1
|
Gao W, Fan W, Wang D, Sun J, Li Y, Tang C, Fan M. Assessing fresh water acute toxicity with Surface-Enhanced Raman Scattering (SERS). Talanta 2024; 267:125163. [PMID: 37690416 DOI: 10.1016/j.talanta.2023.125163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
It's well known that the toxicity of chemicals in the environment depends not only their concentrations, but more importantly, their bio-availability. Thus, the acute toxicity test of environmental water samples is of great importance in water quality evaluation. In this work, water acute toxicity was determined via SERS approach for the first time based on the reaction between Escherichia coli (E. coli) and p-benzoquinone (BQ). The E. coli was used as the subject of toxicity assay. Under normal conditions, the BQ molecules can be transformed into Hydroquinone (HQ) by the E. coli bacteria; subsequently, the BQ will continue to react with the resulting HQ to form Quinone hydroquinone (QHQ). This process could be impaired in the presence of many toxic chemicals. Bromide modified Ag NPs was then introduced for the highly sensitive SERS detection of the product (HQ and QHQ). Several key factors that may affect water acute toxicity evaluation have been explored, which include the initial BQ and E. coli concentration, the incubation time with BQ, and the sodium chloride concentration. Later, the established system was applied for the toxicity evaluation of Cu2+. It was found that the IC50 value of Cu2+ was 0.94 mg/L, which is superior compared with literature report. This study provides a promising SERS method for assessing acute toxicity in water bodies with high sensitivity and short detection time.
Collapse
Affiliation(s)
- Weixing Gao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wanli Fan
- School of Civil and Architectural Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ji Sun
- School of Emergency Management, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, Sichuan, 610200, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
2
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
3
|
Hunting ER, Matthews J, de Arróyabe Hernáez PF, England SJ, Kourtidis K, Koh K, Nicoll K, Harrison RG, Manser K, Price C, Dragovic S, Cifra M, Odzimek A, Robert D. Challenges in coupling atmospheric electricity with biological systems. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:45-58. [PMID: 32666310 PMCID: PMC7782408 DOI: 10.1007/s00484-020-01960-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 05/24/2023]
Abstract
The atmosphere is host to a complex electric environment, ranging from a global electric circuit generating fluctuating atmospheric electric fields to local lightning strikes and ions. While research on interactions of organisms with their electrical environment is deeply rooted in the aquatic environment, it has hitherto been confined to interactions with local electrical phenomena and organismal perception of electric fields. However, there is emerging evidence of coupling between large- and small-scale atmospheric electrical phenomena and various biological processes in terrestrial environments that even appear to be tied to continental waters. Here, we synthesize our current understanding of this connectivity, discussing how atmospheric electricity can affect various levels of biological organization across multiple ecosystems. We identify opportunities for research, highlighting its complexity and interdisciplinary nature and draw attention to both conceptual and technical challenges lying ahead of our future understanding of the relationship between atmospheric electricity and the organization and functioning of biological systems.
Collapse
Affiliation(s)
- Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | - Sam J England
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Konstantinos Kourtidis
- Department of Environmental Engineering, Demokritus University of Thrace, Xanthi, Greece
- ISLP Xanthi Branch, ENTA Unit, ATHENA Research and Innovation Center, Xanthi, Greece
| | - Kuang Koh
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Keri Nicoll
- Department of Electronic and Electrical Engineering, University of Bath, Bath, UK
- Department of Meteorology, University of Reading, Reading, UK
| | | | | | - Colin Price
- Department of Geophysics. Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Snezana Dragovic
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Michal Cifra
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| | - Anna Odzimek
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Ourique LJ, Rocha CC, Gomes RCD, Rossi DM, Ayub MAZ. Bioreactor production of 2,3-butanediol by Pantoea agglomerans using soybean hull acid hydrolysate as substrate. Bioprocess Biosyst Eng 2020; 43:1689-1701. [PMID: 32356215 DOI: 10.1007/s00449-020-02362-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 11/30/2022]
Abstract
Production of 2,3-butanediol (2,3-BD) by Pantoea agglomerans strain BL1 was investigated using soybean hull hydrolysate as substrate in batch reactors. The cultivation media consisted of a mixture of xylose, arabinose, and glucose, obtained from the hemicellulosic fraction of the soybean hull biomass. We evaluated the influence of oxygen supply, pH control, and media supplementation on the growth kinetics of the microorganism and on 2,3-BD production. P. agglomerans BL1 was able to simultaneously metabolize all three monosaccharides present in the broth, with average conversions of 75% after 48 h of cultivation. The influence of aeration conditions employed demonstrated the mixed acid pathway of 2,3-BD formation by enterobacteria. Under fully aerated conditions (2 vvm of air), up to 14.02 g L-1 of 2.3-BD in 12 h of cultivation were produced, corresponding to yields of 0.53 g g-1 and a productivity of 1.17 g L-1 h-1, the best results achieved. These results suggest the production potential of 2,3-BD by P. agglomerans BL1, which has been recently isolated from an environmental consortium. The present work proposes a solution for the usage of the hemicellulosic fraction of agroindustry biomasses, carbohydrates whose utilization are not commonly addressed in bioprocess.
Collapse
Affiliation(s)
- Laura Jensen Ourique
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camille Conte Rocha
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raul Charpinel Diniz Gomes
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Misturini Rossi
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Importance of consideration of oxidoreduction potential as a critical quality parameter in food industries. Food Res Int 2020; 132:109108. [PMID: 32331669 DOI: 10.1016/j.foodres.2020.109108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Abstract
There are many intrinsic and extrinsic factors affecting the nutritional, organoleptic, microbial-enzymatic and physicochemical characteristics of food products. Some of these factors are commonly considered by food processors such as the temperature, water activity, pH, dissolved oxygen and chemical composition, while others are less considered such as the oxidoreduction potential (Eh). This latter factor is an intrinsic electrochemical parameter expressing the tendency of the substance/medium to give or receive electrons. Contrary to what is expected, the important role of Eh is not limited to inorganic chemistry, metallic chemistry, natural water, and wastewater treatment fields but it also covers many domains in biology such as metabolic engineering, enzymatic functions, food safety, and biotechnology. Unfortunately, although the critical roles of Eh in several key reactions occurred in biological media such as food and biotechnological products, its application or controlling is still uncommon or mis-considered by food processors. The lack of specific studies and reviews concerning the Eh and its influences on the quality parameters of products could be a reason for this lack of interest from the side of food processors. Recent studies reported the potential application of this parameter in novel food processing techniques such as reducing atmosphere drying (RAD) of food products and reducing atmosphere packaging (RAP) of fresh food products for preserving the quality attributes and extending the shelf-life of food products. This paper aims to help the technical and operational personnel working in food industry sectors as well as the scientific community to have an updated and a comprehensible review about the Eh parameter permitting its consideration for potential applications in food industries.
