZAP-70. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
ZAP-70 is a Syk family tyrosine kinase that plays an essential role in initiating TCR signals. Deficiency in ZAP-70 causes a defect in the development at CD4+CD8+ thymocytes due to defective TCR-mediated positive and negative selection. Using a newly devised retrovirus gene transfer and an efficient green fluorescence protein detection technique in fetal thymus organ cultures, the present study shows that forced expression in developing thymocytes of a catalytically inactive mutant of ZAP-70, but not wild-type ZAP-70, inhibits T cell development at the earlier CD4−CD8− stage. The ZAP-70 mutant blocked the generation of CD4+CD8+ thymocytes even in the absence of endogenous ZAP-70. Thus, the present results demonstrate a novel technique for gene transfer into developing T cells and suggest that ZAP-70/Syk family tyrosine kinases are involved in the signals inducing the generation of CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
| | - Vincenzo Di Bartolo
- §Laboratory of Molecular Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Tadaaki Miyazaki
- ‡Department of Immunology, Faculty of Medicine, University of Tokyo, Tokyo, Japan; and
| | | | - Oreste Acuto
- §Laboratory of Molecular Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Yousuke Takahama
- *Department of Immunology and
- †PRESTO Research Project, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
42
|
Kiefer F, Brumell J, Al-Alawi N, Latour S, Cheng A, Veillette A, Grinstein S, Pawson T. The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol Cell Biol 1998; 18:4209-20. [PMID: 9632805 PMCID: PMC109005 DOI: 10.1128/mcb.18.7.4209] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic protein tyrosine kinase Syk has two amino-terminal SH2 domains that engage phosphorylated immunoreceptor tyrosine-based activation motifs in the signaling subunits of immunoreceptors. Syk, in conjunction with Src family kinases, has been implicated in immunoreceptor signaling in both lymphoid and myeloid cells. We have investigated the role of Syk in Fcgamma receptor (FcgammaR)-dependent and -independent responses in bone marrow-derived macrophages and neutrophils by using mouse radiation chimeras reconstituted with fetal liver cells from Syk-/- embryos. Chimeric mice developed an abdominal hemorrhage starting 2 to 3 months after transplantation that was ultimately lethal. Syk-deficient neutrophils derived from the bone marrow were incapable of generating reactive oxygen intermediates in response to FcgammaR engagement but responded normally to tetradecanoyl phorbol acetate stimulation. Syk-deficient macrophages were defective in phagocytosis induced by FcgammaR but showed normal phagocytosis in response to complement. The tyrosine phosphorylation of multiple cellular polypeptides, including the FcgammaR gamma chain, as well as Erk2 activation, was compromised in Syk-/- macrophages after FcgammaR stimulation. In contrast, the induction of nitric oxide synthase in macrophages stimulated with lipopolysaccharide and gamma interferon was not dependent on Syk. Surprisingly, Syk-deficient macrophages were impaired in the ability to survive or proliferate on plastic petri dishes. Taken together, these results suggest that Syk has specific physiological roles in signaling from FcgammaRs in neutrophils and macrophages and raise the possibility that in vivo, Syk is involved in signaling events other than those mediated by immunoreceptors.
