1
|
Isaacs A, Zeemering S, Winters J, Batlle M, Bidar E, Boukens B, Casadei B, Chua W, Crijns HJGM, Fabritz L, Guasch E, Hatem SN, Hermans B, Kääb S, Kawczynski M, Maesen B, Maessen J, Mont L, Sinner MF, Wakili R, Verheule S, Kirchhof P, Schotten U, Stoll M. Lateral Atrial Expression Patterns Provide Insights into Local Transcription Disequilibrium Contributing to Disease Susceptibility. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e004594. [PMID: 39846178 DOI: 10.1161/circgen.124.004594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease etiology. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrium (LA) and right atrium (RA) may provide insight into diseases such as atrial fibrillation. METHODS Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design. The design took advantage of the availability of 32 paired samples, for which both LA and RA tissue were obtained, as a discovery cohort, and 98 LA and 69 RA unpaired samples utilized as a replication cohort. RESULTS A total of 714 transcripts were identified and replicated as differentially expressed (DE) between LA and RA, as well as 98 exons in 55 genes. Approximately 50% of DE transcripts were colocated with another frequently correlated DE transcript (PFDR ≤0.05 for 579 regions). These "transcription disequilibrium" blocks contained examples including side-specific differential exon usage, such as the PITX2 locus, where ENPEP showed evidence of differential exon usage. Analysis of this region in conjunction with BMP10 identified rs9790621 as associated with ENPEP transcription in LA, while rs7687878 was associated with BMP10 expression in RA. In RA, BMP10 and ENPEP were strongly correlated in noncarriers, which was attenuated in risk-allele carriers, where BMP10 and PITX2 expression were strongly correlated. CONCLUSIONS These results significantly expand knowledge of the intricate, tissue-specific transcriptional landscape in human atria, including DE transcripts and side-specific isoform expression. Furthermore, they suggest the existence of blocks of transcription disequilibrium influenced by genetics.
Collapse
Affiliation(s)
- Aaron Isaacs
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Maastricht Center for Systems Biology (A.I.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Stef Zeemering
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Joris Winters
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Montserrat Batlle
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain (M.B., E.G., L.M.)
- CIBERCV, Madrid, Spain (M.B., E.G., L.M.)
| | - Elham Bidar
- Departments of Cardiothoracic Surgery (E.B., M.K., B.M., J.M.), Maastricht University Medical Centre, the Netherlands
| | - Bas Boukens
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Barbara Casadei
- NIHR Oxford Biomedical Research Center, John Radcliffe Hospital, University of Oxford, United Kingdom (B.C.)
| | - Winnie Chua
- Institute of Cardiovascular Sciences, Birmingham, United Kingdom (W.C., L.F., P.K.)
| | - Harry J G M Crijns
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Cardiology (H.J.G.M.C.), Maastricht University Medical Centre, the Netherlands
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, Birmingham, United Kingdom (W.C., L.F., P.K.)
- University Center of Cardiovascular Sciences, University Medical Center Hamburg Eppendorf, Germany (L.F.)
- German Center for Cardiovascular Research (DZHK), Hamburg/Kiel/Lübeck, Germany (L.F., S.K., M.F.S., P.K.)
| | - Eduard Guasch
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain (M.B., E.G., L.M.)
- CIBERCV, Madrid, Spain (M.B., E.G., L.M.)
- Clinic Barcelona, Universitat de Barcelona, Spain (E.G., L.M.)
| | - Stephane N Hatem
- INSERM UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, Paris, France (S.N.H.)
| | - Ben Hermans
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Stefan Kääb
- German Center for Cardiovascular Research (DZHK), Hamburg/Kiel/Lübeck, Germany (L.F., S.K., M.F.S., P.K.)
- University Heart and Vascular Center, University Hospital Hamburg Eppendorf, Germany (S.K., M.F.S.)
- Department of Cardiology, University Hospital of Munich, Germany (S.K., M.F.S.)
| | - Michal Kawczynski
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
- Departments of Cardiothoracic Surgery (E.B., M.K., B.M., J.M.), Maastricht University Medical Centre, the Netherlands
| | - Bart Maesen
- Departments of Cardiothoracic Surgery (E.B., M.K., B.M., J.M.), Maastricht University Medical Centre, the Netherlands
| | - Jos Maessen
- Departments of Cardiothoracic Surgery (E.B., M.K., B.M., J.M.), Maastricht University Medical Centre, the Netherlands
| | - Lluis Mont
- Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain (M.B., E.G., L.M.)
- CIBERCV, Madrid, Spain (M.B., E.G., L.M.)
- Clinic Barcelona, Universitat de Barcelona, Spain (E.G., L.M.)
| | - Moritz F Sinner
- German Center for Cardiovascular Research (DZHK), Hamburg/Kiel/Lübeck, Germany (L.F., S.K., M.F.S., P.K.)
- University Heart and Vascular Center, University Hospital Hamburg Eppendorf, Germany (S.K., M.F.S.)
- Department of Cardiology, University Hospital of Munich, Germany (S.K., M.F.S.)
| | - Reza Wakili
- Department of Medicine and Cardiology, Goethe University, Frankfurt, Germany (R.W.)
- German Center for Cardiovascular Research DZHK, Rhine-Main (R.W.)
| | - Sander Verheule
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, Birmingham, United Kingdom (W.C., L.F., P.K.)
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany (P.K.)
- German Center for Cardiovascular Research (DZHK), Hamburg/Kiel/Lübeck, Germany (L.F., S.K., M.F.S., P.K.)
| | - Ulrich Schotten
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Physiology (A.I., S.Z., J.W., B.B., B.H., M.K., S.V., U.S.), Maastricht University, the Netherlands
| | - Monika Stoll
- CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands
- Department of Biochemistry (M.S.), Maastricht University, the Netherlands
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (M.S.)
| |
Collapse
|
2
|
Alanazi AZ, Clark MA. Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells. J Recept Signal Transduct Res 2025; 45:61-72. [PMID: 39801458 DOI: 10.1080/10799893.2025.2451890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR). We hypothesized that in VSMCs Ang III will have similar actions as Ang II to induce ERK1/2 MAPK and cellular proliferation and this ability may be different in VSMCs isolated from Wistar versus SHR rats. Time and/or concentration-dependent effects of Ang III and Ang II were determined in VSMCs using western blot analysis and DNA incorporation assay. The results showed that ERK1/2 MAPK phosphorylation mediated by Ang II or Ang III were concentration- and time-dependent in Wistar VSMCs. Moreover, Ang III was less effective in mediating ERK1/2 phosphorylation in SHR VSMCs as compared to effects seen in Wistar rat VSMCs. Ang III induced ERK1/2 phosphorylation through the AT1 receptors activation. Ang II and Ang III induced VSMC DNA synthesis via the AT1 receptor in a concentration-dependent manner in Wistar VSMCs. Moreover, Ang III induced VSMC proliferation and significant differences existed in the peptide's proliferation effects in Wistar versus SHR VSMCs. These results indicate that Ang III stimulates ERK1/2 MAPK and DNA synthesis in VSMCs via AT1 receptors. However, its ability to stimulate these pathways is reduced in SHR VSMCs.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Rats
- Angiotensin II/pharmacology
- Angiotensin III/pharmacology
- Rats, Inbred SHR
- MAP Kinase Signaling System/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats, Wistar
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Phosphorylation/drug effects
- Cells, Cultured
- Male
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
3
|
Couvineau P, Llorens-Cortes C. Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function. Clin Sci (Lond) 2025; 139:131-149. [PMID: 39879076 DOI: 10.1042/cs20240955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present. Apelin and vasopressin interact at the brain and renal levels to maintain body fluid homeostasis by regulating diuresis in opposite directions. Apelin and angiotensin II have opposite effects on the regulation of blood pressure (BP). Angiotensin II, by binding to AT1 receptors present in VSMCs, induces intracellular calcium mobilization and vasoconstriction, while apelin, by binding to Apelin-R present on vascular endothelium, increases nitric oxide production and induces vasodilation. Apelin also plays a crucial role in the regulation of cardiac function. Apelin-deficient and Apelin-R-deficient mice develop progressive myocardial dysfunction with ageing and are susceptible to heart failure in response to pressure overload. Since the half-life of apelin is very short in vivo (in the minute range), several metabolically stable apelin analogs and non-peptidic Apelin-R agonists have been developed, with potential applications in diverse diseases. In this review, we highlight the interaction between apelin and vasopressin in the regulation of water balance and that between apelin and angiotensin II in the regulation of BP. Additionally, we underline the protective effects of apelin in cardiac function. Lastly, we discuss the beneficial effects of Apelin-R activation in different pathological states such as hyponatremia, hypertension, and heart failure.