Collapse
|
6
|
Hunting ER, Harrison RG, Bruder A, van Bodegom PM, van der Geest HG, Kampfraath AA, Vorenhout M, Admiraal W, Cusell C, Gessner MO. Atmospheric Electricity Influencing Biogeochemical Processes in Soils and Sediments. Front Physiol 2019; 10:378. [PMID: 31040789 PMCID: PMC6477044 DOI: 10.3389/fphys.2019.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The Earth’s subsurface represents a complex electrochemical environment that contains many electro-active chemical compounds that are relevant for a wide array of biologically driven ecosystem processes. Concentrations of many of these electro-active compounds within Earth’s subsurface environments fluctuate during the day and over seasons. This has been observed for surface waters, sediments and continental soils. This variability can affect particularly small, relatively immobile organisms living in these environments. While various drivers have been identified, a comprehensive understanding of the causes and consequences of spatio-temporal variability in subsurface electrochemistry is still lacking. Here we propose that variations in atmospheric electricity (AE) can influence the electrochemical environments of soils, water bodies and their sediments, with implications that are likely relevant for a wide range of organisms and ecosystem processes. We tested this hypothesis in field and laboratory case studies. Based on measurements of subsurface redox conditions in soils and sediment, we found evidence for both local and global variation in AE with corresponding patterns in subsurface redox conditions. In the laboratory, bacterial respiratory responses, electron transport activity and H2S production were observed to be causally linked to changes in atmospheric cation concentrations. We argue that such patterns are part of an overlooked phenomenon. This recognition widens our conceptual understanding of chemical and biological processes in the Earth’s subsurface and their interactions with the atmosphere and the physical environment.
Collapse
Affiliation(s)
- Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Institute of Environmental Sciences, Leiden University, Leiden, Netherlands
| | - R Giles Harrison
- Department of Meteorology, University of Reading, Reading, United Kingdom
| | - Andreas Bruder
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | | | - Harm G van der Geest
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Andries A Kampfraath
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | | | - Wim Admiraal
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Casper Cusell
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Department of Ecology, Berlin Institute of Technology, Berlin, Germany
| |
Collapse
|
7
|
Elgamoudi BA, Ketley JM, Korolik V. New approach to distinguishing chemoattractants, chemorepellents and catabolised chemoeffectors for Campylobacter jejuni. J Microbiol Methods 2018; 146:83-91. [PMID: 29428740 DOI: 10.1016/j.mimet.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Chemotactic behaviour is an important part of the lifestyle of motile bacteria and enables cells to respond to various environmental stimuli. The Hard Agar Plug (HAP) method is used to study the chemotactic behaviour of bacteria, including the fastidious microaerophile Campylobacter jejuni, an intestinal pathogen of humans. However, the traditional HAP assay is not quantitative, is unsuitable for chemotaxis observation over short time periods and for the investigation of repellent taxis, and is prone to false-positive and -negative results. Here we report an accurate, rapid, and quantitative HAP-based chemotaxis assay, tHAP, for the investigation of bacterial chemotactic responses. The critical component of the new assay is the addition of triphenyltetrazolium chloride (TTC). Enzymatic reduction of TTC to TFP-Red (1, 3, 5-Triphenylformazan) enables colourimetric detection of actively metabolising bacterial cells. Quantitative assessment of chemotaxis is achieved by colourimetric measurement or viability count over a period of 10 min to 3 h. Using the tHAP assay, we observed the dose-responsive chemotactic motility of C. jejuni cells along different concentrations of attractants aspartate and serine. Importantly, we have also designed a competitive tHAP assay to differentiate between repellents and attractants and to identify chemoeffectors that do not activate metabolism. IMPORTANCE The modified tHAP assay described here enables the exploration of the chemoresponse of Campylobacter jejuni towards chemorepellents, and catabolizable and non-catabolizable chemoattractants.
Collapse
Affiliation(s)
- Bassam A Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia; Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Julian M Ketley
- Department of Genetics, University of Leicester, Leicester, United Kingdom.
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia.
| |
Collapse
|
8
|
Abstract
Although the “adaptive” strategy used by Escherichia coli has dominated our understanding of bacterial chemotaxis, the environmental conditions under which this strategy emerged is still poorly understood. In this work, we study the performance of various chemotactic strategies under a range of stochastic time- and space-varying attractant distributions in silico. We describe a novel “speculator” response in which the bacterium compare the current attractant concentration to the long-term average; if it is higher then they tumble persistently, while if it is lower than the average, bacteria swim away in search of more favorable conditions. We demonstrate how this response explains the experimental behavior of aerobically-grown Rhodobacter sphaeroides and that under spatially complex but slowly-changing nutrient conditions the speculator response is as effective as the adaptive strategy of E. coli.
Collapse
Affiliation(s)
- Martin Godány
- Division of Infection & Immunity, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Bhavin S. Khatri
- Division of Infection & Immunity, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Richard A. Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Ortega-Calvo JJ, Jimenez-Sanchez C, Pratarolo P, Pullin H, Scott TB, Thompson IP. Tactic response of bacteria to zero-valent iron nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:438-445. [PMID: 26967351 DOI: 10.1016/j.envpol.2016.01.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
The microbial assessment of pollutant toxicity rarely includes behavioral responses. In this study, we investigated the tactic response of Pseudomonas putida G7, a representative of soil bacterium, towards engineered zero-valent iron nanoparticles (nZVIs), as a new end-point assessment of toxicity. The study integrated the characterization of size distribution and charge of nZVIs and tactic reaction response by means of inverted capillary assay and computer-assisted motion analysis of motility behavior. Iron nanoparticles (diameter ≤ 100 nm) were prepared in the absence of oxygen to prevent aggregation, and then exposed in aerobic conditions. We first demonstrate that iron nanoparticles can elicit a negative tactic response in bacteria at low but environmentally-relevant, sub-lethal concentrations (1-10 μg/L). Cells were repelled by nZVIs in the concentration gradients created inside the capillaries, and a significant increase in turning events, characteristic of negative taxis, was detected under exposure to nZVIs. These tactic responses were not detectable after sustained exposure of the nanoparticles to oxygen. This new behavioral assessment may be prospected for the design of sensitive bioassays for nanomaterial toxicity.
Collapse
Affiliation(s)
- José-Julio Ortega-Calvo
- Department of Engineering Science, University of Oxford, Parks Road OX1 3PJ, United Kingdom; Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apartado 1052, E-41080-Seville, Spain
| | - Celia Jimenez-Sanchez
- Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apartado 1052, E-41080-Seville, Spain
| | - Paolo Pratarolo
- Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apartado 1052, E-41080-Seville, Spain
| | - Huw Pullin
- Interface Analysis Centre, University of Bristol, United Kingdom
| | - Thomas B Scott
- Interface Analysis Centre, University of Bristol, United Kingdom
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road OX1 3PJ, United Kingdom.
| |
Collapse
|
10
|
Dose-Response Analysis of Chemotactic Signaling Response in Salmonella typhimurium LT2 upon Exposure to Cysteine/Cystine Redox Pair. PLoS One 2016; 11:e0152815. [PMID: 27054963 PMCID: PMC4824473 DOI: 10.1371/journal.pone.0152815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/19/2016] [Indexed: 11/19/2022] Open
Abstract
The chemotaxis system enables motile bacteria to search for an optimum level of environmental factors. Salmonella typhimurium senses the amino acid cysteine as an attractant and its oxidized dimeric form, cystine, as a repellent. We investigated the dose-response dependence of changes in chemotactic signaling activity upon exposure to cysteine and cystine of S. typhimurium LT2 using in vivo fluorescence resonance energy transfer (FRET) measurements. The dose-response curve of the attractant response to cysteine had a sigmoidal shape, typical for receptor-ligand interactions. However, in a knockout strain of the chemoreceptor genes tsr and tar, we detected a repellent response to cysteine solutions, scaling linearly with the logarithm of the cysteine concentration. Interestingly, the magnitude of the repellent response to cystine also showed linear dependence to the logarithm of the cystine concentration. This linear dependence was observed over more than four orders of magnitude, where detection started at nanomolar concentrations. Notably, low concentrations of another oxidized compound, benzoquinone, triggered similar responses. In contrast to S. typhimurium 14028, where no response to cystine was observed in a knockout strain of chemoreceptor genes mcpB and mcpC, here we showed that McpB/McpC-independent responses to cystine existed in the strain S. typhimurium LT2 even at nanomolar concentrations. Additionally, knocking out mcpB and mcpC did not affect the linear dose-response dependence, whereas enhanced responses were only observed to solutions that where not pH neutral (>100 μM cystine) in the case of McpC overexpression. We discuss that the linear dependence of the response on the logarithm of cystine concentrations could be a result of a McpB/C-independent redox-sensing pathway that exists in S. typhimurium LT2. We supported this hypothesis with experiments with defined cysteine/cystine mixed solutions, where a transition from repellent to attractant response occurred depending on the estimated redox potential.
