1
|
Peng A, Yin G, Zuo W, Zhang L, Du G, Chen J, Wang Y, Kang Z. Regulatory RNAs in Bacillus subtilis: A review on regulatory mechanism and applications in synthetic biology. Synth Syst Biotechnol 2024; 9:223-233. [PMID: 38385150 PMCID: PMC10877136 DOI: 10.1016/j.synbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria exhibit a rich repertoire of RNA molecules that intricately regulate gene expression at multiple hierarchical levels, including small RNAs (sRNAs), riboswitches, and antisense RNAs. Notably, the majority of these regulatory RNAs lack or have limited protein-coding capacity but play pivotal roles in orchestrating gene expression by modulating transcription, post-transcription or translation processes. Leveraging and redesigning these regulatory RNA elements have emerged as pivotal strategies in the domains of metabolic engineering and synthetic biology. While previous investigations predominantly focused on delineating the roles of regulatory RNA in Gram-negative bacterial models such as Escherichia coli and Salmonella enterica, this review aims to summarize the mechanisms and functionalities of endogenous regulatory RNAs inherent to typical Gram-positive bacteria, notably Bacillus subtilis. Furthermore, we explore the engineering and practical applications of these regulatory RNA elements in the arena of synthetic biology, employing B. subtilis as a foundational chassis.
Collapse
Affiliation(s)
- Anqi Peng
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Babitzke P, Lai YJ, Renda AJ, Romeo T. Posttranscription Initiation Control of Gene Expression Mediated by Bacterial RNA-Binding Proteins. Annu Rev Microbiol 2019; 73:43-67. [PMID: 31100987 PMCID: PMC9404307 DOI: 10.1146/annurev-micro-020518-115907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.
Collapse
Affiliation(s)
- Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Andrew J Renda
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| |
Collapse
|
3
|
Regulation of Bacterial Gene Expression by Transcription Attenuation. Microbiol Mol Biol Rev 2019; 83:83/3/e00019-19. [PMID: 31270135 DOI: 10.1128/mmbr.00019-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A wide variety of mechanisms that control gene expression in bacteria are based on conditional transcription termination. Generally, in these mechanisms, a transcription terminator is located between a promoter and a downstream gene(s), and the efficiency of the terminator is controlled by a regulatory effector that can be a metabolite, protein, or RNA. The most common type of regulation involving conditional termination is transcription attenuation, in which the primary regulatory target is an essential element of a single terminator. The terminator can be either intrinsic or Rho dependent, with each presenting unique regulatory targets. Transcription attenuation mechanisms can be divided into five classes based primarily on the manner in which transcription termination is rendered conditional. This review summarizes each class of control mechanisms from a historical perspective, describes important examples in a physiological context and the current state of knowledge, highlights major advances, and discusses expectations of future discoveries.
Collapse
|
4
|
Warrier I, Ram-Mohan N, Zhu Z, Hazery A, Echlin H, Rosch J, Meyer MM, van Opijnen T. The Transcriptional landscape of Streptococcus pneumoniae TIGR4 reveals a complex operon architecture and abundant riboregulation critical for growth and virulence. PLoS Pathog 2018; 14:e1007461. [PMID: 30517198 PMCID: PMC6296669 DOI: 10.1371/journal.ppat.1007461] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/17/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Efficient and highly organized regulation of transcription is fundamental to an organism’s ability to survive, proliferate, and quickly respond to its environment. Therefore, precise mapping of transcriptional units and understanding their regulation is crucial to determining how pathogenic bacteria cause disease and how they may be inhibited. In this study, we map the transcriptional landscape of the bacterial pathogen Streptococcus pneumoniae TIGR4 by applying a combination of high-throughput RNA-sequencing techniques. We successfully map 1864 high confidence transcription termination sites (TTSs), 790 high confidence transcription start sites (TSSs) (742 primary, and 48 secondary), and 1360 low confidence TSSs (74 secondary and 1286 primary) to yield a total of 2150 TSSs. Furthermore, our study reveals a complex transcriptome wherein environment-respondent alternate transcriptional units are observed within operons stemming from internal TSSs and TTSs. Additionally, we identify many putative cis-regulatory RNA elements and riboswitches within 5’-untranslated regions (5’-UTR). By integrating TSSs and TTSs with independently collected RNA-Seq datasets from a variety of conditions, we establish the response of these regulators to changes in growth conditions and validate several of them. Furthermore, to demonstrate the importance of ribo-regulation by 5’-UTR elements for in vivo virulence, we show that the pyrR regulatory element is essential for survival, successful colonization and infection in mice suggesting that such RNA elements are potential drug targets. Importantly, we show that our approach of combining high-throughput sequencing with in vivo experiments can reconstruct a global understanding of regulation, but also pave the way for discovery of compounds that target (ribo-)regulators to mitigate virulence and antibiotic resistance. The canonical relationship between a bacterial operon and the mRNA transcript produced from the operon has become significantly more complex as numerous regulatory mechanisms that impact the stability, translational efficiency, and early termination rates for mRNA transcripts have been described. With the rise of antibiotic resistance, these mechanisms offer new potential targets for antibiotic development. In this study we used a combination of high-throughput sequencing technologies to assess genome-wide transcription start and stop sites, as well as determine condition specific global transcription patterns in the human pathogen Streptococcus pneumoniae. We find that the majority of multi-gene operons have alternative start and stop sites enabling condition specific regulation of genes within the same operon. Furthermore, we identified many putative RNA regulators that are widespread in the S. pneumoniae pan-genome. Finally, we show that separately collected RNA-Seq data enables identification of conditional triggers for regulatory RNAs, and experimentally demonstrate that our approach may be used to identify drug-able RNA targets by establishing that pyrR RNA functionality is critical for successful S. pneumoniae mouse colonization and infection. Thus, our study not only uses genome-wide high-throughput approaches to identify putative RNA regulators, but also establishes the importance of such regulators in S. pneumoniae virulence.
Collapse
Affiliation(s)
- Indu Warrier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Nikhil Ram-Mohan
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Zeyu Zhu
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ariana Hazery
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Haley Echlin
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle M. Meyer
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail: (MMM); (TvO)
| | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail: (MMM); (TvO)
| |
Collapse
|
5
|
Fan X, Wu H, Jia Z, Li G, Li Q, Chen N, Xie X. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Appl Microbiol Biotechnol 2018; 102:8753-8762. [DOI: 10.1007/s00253-018-9316-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
|
6
|
Fan X, Wu H, Li G, Yuan H, Zhang H, Li Y, Xie X, Chen N. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS One 2017; 12:e0176545. [PMID: 28472077 PMCID: PMC5417507 DOI: 10.1371/journal.pone.0176545] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5′-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain.
Collapse
Affiliation(s)
- Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Wu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Guoliang Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hui Yuan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hongchao Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- * E-mail: (XX); (NC)
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- * E-mail: (XX); (NC)
| |
Collapse
|
7
|
Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression. Microbiol Mol Biol Rev 2016; 80:1029-1057. [PMID: 27784798 DOI: 10.1128/mmbr.00026-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis.