Collapse
Affiliation(s)
- Pierre Couvineau
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Montpellier University, Montpellier, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Department of Medicines and Healthcare Technologies, CEA Paris-Saclay, Frédéric Joliot Institute for Life and Sciences, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Sharma P, Sharma S, Paliwal S, Jain S. Aminopeptidase A: A Novel Therapeutic Target for Hypertension Management. Cell Biochem Funct 2024; 42:e70008. [PMID: 39445480 DOI: 10.1002/cbf.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The renin-angiotensin system (RAS) is crucial for regulating and understanding the pathophysiology of hypertension. However, there has been little focus on the breakdown of the active peptide, angiotensin II (AngII). Given that animals lacking aminopeptidase A (APA) exhibit hypertension, it may be concluded that APA is a crucial enzyme in regulating blood pressure by breaking down AngII. It has been also seen that the elevated blood pressure in the spontaneously hypertensive rat (SHR) is caused by the activation of the RAS and a concurrent reduction in renal angiotensin-converting enzyme (ACE) activity. The activity of APA is elevated at the beginning of pre-eclampsia and decreases below the levels seen during a normal pregnancy as pre-eclampsia progresses (particularly, in severe cases). The activity of Serum APA is also heightened after hormone replacement treatment (HRT), perhaps as a response to increasing levels of AngII. Therefore, it is crucial to examine the connection between the activation of the RAS, the levels of AngII in the bloodstream, and the presence of APA in hypertension conditions.
Collapse
Affiliation(s)
- Pragya Sharma
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Suman Sharma
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
5
|
Balavoine F, Compere D, Miege F, De Mota N, Keck M, Fer M, Christen A, Martin E, Roche D, Llorens-Cortes C, Rodeschini V. Rational design, synthesis and pharmacological characterization of novel aminopeptidase A inhibitors. Bioorg Med Chem Lett 2024; 113:129940. [PMID: 39233188 DOI: 10.1016/j.bmcl.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metallopeptidase involved in the production of angiotensin III, one effector peptide of the brain renin-angiotensin system, making brain APA a relevant pharmacological target for the development of novel therapeutic treatments against hypertension and heart failure. The structure-based design of new APA inhibitors is described, based on previously developed thiol-containing inhibitors and APA crystal structure. Chemical synthesis, in vitro assessment against APA activity, pharmacological and pharmacokinetic profiling were performed, ultimately leading to a potent and selective APA inhibitor.
Collapse
Affiliation(s)
| | - Delphine Compere
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mathilde Keck
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mickael Fer
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Aude Christen
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Emmeline Martin
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France.
| | | |
Collapse
|
6
|
Wu B, Li R, Hao J, Qi Y, Liu B, Wei H, Li Z, Zhang Y, Liu Y. CT semi-quantitative score used as risk factor for hyponatremia in patients with COVID-19: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1342204. [PMID: 38948513 PMCID: PMC11211362 DOI: 10.3389/fendo.2024.1342204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Chest computed tomography (CT) is used to determine the severity of COVID-19 pneumonia, and pneumonia is associated with hyponatremia. This study aims to explore the predictive value of the semi-quantitative CT visual score for hyponatremia in patients with COVID-19 to provide a reference for clinical practice. Methods In this cross-sectional study, 343 patients with RT-PCR confirmed COVID-19, all patients underwent CT, and the severity of lung lesions was scored by radiologists using the semi-quantitative CT visual score. The risk factors of hyponatremia in COVID-19 patients were analyzed and combined with laboratory tests. The thyroid function changes caused by SARS-CoV-2 infection and their interaction with hyponatremia were also analyzed. Results In patients with SARS-CoV-2 infection, the total severity score (TSS) of hyponatremia was higher [M(range), 3.5(2.5-5.5) vs 3.0(2.0-4.5) scores, P=0.001], implying that patients with hyponatremia had more severe lung lesions. The risk factors of hyponatremia in the multivariate regression model included age, vomiting, neutrophils, platelet, and total severity score. SARS-CoV-2 infection impacted thyroid function, and patients with hyponatremia showed a lower free triiodothyronine (3.1 ± 0.9 vs 3.7 ± 0.9, P=0.001) and thyroid stimulating hormone level [1.4(0.8-2.4) vs 2.2(1.2-3.4), P=0.038]. Conclusion Semi-quantitative CT score can be used as a risk factor for hyponatremia in patients with COVID-19. There is a weak positive correlation between serum sodium and free triiodothyronine in patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baofeng Wu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jinxuan Hao
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yijie Qi
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Botao Liu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhe Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
9
|
Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Toward structural-omics of the bovine retinal pigment epithelium. Cell Rep 2022; 41:111876. [PMID: 36577381 PMCID: PMC9875382 DOI: 10.1016/j.celrep.2022.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
The use of an integrated systems biology approach to investigate tissues and organs has been thought to be impracticable in the field of structural biology, where the techniques mainly focus on determining the structure of a particular biomacromolecule of interest. Here, we report the use of cryoelectron microscopy (cryo-EM) to define the composition of a raw bovine retinal pigment epithelium (RPE) lysate. From this sample, we simultaneously identify and solve cryo-EM structures of seven different RPE enzymes whose functions affect neurotransmitter recycling, iron metabolism, gluconeogenesis, glycolysis, axonal development, and energy homeostasis. Interestingly, dysfunction of these important proteins has been directly linked to several neurodegenerative disorders, including Huntington's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, Alzheimer's disease, and schizophrenia. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Department of Chemistry, Thiel College, Greenville, PA 16125, USA,These authors contributed equally
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,These authors contributed equally
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Lead contact,Correspondence:
| |
Collapse
|
10
|
Albertini S, Martuscelli L, Borgogna C, Virdi S, Indenbirken D, Lo Cigno I, Griffante G, Calati F, Boldorini R, Fischer N, Gariglio M. Cancer-Associated Fibroblasts Exert Proangiogenic Activity in Merkel Cell Carcinoma. J Invest Dermatol 2022; 143:965-976.e15. [PMID: 36572089 DOI: 10.1016/j.jid.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022]
Abstract
The tumor microenvironment is a complex niche enveloping a tumor formed by extracellular matrix, blood vessels, immune cells, and fibroblasts constantly interacting with cancer cells. Although tumor microenvironment is increasingly recognized as a major player in cancer initiation and progression in many tumor types, its involvement in Merkel cell carcinoma (MCC) pathogenesis is currently unknown. In this study, we provide a molecular and functional characterization of cancer-associated fibroblasts (CAFs), the major tumor microenvironment component, in patient-derived xenografts of patients with MCC. We show that subcutaneous coinjection of patient-derived CAFs and human MCC MKL-1 cells into severe combined immunodeficient mice significantly promotes tumor growth and metastasis. These fast-growing xenografts are characterized by areas densely populated with human CAFs, mainly localized around blood vessels. We provide evidence that the growth-promoting activity of MCC-derived CAFs is mediated by the aminopeptidase A/angiotensin II and III/angiotensin II type 1 receptor axis, with the expression of aminopeptidase A in CAFs being a triggering event. Together, our findings point to aminopeptidase A as a potential marker for MCC prognostic stratification and as a candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Albertini
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Sanamjeet Virdi
- Technology Platform Next Generation Sequencing, Leibniz Institute for Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute for Virology, Hamburg, Germany
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Gloria Griffante
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy.
| |
Collapse
|
11
|
Liu Y, Zhao D, Zhang C, Fang H, Shen Q, Wang Z, Cao J. Development of Hydroxamate Derivatives Containing a Pyrazoline Moiety as APN Inhibitors to Overcome Angiogenesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238339. [PMID: 36500432 PMCID: PMC9736874 DOI: 10.3390/molecules27238339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Aminopeptidase N (APN) was closely associated with cancer invasion, metastasis, and angiogenesis. Therefore, APN inhibitors have attracted more and more attention of scientists as antitumor agents. In the current study, we designed, synthesized, and evaluated one new series of pyrazoline-based hydroxamate derivatives as APN inhibitors. Moreover, the structure-activity relationships of those were discussed in detail. 2,6-Dichloro substituted compound 14o with R1 = CH3, showed the best capacity for inhibiting APN with an IC50 value of 0.0062 ± 0.0004 μM, which was three orders of magnitude better than that of the positive control bestatin. Compound 14o possessed both potent anti-proliferative activities against tumor cells and potent anti-angiogenic activity. At the same concentration of 50 μM, compound 14o exhibited much better capacity for inhibiting the micro-vessel growth relative to bestatin in the rat thoracic aorta ring model. Additionally, the putative interactions of 14o with the active site of APN are also discussed. The hydroxamate moiety chelated the zinc ion and formed four hydrogen bonds with His297, Glu298 and His301. Meanwhile, the terminal phenyl group and another phenyl group of 14o interacted with S2' and S1 pockets via hydrophobic effects, respectively.