Collapse
|
11
|
The role of motility and chemotaxis in the bacterial colonization of protected surfaces. Sci Rep 2016; 6:19616. [PMID: 26792493 PMCID: PMC4726332 DOI: 10.1038/srep19616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023] Open
Abstract
Internal epithelial surfaces in humans are both oxygenated and physically protected by a few hundred microns thick hydrogel mucosal layer, conditions that might support bacterial aerotaxis. However, the potential role of aerotaxis in crossing such a thin hydrogel layer is not clear. Here, we used a new setup to study the potential role of motility and chemotaxis in the bacterial colonization of surfaces covered by a thin hydrogel layer and subjected to a vertical oxygen gradient. Using the bacterium Escherichia coli, we show that both non-motile and motile-but-non-chemotactic bacteria could barely reach the surface. However, an acquired mutation in the non-chemotactic bacteria that altered their inherent swimming behavior led to a critical enhancement of surface colonization. Most chemotactic strains accumulated within the bulk of the hydrogel layer, except for the MG1655 strain, which showed a unique tendency to accumulate directly at the oxygenated surface and thus exhibited distinctly enhanced colonization. Even after a long period of bacterial growth, non-motile bacteria could not colonize the hydrogel. Thus, switching motility, which can be spontaneously acquired or altered in vivo, is critical for the colonization of such protected surfaces, whereas aerotaxis capacity clearly expedites surface colonization, and can lead to diverse colonization patterns.
Collapse
|
12
|
Kasimova KR, Sadasivam M, Landi G, Sarna T, Hamblin MR. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion. Photochem Photobiol Sci 2015; 13:1541-8. [PMID: 25177833 DOI: 10.1039/c4pp00021h] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensitizer, and this was due to electron transfer to the dye triplet state from azide anion, producing azidyl radical. Here we compare this effect using six different homologous phenothiazinium dyes: methylene blue, toluidine blue O, new methylene blue, dimethylmethylene blue, azure A, and azure B. We found both significant potentiation (up to 2 logs) and also significant inhibition (>3 logs) of killing by adding 10 mM azide depending on Gram classification, washing the dye from the cells, and dye structure. Killing of E. coli was potentiated with all 6 dyes after a wash, while S. aureus killing was only potentiated by MB and TBO with a wash and DMMB with no wash. More lipophilic dyes (higher log P value, such as DMMB) were more likely to show potentiation. We conclude that the Type I photochemical mechanism (potentiation with azide) likely depends on the microenvironment, i.e. higher binding of dye to bacteria. Bacterial dye-binding is thought to be higher with Gram-negative compared to Gram-positive bacteria, when unbound dye has been washed away, and with more lipophilic dyes.
Collapse
Affiliation(s)
- Kamola R Kasimova
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
13
|
Hunting ER, Vijver MG, van der Geest HG, Mulder C, Kraak MHS, Breure AM, Admiraal W. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms. Front Microbiol 2015; 6:105. [PMID: 25759686 PMCID: PMC4338809 DOI: 10.3389/fmicb.2015.00105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism.
Collapse
Affiliation(s)
- Ellard R Hunting
- Department of Conservation Biology, Institute of Environmental Sciences (CML), Leiden University Leiden, Netherlands
| | - Martina G Vijver
- Department of Conservation Biology, Institute of Environmental Sciences (CML), Leiden University Leiden, Netherlands
| | - Harm G van der Geest
- Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Christian Mulder
- National Institute for Public Health and the Environment (RIVM-LER) - Centre for Sustainability, Environment and Health Bilthoven, Netherlands
| | - Michiel H S Kraak
- Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Anton M Breure
- National Institute for Public Health and the Environment (RIVM-LER) - Centre for Sustainability, Environment and Health Bilthoven, Netherlands ; Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Wim Admiraal
- Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
14
|
Dai JJ, Cheng JS, Liang YQ, Jiang T, Yuan YJ. Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. BIORESOURCE TECHNOLOGY 2014; 167:433-40. [PMID: 25006018 DOI: 10.1016/j.biortech.2014.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 05/23/2023]
Abstract
Cellular redox status and oxygen availability influence the product formation. Herein, decreasing agitation speed or adding vitamin C (Vc) achieved the 2,3-BDL yield of 0.40 g g(-1) or 0.39 g g(-1)glucose under batch fermentation, respectively. To our knowledge, this is the highest 2,3-BDL yield reported so far for Paenibacillus polymyxa without adding acetic acid. The NADH/NAD(+) ratio and 2,3-BDL titer could be increased significantly by reducing the agitation speed or adding Vc, indicating that the enhancement of 2,3-BDL is closely associated with the adjustment of NADH/NAD(+) ratio. Especially, Vc addition elevated the 2,3-BDL titer from 43.66 g L(-1) to 71.71 g L(-1) within 54 h under fed-batch fermentation. This is the highest titer of 2,3-BDL so far reported for P. polymyxa from glucose fermentation. This work provides a new strategy to improve 2,3-BDL production and helps us to understand the responses of P. polymyxa to extracellular oxidoreduction potential.
Collapse
Affiliation(s)
- Jun-Jun Dai
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jing-Sheng Cheng
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Ying-Quan Liang
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Tong Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
15
|
Mohanty SK, Torkelson AA, Dodd H, Nelson KL, Boehm AB. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10791-8. [PMID: 23721343 DOI: 10.1021/es305136b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bioinfiltration systems facilitate the infiltration of urban stormwater into soil and reduce high flow events and flooding. Stormwater carries a myriad of pollutants including fecal indicator bacteria (FIB). Significant knowledge gaps exist about the ability of bioinfiltration systems to remove and retain FIB. The present study investigates the ability of model, simplified bioinfiltration systems containing quartz sand and iron oxide-coated quartz sand (IOCS) to remove two FIB (Enterococcus faecalis and Escherichia coli) suspended in synthetic stormwater with and without natural organic matter (NOM) as well as the potential for accumulated FIB to be remobilized during intermittent flow. The experiments were conducted in two phases: (1) the saturated columns packed with either sand or IOCS were contaminated by injecting stormwater with bacteria followed by injection of sterile stormwater and (2) the contaminated columns were subjected to intermittent infiltration of sterile stormwater preceded by a pause during which columns were either kept saturated or drained by gravity. During intermittent flow, fewer bacteria were released from the saturated column compared to the column drained by gravity: 12% of attached E. coli and 3% of attached Ent. faecalis were mobilized from the drained sand column compared to 3% of attached E. coli and 2% attached Ent. faecalis mobilized from the saturated sand column. Dry and wet cycles introduce moving air-water interfaces that can scour bacteria from grain surfaces. During intermittent flows, less than 0.2% of attached bacteria were mobilized from IOCS, which bound both bacteria irreversibly in the absence of NOM. Addition of NOM, however, increased bacterial mobilization from IOCS: 50% of attached E. coli and 8% of attached Ent. faecalis were released from IOCS columns during draining and rewetting. Results indicate that using geomedia such as IOCS that promote irreversible attachment of bacteria, and maintaining saturated condition, could minimize the mobilization of previous attached bacteria from bioinfiltration systems, although NOM may significantly decrease these benefits.