Collapse
|
8
|
Complete Reconstitution of the Vancomycin-Intermediate Staphylococcus aureus Phenotype of Strain Mu50 in Vancomycin-Susceptible S. aureus. Antimicrob Agents Chemother 2016; 60:3730-42. [PMID: 27067329 PMCID: PMC4879404 DOI: 10.1128/aac.00420-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/01/2016] [Indexed: 12/23/2022] Open
Abstract
Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of strain Mu50 was achieved by sequentially introducing mutations into six genes of vancomycin-susceptible S. aureus (VSSA) strain N315ΔIP. The six mutated genes were detected in VISA strain Mu50 but not in N315ΔIP. Introduction of the mutation Ser329Leu into vraS, encoding the sensor histidine kinase of the vraSR two-component regulatory (TCR) system, and another mutation, Glu146Lys, into msrR, belonging to the LytR-CpsA-Psr (LCP) family, increased the level of vancomycin resistance to that detected in heterogeneous vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, Asn197Ser into graR of the graSR TCR system and His481Tyr into rpoB, encoding the β subunit of RNA polymerase, converted the hVISA strain into a VISA strain with the same level of vancomycin resistance as Mu50. Surprisingly, however, the constructed quadruple mutant strain ΔIP4 did not have a thickened cell wall, a cardinal feature of the VISA phenotype. Subsequent study showed that cell wall thickening was an inducible phenotype in the mutant strain, whereas it was a constitutive one in Mu50. Finally, introduction of the Ala297Val mutation into fdh2, which encodes a putative formate dehydrogenase, or a 67-amino-acid sequence deletion into sle1 [sle1(Δ67aa)], encoding the hydrolase of N-acetylmuramyl-l-alanine amidase in the peptidoglycan, converted inducible cell wall thickening into constitutive cell wall thickening. sle1(Δ67aa) was found to cause a drastic decrease in autolysis activity. Thus, all six mutated genes required for acquisition of the VISA phenotype were directly or indirectly involved in the regulation of cell physiology. The VISA phenotype seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology.
Collapse
|
9
|
|
10
|
Huai D, Zhang Y, Zhang C, Cahoon EB, Zhou Y. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa. PLoS One 2015; 10:e0131755. [PMID: 26121034 PMCID: PMC4485900 DOI: 10.1371/journal.pone.0131755] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/08/2015] [Indexed: 12/29/2022] Open
Abstract
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.
Collapse
Affiliation(s)
- Dongxin Huai
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Yuanyuan Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Edgar B. Cahoon
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail: (YZ); (EBC)
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (YZ); (EBC)
| |
Collapse
|
11
|
Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. RNA-binding proteins involved in post-transcriptional regulation in bacteria. Front Microbiol 2015; 6:141. [PMID: 25784899 PMCID: PMC4347634 DOI: 10.3389/fmicb.2015.00141] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.
Collapse
Affiliation(s)
- Elke Van Assche
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven Leuven, Belgium
| |
Collapse
|
12
|
Kumar PKR, Mizuno H. Metal ion-dependent anti-termination of transcriptional regulation of ribonucleoprotein complexes. Biophys Rev 2014; 6:215-226. [PMID: 28510182 DOI: 10.1007/s12551-014-0138-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/30/2014] [Indexed: 12/01/2022] Open
Abstract
Anti-terminator proteins are frequently used by bacteria to sense a specific metabolite signal and direct RNA polymerase to either terminate or continue transcription of the genes downstream of an operon. One such protein is HutP, which binds to upstream cis-regulatory sequences to regulate expression of the histidine utilization (hut) operon in Bacillus subtilis. HutP must be activated by L-histidine and divalent metal ions before binding to hut mRNA; binding of activated HutP prevents termination of transcription. Thus, HutP appears to regulate the hut operon in a unique fashion in this class of regulatory proteins. To understand gene (hut operon) regulation by HutP, we performed several biochemical and structural studies. These studies reveal events in the regulatory mechanism, starting with the activation of HutP and ending with the unwinding of hut terminator RNA. In this review, we describe the unique regulatory mechanisms commonly used by many Bacillus species.
Collapse
Affiliation(s)
- Penmetcha K R Kumar
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1 Higashi, Tsukuba City, 305-8566, Ibaraki, Japan.
| | - Hiroshi Mizuno
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1 Higashi, Tsukuba City, 305-8566, Ibaraki, Japan
| |
Collapse
|
13
|
Dhakshnamoorthy B, Mizuno H, Kumar PKR. Alternative binding modes of l-histidine guided by metal ions for the activation of the antiterminator protein HutP of Bacillus subtilis. J Struct Biol 2013; 183:512-518. [PMID: 23748184 DOI: 10.1016/j.jsb.2013.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/11/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022]
Abstract
Anti-terminator proteins control gene expression by recognizing control signals within cognate transcripts and then preventing transcription termination. HutP is such a regulatory protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences in hut mRNAs. During the anti-termination process, l-histidine and a divalent ion are required for hutP to bind to the specific sequence within the hut mRNA. Our previous crystal structure of the HutP-l-histidine-Mg(2+)-RNA ternary complex demonstrated that the l-histidine ligand and Mg(2+) bind together such that the backbone nitrogen and carboxyl oxygen of l-histidine coordinate with Mg(2+). In addition to the Mg(2+), other divalent ions are also known to efficiently support the l-histidine-dependent anti-termination of the hut operon, and the best divalent ion is Zn(2+). In this study, we determined the crystal structure of the HutP-l-histidine-Zn(2+) complex and found that the orientation of l-histidine coordinated to Zn(2+) is reversed relative to that of l-histidine coordinated to Mg(2+), i.e., the imidazole side chain nitrogen of l-histidine coordinates to Zn(2+). This alternative binding mode of the l-histidine ligand to a divalent ion provides further insight into the mechanisms responsible for the activation of RNA binding during the hut anti-termination process.
Collapse
Affiliation(s)
- Balasundaresan Dhakshnamoorthy
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central-6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hiroshi Mizuno
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central-6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Penmetcha K R Kumar
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central-6, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| |
Collapse
|
14
|
Manzourolajdad A, Wang Y, Shaw TI, Malmberg RL. Information-theoretic uncertainty of SCFG-modeled folding space of the non-coding RNA. J Theor Biol 2012; 318:140-63. [PMID: 23160142 DOI: 10.1016/j.jtbi.2012.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED RNA secondary structure ensembles define probability distributions for alternative equilibrium secondary structures of an RNA sequence. Shannon's entropy is a measure for the amount of diversity present in any ensemble. In this work, Shannon's entropy of the SCFG ensemble on an RNA sequence is derived and implemented in polynomial time for both structurally ambiguous and unambiguous grammars. Micro RNA sequences generally have low folding entropy, as previously discovered. Surprisingly, signs of significantly high folding entropy were observed in certain ncRNA families. More effective models coupled with targeted randomization tests can lead to a better insight into folding features of these families. AVAILABILITY URL http://www.plantbio.uga.edu/~russell/index.php?s=1&n=5&r=0.