Collapse
|
12
|
Girault-Sotias PE, De Mota N, Llorens-Cortès C. [Physiological role of the apelin receptor: implication in body fluid homeostasis and hyponatremia]. Biol Aujourdhui 2022; 215:119-132. [PMID: 35275056 DOI: 10.1051/jbio/2021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 06/14/2023]
Abstract
Apelin, a vasoactive neuropeptide, its receptor and arginine-vasopressin (AVP, antidiuretic hormone) are co-localized in magnocellular vasopressinergic neurons. In the kidney, the apelin receptor is present in glomerular arterioles and the collecting duct (CD) where the AVP type 2 (V2-R) receptors are located. Apelin exerts an aquaretic action both by its inhibitory effect on the phasic electrical activity of vasopressinergic neurons and the secretion of AVP into the bloodstream and by its direct actions at the kidney level resulting in an increase in the renal microcirculation and the inhibition of the antidiuretic effect of AVP mediated by V2-R in the CD. Plasma apelin and AVP are conversely regulated by osmotic stimuli in both humans and rodents, showing that apelin is involved with AVP in maintaining body fluid homeostasis. Clinically, in patients with inappropriate antidiuresis syndrome (SIAD), the apelin/AVP balance is altered, which contributes to water metabolism defect. Activation of the apelin receptor by the metabolically stable apelin-17 analog, that increases aqueous diuresis and moderately water intake and gradually corrects hyponatremia, may constitute a new approach for the treatment of SIAD.
Collapse
Affiliation(s)
- Pierre-Emmanuel Girault-Sotias
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| | - Nadia De Mota
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| | - Catherine Llorens-Cortès
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| |
Collapse
|
13
|
Current Knowledge about the New Drug Firibastat in Arterial Hypertension. Int J Mol Sci 2022; 23:ijms23031459. [PMID: 35163378 PMCID: PMC8836050 DOI: 10.3390/ijms23031459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular disease. Currently, effective standard pharmacological treatment is available in the form of diuretics, ACE inhibitors, angiotensin II receptor blockers and calcium channel blockers. These all help to decrease blood pressure in hypertensive patients, each with their own mechanism. Recently, firibastat, a new first-in-class antihypertensive drug has been developed. Firibastat is a prodrug that when crossing the blood-brain barrier, is cleaved into two active EC33 molecules. EC33 is the active molecule that inhibits the enzyme aminopeptidase A. Aminopeptidase A converts angiotensin II to angiotensin III. Angiotensin III usually has three central mechanisms that increase blood pressure, so by inhibiting this enzyme activity, a decrease in blood pressure is seen. Firibastat is an antihypertensive drug that affects the brain renin angiotensin system by inhibiting aminopeptidase A. Clinical trials with firibastat have been performed in animals and humans. No severe adverse effects related to firibastat treatment have been reported. Results from studies show that firibastat is generally well tolerated and safe to use in hypertensive patients. The aim of this review is to investigate the current knowledge about firibastat in the treatment of hypertension.
Collapse
|
14
|
Boitard SE, Keck M, Deloux R, Girault-Sotias PE, Marc Y, De Mota N, Compere D, Agbulut O, Balavoine F, Llorens-Cortes C. QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction. Can J Cardiol 2022; 38:815-827. [DOI: 10.1016/j.cjca.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022] Open
|
15
|
Mascolo A, di Mauro G, Cappetta D, De Angelis A, Torella D, Urbanek K, Berrino L, Nicoletti GF, Capuano A, Rossi F. Current and future therapeutic perspective in chronic heart failure. Pharmacol Res 2021; 175:106035. [PMID: 34915125 DOI: 10.1016/j.phrs.2021.106035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
The incidence of heart failure is primarily flat or declining for a presumably reflecting better management of cardiovascular diseases, but that of heart failure with preserved ejection fraction (HFpEF) is probably increasing for the lack of an established effective treatment. Moreover, there is no specific pharmacological treatment for patients with heart failure with mildly reduced ejection fraction (HFmrEF) since no substantial prospective randomized clinical trial has been performed exclusively in such population. According to the recent 2021 European Society of Cardiology (ESC) guidelines, the triad composed of an Angiotensin Converting Enzyme inhibitor or Angiotensin Receptor-Neprilysin Inhibitor (ARNI), a beta-blocker, and a Mineralcorticoid Receptor Antagonist is the cornerstone therapy for all patients with heart failure with reduced ejection fraction (HFrEF) but a substantial gap exists for patients with HFpEF/HFmrEF. Despite the important role of the Renin-Angiotensin-Aldosterone System (RAAS) in heart failure pathophysiology, RAAS blockers were found ineffective for HFpEF patients. Indeed, even the new drug class of ARNI was found effective only in HFrEF patients. In this regard, a therapeutic alternative may be represented by drug stimulating the non-classic RAAS (ACE2 and A1-7) as well as other emerging drug classes (such as SGLT2 inhibitors). Reflecting on this global health burden and the gap in treatments among heart failure phenotypes, we summarize the leading players of heart failure pathophysiology, the available pharmacological treatments for each heart failure phenotype, and that in future development.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Konrad Urbanek
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, University of Campania "Luigi Vanvitelli, Multidisciplinary Department of Medical Surgical and Dental Sciences, Napoli, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Via Costantinopoli 16, 80138 Naples, Italy; Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
16
|
Brain Renin-Angiotensin System as Novel and Potential Therapeutic Target for Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221810139. [PMID: 34576302 PMCID: PMC8468637 DOI: 10.3390/ijms221810139] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
The activation of the brain renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cognition. While the brain RAS has been studied before in the context of hypertension, little is known about its role and regulation in relation to neuronal function and its modulation. Adequate blood flow to the brain as well as proper clearing of metabolic byproducts become crucial in the presence of neurodegenerative disorders such as Alzheimer's disease (AD). RAS inhibition (RASi) drugs that can cross into the central nervous system have yielded unclear results in improving cognition in AD patients. Consequently, only one RASi therapy is under consideration in clinical trials to modify AD. Moreover, the role of non-genetic factors such as hypercholesterolemia in the pathophysiology of AD remains largely uncharacterized, even when evidence exists that it can lead to alteration of the RAS and cognition in animal models. Here we revise the evidence for the function of the brain RAS in cognition and AD pathogenesis and summarize the evidence that links it to hypercholesterolemia and other risk factors. We review existent medications for RASi therapy and show research on novel drugs, including small molecules and nanodelivery strategies that can target the brain RAS with potential high specificity. We hope that further research into the brain RAS function and modulation will lead to innovative therapies that can finally improve AD neurodegeneration.
Collapse
|
17
|
Mehranfard D, Perez G, Rodriguez A, Ladna JM, Neagra CT, Goldstein B, Carroll T, Tran A, Trivedi M, Speth RC. Alterations in Gene Expression of Renin-Angiotensin System Components and Related Proteins in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:9987115. [PMID: 34285715 PMCID: PMC8277508 DOI: 10.1155/2021/9987115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
MATERIALS AND METHODS Quantitative expression of the RNA of these 17 genes in normal and cancerous tissues obtained using chip arrays from the public functional genomics data repository, Gene Expression Omnibus (GEO) application, was compared statistically. RESULTS Expression of four genes, AGT (angiotensinogen), ENPEP (aminopeptidase A) MME (neprilysin), and PREP (prolyl endopeptidase), was significantly upregulated in CRC specimens. Expression of REN (renin), THOP (thimet oligopeptidase), NLN (neurolysin), PRCP (prolyl carboxypeptidase), ANPEP (aminopeptidase N), and MAS1 (Mas receptor) was downregulated in CRC specimens. CONCLUSIONS Presuming gene expression parallel protein expression, these results suggest that increased production of the angiotensinogen precursor of angiotensin (ANG) peptides, with the reduction of the enzymes that metabolize it to ANG II, can lead to accumulation of angiotensinogen in CRC tissues. Downregulation of THOP, NLN, PRCP, and MAS1 gene expression, whose proteins contribute to the ACE2/ANG 1-7/Mas axis, suggests that reduced activity of this RAS branch could be permissive for oncogenicity. Components of the RAS may be potential therapeutic targets for treatment of CRC.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gabriela Perez
- Department of Internal Medicine, Palmetto General Hospital, Hialeah, FL, USA
| | - Andres Rodriguez
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | | | | | | | - Timothy Carroll
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alice Tran
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Trivedi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
18
|
Marc Y, Hmazzou R, De Mota N, Balavoine F, Llorens-Cortes C. Effects of firibastat in combination with enalapril and hydrochlorothiazide on blood pressure and vasopressin release in hypertensive DOCA-salt rats. Biomed Pharmacother 2021; 140:111682. [PMID: 34020248 DOI: 10.1016/j.biopha.2021.111682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
In the brain, aminopeptidase A (APA) generates angiotensin III, one of the effector peptides of the brain renin-angiotensin system (RAS), exerting tonic stimulatory control over blood pressure (BP) in hypertensive rats. Oral administration of firibastat, an APA inhibitor prodrug, in hypertensive rats, inhibits brain APA activity, blocks brain angiotensin III formation and decreases BP. In this study, we evaluated the efficacy of firibastat in combination with enalapril, an angiotensin I-converting enzyme inhibitor, and hydrochlorothiazide (HCTZ), in conscious hypertensive deoxycorticosterone acetate (DOCA)-salt rats, which display high plasma arginine-vasopressin levels, low circulating renin levels and resistance to treatment by systemic RAS blockers. We determined mean arterial BP, heart rate, plasma arginine-vasopressin levels and renin activity in DOCA-salt rats orally treated with firibastat, enalapril or HCTZ administered alone or in combination. Acute oral firibastat administration (30 mg/kg) induced a significant decrease in BP, whereas enalapril (10 mg/kg) or HCTZ (10 mg/kg) administered alone induced no significant change in BP in conscious DOCA-salt rats. The BP decrease induced by acute and nine-day chronic tritherapy [Firibastat+Enalapril+HCTZ] was significantly greater than that observed after bitherapy [Enalapril+HCTZ]. Interestingly, the chronic administration of a combination of firibastat with [Enalapril+HCTZ] reduced plasma arginine-vasopressin levels by 62% relative to those measured in DOCA-salt rats receiving bitherapy. Our data show that tritherapy with firibastat, enalapril and HCTZ improves BP control and arginine-vasopressin release in an experimental salt-dependent model of hypertension, paving the way for the development of new treatments for patients with currently difficult-to-treat or resistant hypertension.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France; Quantum Genomics SA, Paris F-75008, France
| | - Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | | | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France.