Collapse
Affiliation(s)
- Sanjay K Mohanty
- Dept. of Civil and Environmental Engineering, Stanford University , Stanford, California, United States
| | | | | | | | | |
Collapse
|
16
|
Lacey M, Agasing A, Lowry R, Green J. Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate. Open Biol 2013; 3:130046. [PMID: 23740576 PMCID: PMC3718329 DOI: 10.1098/rsob.130046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complex 3′-5′-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, 213Lys-Lys-Glu215, in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown.
Collapse
Affiliation(s)
- Melissa Lacey
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
17
|
Abstract
Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to suppresses, motility in response to temporary increases in intracellular c-di-GMP. Azospirillum brasilense’s preferred metabolism is adapted to microaerophily, and these motile cells quickly navigate to zones of low oxygen concentration by aerotaxis. We observed that changes in oxygen concentration result in rapid changes in intracellular c-di-GMP levels. The aerotaxis and chemotaxis receptor, Tlp1, binds c-di-GMP via its C-terminal PilZ domain and promotes persistent motility by increasing swimming velocity and decreasing swimming reversal frequency, which helps A. brasilense reach low-oxygen zones. If c-di-GMP levels remain high for extended periods, A. brasilense forms nonmotile clumps or biofilms on abiotic surfaces. These results suggest that association of increased c-di-GMP levels with sessility is correct on a long-term scale, while in the short-term c-di-GMP may actually promote, as opposed to suppress, motility. Our data suggest that sensing c-di-GMP by Tlp1 functions similar to methylation-based adaptation. Numerous chemotaxis receptors contain C-terminal PilZ domains or other sensory domains, suggesting that intracellular c-di-GMP as well as additional stimuli can be used to modulate adaptation of bacterial chemotaxis receptors. To adapt and compete under changing conditions, bacteria must not only detect and respond to various environmental cues but also be able to remain sensitive to further changes in the environmental conditions. In bacterial chemotaxis, chemosensory sensitivity is typically brought about by changes in the methylation status of chemotaxis receptors capable of modulating the ability of motile cells to navigate in gradients of various physicochemical cues. Here, we show that the ubiquitous second messenger c-di-GMP functions to modulate chemosensory sensitivity of a bacterial chemotaxis receptor in the alphaproteobacterium Azospirillum brasilense. Binding of c-di-GMP to the chemotaxis receptor promotes motility under conditions of elevated intracellular c-di-GMP levels. Our results revealed that the role of c-di-GMP as a sessile signal is overly simplistic. We also show that adaptation by sensing an intracellular metabolic cue, via PilZ or other domains, is likely widespread among bacterial chemotaxis receptors.
Collapse
|
18
|
Ignatova M, Guével B, Com E, Haddad N, Rossero A, Bogard P, Prévost H, Guillou S. Two-dimensional fluorescence difference gel electrophoresis analysis of Listeria monocytogenes submitted to a redox shock. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Adler M, Erickstad M, Gutierrez E, Groisman A. Studies of bacterial aerotaxis in a microfluidic device. LAB ON A CHIP 2012; 12:4835-47. [PMID: 23010909 PMCID: PMC3520485 DOI: 10.1039/c2lc21006a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in the late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O(2)]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O(2)] across a long gradient channel, with characteristic [O(2)] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O(2)] gradient, and the distribution of cells across the gradient channel is analyzed near the channel outlet at a throughput of >10(5) cells per hour. Aerotaxis experiments are performed in [O(2)] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O(2)] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O(2)], but rather prefer the highest accessible [O(2)]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria.
Collapse
Affiliation(s)
- Micha Adler
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Michael Erickstad
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
- Corresponding author,
| |
Collapse
|
20
|
A novel protein Jpk induces bacterial cell death through reactive oxygen species. Gene 2012; 504:274-8. [PMID: 22652273 DOI: 10.1016/j.gene.2012.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 11/22/2022]
Abstract
Jpk, a trans-acting regulatory factor associating with the position-specific regulatory element of Hoxa-7, has been reported to induce cell death in both prokaryotic and eukaryotic cells upon overexpression. The N- and C-terminal deleted variants of Jpk were constructed and then the toxicity of each construct was analyzed by checking the viability of the cells and the concomitant morphological changes through electron microscopy following the expression. The N-terminus of Jpk harboring transmembrane domain seemed to be more toxic to bacterial cell than C-terminus and the morphology of bacterial cells expressing N-terminal Jpk was similar to that induced by full length Jpk. The toxicity caused by Jpk protein in bacterial cell was through the production of ROS, which was decreased by an antioxidant (DTT) in a concentration dependent manner. The finding described in this study provides valuable clues on the relationship between Jpk toxicity and ROS generation.
Collapse
|
21
|
Lazova MD, Butler MT, Shimizu TS, Harshey RM. Salmonella chemoreceptors McpB and McpC mediate a repellent response to L-cystine: a potential mechanism to avoid oxidative conditions. Mol Microbiol 2012; 84:697-711. [PMID: 22486902 DOI: 10.1111/j.1365-2958.2012.08051.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemoreceptors McpB and McpC in Salmonella enterica have been reported to promote chemotaxis in LB motility-plate assays. Of the chemicals tested as potential effectors of these receptors, the only response was towards L-cysteine and its oxidized form, L-cystine. Although enhanced radial migration in plates suggested positive chemotaxis to both amino acids, capillary assays failed to show an attractant response to either, in cells expressing only these two chemoreceptors. In vivo fluorescence resonance energy transfer (FRET) measurements of kinase activity revealed that in wild-type bacteria, cysteine and cystine are chemoeffectors of opposing sign, the reduced form being a chemoattractant and the oxidized form a repellent. The attractant response to cysteine was mediated primarily by Tsr, as reported earlier for Escherichia coli. The repellent response to cystine was mediated by McpB/C. Adaptive recovery upon cystine exposure required the methyl-transferase/-esterase pair, CheR/CheB, but restoration of kinase activity was never complete (i.e. imperfect adaptation). We provide a plausible explanation for the attractant-like responses to both cystine and cysteine in motility plates, and speculate that the opposing signs of response to this redox pair might afford Salmonella a mechanism to gauge and avoid oxidative environments.
Collapse
Affiliation(s)
- Milena D Lazova
- FOM Institute for Atomic and Molecular Physics, 1098 XG Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
22
|
Oktyabrskii ON, Smirnova GV. Redox potential changes in bacterial cultures under stress conditions. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Yuan X, Goh YK, Low N, Vujanovic V. Rapid detection of ciprofloxacin effects on Fusarium graminearum and F. avenaceum cells in modulating environmental pH using a reactive, non-toxic food-dye indicator. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:242-248. [PMID: 21843805 DOI: 10.1016/j.etap.2011.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 05/05/2011] [Accepted: 05/28/2011] [Indexed: 05/31/2023]
Abstract
The objective of the study was to assess the effect of ciprofloxacin antibiotic on the physiological or phenotypic characteristics of food-borne toxigenic Fusarium graminearum and F. avenaceum molds under in vitro conditions. In the presence of ciprofloxacin, Fusarium mycelia growth and morphology were altered based on the antibiotic concentration range used. Results showed that ciprofloxacin in concentrations ≥40μg/mL induced chlamydospore formation in Fusaria and as such, this antibiotic should be considered as an important abiotic stress factor and growth inhibitor. A novel method was investigated to correlate chlamydospore formation with the colour changes observed in FD&C Green Number 3, a common water soluble food dye. The antibiotic-treated F. graminearum and F. avenaceum isolates produced chamydospores, which in turn altered environmental pH with concomitant changes in the colour and intensity of the dye. The colour changes observed as a function of environmental pH were supported by instrumental methods (pH meter and spectroscopy), and a commercial pH indicator (thymol blue) results. In conclusion, we propose that FD&C Green Number 3 can be used as an accurate indicator for the rapid assessment of Fusarium molds when grown on ciprofloxacin antibiotic-containing substrate. Special emphasis should be given to an indirect risk assessment of antibiotic effects on toxic molds.