Collapse
Affiliation(s)
- Amirhossein Manzourolajdad
- Institute of Bioinformatics, University of Georgia, Davison Life Sciences Bldg, Room B118B, 120 Green St, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
15
|
Kumar R, Shah P, Swiatlo E, Burgess SC, Lawrence ML, Nanduri B. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genomics 2010; 11:350. [PMID: 20525227 PMCID: PMC2887815 DOI: 10.1186/1471-2164-11-350] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 06/03/2010] [Indexed: 11/10/2022] Open
Abstract
Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence.
Collapse
Affiliation(s)
- Ranjit Kumar
- Department of Basic sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
16
|
Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, François P, Vandenesch F, Gaspin C, Romby P. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 2010; 37:7239-57. [PMID: 19786493 PMCID: PMC2790875 DOI: 10.1093/nar/gkp668] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaA-K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaE-mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved C-rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism.
Collapse
Affiliation(s)
- Thomas Geissmann
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hein P, Stöckel J, Bennewitz S, Oelmüller R. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 69:517-28. [PMID: 19037728 DOI: 10.1007/s11103-008-9433-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/10/2008] [Indexed: 05/06/2023]
Abstract
Dpt1 (defect in p saA/B transcript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b ( 6 )/f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.
Collapse
Affiliation(s)
- Paul Hein
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, Dornburgerstr. 159, 07743, Jena, Germany
| | | | | | | |
Collapse
|
18
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
19
|
Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, Tompa M, Ruzzo WL. A computational pipeline for high- throughput discovery of cis-regulatory noncoding RNA in prokaryotes. PLoS Comput Biol 2008; 3:e126. [PMID: 17616982 PMCID: PMC1913097 DOI: 10.1371/journal.pcbi.0030126] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/17/2007] [Indexed: 01/11/2023] Open
Abstract
Noncoding RNAs (ncRNAs) are important functional RNAs that do not code for proteins. We present a highly efficient computational pipeline for discovering cis-regulatory ncRNA motifs de novo. The pipeline differs from previous methods in that it is structure-oriented, does not require a multiple-sequence alignment as input, and is capable of detecting RNA motifs with low sequence conservation. We also integrate RNA motif prediction with RNA homolog search, which improves the quality of the RNA motifs significantly. Here, we report the results of applying this pipeline to Firmicute bacteria. Our top-ranking motifs include most known Firmicute elements found in the RNA family database (Rfam). Comparing our motif models with Rfam's hand-curated motif models, we achieve high accuracy in both membership prediction and base-pair–level secondary structure prediction (at least 75% average sensitivity and specificity on both tasks). Of the ncRNA candidates not in Rfam, we find compelling evidence that some of them are functional, and analyze several potential ribosomal protein leaders in depth. For decades, scientists believed that, with a few key exceptions, RNA played a secondary role in the cell. Recent discoveries have sharply revised this simple picture, revealing widespread, diverse, and surprisingly sophisticated roles for RNA. For example, many bacteria use RNA elements called “riboswitches” to switch various gene activities on or off in response to extremely sensitive detection of specific molecules. Discovery of new functional RNA elements remains a very challenging task, both computationally and experimentally. It is computationally difficult largely because of the importance of an RNA molecule's 3-D structure, and the fact that molecules with very different nucleotide sequences can fold into the same shape. In this paper, we propose a computational procedure, based on comparing the genomes of multiple bacteria, for discovery of novel RNAs. Unlike most previous approaches, ours does not require a letter-by-letter alignment of these diverse genomes, making it more applicable to RNA elements whose structure, but not nucleotide sequence, has been preserved through evolution. In an extensive test on the Firmicutes, a bacterial phylum containing well-studied organisms such as Bacillus subtilis and important pathogens such as anthrax, we recover most known noncoding RNA elements, as well as making many novel predictions.
Collapse
Affiliation(s)
- Zizhen Yao
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gopinath SCB, Balasundaresan D, Kumarevel T, Misono TS, Mizuno H, Kumar PKR. Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP. Nucleic Acids Res 2008; 36:3463-73. [PMID: 18445631 PMCID: PMC2425495 DOI: 10.1093/nar/gkn199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/30/2022] Open
Abstract
The anti-termination protein, HutP, regulates the gene expression of the hut (histidine utilization) operon of Bacillus subtilis, by destabilizing the hut terminator RNA located upstream of the coding region encoding l-histidine degradation enzymes. On the basis of biochemical, in vivo and X-ray structural analyses, we now report that HutP uses its dual RNA-binding surfaces to access two XAG-rich regions (sites I and II) within the terminator RNA to mediate the destabilization process. In this process, HutP initiates destabilization at the 5'-end of its mRNA by binding to the first XAG-rich region (site I) and then accesses the second XAG-rich region (site II), located downstream of the stable G-C-rich segment of the terminator stem. By this action, HutP appears to disrupt the G-C-rich terminator stem, and thus prevents premature termination of transcription in the RNA segment preceding the regions encoding for the histidine degradation enzymes.
Collapse
Affiliation(s)
- Subash C. B. Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Dhakshnamoorthy Balasundaresan
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Thirumananseri Kumarevel
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoko S. Misono
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Mizuno
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Penmetcha K. R. Kumar
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki and Biometal Science Laboratory & Protein Crystallography Research Group, RIKEN Spring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
21
|
Fields CJ, Switzer RL. Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression. J Bacteriol 2007; 189:6236-45. [PMID: 17601781 PMCID: PMC1951914 DOI: 10.1128/jb.00803-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of pyrimidine biosynthetic (pyr) genes by a transcription attenuation mechanism that is mediated by the PyrR mRNA-binding regulatory protein has been demonstrated for numerous gram-positive bacteria. Mycobacterial genomes specify pyrR genes and contain obvious PyrR-binding sequences in the initially transcribed regions of their pyr operons, but transcription antiterminator and attenuation terminator sequences are absent from their pyr 5' leader regions. This work demonstrates that repression of pyr operon expression in Mycobacterium smegmatis by exogenous uracil requires the pyrR gene and the pyr leader RNA sequence for binding of PyrR. Plasmids containing the M. smegmatis pyr promoter-leader region translationally fused to lacZ also displayed pyrR-dependent repression, but transcriptional fusions of the same sequences to a lacZ gene that retained the lacZ ribosome-binding site were not regulated by PyrR plus uracil. We propose that PyrR regulates pyr expression in M. smegmatis, other mycobacteria, and probably in numerous other bacteria by a translational repression mechanism in which nucleotide-regulated binding of PyrR occludes the first ribosome-binding site of the pyr operon.