| |
Collapse
|
19
|
Firibastat: A Novel Brain Aminopeptidase Inhibitor - A New Era of Antihypertensive therapy. Curr Probl Cardiol 2021; 47:100859. [PMID: 33994025 DOI: 10.1016/j.cpcardiol.2021.100859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023]
Abstract
Global incidence and prevalence of hypertension continues to increase and remains a significant challenge. The ever-increasing number of cases are due to comorbid conditions such as obesity and diabetes, as well as lifestyle indiscretions such as excessive salt intake. Hypertension, congestive heart failure, and kidney disease are all conditions resulting from abnormal Renin-Angiotensin-Aldosterone activation and adverse remodeling. Firibastat, a novel Brain Aminopeptidase inhibitor, may be able to help achieve blood pressure control in those with resistant hypertension. In this review article, we will discuss the biochemical pathway of firibastat and various trials assessing drug efficacy in animals and humans. This drug has the potential to curb the risk of uncontrolled hypertension and help improve long term cardiovascular morbidity and mortality.
Collapse
|
20
|
Hmazzou R, Marc Y, Flahault A, Gerbier R, De Mota N, Llorens-Cortes C. Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension. Clin Sci (Lond) 2021; 135:775-791. [PMID: 33683322 DOI: 10.1042/cs20201385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
In the brain, aminopeptidase A (APA), a membrane-bound zinc metalloprotease, generates angiotensin III from angiotensin II. Brain angiotensin III exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive rats and increases vasopressin release. Blocking brain angiotensin III formation by the APA inhibitor prodrug RB150/firibastat normalizes arterial BP in hypertensive deoxycorticosterone acetate (DOCA)-salt rats without inducing angiotensin II accumulation. We therefore hypothesized that another metabolic pathway of brain angiotensin II, such as the conversion of angiotensin II into angiotensin 1-7 (Ang 1-7) by angiotensin-converting enzyme 2 (ACE2) might be activated following brain APA inhibition. We found that the intracerebroventricular (icv) administration of RB150/firibastat in conscious DOCA-salt rats both inhibited brain APA activity and induced an increase in brain ACE2 activity. Then, we showed that the decreases in BP and vasopressin release resulting from brain APA inhibition with RB150/firibastat were reduced if ACE2 was concomitantly inhibited by MLN4760, a potent ACE2 inhibitor, or if the Mas receptor (MasR) was blocked by A779, a MasR antagonist. Our findings suggest that in the brain, the increase in ACE2 activity resulting from APA inhibition by RB150/firibastat treatment, subsequently increasing Ang 1-7 and activating the MasR while blocking angiotensin III formation, contributes to the antihypertensive effect and the decrease in vasopressin release induced by RB150/firibastat. RB150/firibastat treatment constitutes an interesting therapeutic approach to improve BP control in hypertensive patients by inducing in the brain renin-angiotensin system, hyperactivity of the beneficial ACE2/Ang 1-7/MasR axis while decreasing that of the deleterious APA/Ang II/Ang III/ATI receptor axis.
Collapse
Affiliation(s)
- Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Quantum Genomics SA, Paris F-75015, France
| | - Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Romain Gerbier
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| |
Collapse
|
21
|
Alomar SA, Alghabban SA, Alharbi HA, Almoqati MF, Alduraibi Y, Abu-Zaid A. Firibastat, the first-in-class brain aminopeptidase a inhibitor, in the management of hypertension: A review of clinical trials. Avicenna J Med 2021; 11:1-7. [PMID: 33520782 PMCID: PMC7839263 DOI: 10.4103/ajm.ajm_117_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An unfortunate subset of hypertensive patients develops resistant hypertension in which optimal doses of three or more first-line antihypertensive drugs fail to sufficiently control blood pressure. Patients with resistant hypertension represent a high-risk and difficult-to-treat group, and such patients are at amplified jeopardies for substantial hypertension-related multi-organ failure, morbidity, and mortality. Thus, there is a pressing requirement to better improve blood pressure control through the pharmaceutical generation of novel classes of antihypertensive drugs that act on newer and alternative therapeutic targets. The hyperactivity of the brain renin-angiotensin system (RAS) has been shown to play a role in the pathogenesis of hypertension in various experimental and genetic hypertensive animal models. In the brain, angiotensin-II is metabolized to angiotensin-III by aminopeptidase A (APA), a membrane-bound zinc metalloprotease enzyme. A large body of evidence has previously established that angiotensin-III is one of the main effector peptides of the brain RAS. Angiotensin-III exerts central stimulatory regulation over blood pressure through several proposed mechanisms. Accumulating evidence from preclinical studies demonstrated that the centrally acting APA inhibitor prodrugs (firibastat and NI956) are very safe and effective at reducing blood pressure in various hypertensive animal models. The primary purpose of this study is to narratively review the published phase I-II literature on the safety and efficacy of APA inhibitors in the management of patients with hypertension. Moreover, a summary of ongoing clinical trials and future perspectives are presented.
Collapse
Affiliation(s)
| | | | | | | | - Yazid Alduraibi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
22
|
Luzi L, Bucciarelli L, Ferrulli A, Terruzzi I, Massarini S. Obesity and COVID-19: the ominous duet affecting the renin-angiotensin system. Minerva Endocrinol (Torino) 2021; 46:193-201. [PMID: 33435650 DOI: 10.23736/s2724-6507.20.03402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The world population is facing a health challenge never seen since the Spanish influenza of one hundred years ago. During the last months, the scientific community has been debating on the potential harmful effect of angiotensin-converting-enzyme inhibitors (ACEi) or angiotensin II receptor type 1 receptor blockers (AT1-receptor blockers, ARBs) during the COVID-19 pandemic. That is because the S spike protein of SARS-CoV viruses utilizes the angiotensin-converting enzyme 2 (ACE2) as a receptor to enter alveolar epithelial cells. Obesity, often associated to type 2 Diabetes, was shown to worsen the prognosis of SARS-CoV-2 infection. Herein we discuss the complex interaction between the renin-angiotensin-aldosterone system (RAAS), its receptors, and the interaction with the Kallikrein-Kinin-system (KKS) and the potential activation of the coagulation cascade. Alteration of the equilibrium between the RAAS system and the KKS cascade may explain the frequent thromboembolic complications of COVID-19 mainly seen in obese and diabetic-obese patients. In contrast, angiotensin (1-7) contributes to maintaining a correct balance between RAAS and KKS system. Our conclusion is that the higher mortality rate in patients with obesity is linked to the alteration of RAS and RAS-KKS interaction consequent to SARS-CoV-2-cell entrance. At present, no data support the necessity of modifying ACEi or ARBs treatment in hypertensive patients.