Collapse
Affiliation(s)
- Xiakun Yuan
- Department of Food & Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, S7N 5A8 Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
24
|
Egbert MD, Barandiaran XE, Di Paolo EA. A minimal model of metabolism-based chemotaxis. PLoS Comput Biol 2010; 6:e1001004. [PMID: 21170312 PMCID: PMC3000427 DOI: 10.1371/journal.pcbi.1001004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/21/2010] [Indexed: 01/12/2023] Open
Abstract
Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.
Collapse
Affiliation(s)
- Matthew D Egbert
- Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, United Kingdom.
| | | | | |
Collapse
|
25
|
Schweinitzer T, Josenhans C. Bacterial energy taxis: a global strategy? Arch Microbiol 2010; 192:507-20. [PMID: 20411245 PMCID: PMC2886117 DOI: 10.1007/s00203-010-0575-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 12/24/2022]
Abstract
A functional energy metabolism is one of the most important requirements for survival of all kinds of organisms including bacteria. Therefore, many bacteria actively seek conditions of optimal metabolic activity, a behaviour which can be termed "energy taxis". Motility, combined with the sensory perception of the internal energetic conditions, is prerequisite for tactic responses to different energy levels and metabolic yields. Diverse mechanisms of energy sensing and tactic response have evolved among various bacteria. Many of the known energy taxis sensors group among the methyl-accepting chemotaxis protein (MCP)-like sensors. This review summarizes recent advances in the field of energy taxis and explores the current concept that energy taxis is an important part of the bacterial behavioural repertoire in order to navigate towards more favourable metabolic niches and to survive in a specific habitat.
Collapse
Affiliation(s)
- Tobias Schweinitzer
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
26
|
Xie XH, Li EL, Tang ZK. Real-time monitoring of induced adaptation of redox active Escherichia coli biofilm by EQCM-controlled extracellular redox environment. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Ignatova M, Prévost H, Leguerinel I, Guillou S. Growth and reducing capacity of Listeria monocytogenes under different initial redox potential. J Appl Microbiol 2010; 108:256-65. [DOI: 10.1111/j.1365-2672.2009.04426.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Baraquet C, Théraulaz L, Iobbi-Nivol C, Méjean V, Jourlin-Castelli C. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis. Mol Microbiol 2009; 73:278-90. [PMID: 19555457 DOI: 10.1111/j.1365-2958.2009.06770.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.
Collapse
Affiliation(s)
- Claudine Baraquet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
29
|
Miller LD, Russell MH, Alexandre G. Diversity in bacterial chemotactic responses and niche adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2009; 66:53-75. [PMID: 19203648 DOI: 10.1016/s0065-2164(08)00803-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of microbes to rapidly sense and adapt to environmental changes plays a major role in structuring microbial communities, in affecting microbial activities, as well as in influencing various microbial interactions with the surroundings. The bacterial chemotaxis signal transduction system is the sensory perception system that allows motile cells to respond optimally to changes in environmental conditions by allowing cells to navigate in gradients of diverse physicochemical parameters that can affect their metabolism. The analysis of complete genome sequences from microorganisms that occupy diverse ecological niches reveal the presence of multiple chemotaxis pathways and a great diversity of chemoreceptors with novel sensory specificities. Owing to its role in mediating rapid responses of bacteria to changes in the surroundings, bacterial chemotaxis is a behavior of interest in applied microbiology as it offers a unique opportunity for understanding the environmental cues that contribute to the survival of bacteria. This chapter explores the diversity of bacterial chemotaxis and suggests how gaining further insights into such diversity may potentially impact future drug and pesticides development and could inform bioremediation strategies.
Collapse
Affiliation(s)
- Lance D Miller
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
30
|
Busalmen JP, Esteve-Nuñez A, Feliu JM. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2445-2450. [PMID: 18504979 DOI: 10.1021/es702569y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 V Ag/AgCl-KCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about -0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and pointto the polarization potential as a key variable to optimize energy production from an electricity producing population.
Collapse
Affiliation(s)
- Juan Pablo Busalmen
- Instituto de Electroquímica, Universidad de Alicante, Apartado de correos 99, 03080, Alicante, Spain.
| | | | | |
Collapse
|
31
|
Feron G, Mauvais G, Lherminier J, Michel J, Wang XD, Viel C, Cachon R. Metabolism of fatty acid in yeast: addition of reducing agents to the reaction medium influences β-oxidation activities, γ-decalactone production, and cell ultrastructure inSporidiobolus ruineniicultivated on ricinoleic acid methyl ester. Can J Microbiol 2007; 53:738-49. [PMID: 17668034 DOI: 10.1139/w07-028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sensitivity of Sporidiobolus ruinenii yeast to the use of reducing agents, reflected in changes in the oxidoreduction potential at pH 7 (Eh7) environment, ricinoleic acid methyl ester catabolism, γ-decalactone synthesis, cofactor level, β-oxidation activity, and ultrastructure of the cell, was studied. Three environmental conditions (corresponding to oxidative, neutral, and reducing conditions) were fixed with the use of air or air and reducing agents (hydrogen and dithiothreitol). Lowering Eh7to neutral conditions (Eh7 = +30 mV and +2.5 mV) favoured the production of lactone more than the more oxidative condition (Eh7 = +350 mV). In contrast, when a reducing condition was used (Eh7= –130 mV), the production of γ-decalactone was very low. These results were linked to changes in the cofactor ratio during lactone production, to the β-oxidation activity involved in decanolide synthesis, and to ultrastructural modification of the cell.
Collapse
Affiliation(s)
- Gilles Feron
- Laboratoire de microbiologie, UMR INRA-UB 1232, INRA, 17 rue Sully, B.P. 86510, F-21065 Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Taylor BL, Watts KJ, Johnson MS. Oxygen and Redox Sensing by Two‐Component Systems That Regulate Behavioral Responses: Behavioral Assays and Structural Studies of Aer Using In Vivo Disulfide Cross‐Linking. Methods Enzymol 2007; 422:190-232. [PMID: 17628141 DOI: 10.1016/s0076-6879(06)22010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A remarkable increase in the number of annotated aerotaxis (oxygen-seeking) and redox taxis sensors can be attributed to recent advances in bacterial genomics. However, in silico predictions should be supported by behavioral assays and genetic analyses that confirm an aerotaxis or redox taxis function. This chapter presents a collection of procedures that have been highly successful in characterizing aerotaxis and redox taxis in Escherichia coli. The methods are described in enough detail to enable investigators of other species to adapt the procedures for their use. A gas flow cell is used to quantitate the temporal responses of bacteria to a step increase or decrease in oxygen partial pressure or redox potential. Bacterial behavior in spatial gradients is analyzed using optically flat capillaries and soft agar plates (succinate agar or tryptone agar). We describe two approaches to estimate the preferred partial pressure of oxygen that attracts a bacterial species; this concentration is important for understanding microbial ecology. At the molecular level, we describe procedures used to determine the structure and topology of Aer, a membrane receptor for aerotaxis. Cysteine-scanning mutagenesis and in vivo disulfide cross-linking procedures utilize the oxidant Cu(II)-(1,10-phenanthroline)(3) and bifunctional sulfhydryl-reactive probes. Finally, we describe methods used to determine the boundaries of transmembrane segments of receptors such as Aer. These include 5-iodoacetamidofluorescein, 4-acetamido-4-disulfonic acid, disodium salt (AMS), and methoxy polyethylene glycol maleimide, a 5-kDa molecular mass probe that alters the mobility of Aer on SDS-PAGE.