Collapse
Affiliation(s)
- Christopher J Fields
- Department of Biochemistry, University of Illinois, 600 South Mathews, Urbana, IL 61801, USA
| | | |
Collapse
|
22
|
Kumarevel T. Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis. Biophys Chem 2007; 128:1-12. [PMID: 17395359 DOI: 10.1016/j.bpc.2007.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Regulating gene expression directly at the mRNA level represents a novel approach to control cellular processes in all organisms. In this respect, an RNA-binding protein plays a key role by targeting the mRNA to regulate the expression by attenuation or an anti-termination mechanism only in the presence of their cognate ligands. Although many proteins are known to use these mechanisms to regulate the gene expression, no structural insights have been revealed to date to explain how these proteins trigger the conformation for the recognition of RNA. This review describes the activated conformation of HutP, brought by the coordination of L-histidine and Mg(2+) ions, based on our recently solved crystal structures [uncomplexed HutP, HutP-Mg(2+), HutP-L-histidine, HutP-Mg(2+)-L-histidine, HutP-Mg(2+)-L-histidine-RNA]. Once the HutP is activated, the protein binds specifically to bases within the terminator region, without undergoing further structural rearrangement. Also, a high resolution (1.48 A) crystal structure of the quaternary complex containing the three GAG motifs is presented. This analysis clearly demonstrates that the first base in the UAG motifs is not important for the function and is consistent with our previous observations.
Collapse
MESH Headings
- Allosteric Regulation
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cations, Divalent/metabolism
- Crystallography, X-Ray
- Histidine/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Thirumananseri Kumarevel
- Biometals Laboratory and Advanced Protein Crystallography Research Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
23
|
Hobl B, Mack M. The regulator protein PyrR of Bacillus subtilis specifically interacts in vivo with three untranslated regions within pyr mRNA of pyrimidine biosynthesis. Microbiology (Reading) 2007; 153:693-700. [PMID: 17322189 DOI: 10.1099/mic.0.2006/003772-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro experiments have shown that the genes of the de novo pyrimidine biosynthetic pathway of Bacillus subtilis, the pyr genes, are regulated by a transcriptional attenuation mechanism. Specific regulatory sequences (binding loops, BLs) are located within three untranslated leader sequences at the beginning of pyr mRNA. These binding loops, BL1, BL2 and BL3, act as anti-antiterminators of transcription when stabilized by the regulator protein PyrR. In this work, the interaction of PyrR with BL1, BL2 and BL3 was qualitatively and quantitatively analysed in vivo using the yeast three-hybrid system. The results indicate that PyrR specifically binds to BL1, BL2 and BL3. Furthermore, the data suggest that the strength of interaction between PyrR and the three different BLs in vivo is within the same dimension. The yeast three-hybrid system also proved to be useful for the rapid analysis of structural requirements for PyrR-BL binding. Point mutations within the predicted critical regions of BL1, BL2 and BL3 led to drastically reduced binding of PyrR. In summary, it is shown that the yeast three-hybrid system is well suited to qualitatively and quantitatively analyse bacterial regulatory systems that are based on factor-independent transcriptional attenuation.
Collapse
Affiliation(s)
- Birgit Hobl
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Windeckstr. 110, 68163 Mannheim, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Windeckstr. 110, 68163 Mannheim, Germany
| |
Collapse
|
24
|
|
25
|
Ohki R, Tateno K, Takizawa T, Aiso T, Murata M. Transcriptional termination control of a novel ABC transporter gene involved in antibiotic resistance in Bacillus subtilis. J Bacteriol 2005; 187:5946-54. [PMID: 16109936 PMCID: PMC1196159 DOI: 10.1128/jb.187.17.5946-5954.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In members of one of the subfamilies of the bacterial ATP binding cassette (ABC) transporters, the two nucleotide binding domains are fused as a single peptide and the proteins have no membrane-spanning domain partners. Most of the ABC efflux transporters of this subfamily have been characterized in actinomycetes, producing macrolide, lincosamide, and streptogramin antibiotics. Among 40 ABC efflux transporters of Bacillus subtilis, five proteins belong to this subfamily. None of these proteins has been functionally characterized. We examined macrolide, lincosamide, and streptogramin antibiotic resistance in insertional disruptants of the genes that encode these proteins. It was found that only a disruptant of vmlR (formerly named expZ) showed hypersensitivity to virginiamycin M and lincomycin. Expression of the vmlR gene was induced by the addition of these antibiotics in growth medium. Primer extension analysis revealed that transcription of the vmlR gene initiates at an adenosine residue located 225 bp upstream of the initiation codon. From the analysis of the vmlR and lacZ fusion genes, a 52-bp deletion from +159 to +211 resulted in constitutive expression of the vmlR gene. In this region, a typical rho-independent transcriptional terminator was found. It was suggested that the majority of transcription ends at this termination signal in the absence of antibiotics, whereas under induced conditions, RNA polymerase reads through the terminator, and transcription continues to the downstream vmlR coding region, resulting in an increase in vmlR expression. No stabilization of vmlR mRNA occurred under the induced conditions.
Collapse
Affiliation(s)
- Reiko Ohki
- Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachioji, Tokyo, 192-8508, Japan.
| | | | | | | | | |
Collapse
|
26
|
Kumarevel T, Mizuno H, Kumar PKR. Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis. Nucleic Acids Res 2005; 33:5494-502. [PMID: 16192572 PMCID: PMC1236978 DOI: 10.1093/nar/gki868] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg2+ ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP–RNA interactions. The best divalent cations were Mn2+, Zn2+ and Cd2+, followed by Mg2+, Co2+ and Ni2+, while Cu2+, Yb2+ and Hg2+ were ineffective. In the HutP–RNA interactions, divalent cations cannot be replaced by monovalent cations, suggesting that a divalent metal ion is required for mediating the protein–RNA interactions. To clarify their importance, we have crystallized HutP in the presence of three different metal ions (Mg2+, Mn2+ and Ba2+), which revealed the importance of the metal ion binding site. Furthermore, these analyses clearly demonstrated how the metal ions cause the structural rearrangements that are required for the hut mRNA recognition.