Collapse
Affiliation(s)
- Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy - .,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy -
| | - Loredana Bucciarelli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
23
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Structural insight into the catalytic mechanism and inhibitor binding of aminopeptidase A. Biochem J 2020; 477:4133-4148. [PMID: 32955085 DOI: 10.1042/bcj20200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Aminopeptidase A (APA) is a membrane-bound monozinc aminopeptidase. In the brain, APA generates angiotensin III which exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive animals. The oral administration of RB150 renamed firibastat by WHO, an APA inhibitor prodrug, targeting only the S1 subsite, decreases BP in hypertensive patients from various ethnic origins. To identify new families of potent and selective APA inhibitors, we explored the organization of the APA active site, especially the S2' subsite. By molecular modeling, docking, molecular dynamics simulations and site-directed mutagenesis, we revealed that Arg368 and Arg386, in the S2' subsite of human APA established various types of interactions in major part with the P2' residue but also with the P1' residue of APA inhibitors, required for their nanomolar inhibitory potency. We also demonstrated an important role for Arg368 in APA catalysis, in maintaining the structural integrity of the GAMEN motif, a conserved sequence involved in exopeptidase specificity and optimal positioning of the substrate in monozinc aminopeptidases. This arginine together with the GAMEN motif are key players for the catalytic mechanism of these enzymes.
Collapse
|
25
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
26
|
Marc Y, Boitard SE, Balavoine F, Azizi M, Llorens-Cortes C. Targeting Brain Aminopeptidase A: A New Strategy for the Treatment of Hypertension and Heart Failure. Can J Cardiol 2020; 36:721-731. [PMID: 32389345 DOI: 10.1016/j.cjca.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment. We focus here on studies of RB150/firibastat, the first prodrug of the specific and selective APA inhibitor EC33 able to cross the blood-brain barrier. We consider its development from therapeutic target discovery to clinical trials of the prodrug. After oral administration, firibastat crosses the gastrointestinal and blood-brain barriers. On arrival in the brain, it is cleaved to generate EC33, which inhibits brain APA activity, lowering BP in various experimental models of hypertension. Firibastat was clinically and biologically well tolerated, even at high doses, in phase I trials conducted in healthy human subjects. It was then shown to decrease BP effectively in patients of various ethnic origins with hypertension in phase II trials. Brain RAS hyperactivity leads to excessive sympathetic activity, which can contribute to HF after myocardial infarction (MI). Chronic treatment with oral firibastat (4 or 8 weeks after MI) has been shown to normalize brain APA activity in mice. This effect is accompanied by a normalization of brain RAS and sympathetic activities, reducing cardiac fibrosis and hypertrophy and preventing cardiac dysfunction. Firibastat may therefore represent a novel therapeutic advance in the clinical management of patients with hypertension and potentially with HF after MI.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | | | - Michel Azizi
- Centres d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; Hypertension Unit and Départements Médico-Universitaires Cardiovasculaire, Rénal, transplantation et neurovasculaire (DMU CARTE), l'Assistance Publique-Hôpitaux de Paris, Hôpital European Georges-Pompidou, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France.
| |
Collapse
|
27
|
Alanazi AZ, Clark MA. Effects of angiotensin III on c-Jun N terminal kinase in Wistar and hypertensive rat vascular smooth muscle cells. Peptides 2020; 123:170204. [PMID: 31738968 DOI: 10.1016/j.peptides.2019.170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) and inflammation are well known actions associated with hypertension. Angiotensin (Ang) II mediates these physiological actions through the c-Jun N terminal Kinase (JNK), mitogen-activated proteins kinase (MAPK) pathway. Ang III effects on this pathway in VSMCs are unknown. The aim of this study was to determine whether Ang III activates JNK MAPK in Wistar VSMCs and determined whether the response was different in spontaneously hypertensive rat (SHR) VSMCs. We also ascertained whether this effect leads to VSMC proliferation. Western blots were used to determine the time and concentration effects of Ang II on JNK MAPK phosphorylation in Wistar VSMCs. Similar studies were conducted for Ang III in Wistar and SHR VSMCs. Both peptides induced JNK phosphorylation in a concentration- and time-dependent manner in Wistar VSMCs. Ang III also increased JNK phosphorylation in a concentration- and time-dependent fashion in SHR VSMCs as well. However, the ability of Ang III to induce JNK MAPK was different in SHR VSMCs as the phosphorylation levels of JNK were significantly higher in Wistar VSMCs as compared to SHR VSMCs at several time points and concentrations. Further, Ang III-mediated DNA synthesis, a measure of VSMC proliferation, occurred through activation of JNK MAPK. This study is the first to show Ang III effects on the JNK MAPK pathway in VSMCs and the role of JNK in Ang III-mediated cellular proliferation. These findings impart key information for the understanding of Ang III functions, especially in VSMCs and possible cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
28
|
Llorens-Cortes C, Touyz RM. Evolution of a New Class of Antihypertensive Drugs: Targeting the Brain Renin-Angiotensin System. Hypertension 2019; 75:6-15. [PMID: 31786978 DOI: 10.1161/hypertensionaha.119.12675] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the circulating renin-angiotensin system, activation of the brain renin-angiotensin system plays an important role in the pathophysiology of hypertension. One of the major components of the brain renin-angiotensin system implicated in the development of hypertension is Ang III (angiotensin III). Brain Ang III, produced from Ang II (angiotensin II) by APA (aminopeptidase A), exerts a tonic stimulatory control over blood pressure in hypertensive rats. Targeting Ang III by inhibiting brain APA is now considered a potentially important target in the management of hypertension. This has led to development of RB150, an orally active prodrug of the specific and selective APA inhibitor, EC33. Orally administered RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain where it generates 2 active molecules of EC33 that block brain APA activity. This results in decreased brain Ang III formation and reduced blood pressure in hypertensive rats. The RB150-induced blood pressure decrease is due to a reduced vasopressin release, which increases diuresis, reducing extracellular volume, a decrease in sympathetic tone, leading to a reduction of vascular resistances, and the improvement of the baroreflex function. RB150 was renamed firibastat by the World Health Organization. Phase Ia/Ib clinical trials showed that firibastat is clinically and biologically well tolerated in healthy volunteers. Clinical efficacy of firibastat in hypertensive patients was, therefore, demonstrated in 2 phase II studies. Accordingly, firibastat could represent the first drug of a novel class of antihypertensive drugs targeting the brain renin-angiotensin system.
Collapse
Affiliation(s)
- Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050/CNRS UMR 7241, Paris (C.L.-C.)
| | - Rhian M Touyz
- British Heart Foundation Chair in Cardiovascular Medicine, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| |
Collapse
|
29
|
Keck M, De Almeida H, Compère D, Inguimbert N, Flahault A, Balavoine F, Roques B, Llorens-Cortes C. NI956/QGC006, a Potent Orally Active, Brain-Penetrating Aminopeptidase A Inhibitor for Treating Hypertension. Hypertension 2019; 73:1300-1307. [PMID: 31067198 DOI: 10.1161/hypertensionaha.118.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain renin-angiotensin system hyperactivity has been implicated in the development and maintenance of hypertension. We have shown that aminopeptidase A is involved in the formation of brain angiotensin III, which exerts tonic stimulatory control over blood pressure in hypertensive deoxycorticosterone acetate-salt rats and spontaneously hypertensive rats. We have also shown that injection of the specific and selective aminopeptidase A inhibitor, (3S)-3-amino-4-sulfanyl-butane-1-sulfonic acid (EC33), by central route or its prodrug, RB150/firibastat, by oral route inhibited brain aminopeptidase A activity and blocked the formation of brain angiotensin III, normalizing blood pressure in hypertensive rats. These findings identified brain aminopeptidase A as a potential new therapeutic target for hypertension. We report here the development of a new aminopeptidase A inhibitor prodrug, NI956/QGC006, obtained by the disulfide bridge-mediated dimerization of NI929. NI929 is 10× more efficient than EC33 at inhibiting recombinant mouse aminopeptidase A activity in vitro. After oral administration at a dose of 4 mg/kg in conscious deoxycorticosterone acetate-salt rats, NI956/QGC006 normalized brain aminopeptidase A activity and induced a marked decrease in blood pressure of -44±13 mm Hg 4 hours after treatment ( P<0.001), sustained over 10 hours (-21±12 mm Hg; P<0.05). Moreover, NI956/QGC006 decreased plasma arginine-vasopressin levels, and increased diuresis and natriuresis, that may participate to the blood pressure decrease. Finally, NI956/QGC006 did not affect plasma sodium and potassium concentrations. This study shows that NI956/QGC006 is a best-in-class central-acting aminopeptidase A inhibitor prodrug. Our results support the development of hypertension treatments targeting brain aminopeptidase A.