Collapse
Affiliation(s)
- Barry L Taylor
- Division of Cellular Biology and Molecular Genetics, Loma Linda University, Loma Linda, California, USA
| | | | | |
Collapse
|
33
|
Kirakosyan G, Trchounian A. Redox sensing by Escherichia coli: Effects of copper ions as oxidizers on proton-coupled membrane transport. Bioelectrochemistry 2007; 70:58-63. [PMID: 16713752 DOI: 10.1016/j.bioelechem.2006.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Indexed: 11/19/2022]
Abstract
Escherichia coli is able to grow under anaerobic fermentation conditions upon a decrease in redox potential (E(h)). Indeed, upon a transition of E. coli MC4100 wild-type culture to stationary growth phase a decrease in E(h) from the positive values ( approximately +100 mV) to the negative ones ( approximately -520 mV) was observed, the acidification of the medium and the H(2) production were obtained. An oxidizer, copper ions (Cu(2+)) affected a bacterial growth in a concentration-dependent manner (of 0.1 mM to 10 mM) increasing latent (lag) growth phase duration, delaying logarithmic (log) growth phase and decreasing specific growth rate. Acidification of the medium and the N,N'-dicyclohexylcarbodiimide (DCCD)- and azide-sensitive proton-potassium exchange by bacteria were inhibited, H(2) production upon growth and under assays disappeared with Cu(2+) (0.1 mM). These effects were observed with hycE but not hyfR and hyc(A-H) mutants and under aerobic conditions. Cu(2+) also increased membrane proton conductance. Copper ions are suggested to affect directly the F(0)F(1)-ATPase associated with potassium uptake transport system and/or formate hydrogenlyase composed with hydrogenase 4. A role of the F(0)F(1)-ATPase in redox sensing under fermentation is proposed.
Collapse
Affiliation(s)
- Gayane Kirakosyan
- Department of Biophysics, Biological Faculty, Yerevan State University, 1 Alex Manoukian Str., 375025 Yerevan, Armenia
| | | |
Collapse
|
34
|
Edwards JC, Johnson MS, Taylor BL. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 2006; 62:823-37. [PMID: 16995896 PMCID: PMC1858650 DOI: 10.1111/j.1365-2958.2006.05411.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aerotaxis (oxygen-seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46+/-0.18-3.04+/-0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2=0.986-0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2=0.988), but Aer-mediated responses did not correlate with either PMF changes (r2=0.297) or the rate of electron transport (r2=0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I.
Collapse
Affiliation(s)
- Jessica C Edwards
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
35
|
Komitopoulou E, Bainton NJ, Adams MR. Premature Salmonella Typhimurium growth inhibition in competition with other Gram-negative organisms is redox potential regulated via RpoS induction. J Appl Microbiol 2005; 97:964-72. [PMID: 15479411 DOI: 10.1111/j.1365-2672.2004.02363.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To identify the role of oxidation-reduction (redox) potential in the premature growth inhibition and RpoS induction in Salmonella serotype Typhimurium in competitive growth experiments. METHODS AND RESULTS Oxidation-reduction potential was measured throughout the growth of a minority population of Salm. Typhimurium in mixed cultures with other Gram-negative and Gram-positive organisms. A lux-based reporter was also used to evaluate RpoS activity in Salm. Typhimurium in competitor studies. In a mixed culture, the multiplication of a minority population of Salm. Typhimurium was inhibited when competing Gram-negative organisms entered the stationary phase. This was not seen when the competing flora was Gram-positive. The change in redox potential during growth in mixed cultures was closely linked to the inhibition of Salm. Typhimurium growth by Gram-negative competitors. An artificially induced drop in redox potential earlier during growth in mixed cultures with Gram-negative organisms reduced the time to RpoS induction in Salm. Typhimurium and thus inhibited its multiplication prematurely. In contrast, RpoS induction and growth inhibition were prevented under high redox potential conditions. CONCLUSIONS This work shows that the inhibitory activity of competitive organisms can be mediated through their effect on redox potential-regulated RpoS induction. SIGNIFICANCE AND IMPACT OF THE STUDY Redox potential is shown to be an important determinant of Salm. Typhimurium growth, an observation with practical implications both for its control and detection.
Collapse
Affiliation(s)
- E Komitopoulou
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UK
| | | | | |
Collapse
|
36
|
Kirakosyan G, Bagramyan K, Trchounian A. Redox sensing by Escherichia coli: effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth. Biochem Biophys Res Commun 2005; 325:803-6. [PMID: 15541361 DOI: 10.1016/j.bbrc.2004.10.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Indexed: 11/20/2022]
Abstract
Escherichia coli is able to grow with a high rate under anaerobic conditions upon decrease in redox potential (E(h)) both either in slightly alkaline (pH 7.5) or acidic (pH 5.5) medium. Upon transition of E. coli MC4100 culture to stationary growth phase a decrease in E(h) from the positive values of +120 to +160 mV to the negative ones of -380 to -550 mV, and the H(2) production are observed at various pH. A redox reagent dl-dithiothreitol (DTT) in a concentration of 3mM reduces E(h) to the negative values, and increases a latent (lag) growth phase duration, as well as delays a logarithmic growth phase independently of pH. At alkaline and acidic pH the changes in membrane potential (DeltaPsi) are observed in the presence of 3mM DTT. K(+) uptake is recovered. At pH 5.5 the H(2) production is suppressed by DTT only in a higher concentration of 10 mM. The results suggest DTT effects that are in addition to the effects of E(h). The mechanism of DTT action on bacterial growth might be intermediated through thiol group modulation of the membrane proteins, which is reflected as the generation of DeltaPsi as well as K(+) accumulation and the activity of the membrane-associated enzymes.
Collapse
Affiliation(s)
- Gayane Kirakosyan
- Department of Biophysics, Yerevan State University, 1 Alex Manoukian Str., Yerevan 375025, Armenia
| | | | | |
Collapse
|
37
|
Alexandre G, Greer-Phillips S, Zhulin IB. Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 2004; 28:113-26. [PMID: 14975533 DOI: 10.1016/j.femsre.2003.10.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 10/03/2003] [Accepted: 10/15/2003] [Indexed: 11/29/2022] Open
Abstract
Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.
Collapse
Affiliation(s)
- Gladys Alexandre
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
38
|
Komitopoulou E, Bainton NJ, Adams MR. Oxidation-reduction potential regulates RpoS levels in Salmonella Typhimurium. J Appl Microbiol 2004; 96:271-8. [PMID: 14723688 DOI: 10.1046/j.1365-2672.2003.02152.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this work was to investigate the connection between oxidation-reduction (redox) potential and stationary phase induction of RpoS in Salmonella Typhimurium. METHODS AND RESULTS A lux-based reporter was used to evaluate RpoS activity in S. Typhimurium pure cultures. During growth of S. Typhimurium, a drop in the redox potential of the growth medium occurred at the same time as RpoS induction and entry into stationary phase. An artificially induced decrease in redox potential earlier during growth reduced the time to RpoS induction and Salmonella entered the stationary phase prematurely. In contrast, under high redox conditions, Salmonella grew unaffected and entered the stationary growth phase as normal, although RpoS induction did not occur. As a consequence, stationary phase cells grown in the high redox environment were significantly more heat sensitive (P < 0.05) than those grown under normal conditions. CONCLUSIONS This work suggests that redox potential can regulate RpoS levels in S. Typhimurium and can thus, control the expression of genes responsible for thermal resistance. SIGNIFICANCE AND IMPACT OF THE STUDY The ability to manipulate RpoS induction and control stationary phase gene expression can have important implications in food safety. Early RpoS induction under low redox potential conditions can lead to enhanced resistance in low cell concentrations to inimical processes such as heat stress. Inhibition of RpoS induction would abolish stationary phase protective properties making cells more sensitive to common food control measures.