Collapse
Affiliation(s)
| | - Hiroshi Mizuno
- NEC Soft Ltd1-18-6, Shinkiba, Koto-ku, Tokyo 106-8608, Japan
| | - Penmetcha K. R. Kumar
- To whom correspondence should be addressed. Tel: +81 298 61 6085; Fax: +81 298 61 6095;
| |
Collapse
|
27
|
Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 2005; 6:R70. [PMID: 16086852 PMCID: PMC1273637 DOI: 10.1186/gb-2005-6-8-r70] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/15/2005] [Accepted: 07/01/2005] [Indexed: 12/30/2022] Open
Abstract
Comparative sequence analysis and structural probing identified five RNA elements in the intergenic region of Agrobacterium tumefaciens and other α-proteobacteria. One of these RNA elements is probably a SAM-II, the only riboswitch class identified so far that is not found in Gram-positive bacteria. Background Riboswitches are RNA elements in the 5' untranslated leaders of bacterial mRNAs that directly sense the levels of specific metabolites with a structurally conserved aptamer domain to regulate expression of downstream genes. Riboswitches are most common in the genomes of low GC Gram-positive bacteria (for example, Bacillus subtilis contains examples of all known riboswitches), and some riboswitch classes seem to be restricted to this group. Results We used comparative sequence analysis and structural probing to identify five RNA elements (serC, speF, suhB, ybhL, and metA) that reside in the intergenic regions of Agrobacterium tumefaciens and many other α-proteobacteria. One of these, the metA motif, is found upstream of methionine biosynthesis genes and binds S-adenosylmethionine (SAM). This natural aptamer most likely functions as a SAM riboswitch (SAM-II) with a consensus sequence and structure that is distinct from the class of SAM riboswitches (SAM-I) predominantly found in Gram-positive bacteria. The minimal functional SAM-II aptamer consists of fewer than 70 nucleotides, which form a single stem and a pseudoknot. Despite its simple architecture and lower affinity for SAM, the SAM-II aptamer strongly discriminates against related compounds. Conclusion SAM-II is the only metabolite-binding riboswitch class identified so far that is not found in Gram-positive bacteria, and its existence demonstrates that biological systems can use multiple RNA structures to sense a single chemical compound. The two SAM riboswitches might be 'RNA World' relics that were selectively retained in certain bacterial lineages or new motifs that have emerged since the divergence of the major bacterial groups.
Collapse
Affiliation(s)
- Keith A Corbino
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Jeffrey E Barrick
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Jinsoo Lim
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Rüdiger Welz
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
- Department of Chemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Brian J Tucker
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Izabela Puskarz
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Maumita Mandal
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
- Department of Physics, University of California, Berkeley, CA 94720-7200, USA
| | - Noam D Rudnick
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
28
|
Kumarevel T, Mizuno H, Kumar PKR. Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand. Nature 2005; 434:183-91. [PMID: 15758992 DOI: 10.1038/nature03355] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 01/10/2005] [Indexed: 11/09/2022]
Abstract
HutP regulates the expression of the hut structural genes of Bacillus subtilis by an anti-termination mechanism and requires two components, Mg2+ ions and L-histidine. HutP recognizes three UAG triplet units, separated by four non-conserved nucleotides on the terminator region. Here we report the 1.60-A resolution crystal structure of the quaternary complex (HutP-L-histidine-Mg2+-21-base single-stranded RNA). In the complex, the RNA adopts a novel triangular fold on the hexameric surface of HutP, without any base-pairing, and binds to the protein mostly by specific protein-base interactions. The structure explains how the HutP and RNA interactions are regulated critically by the l-histidine and Mg2+ ion through the structural rearrangement. To gain insights into these structural rearrangements, we solved two additional crystal structures (uncomplexed HutP and HutP-L-histidine-Mg2+) that revealed the intermediate structures of HutP (before forming an active structure) and the importance of the Mg2+ ion interactions in the complexes.
Collapse
MESH Headings
- Bacillus subtilis/chemistry
- Bacillus subtilis/genetics
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Cations, Divalent/chemistry
- Cations, Divalent/metabolism
- Crystallography, X-Ray
- Gene Expression Regulation, Bacterial
- Histidine/chemistry
- Histidine/metabolism
- Ligands
- Magnesium/chemistry
- Magnesium/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational
- Protein Structure, Quaternary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Static Electricity
- Structure-Activity Relationship
- Transcription Factors/chemistry
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Thirumananseri Kumarevel
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
29
|
Kumarevel T, Fujimoto Z, Karthe P, Oda M, Mizuno H, Kumar PKR. Crystal structure of activated HutP; an RNA binding protein that regulates transcription of the hut operon in Bacillus subtilis. Structure 2005; 12:1269-80. [PMID: 15242603 DOI: 10.1016/j.str.2004.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 05/06/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
HutP is an L-histidine-activated RNA binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences on the hut mRNA. The crystal structure of HutP complexed with an L-histidine analog showed a novel fold; there are four antiparallel beta strands in the central region of each monomer, with two alpha helices each on the front and back. Two HutP monomers form a dimer, and three dimers are arranged in crystallographic 3-fold symmetry to form a hexamer. A histidine analog was located in between the two monomers of HutP, with the imidazole group of L-histidine hydrogen bonded to Glu81. An activation mechanism is proposed based on the identification of key residues of HutP. The HutP binding region in hut mRNA was defined: it consists of three UAG trinucleotide motifs separated by four spacer nucleotides. Residues of HutP potentially important for RNA binding were identified.
Collapse
Affiliation(s)
- Thirumananseri Kumarevel
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Kumarevel TS, Fujimoto Z, Mizuno H, Kumar PKR. Crystallization and preliminary X-ray diffraction studies of the metal-ion-mediated ternary complex of the HutP protein with L-histidine and its cognate RNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:125-8. [PMID: 15450857 DOI: 10.1016/j.bbapap.2004.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/18/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
HutP is an RNA-binding protein that regulates the expression of the Bacillus subtilis hut operon by binding to cis-acting regulatory sequences within hut mRNA, exclusively in the presence of L-histidine. We recently solved the crystal structure of a binary complex (HutP with an L-histidine analog) that revealed a novel RNA-binding fold, and identified the important residues that interact with the L-histidine analog. In addition, we have defined the minimal RNA binding segment that is required for HutP recognition. Interestingly, we showed that ternary complex formation depends on the availability of not only L-histidine but also divalent metal ions. Here we report the crystallization and preliminary X-ray diffraction analysis of the HutP ternary complex. The ternary complex was crystallized in the presence of Mg2+ along with L-histidine and hut mRNA, using the hanging drop vapor diffusion method. The crystal belongs to the R3 space group, with unit cell parameters a=b=75.30 A, c=133.8 A. A complete data set at 1.60 A was collected.
Collapse
Affiliation(s)
- T S Kumarevel
- Functional Nucleic Acids Group, Institute for Biological Resources and Function, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
31
|
Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS. Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 2004; 186:4665-84. [PMID: 15231800 PMCID: PMC438561 DOI: 10.1128/jb.186.14.4665-4684.2004] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions.
Collapse
Affiliation(s)
- Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Szigeti R, Milescu M, Gollnick P. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis. J Bacteriol 2004; 186:818-28. [PMID: 14729709 PMCID: PMC321493 DOI: 10.1128/jb.186.3.818-828.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species.