Collapse
Affiliation(s)
- Mathilde Keck
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.).,Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Hugo De Almeida
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| | - Delphine Compère
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.).,Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Nicolas Inguimbert
- USR 3278 CRIOBE, PSL Research University, EPHEUPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence, France (N.I.)
| | - Adrien Flahault
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| | - Fabrice Balavoine
- Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Bernard Roques
- U1022 INSERM/UMR 8258 CNRS, Université Paris-Descartes (Paris V), France (B.R.)
| | - Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| |
Collapse
|
30
|
Segarra AB, Prieto-Gomez I, Banegas I, Martínez-Cañamero M, Luna JDD, de Gasparo M, Ramírez-Sánchez M. Functional and neurometabolic asymmetry in SHR and WKY rats following vasoactive treatments. Sci Rep 2019; 9:16098. [PMID: 31695104 PMCID: PMC6834850 DOI: 10.1038/s41598-019-52658-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
A lateralized distribution of neuropeptidase activities in the frontal cortex of normotensive and hypertensive rats has been described depending on the use of some vasoactive drugs and linked to certain mood disorders. Asymmetrical neuroperipheral connections involving neuropeptidases from the left or right hemisphere and aminopeptidases from the heart or plasma have been suggested to play a role in this asymmetry. We hypothesize that such asymmetries could be extended to the connection between the brain and physiologic parameters and metabolic factors from plasma and urine. To assess this hypothesis, we analyzed the possible correlation between neuropeptidases from the left and right frontal cortex with peripheral parameters in normotensive (Wistar Kyoto [WKY]) rats and hypertensive rats (spontaneously hypertensive rats [SHR]) untreated or treated with vasoactive drugs such as captopril, propranolol and L-nitro-arginine methyl ester. Neuropeptidase activities from the frontal cortex were analyzed fluorometrically using arylamide derivatives as substrates. Physiological parameters and metabolic factors from plasma and urine were determined using routine laboratory techniques. Vasoactive drug treatments differentially modified the asymmetrical neuroperipheral pattern by changing the predominance of the correlations between peripheral parameters and central neuropeptidase activities of the left and right frontal cortex. The response pattern also differed between SHR and WKY rats. These results support an asymmetric integrative function of the organism and suggest the possibility of a different neurometabolic response coupled to particular mood disorders, depending on the selected vasoactive drug.
Collapse
Affiliation(s)
- Ana B Segarra
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain
| | | | | | | | - Juan de Dios Luna
- Department of Biostatistic, Medical School, University of Granada, Granada, Spain
| | - Marc de Gasparo
- Cardiovascular & Metabolic Syndrome Adviser, Rue es Planches 5, 2842, Rossemaison, Switzerland
| | | |
Collapse
|
31
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
32
|
A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens 2019; 37:1722-1728. [DOI: 10.1097/hjh.0000000000002092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Lee J, Vinh NB, Drinkwater N, Yang W, Kannan Sivaraman K, Schembri LS, Gazdik M, Grin PM, Butler GS, Overall CM, Charman SA, McGowan S, Scammells PJ. Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions. J Med Chem 2019; 62:7185-7209. [PMID: 31251594 DOI: 10.1021/acs.jmedchem.9b00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aminopeptidase N (APN/CD13) is a zinc-dependent M1 aminopeptidase that contributes to cancer progression by promoting angiogenesis, metastasis, and tumor invasion. We have previously identified hydroxamic acid-containing analogues that are potent inhibitors of the APN homologue from the malarial parasite Plasmodium falciparum M1 aminopeptidase (PfA-M1). Herein, we describe the rationale that underpins the repurposing of PfA-M1 inhibitors as novel APN inhibitors. A series of novel hydroxamic acid analogues were developed using a structure-based design approach and evaluated their inhibition activities against APN. N-(2-(Hydroxyamino)-2-oxo-1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(methylsulfonamido)benzamide (6ad) proved to be an extremely potent inhibitor of APN activity in vitro, selective against other zinc-dependent enzymes such as matrix metalloproteases, and possessed limited cytotoxicity against Ad293 cells and favorable physicochemical and metabolic stability properties. The combined results indicate that compound 6ad may be a useful lead for the development of anticancer agents.
Collapse
Affiliation(s)
| | | | - Nyssa Drinkwater
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | - Wei Yang
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | - Komagal Kannan Sivaraman
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | | | | | | | | | | | | | - Sheena McGowan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | | |
Collapse
|
34
|
Larouche‐Lebel É, Loughran KA, Oyama MA, Solter PF, Laughlin DS, Sánchez MD, Assenmacher C, Fox PR, Fries RC. Plasma and tissue angiotensin-converting enzyme 2 activity and plasma equilibrium concentrations of angiotensin peptides in dogs with heart disease. J Vet Intern Med 2019; 33:1571-1584. [PMID: 31254308 PMCID: PMC6639469 DOI: 10.1111/jvim.15548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is a homologue of angiotensin-converting enzyme (ACE) and produces angiotensin peptides (APs), such as angiotensin 1-9 and 1-7 that are vasodilatory and natriuretic, and act to counterbalance angiotensin II. HYPOTHESIS Evidence of ACE2 can be found in tissues and plasma of dogs. Equilibrium concentrations of renin angiotensin aldosterone system (RAAS) APs differ in dogs with heart disease compared to healthy dogs and recombinant human ACE2 (rhACE2) alters relative concentrations of APs. ANIMALS Forty-nine dogs with and 34 dogs without heart disease. METHODS Immunohistochemistry and assays for tissue and plasma ACE2 activity and equilibrium concentrations of plasma RAAS APs were performed. RESULTS Immunolabeling for ACE2 was present in kidney and myocardial tissue. Median plasma ACE2 activity was significantly increased in dogs with congestive heart failure (CHF; 6.9 mU/mg; interquartile range [IQR], 5.1-12.1) as compared to control (2.2 mU/mg; IQR, 1.8-3.0; P = .0003). Plasma equilibrium analysis of RAAS APs identified significant increases in the median concentrations of beneficial APs, such as angiotensin 1-7, in dogs with CHF (486.7 pg/mL; IQR, 214.2-1168) as compared to those with preclinical disease (41.0 pg/mL; IQR, 27.4-45.1; P < .0001) or control (11.4 pg/mL; IQR, 7.1-25.3; P = .01). Incubation of plasma samples from dogs with CHF with rhACE2 increased beneficial APs, such as angiotensin 1-9 (preincubation, 10.3 pg/mL; IQR, 4.4-37.2; postincubation, 2431 pg/mL; IQR, 1355-3037; P = .02), while simultaneously decreasing maladaptive APs, such as angiotensin II (preincubation, 53.4 pg/mL; IQR, 28.6-226.4; postincubation, 2.4 pg/mL; IQR, 0.50-5.8; P = .02). CONCLUSIONS AND CLINICAL IMPORTANCE Recognition of the ACE2 system expands the conventional view of the RAAS in the dog and represents an important potential therapeutic target.
Collapse
Affiliation(s)
- Éva Larouche‐Lebel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Kerry A. Loughran
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Mark A. Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Phil F. Solter
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Danielle S. Laughlin
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Melissa D. Sánchez
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | | | | | - Ryan C. Fries
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignIllinois
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To review the data supporting the use of aminopeptidase A (APA) inhibitor prodrugs as centrally acting antihypertensive agents. RECENT FINDINGS Brain renin-angiotensin system (RAS) hyperactivity has been implicated in the development and maintenance of hypertension. Angiotensin III, generated by APA, one of the main effector peptides of the brain RAS, exerts a tonic stimulatory control over blood pressure in hypertensive rats. This identified brain APA as a potential therapeutic target for the treatment of hypertension, leading to the development of RB150/firibastat, an orally active prodrug of the specific and selective APA inhibitor, EC33. When given orally, RB150/firibastat crosses the gastrointestinal and blood-brain barriers, enters the brain, and generates two active molecules of EC33 which inhibit brain APA activity, blocking brain angiotensin III formation, and decrease blood pressure for several hours in hypertensive rats. Orally active APA inhibitor prodrugs, by blocking brain RAS activity, represent promising novel strategy for treating hypertension.
Collapse
|
36
|
Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats. J Hypertens 2019; 36:641-650. [PMID: 28968260 DOI: 10.1097/hjh.0000000000001563] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperactivity of the brain renin-angiotensin (Ang) system has been implicated in the development and maintenance of hypertension. AngIII, one of the main effector peptides of the brain renin-Ang system, exerts a tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme generating brain AngIII, represents a new therapeutic target for the treatment of hypertension. We developed RB150, a prodrug of the specific and selective APA inhibitor, EC33. When given orally in acute treatment in hypertensive rats, RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain, inhibits brain APA activity and decreases BP. We investigate, here, the antihypertensive effects of chronic oral RB150 (50 mg/kg per day) treatment over 24 days in alert hypertensive deoxycorticosterone acetate-salt rats. METHODS We measured variations in Brain APA enzymatic activity, SBP, plasma arginine vasopressin levels and metabolic parameters after RB150 chronic administration. RESULTS This resulted in a significant decrease in SBP over the 24-day treatment period showing that no tolerance to the antihypertensive RB150 effect was observed throughout the treatment period. Chronic RB150 treatment also significantly decreased plasma arginine vasopressin levels and increased diuresis, which participate to BP decrease by reducing the size of fluid compartment. Interestingly, we observed an increased natriuresis without modifying both plasma sodium and potassium levels. CONCLUSION Our results strengthen the interest of developing RB150 as a novel central-acting antihypertensive agent and evaluating its efficacy in salt-sensitive hypertension.