Collapse
Affiliation(s)
- F Kiefer
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wong J, Straus D, Chan AC. Genetic evidence of a role for Lck in T-cell receptor function independent or downstream of ZAP-70/Syk protein tyrosine kinases. Mol Cell Biol 1998; 18:2855-66. [PMID: 9566904 PMCID: PMC110664 DOI: 10.1128/mcb.18.5.2855] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1997] [Accepted: 02/13/1998] [Indexed: 02/07/2023] Open
Abstract
T-cell antigen receptor (TCR) engagement results in sequential activation of the Src protein tyrosine kinases (PTKs) Lck and Fyn and the Syk PTKs, ZAP-70 and Syk. While the Src PTKs mediate the phosphorylation of TCR-associated signaling subunits and the phosphorylation and activation of the Syk PTKs, the lack of a constitutively active Syk PTK has prohibited the analysis of Lck function downstream of these initiating signaling events. We describe here the generation of an activated Syk family PTK by substituting the kinase domain of Syk for the homologous region in ZAP-70 (designated as KS for kinase swap). Expression of the KS chimera resulted in its autophosphorylation, the phosphorylation of cellular proteins, the upregulation of T-cell activation markers, and the induction of interleukin-2 gene synthesis in a TCR-independent fashion. The KS chimera and downstream ZAP-70 or Syk substrates, such as SLP-76, were still phosphorylated when expressed in Lck-deficient JCaM1.6 T cells. However, expression of the KS chimera in JCaM1.6 cells failed to rescue downstream signaling events, demonstrating a functional role for Lck beyond the activation of the ZAP-70 and Syk PTKs. These results indicate that downstream TCR signaling pathways may be differentially regulated by ZAP-70 and Lck PTKs and provide a mechanism by which effector functions may be selectively activated in response to TCR stimulation.
Collapse
Affiliation(s)
- J Wong
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
44
|
Latour S, Zhang J, Siraganian RP, Veillette A. A unique insert in the linker domain of Syk is necessary for its function in immunoreceptor signalling. EMBO J 1998; 17:2584-95. [PMID: 9564041 PMCID: PMC1170600 DOI: 10.1093/emboj/17.9.2584] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating data indicate that the 'linker' region of Syk, which lies between its tandem Src homology 2 (SH2) domains and kinase region, provides a critical function for the biological activity of Syk. This importance has been ascribed to the presence of tyrosine phosphorylation sites capable of mediating the recruitment of cellular effectors. We and others previously identified an alternatively spliced variant of Syk, termed SykB, which lacks a 23 amino acid sequence in the linker domain. As this 'linker insert' is also not present in the closely related enzyme Zap-70, it seems plausible that Syk possesses this unique sequence for functional reasons. To understand its role better, we have compared the abilities of Syk and SykB to participate in immunoreceptor-triggered signal transduction. The results of our experiments revealed that, unlike Syk, SykB was inefficient at coupling stimulation of FcepsilonRI on basophils or the antigen receptor on T cells to the early and late events of cellular activation. Further studies showed that the functional defect in SykB was not caused by the absence of crucial tyrosine phosphorylation sites, or by a reduced intrinsic kinase activity. Rather, it correlated with the reduced ability of SykB to bind phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) in vitro and in vivo. In combination, these results demonstrated that the unique insert in the linker domain of Syk is crucial for its capacity to participate in immunoreceptor signalling. Furthermore, they provided evidence that the linker region can regulate the ability of Syk to bind ITAMs, thus identifying a novel function for this domain.
Collapse
Affiliation(s)
- S Latour
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
45
|
Abstract
Gene targeting in mice has enabled the study of antigen receptor signalling in primary lymphocytes. Furthermore, it has provided the tools to directly assess the function of individual signalling proteins by mutation of the genes that code for them. Some of the results that gene targeting has produced have confirmed previous views of the function of particular proteins. Others have given surprising results and overturned accepted viewpoints.
Collapse
Affiliation(s)
- V L Tybulewicz
- National Institute for Medical Research, Mill Hill, London, UK.
| |
Collapse
|
46
|
Mallick-Wood CA, Lewis JM, Richie LI, Owen MJ, Tigelaar RE, Hayday AC. Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. Science 1998; 279:1729-33. [PMID: 9497293 DOI: 10.1126/science.279.5357.1729] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A feature that distinguishes gammadelta T cell subsets from most alphabeta T cells and B cells is the association of expression of single T cell receptor (TCR) gamma and delta variable (V) region gene segments with specific anatomic sites. Mice lacking the TCR Vgamma5 chain normally expressed by most dendritic epidermal T cells were shown to retain a conformational determinant (idiotype) ordinarily expressed exclusively by such Vgamma5+ cells. Conservation by shuffled gammadelta TCR chains of an idiotype associated with a specific anatomic site indicates that for TCRgammadelta, as for immunoglobulin, conformation is associated to a greater extent with the function or development of lymphocyte repertoires than is the use of particular gene segments.