Collapse
Affiliation(s)
- Reka Szigeti
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
33
|
Johansen LE, Nygaard P, Lassen C, Agersø Y, Saxild HH. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J Bacteriol 2003; 185:5200-9. [PMID: 12923093 PMCID: PMC181001 DOI: 10.1128/jb.185.17.5200-5209.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis expression of genes or operons encoding enzymes and other proteins involved in purine synthesis is affected by purine bases and nucleosides in the growth medium. The genes belonging to the PurR regulon (purR, purA, glyA, guaC, pbuO, pbuG, and the pur, yqhZ-folD, and xpt-pbuX operons) are controlled by the PurR repressor, which inhibits transcription initiation. Other genes are regulated by a less-well-described transcription termination mechanism that responds to the presence of hypoxanthine and guanine. The pur operon and the xpt-pbuX operon, which were studied here, are regulated by both mechanisms. We isolated two mutants resistant to 2-fluoroadenine in which the pur operon and the xpt-pbuX operon are expressed at increased levels in a PurR-independent manner. The mutations were caused by deletions that disrupted a potential transcription terminator structure located immediately upstream of the ydhL gene. The 5' part of the ydhL leader region contained a 63-nucleotide (nt) sequence very similar to the 5' ends of the leaders of the pur and xpt-pbuX operons. Transcripts of these regions may form a common tandem stem-loop secondary structure. Two additional genes with potential leader regions containing the 63-nt sequence are pbuG, encoding a hypoxanthine-guanine transporter, and yxjA, which was shown to encode a purine nucleoside transporter and is renamed nupG. Transcriptional lacZ fusions and mutations in the 63-nt sequence encoding the possible secondary structures provided evidence that expression of the pur and xpt-pbuX operons and expression of the ydhL, nupG, and pbuG genes are regulated by a common mechanism. The new pur regulon is designated the XptR regulon. Except for ydhL, the operons and genes were negatively regulated by hypoxanthine and guanine. ydhL was positively regulated. The derived amino acid sequence encoded by ydhL (now called pbuE) is similar to the amino acid sequences of metabolite efflux pumps. When overexpressed, PbuE lowers the sensitivity to purine analogs. Indirect evidence indicated that PbuE decreases the size of the internal pool of hypoxanthine. This explains why the hypoxanthine- and guanine-regulated genes are expressed at elevated levels in a mutant that overexpresses pbuE.
Collapse
|
34
|
Grabner GK, Switzer RL. Kinetic studies of the uracil phosphoribosyltransferase reaction catalyzed by the Bacillus subtilis pyrimidine attenuation regulatory protein PyrR. J Biol Chem 2003; 278:6921-7. [PMID: 12482852 DOI: 10.1074/jbc.m211111200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PyrR protein from Bacillus subtilis and many other bacteria is a bifunctional protein. Its primary function is the regulation of expression of pyrimidine biosynthetic (pyr) genes by binding to specific sites on pyr mRNA in a uridine nucleotide-dependent manner and altering the folding of downstream RNA to promote termination of transcription. PyrR also catalyzes the uracil phosphoribosyltransferase (UPRTase) reaction even though it bears little amino acid sequence similarity to other bacterial UPRTases. The PyrR-catalyzed UPRTase reaction obeyed a Ping Pong steady state kinetic pattern under all conditions examined, but no catalysis of [(14)C]uracil-UMP and [(32)P]PP(i)-phosphoribosylpyrophosphate exchange reactions could be detected. Steady state equations for Ordered Bi Bi mechanisms for PyrR that include a kinetically irreversible conformational change after binding of PRPP but before uracil binding were shown to account for the Ping Pong pattern of the enzyme. This mechanism was supported by the following experimental observations. The reverse reaction was extremely slow with a catalytic rate constant 3300 times smaller than for the forward reaction. Patterns of product inhibition of the forward reaction were consistent with a version of the irreversible conformational change model in which PyrR returns to the unliganded conformation before dissociation of UMP and were inconsistent with several other kinetic mechanisms. UMP and phosphoribosylpyrophosphate were shown by equilibrium dialysis to bind to free PyrR (dissociation constants of 27 +/- 3 and 18 +/- 2 microm, respectively), but uracil and PP(i) did not bind at equilibrium concentrations up to 750 microm. We propose that the conformational change kinetic model developed for PyrR can also account for numerous other reports of Ping Pong kinetics for various phosphoribosyltransferases that do not form the phosphoribosyl-enzyme intermediate predicted by classic Ping Pong kinetics.
Collapse
Affiliation(s)
- Gail K Grabner
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
35
|
Tosato V, Gjuracic K, Vlahovicek K, Pongor S, Danchin A, Bruschi CV. The DNA secondary structure of the Bacillus subtilis genome. FEMS Microbiol Lett 2003; 218:23-30. [PMID: 12583893 DOI: 10.1111/j.1574-6968.2003.tb11493.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The entire genomic DNA sequence of the Gram-positive bacterium Bacillus subtilis reported in the SubtiList database has been subjected in this work to a complete bioinformatic analysis of the potential formation of secondary DNA structures such as hairpins and bending. The most significant of these structures have been mapped with respect to their genomic location and compared to those structures already known to have a physiological role, such as the rho-independent transcription terminators. The distribution of these structures along the bacterial chromosome shows two major features: (i). the concentration of the most curved DNA in the intergenic regions rather than within the ORFs, and (ii). a decreasing gradient of large hairpins from the origin towards the terC end of chromosomal DNA replication. Given the increasing biological relevance of secondary DNA structures, these findings should facilitate further studies on the evolution, dynamics and expression of the genetic information stored in bacterial genomes.
Collapse
Affiliation(s)
- Valentina Tosato
- Microbiology Group, International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, 34012, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
In this review, we describe a variety of mechanisms that bacteria use to regulate transcription elongation in order to control gene expression in response to changes in their environment. Together, these mechanisms are known as attenuation and antitermination, and both involve controlling the formation of a transcription terminator structure in the RNA transcript prior to a structural gene or operon. We examine attenuation and antitermination from the point of view of the different biomolecules that are used to influence the RNA structure. Attenuation of many amino acid biosynthetic operons, particularly in enteric bacteria, is controlled by ribosomes translating leader peptides. RNA-binding proteins regulate attenuation, particularly in gram-positive bacteria such as Bacillus subtilis. Transfer RNA is also used to bind to leader RNAs and influence transcription antitermination in a large number of amino acyl tRNA synthetase genes and several biosynthetic genes in gram-positive bacteria. Finally, antisense RNA is involved in mediating transcription attenuation to control copy number of several plasmids.
Collapse
Affiliation(s)
- Paul Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA.
| | | |
Collapse
|
37
|
Kumarevel TS, Fujimoto Z, Padmanabhan B, Oda M, Nishikawa S, Mizuno H, Kumar PKR. Crystallization and preliminary X-ray diffraction studies of HutP protein: an RNA-binding protein that regulates the transcription of hut operon in Bacillus subtilis. J Struct Biol 2002; 138:237-40. [PMID: 12217662 DOI: 10.1016/s1047-8477(02)00024-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HutP is an RNA-binding protein and regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences on hut mRNA. HutP and its mutant, which has increased affinity for the regulatory sequences, were purified and crystallized by the hanging-drop vapor diffusion method. The space group was P2(1)3 with unit cell dimensions a=b=c=95.6A for HutP and a=b=c=96.8A for the mutant. Complete data sets of 3.0-A resolution for wild-type HutP and of 2.70-A resolution for the mutant HutP were collected.