Collapse
|
37
|
Specific Inhibition of Brain Angiotensin III Formation as a New Strategy for Prevention of Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol 2019; 73:82-91. [DOI: 10.1097/fjc.0000000000000638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Boitard SE, Marc Y, Keck M, Mougenot N, Agbulut O, Balavoine F, Llorens-Cortes C. Brain renin-angiotensin system blockade with orally active aminopeptidase A inhibitor prevents cardiac dysfunction after myocardial infarction in mice. J Mol Cell Cardiol 2018; 127:215-222. [PMID: 30599150 DOI: 10.1016/j.yjmcc.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Brain renin-angiotensin system (RAS) hyperactivity has been implicated in sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial infarction (MI). Angiotensin III, generated by aminopeptidase A (APA), is one of the main effector peptides of the brain RAS in the control of cardiac function. We hypothesized that orally administered firibastat (previously named RB150), an APA inhibitor prodrug, would attenuate heart failure (HF) development after MI in mice, by blocking brain RAS hyperactivity. Two days after MI, adult male CD1 mice were randomized to three groups, for four to eight weeks of oral treatment with vehicle (MI + vehicle), firibastat (150 mg/kg; MI + firibastat) or the angiotensin I converting enzyme inhibitor enalapril (1 mg/kg; MI + enalapril) as a positive control. From one to four weeks post-MI, brain APA hyperactivity occurred, contributing to brain RAS hyperactivity. Firibastat treatment normalized brain APA hyperactivity, with a return to the control values measured in sham group two weeks after MI. Four and six weeks after MI, MI + firibastat mice had a significant lower LV end-diastolic pressure, LV end-systolic diameter and volume, and a higher LV ejection fraction than MI + vehicle mice. Moreover, the mRNA levels of biomarkers of HF (Myh7, Bnp and Anf) were significantly lower following firibastat treatment. For a similar infarct size, the peri-infarct area of MI + firibastat mice displayed lower levels of mRNA for Ctgf and collagen types I and III (markers of fibrosis) than MI + vehicle mice. Thus, chronic oral firibastat administration after MI in mice prevents cardiac dysfunction by normalizing brain APA hyperactivity, and attenuates cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Mathilde Keck
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | | | - Onnik Agbulut
- Biological Adaptation and Ageing, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Paris 75005, France
| | - Fabrice Balavoine
- Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
39
|
Amin SA, Adhikari N, Jha T. Design of Aminopeptidase N Inhibitors as Anti-cancer Agents. J Med Chem 2018; 61:6468-6490. [DOI: 10.1021/acs.jmedchem.7b00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| |
Collapse
|
40
|
Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018; 20:19. [PMID: 29556787 PMCID: PMC5859051 DOI: 10.1007/s11906-018-0823-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In many instances, the renin-angiotensin system (RAS) and the vasopressinergic system (VPS) are jointly activated by the same stimuli and engaged in the regulation of the same processes. Recent Findings Angiotensin II (Ang II) and arginine vasopressin (AVP), which are the main active compounds of the RAS and the VPS, interact at several levels. Firstly, Ang II, acting on AT1 receptors (AT1R), plays a significant role in the release of AVP from vasopressinergic neurons and AVP, stimulating V1a receptors (V1aR), regulates the release of renin in the kidney. Secondly, Ang II and AVP, acting on AT1R and V1aR, respectively, exert vasoconstriction, increase cardiac contractility, stimulate the sympathoadrenal system, and elevate blood pressure. At the same time, they act antagonistically in the regulation of blood pressure by baroreflex. Thirdly, the cooperative action of Ang II acting on AT1R and AVP stimulating both V1aR and V2 receptors in the kidney is necessary for the appropriate regulation of renal blood flow and the efficient resorption of sodium and water. Furthermore, both peptides enhance the release of aldosterone and potentiate its action in the renal tubules. Summary In this review, we (1) point attention to the role of the cooperative action of Ang II and AVP for the regulation of blood pressure and the water-electrolyte balance under physiological conditions, (2) present the subcellular mechanisms underlying interactions of these two peptides, and (3) provide evidence that dysregulation of the cooperative action of Ang II and AVP significantly contributes to the development of disturbances in the regulation of blood pressure and the water-electrolyte balance in cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
41
|
Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is Increased in Alzheimer's Disease in Association with Amyloid-β and Tau Pathology. J Alzheimers Dis 2018; 58:203-214. [PMID: 28387670 DOI: 10.3233/jad-161265] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hyperactivity of the renin-angiotensin system (RAS) is associated with the pathogenesis of Alzheimer's disease (AD) believed to be mediated by angiotensin-II (Ang-II) activation of the angiotensin type 1 receptor (AT1R). We previously showed that angiotensin-converting enzyme-1 (ACE-1) activity, the rate-limiting enzyme in the production of Ang-II, is increased in human postmortem brain tissue in AD. Angiotensin-III (Ang-III) activates the AT1R and angiotensin type-2 receptor (AT2R), but its potential role in the pathophysiology of AD remains unexplored. We measured Ang-II and Ang-III levels by ELISA, and the levels and activities of aminopeptidase-A (AP-A) and aminopeptidase-N (AP-N) (responsible for the production and metabolism of Ang-III, respectively) in human postmortem brain tissue in the mid-frontal cortex (Brodmann area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59), for which we had previous measurements of ACE-1 activity, Aβ level, and tau pathology (also in the mid-frontal cortex). We found that both Ang-II and Ang-III levels were significantly higher in AD compared to age-matched controls and that Ang-III, rather than Ang-II, was strongly associated with Aβ load and tau load. Levels of AP-A were significantly reduced in AD but AP-A enzyme activity was unchanged whereas AP-N activity was reduced in AD but AP-N protein level was unchanged. Together, these data indicate that the APA/Ang-III/APN/Ang-IV/AT4R pathway is dysregulated and that elevated Ang-III could contribute to the pathogenesis of AD.
Collapse
|
42
|
Kopf PG, Park SK, Herrnreiter A, Krause C, Roques BP, Campbell WB. Obligatory Metabolism of Angiotensin II to Angiotensin III for Zona Glomerulosa Cell-Mediated Relaxations of Bovine Adrenal Cortical Arteries. Endocrinology 2018; 159:238-247. [PMID: 29088382 PMCID: PMC5761603 DOI: 10.1210/en.2017-00759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Hyperaldosteronism is associated with hypertension, cardiac hypertrophy, and congestive heart failure. Steroidogenic factors facilitate aldosterone secretion by increasing adrenal blood flow. Angiotensin (Ang) II decreases adrenal vascular tone through release of zona glomerulosa (ZG) cell-derived vasodilatory eicosanoids. However, ZG cell-mediated relaxation of bovine adrenal cortical arteries to Ang II is not altered by angiotensin type 1 or 2 receptor antagonists. Because traditional Ang II receptors do not mediate these vasorelaxations to Ang II, we investigated the role of Ang II metabolites. Ang III was identified by liquid chromatography-mass spectrometry as the primary ZG cell metabolite of Ang II. Ang III stimulated ZG cell-mediated relaxation of adrenal arteries with greater potency than did Ang II. Furthermore, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by aminopeptidase inhibition, and Ang III-stimulated relaxations persisted. Ang IV had little effect compared with Ang II. Moreover, ZG cell-mediated relaxations of adrenal arteries by Ang II were attenuated by an Ang III antagonist but not by an Ang (1-7) antagonist. In contrast, Ang II and Ang III were equipotent in stimulating aldosterone secretion from ZG cells and were unaffected by aminopeptidase inhibition. Additionally, aspartyl and leucyl aminopeptidases, which convert Ang II to Ang III, are the primary peptidase expressed in ZG cells. This was confirmed by enzyme activity. These data indicate that intra-adrenal metabolism of Ang II to Ang III is required for ZG cell-mediated relaxations of adrenal arteries but not aldosterone secretion. These studies have defined an important role of Ang III in the adrenal gland.