Collapse
MESH Headings
- Animals
- Cell Line
- Dendritic Cells/immunology
- Epidermal Cells
- Epidermis/immunology
- Epitopes/analysis
- Female
- Gene Rearrangement
- Hybridomas
- Male
- Mice
- Mice, Inbred C57BL
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Protein Conformation
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- C A Mallick-Wood
- Department of Molecular, Cell, and Developmental Biology and Section of Immunobiology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
47
|
Noraz N, Saha K, Ottones F, Smith S, Taylor N. Cutting Edge: Constitutive Activation of TCR Signaling Molecules in IL-2-Independent Herpesvirus saimiri-Transformed T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.5.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Both human T cell leukemia virus type I and simian Herpesvirus saimiri (HVS) transform human T cells in vitro. Although IL-2-independent growth in human T cell leukemia virus type I-transformed T cells is associated with constitutive phosphorylation of JAK/STAT kinases, we now demonstrate that different mechanisms may be responsible for the ability of HVS-transformed T cells to proliferate in the absence of exogenous cytokines. The IL-2 independence of an HVS-transformed cell line correlated with constitutive activation of protein tyrosine kinases known to be induced following TCR engagement. Thus, in these cells we observed increased phosphotransferase activity of Lck as well as constitutive tyrosine phosphorylation of the TCR-associated ZAP-70 kinase and expression of the related Syk protein tyrosine kinase. While Syk is generally not expressed in activated T cells, its introduction has been shown to enhance TCR responsiveness. These results suggest that distinct signal transduction cascades can participate in the transition of T cells to IL-2 independence.
Collapse
Affiliation(s)
- Nelly Noraz
- *Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Kunal Saha
- †Molecular Virology Laboratory, St. Luke’s-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York, NY 10019; and
| | - Florence Ottones
- *Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Susan Smith
- ‡Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90027
| | - Naomi Taylor
- *Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| |
Collapse
|
48
|
Role of Immunoreceptor Tyrosine-Based Activation Motif in Signal Transduction from Antigen and Fc Receptors**Received for publication October 7, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60608-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Affiliation(s)
- M E Elder
- Department of Pediatrics, University of California, San Francisco 94143-0105, USA
| |
Collapse
|
50
|
Cheng AM, Negishi I, Anderson SJ, Chan AC, Bolen J, Loh DY, Pawson T. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc Natl Acad Sci U S A 1997; 94:9797-801. [PMID: 9275205 PMCID: PMC23271 DOI: 10.1073/pnas.94.18.9797] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Indexed: 02/05/2023] Open
Abstract
An early stage in thymocyte development, after rearrangement of the beta chain genes of the T cell receptor (TCR), involves expression of the pre-TCR complex and accompanying differentiation of CD4(-)CD8(-) double negative (DN) cells to CD4(+)CD8(+) double positive (DP) cells. The ZAP-70 and Syk tyrosine kinases each contain two N-terminal SH2 domains that bind phosphorylated motifs in antigen receptor subunits and are implicated in pre-T receptor signaling. However, mice deficient in either ZAP-70 or Syk have no defect in the formation of DP thymocytes. Here we show that, in mice lacking both Syk and ZAP-70, DN thymocytes undergo beta chain gene rearrangement but fail to initiate clonal expansion and are incapable of differentiating into DP cells after expression of the pre-TCR. These data suggest that the ZAP-70 and Syk tyrosine kinases have crucial but overlapping functions in signaling from the pre-TCR and hence in early thymocyte development.
Collapse
Affiliation(s)
- A M Cheng
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|