Collapse
Affiliation(s)
- T S Kumarevel
- Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Bonner ER, D'Elia JN, Billips BK, Switzer RL. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res 2001; 29:4851-65. [PMID: 11726695 PMCID: PMC96680 DOI: 10.1093/nar/29.23.4851] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pyrimidine nucleotide biosynthesis (pyr) operon in Bacillus subtilis is regulated by transcriptional attenuation. The PyrR protein binds in a uridine nucleotide-dependent manner to three attenuation sites at the 5'-end of pyr mRNA. PyrR binds an RNA-binding loop, allowing a terminator hairpin to form and repressing the downstream genes. The binding of PyrR to defined RNA molecules was characterized by a gel mobility shift assay. Titration indicated that PyrR binds RNA in an equimolar ratio. PyrR bound more tightly to the binding loops from the second (BL2 RNA) and third (BL3 RNA) attenuation sites than to the binding loop from the first (BL1 RNA) attenuation site. PyrR bound BL2 RNA 4-5-fold tighter in the presence of saturating UMP or UDP and 150- fold tighter with saturating UTP, suggesting that UTP is the more important co-regulator. The minimal RNA that bound tightly to PyrR was 28 nt long. Thirty-one structural variants of BL2 RNA were tested for PyrR binding affinity. Two highly conserved regions of the RNA, the terminal loop and top of the upper stem and a purine-rich internal bulge and the base pairs below it, were crucial for tight binding. Conserved elements of RNA secondary structure were also required for tight binding. PyrR protected conserved areas of the binding loop in hydroxyl radical footprinting experiments. PyrR likely recognizes conserved RNA sequences, but only if they are properly positioned in the correct secondary structure.
Collapse
Affiliation(s)
- E R Bonner
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
39
|
Terai G, Takagi T, Nakai K. Prediction of co-regulated genes in Bacillus subtilis on the basis of upstream elements conserved across three closely related species. Genome Biol 2001; 2:RESEARCH0048. [PMID: 11737947 PMCID: PMC60312 DOI: 10.1186/gb-2001-2-11-research0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Revised: 09/06/2001] [Accepted: 09/13/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of co-regulated genes is essential for elucidating transcriptional regulatory networks and the function of uncharacterized genes. Although co-regulated genes should have at least one common sequence element, it is generally difficult to identify these genes from the presence of this element because it is very easily obscured by noise. To overcome this problem, we used conserved information from three closely related species: Bacillus subtilis, B. halodurans and B. stearothermophilus. RESULTS Even though such species have a limited number of clearly orthologous genes, we obtained 1,884 phylogenetically conserved elements from the upstream intergenic regions of 1,568 B. subtilis genes. Similarity between these elements was used to cluster these genes. No other a priori knowledge on genes and elements was used. We could identify some genes known or suggested to be regulated by a common transcription factor as well as genes regulated by a common attenuation effector. CONCLUSIONS We confirmed that our method generates relatively few false positives in clusters with higher scores and that general elements such as -35/-10 boxes and Shine-Dalgarno sequence are not major obstacles. Moreover, we identified some plausible additional members of groups of known co-regulated genes. Thus, our approach is promising for exploring potentially co-regulated genes.
Collapse
Affiliation(s)
- G Terai
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
40
|
Martinussen J, Schallert J, Andersen B, Hammer K. The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J Bacteriol 2001; 183:2785-94. [PMID: 11292797 PMCID: PMC99494 DOI: 10.1128/jb.183.9.2785-2794.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four genes pyrR, pyrP, pyrB, and carA were found to constitute an operon in Lactococcus lactis subsp. lactis MG1363. The functions of the different genes were established by mutational analysis. The first gene in the operon is the pyrimidine regulatory gene, pyrR, which is responsible for the regulation of the expression of the pyrimidine biosynthetic genes leading to UMP formation. The second gene encodes a membrane-bound high-affinity uracil permease, required for utilization of exogenous uracil. The last two genes in the operon, pyrB and carA, encode pyrimidine biosynthetic enzymes; aspartate transcarbamoylase (pyrB) is the second enzyme in the pathway, whereas carbamoyl-phosphate synthetase subunit A (carA) is the small subunit of a heterodimeric enzyme, catalyzing the formation of carbamoyl phosphate. The carA gene product is shown to be required for both pyrimidine and arginine biosynthesis. The expression of the pyrimidine biosynthetic genes including the pyrRPB-carA operon is subject to control at the transcriptional level, most probably by an attenuator mechanism in which PyrR acts as the regulatory protein.
Collapse
Affiliation(s)
- J Martinussen
- Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
41
|
Artsimovitch I, Svetlov V, Anthony L, Burgess RR, Landick R. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol 2000; 182:6027-35. [PMID: 11029421 PMCID: PMC94735 DOI: 10.1128/jb.182.21.6027-6035.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of bacterial cells to diverse habitats relies on the ability of RNA polymerase to respond to various regulatory signals. Some of these signals are conserved throughout evolution, whereas others are species specific. In this study we present a comprehensive comparative analysis of RNA polymerases from two distantly related bacterial species, Escherichia coli and Bacillus subtilis, using a panel of in vitro transcription assays. We found substantial species-specific differences in the ability of these enzymes to escape from the promoter and to recognize certain types of elongation signals. Both enzymes responded similarly to other pause and termination signals and to the general E. coli elongation factors NusA and GreA. We also demonstrate that, although promoter recognition depends largely on the sigma subunit, promoter discrimination exhibited in species-specific fashion by both RNA polymerases resides in the core enzyme. We hypothesize that differences in signal recognition are due to the changes in contacts made between the beta and beta' subunits and the downstream DNA duplex.
Collapse
Affiliation(s)
- I Artsimovitch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
42
|
Sei-Iida Y, Koshimoto H, Kondo S, Tsuji A. Real-time monitoring of in vitro transcriptional RNA synthesis using fluorescence resonance energy transfer. Nucleic Acids Res 2000; 28:E59. [PMID: 10871382 PMCID: PMC102744 DOI: 10.1093/nar/28.12.e59] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Revised: 03/10/2000] [Accepted: 04/15/2000] [Indexed: 11/12/2022] Open
Abstract
We have developed a novel method for real-time monitoring of RNA synthesis in in vitro transcription reactions using fluorescence resonance energy transfer (FRET). Two 15mer DNAs, either of which was labeled with Bodipy493/503 as a donor or Cy5 as an acceptor, were prepared. When the two fluorescent DNAs hybridized to adjacent locations on Xenopus: elongation factor 1-alpha (xelf1-alpha) RNA, the distance between the two fluorophores became very close, causing FRET to occur and resulting in changes in fluorescence spectra. A high accessibility 30mer site of xelf1-alpha RNA was found and excess amounts of a pair of donor and acceptor DNA probes that were complementary to the site were added to the in vitro transcription reaction solution. Changes in fluorescence spectra were observed in response to progression of xelf1-alpha RNA synthesis that showed that the fluorescent probes hybridized to the synthesized RNA. Furthermore, when probes hybridizing to the synthesized xelf1-alpha RNA with less efficiency were used to monitor the reaction, spectral changes in response to RNA synthesis were also observed. This result suggests that the probes hybridized to synthesizing RNA molecules before they folded to form secondary structure and that there is no need to select sites on the RNA for the probes, which is required for probes hybridizing to folded RNA molecules.