Collapse
MESH Headings
- Abattoirs
- Adrenal Cortex/blood supply
- Adrenal Cortex/drug effects
- Adrenal Cortex/metabolism
- Aldosterone/metabolism
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Angiotensin I/antagonists & inhibitors
- Angiotensin I/metabolism
- Angiotensin II/analogs & derivatives
- Angiotensin II/chemistry
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin III/metabolism
- Animals
- Arterioles/cytology
- Arterioles/drug effects
- Arterioles/metabolism
- Cattle
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- In Vitro Techniques
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Protease Inhibitors/pharmacology
- Vasodilation/drug effects
- Zona Glomerulosa/cytology
- Zona Glomerulosa/drug effects
- Zona Glomerulosa/metabolism
Collapse
Affiliation(s)
- Phillip G. Kopf
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515
| | - Sang-Kyu Park
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Anja Herrnreiter
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Christian Krause
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bernard P. Roques
- Unité de Technologies Chimiques et Biologiques pour la Santé (U1022 INSERM, UMR8258 CNRS), Université Paris Descartes, 75006 Paris, France
| | - William B. Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
43
|
Phuong HTA, Yu L, Park BM, Kim SH. Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:667-674. [PMID: 29200910 PMCID: PMC5709484 DOI: 10.4196/kjpp.2017.21.6.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and 1 µM) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) (0.1 µM)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor (AT1R) but not by an antagonist of AT2R or AT4R. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate (IP3) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) 10 µM caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the AT1R and PLC/IP3/PKC pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.
Collapse
Affiliation(s)
- Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
44
|
Chuang HY, Jiang JK, Yang MH, Wang HW, Li MC, Tsai CY, Jhang YY, Huang JC. Aminopeptidase A initiates tumorigenesis and enhances tumor cell stemness via TWIST1 upregulation in colorectal cancer. Oncotarget 2017; 8:21266-21280. [PMID: 28177885 PMCID: PMC5400582 DOI: 10.18632/oncotarget.15072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023] Open
Abstract
Metastasis accounts for the high mortality rate associated with colorectal cancer (CRC), but metastasis regulators are not fully understood. To identify a novel gene involved in tumor metastasis, we used oligonucleotide microarrays, transcriptome distance analyses, and machine learning algorithms to determine links between primary and metastatic colorectal cancers. Aminopeptidase A (APA; also known as ENPEP) was selected as our focus because its relationship with colorectal cancer requires clarification. Higher APA mRNA levels were observed in patients in advanced stages of cancer, suggesting a correlation between ENPEP and degree of malignancy. Our data also indicate that APA overexpression in CRC cells induced cell migration, invasion, anchorage-independent capability, and mesenchyme-like characteristics (e.g., EMT markers). We also observed TWIST induction in APA-overexpressing SW480 cells and TWIST down-regulation in HT29 cells knocked down with APA. Both APA silencing and impaired APA activity were found to reduce migratory capacity, cancer anchorage, stemness properties, and drug resistance in vitro and in vivo. We therefore suggest that APA enzymatic activity affects tumor initiation and cancer malignancy in a TWIST-dependent manner. Results from RT-qPCR and the immunohistochemical staining of specimens taken from CRC patients indicate a significant correlation between APA and TWIST. According to data from SurvExpress analyses of TWIST1 and APA mRNA expression profiles, high APA and TWIST expression are positively correlated with poor CRC prognosis. APA may act as a prognostic factor and/or therapeutic target for CRC metastasis and recurrence.
Collapse
Affiliation(s)
- Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kae Jiang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cancer Research Center, National Yang-Ming University, Taipei, Taiwan.,Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan.,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsei-Wei Wang
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Cancer Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Ming-Chun Li
- Division of Pediatrics, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Chan-Yen Tsai
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yau-Yun Jhang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
45
|
Leenen FHH, Blaustein MP, Hamlyn JM. Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect 2017; 6:R131-R145. [PMID: 28855243 PMCID: PMC5613704 DOI: 10.1530/ec-17-0161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research GroupUniversity of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mordecai P Blaustein
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of MedicineUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John M Hamlyn
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Domínguez-Vías G, Aretxaga-Maza G, Prieto I, Luna JDD, De Gasparo M, Ramírez-Sánchez M. Diurnal opposite variation between angiotensinase activities in photo-neuro-endocrine tissues of rats. Chronobiol Int 2017; 34:1180-1186. [PMID: 28910547 DOI: 10.1080/07420528.2017.1354871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Central and peripheral renin-angiotensin systems (RASs) act in a coordinated manner for the physiologic functions regulated by neuroendocrine events. However, whereas the diurnal rhythm of peripheral circulatory and tissue RASs is well known, the circadian behaviour of their components in central photo-neuro-endocrine structures, key elements for the control of circadian rhythms, has been barely studied. In the present study, we analysed the aspartyl- (AspAP) and glutamyl-aminopeptidase (GluAP) (aminopeptidase A) activities, the angiotensinases responsible for the metabolism of Ang I to Ang 2-10 and Ang II to Ang III, respectively, in the retina, anterior hypothalamus and pituitary at different light and dark time-points of a 12:12 h light:dark cycle (7-19 h light), using arylamide derivatives as substrates. The results demonstrated that while retina and pituitary exhibited their highest levels of AspAP activity in the light period and the lowest in the dark one, the contrary occurred in the hypothalamus - the lowest levels were observed in light conditions and the highest in darkness. The outcome for GluAP showed the highest levels in the light period and the lowest in the dark one in the three tissues analysed. In conclusion, changes in angiotensinase activities throughout the daytime may cause changes of their respective substrates and derived peptides and, consequently, in their functions. This observation may have implications for the treatment of hypertension.
Collapse
Affiliation(s)
- Germán Domínguez-Vías
- a Unit of Physiology, Department of Health Sciences , University of Jaén , Jaén , Spain.,b Department of Biomedicine, Biotechnology and Public Health, Medical School , University of Cádiz , Cádiz , Spain
| | - Garbiñe Aretxaga-Maza
- a Unit of Physiology, Department of Health Sciences , University of Jaén , Jaén , Spain
| | - Isabel Prieto
- a Unit of Physiology, Department of Health Sciences , University of Jaén , Jaén , Spain
| | - Juan de Dios Luna
- c Department of Biostatistic, Medical School , University of Granada , Granada , Spain
| | - Marc De Gasparo
- d Cardiovascular and Metabolic Syndrome Adviser , Rossemaison , Switzerland
| | | |
Collapse
|
47
|
Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues. PLoS One 2017; 12:e0184237. [PMID: 28877217 PMCID: PMC5587309 DOI: 10.1371/journal.pone.0184237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis.
Collapse
|
48
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
49
|
Banegas I, Prieto I, Segarra AB, Vives F, de Gasparo M, Duran R, de Dios Luna J, Ramírez-Sánchez M. Bilateral distribution of enkephalinase activity in the medial prefrontal cortex differs between WKY and SHR rats unilaterally lesioned with 6-hydroxydopamine. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:213-218. [PMID: 28232066 DOI: 10.1016/j.pnpbp.2017.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 11/26/2022]
Abstract
Changes in the basal brain bilateral morphologic, neurochemical and/or functional patterns may be partly responsible for some brain disorders such as those involving mood. WKY and SHR strains as well as 6-hydroxydopamine (6-OHDA)-lesioned animals are validated models for the study of mood disorders. Because dopamine and enkephalins are involved in anxiety-related behaviors, the aim of our study was to analyze enkephalinase activity, assayed as aminopeptidase M activity, in the left and right medial prefrontal cortex (mPFC) of WKY and SHR treated with saline (sham group) or following left or right intrastriatal injections of the neurotoxic 6-OHDA. Sham left and sham right WKY exhibited a significant left predominance. Left 6-OHDA-lesioned rats inverted the left predominance of sham to right predominance. In right 6-OHDA-lesioned rats, the left predominance in sham right rats disappeared. Sham left as well as sham right SHR did not show any bilateral differences. In contrast, while the left lesion demonstrated a highly significant left predominance, the right lesion showed a slight but significant right predominance. A significant negative correlation between enkephalinase activity of the right mPFC and blood pressure and heart rate was observed only in left-lesioned SHR. Our results demonstrate that unilateral nigrostriatal injections of 6-OHDA influence the bilateral distribution of enkephalinase activity depending on both the side of the lesion and the strain analyzed. These results support the hypothesis that DA pathways may interact asymmetrically with enkephalins in the mPFC and that enkephalinase activity may play a role in the regulatory mechanisms underlying this interaction.
Collapse
Affiliation(s)
- Inmaculada Banegas
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Isabel Prieto
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ana B Segarra
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Francisco Vives
- Institute of Neurosciences, "Federico Olóriz" University of Granada, Granada, Spain
| | - Marc de Gasparo
- Cardiovascular and Metabolic Syndrome Adviser, Rue es Planches 5, 2842 Rossemaison, Switzerland
| | - Raquel Duran
- Institute of Neurosciences, "Federico Olóriz" University of Granada, Granada, Spain
| | - Juan de Dios Luna
- Department of Biostatistic, Medical School, University of Granada, Granada, Spain
| | - Manuel Ramírez-Sánchez
- Unit of Physiology,Department of Health Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
50
|
Boldrini-França J, Cologna CT, Pucca MB, Bordon KDCF, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cerni FA, Pinheiro-Junior EL, Shibao PYT, Ferreira IG, de Oliveira IS, Cardoso IA, Arantes EC. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta Gen Subj 2017; 1861:824-838. [DOI: 10.1016/j.bbagen.2016.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|