Collapse
Affiliation(s)
- E Komitopoulou
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
39
|
Greer-Phillips SE, Alexandre G, Taylor BL, Zhulin IB. Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2661-2667. [PMID: 12949190 DOI: 10.1099/mic.0.26304-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Aer and Tsr chemoreceptors in Escherichia coli govern tactic responses to oxygen and redox potential that are parts of an overall behaviour known as energy taxis. They are also proposed to mediate responses to rapidly utilized carbon sources, glycerol and succinate, via the energy taxis mechanism. In this study, the Aer and Tsr proteins were individually expressed in an 'all-transducer-knockout' strain of E. coli and taxis was analysed in gradients of various oxidizable carbon sources. In addition to the known response to glycerol and succinate, it was found that Aer directed taxis towards ribose, galactose, maltose, malate, proline and alanine as well as the phosphotransferase system (PTS) carbohydrates glucose, mannitol, mannose, sorbitol and fructose, but not to aspartate, glutamate, glycine and arabinose. Tsr directed taxis towards sugars (including those transported by the PTS), but not to organic acids or amino acids. When a mutated Aer protein unable to bind the FAD cofactor was expressed in the receptor-less strain, chemotaxis was not restored to any substrate. Aer appears to mediate responses to rapidly oxidizable substrates, whether or not they are effective growth substrates, whereas Tsr appears to mediate taxis to substrates that support maximal growth, whether or not they are rapidly oxidizable. This correlates with the hypothesis that Aer and Tsr sense redox and proton motive force, respectively. Taken together, the results demonstrate that Aer and Tsr mediate responses to a broad range of chemicals and their attractant repertoires overlap with those of specialized chemoreceptors, namely Trg (ribose, galactose) and Tar (maltose).
Collapse
Affiliation(s)
- Suzanne E Greer-Phillips
- Department of Biochemistry and Microbiology, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gladys Alexandre
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Barry L Taylor
- Department of Biochemistry and Microbiology, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Igor B Zhulin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
- Department of Biochemistry and Microbiology, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
40
|
Alexandre G, Zhulin IB. Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis. J Bacteriol 2003; 185:544-52. [PMID: 12511501 PMCID: PMC145311 DOI: 10.1128/jb.185.2.544-552.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CheW and CheY are single-domain proteins from a signal transduction pathway that transmits information from transmembrane receptors to flagellar motors in bacterial chemotaxis. In various bacterial and archaeal species, the cheW and cheY genes are usually encoded within homologous chemotaxis operons. We examined evolutionary changes in these two proteins from distantly related proteobacterial species, Escherichia coli and Azospirillum brasilense. We analyzed the functions of divergent CheW and CheY proteins from A. brasilense by heterologous expression in E. coli wild-type and mutant strains. Both proteins were able to specifically inhibit chemotaxis of a wild-type E. coli strain; however, only CheW from A. brasilense was able to restore signal transduction in a corresponding mutant of E. coli. Detailed protein sequence analysis of CheW and CheY homologs from the two species revealed substantial differences in the types of amino acid substitutions in the two proteins. Multiple, but conservative, substitutions were found in CheW homologs. No severe mismatches were found between the CheW homologs in positions that are known to be structurally or functionally important. Substitutions in CheY homologs were found to be less conservative and occurred in positions that are critical for interactions with other components of the signal transduction pathway. Our findings suggest that proteins from the same cellular pathway encoded by genes from the same operon have different evolutionary constraints on their structures that reflect differences in their functions.
Collapse
Affiliation(s)
- Gladys Alexandre
- School of Biology, Georgia Institute of Technology, Atlanta 30332-0230, USA
| | | |
Collapse
|
41
|
Waché Y, Riondet C, Diviès C, Cachon R. Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells. Bioelectrochemistry 2002; 57:113-8. [PMID: 12160606 DOI: 10.1016/s1567-5394(02)00051-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reducing agents are potential inhibitors of the microbial growth. We have shown recently that dithiothreitol (DTT), NaBH(4) and H(2) can modify the proton motive force of resting cells of Escherichia coli by increasing the membrane protons permeability [Eur. J. Biochem. 262 (1999) 595]. In the present work, the effect of reducing agents on the resting cells of Lactococcus lactis ssp. cremoris, a species widely employed in dairy processes was investigated. DTT did not affect the acidification nor the DeltapH, in contrast to the effect previously reported on E. coli. The DeltaPsi was slightly increased (30 mV) at low pH (pH 4) in the presence of 31 mM DTT or 2.6 mM NaBH(4). In the case of Na(2)S(2)O(4), small amounts (0.9 mM) drastically decreased the acidification range and this product was shown to abolish the DeltapH. These results are discussed in terms of the diversity of action of the chemical reagents and strain sensitivity.
Collapse
Affiliation(s)
- Yves Waché
- Laboratoire de Microbiologie de l'ENSBANA (UMR INRA-Université de Bourgogne), 1, esplanade Erasme, 21000 Dijon, France.
| | | | | | | |
Collapse
|
42
|
Beliaev AS, Thompson DK, Khare T, Lim H, Brandt CC, Li G, Murray AE, Heidelberg JF, Giometti CS, Yates J, Nealson KH, Tiedje JM, Zhoui J. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2002; 6:39-60. [PMID: 11881834 DOI: 10.1089/15362310252780834] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c552, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data.
Collapse
Affiliation(s)
- Alex S Beliaev
- Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6038, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hauwaerts D, Alexandre G, Das SK, Vanderleyden J, Zhulin IB. A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria. FEMS Microbiol Lett 2002; 208:61-7. [PMID: 11934495 DOI: 10.1111/j.1574-6968.2002.tb11061.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Azospirillum brasilense shows chemotaxis to a variety of nutrients and oxygen. Genes encoding the central signal transduction pathway in chemotaxis were identified by phenotypic complementation of generally non-chemotactic mutants. Sequencing of a DNA fragment, which complemented two different mutants, revealed a region of five open reading frames translated in one direction and encoding homologs of known genes comprising excitation and adaptation pathways for chemotaxis in other bacterial species. The major chemotaxis gene cluster appears to be essential for all known behavioral responses that direct swimming motility in A. brasilense. Phylogenetic and genomic analysis revealed three groups of chemotaxis operons in alpha-proteobacterial species and assigned the A. brasilense operon to one of them. Interestingly, operons that are shown to be major regulators of behavior in several alpha-proteobacterial species are not orthologous.
Collapse
Affiliation(s)
- Dieter Hauwaerts
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
44
|
Taylor BL, Rebbapragada A, Johnson MS. The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli. Antioxid Redox Signal 2001; 3:867-79. [PMID: 11761333 DOI: 10.1089/15230860152665037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aer, the aerotaxis receptor in Escherichia coli, is a member of a novel class of flavoproteins that act as redox sensors. The internal energy of the cell is coupled to the redox state of the electron transport system, and this status is sensed by Aer(FAD). This is a more versatile sensory response system than if E. coli sensed oxygen per se. Energy-depleting conditions that decrease electron transport also alter the redox state of the electron transport system. Aer responds by sending a signal to the flagellar motor to change direction. The output of other sensory systems that utilize redox sensors is more commonly transcriptional regulation than a behavioral response. Analysis in silico showed Aer to be part of a superfamily of PAS domain proteins that sense the intracellular environment. In Aer, FAD binds to the PAS domain. By using site-specific mutagenesis, residues critical for FAD binding and sensory transduction were identified in the PAS domain. The PAS domain appears to interact with a linker region in the C-terminus. The linker region is a member of a HAMP domain family, which has signal transduction roles in other systems.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92350, USA.
| | | | | |
Collapse
|
45
|
Affiliation(s)
- G Alexandre
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | |
Collapse
|
46
|
Abstract
Energy taxis encompasses aerotaxis, phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to oxidizable substrates. The signal for this type of behavior is originated within the electron transport system. Energy taxis was demonstrated, as a part of an overall behavior, in several microbial species, but it did not appear as the dominant determinant in any of them. In this study, we show that most behavioral responses proceed through this mechanism in the alpha-proteobacterium Azospirillum brasilense. First, chemotaxis to most chemoeffectors typical of the azospirilla habitat was found to be metabolism dependent and required a functional electron transport system. Second, other energy-related responses, such as aerotaxis, redox taxis, and taxis to alternative electron acceptors, were found in A. brasilense. Finally, a mutant lacking a cytochrome c oxidase of the cbb(3) type was affected in chemotaxis, redox taxis, and aerotaxis. Altogether, the results indicate that behavioral responses to most stimuli in A. brasilense are triggered by changes in the electron transport system.
Collapse
Affiliation(s)
- G Alexandre
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | |
Collapse
|
47
|
Bagramyan K, Galstyan A, Trchounian A. Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxidant. Bioelectrochemistry 2000; 51:151-6. [PMID: 10910163 DOI: 10.1016/s0302-4598(00)00065-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Decrease of redox potential (Eh) down to -550-600 mV in the Escherichia coli culture is observed during growth in either anaerobic or aerobic conditions. The E. coli growth and survival under anaerobic fermentative conditions were found to be strongly inhibited by potassium ferricyanide in the concentration of 1 mM, when Eh was decreased to -50-100 mV. This oxidant also resulted in approximately 2-fold decrease of total and N,N'-dicyclohexylcarbodiimide (DCCD)-inhibited H+ efflux, 2.5-fold inhibition in K+ influx, 1.5-fold less K+ accumulation, and delayed a decrease in Eh to negative values by bacteria. K3[Fe(CN)6] was shown to block an ATP-dependent increase in the amount of accessible thiol groups of membrane vesicles that was inhibited by DCCD, and this inhibition by the oxidant could be recovered by dithiothreitol. These effects were not observed with cells growing under aerobic conditions. The effects of K3[Fe(CN)6], an impermeable oxidant, might be explained by the fact that redox potential is a determinant in the E. coli anaerobic fermentative growth and survival that has a regulatory role in maintaining H+ and K fluxes and the number of accessible thiol groups on membrane.
Collapse
Affiliation(s)
- K Bagramyan
- Department of Biophysics, Biological Faculty of Yereuan State University, Armenia
| | | | | |
Collapse
|
48
|
Bibikov SI, Barnes LA, Gitin Y, Parkinson JS. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc Natl Acad Sci U S A 2000; 97:5830-5. [PMID: 10811894 PMCID: PMC18519 DOI: 10.1073/pnas.100118697] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerotactic responses in Escherichia coli are mediated by the membrane transducer Aer, a recently identified member of the superfamily of PAS domain proteins, which includes sensors of light, oxygen, and redox state. Initial studies of Aer suggested that it might use a flavin adenine dinucleotide (FAD) prosthetic group to monitor cellular redox changes. To test this idea, we purified lauryl maltoside-solubilized Aer protein by His-tag affinity chromatography and showed by high performance liquid chromatography, mass spectrometry, and absorbance spectroscopy that it bound FAD noncovalently. Polypeptide fragments spanning the N-terminal 290 residues of Aer, which contains the PAS motif, were able to bind FAD. Fusion of this portion of Aer to the flagellar signaling domain of Tsr, the serine chemoreceptor, yielded a functional aerotaxis transducer, demonstrating that the FAD-binding portion of Aer is sufficient for aerosensing. Aerotaxis-defective missense mutants identified two regions, in addition to the PAS domain, that play roles in FAD binding. Those regions flank a central hydrophobic segment needed to anchor Aer to the cytoplasmic membrane. They might contact the FAD ligand directly or stabilize the FAD-binding pocket. However, their lack of sequence conservation in Aer homologs of other bacteria suggests that they play less direct roles in FAD binding. One or both regions probably also play important roles in transmitting stimulus-induced conformational changes to the C-terminal flagellar signaling domain to trigger aerotactic behavioral responses.
Collapse
Affiliation(s)
- S I Bibikov
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
49
|
Riondet C, Cachon R, Waché Y, Alcaraz G, Diviès C. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol 2000; 182:620-6. [PMID: 10633094 PMCID: PMC94323 DOI: 10.1128/jb.182.3.620-626.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Escherichia coli K-12 ferments glucose to a mixture of ethanol and acetic, lactic, formic, and succinic acids. In anoxic chemostat culture at four dilution rates and two different oxidoreduction potentials (ORP), this strain generated a spectrum of products which depended on ORP. Whatever the dilution rate tested, in low reducing conditions (-100 mV), the production of formate, acetate, ethanol, and lactate was in molar proportions of approximately 2.5:1:1:0.3, and in high reducing conditions (-320 mV), the production was in molar proportions of 2:0.6:1:2. The modification of metabolic fluxes was due to an ORP effect on the synthesis or stability of some fermentation enzymes; thus, in high reducing conditions, lactate dehydrogenase-specific activity increased by a factor of 3 to 6. Those modifications were concomitant with a threefold decrease in acetyl-coenzyme A (CoA) needed for biomass synthesis and a 0.5- to 5-fold decrease in formate flux. Calculations of carbon and cofactor balances have shown that fermentation was balanced and that extracellular ORP did not modify the oxidoreduction state of cofactors. From this, it was concluded that extracellular ORP could regulate both some specific enzyme activities and the acetyl-CoA needed for biomass synthesis, which modifies metabolic fluxes and ATP yield, leading to variation in biomass synthesis.
Collapse
Affiliation(s)
- C Riondet
- Laboratoire de Microbiologie U.A. INRA, ENSBANA, Université de Bourgogne, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
An aerotaxis gene, aer, was cloned from Pseudomonas putida PRS2000. A P. putida aer mutant displayed an altered aerotactic response in a capillary assay. Wild-type P. putida clustered at the air/liquid interface. In contrast, the aer mutant did not cluster at the interface, but instead formed a diffuse band at a distance from the meniscus. Wild-type aer, provided in trans, complemented the aer mutant to an aerotactic response that was stronger than wild-type. The P. putida Aer sequence is similar over its entire length to the aerotaxis (energy taxis) signal transducer protein, Aer, of Escherichia coli. The amino-terminus is similar to redox-sensing regulatory proteins, and the carboxy-terminus contains the highly conserved domain present in chemotactic transducers.
Collapse
Affiliation(s)
- N N Nichols
- Fermentation Biochemistry Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA
| | | |
Collapse
|