Collapse
Affiliation(s)
- Y Sei-Iida
- Laboratory of Molecular Biophotonics, 5000 Hirakuchi, Hamakita 434-8555, Japan
| | | | | | | |
Collapse
|
43
|
Oda M, Kobayashi N, Ito A, Kurusu Y, Taira K. cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol 2000; 35:1244-54. [PMID: 10712704 DOI: 10.1046/j.1365-2958.2000.01795.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The location of the cis-acting regulatory region for histidine-dependent antitermination of the Bacillus subtilis hut operon was determined. A secondary structure, whose sequences partially overlap with the downstream terminator, was found in the regulatory region of the hut transcript. Mutational analysis of the regulatory region showed that the secondary structure was required for histidine-dependent antitermination. An electrophoretic mobility-shift assay demonstrated that, in response to the presence of histidine and Mg2+, purified HutP bound hut RNA bearing putative secondary structure but not RNA lacking the potential to form putative secondary structure. Native gel electrophoresis showed that HutP existed as a hexamer. A filter-binding assay revealed that the concentration of histidine required for half-maximal binding of HutP to RNA was 3.1 mM and that the Kd for binding of HutP to RNA was approximately 0.56 microM in the presence of histidine. These results suggested that putative secondary structure in the regulatory region of hut mRNA could function as an antiterminator to inhibit the formation of the terminator structure and that HutP causes expression of the hut structural genes by binding to the putative antiterminator structure in response to the presence of histidine.
Collapse
Affiliation(s)
- M Oda
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, MITI, Tsukuba City, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
45
|
Switzer RL, Turner RJ, Lu Y. Regulation of the Bacillus subtilis pyrimidine biosynthetic operon by transcriptional attenuation: control of gene expression by an mRNA-binding protein. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:329-67. [PMID: 9932459 DOI: 10.1016/s0079-6603(08)60512-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The pyrimidine nucleotide biosynthetic (pyr) operon of Bacillus subtilis is regulated by a transcriptional attenuation mechanism in which termination of transcription at points upstream of the genes being regulated is promoted by the binding of a regulatory protein, PyrR, to specific sequences in the pyr mRNA. Binding of PyrR to pyr mRNA is stimulated by uridine nucleotides and causes changes in the mRNA secondary structure. This model is supported by extensive molecular genetic analysis. PyrR, which is encoded by the first gene of the pyr operon, is also a uracil phosphoribosyltransferase, although it has little amino acid sequence resemblance to other bacterial uracil phosphoribosyltransferases. Purified B. subtilis pyrR promotes attenuation of pyr transcription in vitro and binds specifically to pyr RNA sequences. The crystallographic structure of PyrR demonstrates the similarity of its tertiary structure to other phosphoribosyltransferases and suggests the surface to which RNA binds. PyrR is widely distributed among eubacteria and appears to regulate pyr genes not only by the attenuation mechanism found in B. subtilis, but also by a coupled transcription-translation attenuation mechanism and by acting as a translational repressor. PyrR illustrates the concept that transcriptional attenuation is a much more widespread and mechanistically versatile mechanism for the regulation of gene expression in bacteria than is generally recognized.
Collapse
Affiliation(s)
- R L Switzer
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
46
|
Ghim SY, Kim CC, Bonner ER, D'Elia JN, Grabner GK, Switzer RL. The Enterococcus faecalis pyr operon is regulated by autogenous transcriptional attenuation at a single site in the 5' leader. J Bacteriol 1999; 181:1324-9. [PMID: 9973361 PMCID: PMC93512 DOI: 10.1128/jb.181.4.1324-1329.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 12/11/1998] [Indexed: 11/20/2022] Open
Abstract
The 5' end of the Enterococcus faecalis pyr operon specifies, in order, the promoter, a 5' untranslated leader, the pyrR gene encoding the regulatory protein for the operon, a 39-nucleotide (nt) intercistronic region, the pyrP gene encoding a uracil permease, a 13-nt intercistronic region, and the pyrB gene encoding aspartate transcarbamylase. The 5' leader RNA is capable of forming stem-loop structures involved in attenuation control of the operon. No attenuation regions, such as those found in the Bacillus subtilis pyr operon, are present in the pyrR-pyrP or pyrP-pyrB intercistronic regions. Several lines of evidence demonstrate that the E. faecalis pyr operon is repressed by uracil via transcriptional attenuation at the single 5' leader termination site and that attenuation is mediated by the PyrR protein.
Collapse
Affiliation(s)
- S Y Ghim
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
47
|
Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 1998; 30:737-49. [PMID: 10094622 DOI: 10.1046/j.1365-2958.1998.01105.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms for regulation of the genes involved in the biosynthesis of methionine and cysteine are poorly characterized in Bacillus subtilis. Analyses of the recently completed B. subtilis genome revealed 11 copies of a highly conserved motif. In all cases, this motif was located in the leader region of putative transcriptional units, upstream of coding sequences that included genes involved in methionine or cysteine biosynthesis. Additional copies were identified in Clostridium acetobutylicum and Staphylococcus aureus, indicating conservation in other Gram-positive genera. The motif includes an element resembling an intrinsic transcriptional terminator, suggesting that regulation might be controlled at the level of premature termination of transcription. The 5' portion of all of the leaders could fold into a conserved complex structure. Analysis of the yitJ gene, which is homologous to Escherichia coli metH and metF, revealed that expression was induced by starvation for methionine and that induction was independent of the promoter and dependent on the leader region terminator. Mutation of conserved primary sequence and structural elements supported a model in which the 5' portion of the leader forms an anti-antiterminator structure, which sequesters sequences required for the formation of an antiterminator, which, in turn, sequesters sequences required for the formation of the terminator; the anti-antiterminator is postulated to be stabilized by the binding of some unknown factor when methionine is available. This set of genes is proposed to form a new regulon controlled by a global termination control system, which we designate the S box system, as most of the genes are involved in sulphur metabolism and biosynthesis of methionine and cysteine.
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
48
|
Chai W, Stewart V. NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. J Mol Biol 1998; 283:339-51. [PMID: 9769209 DOI: 10.1006/jmbi.1998.2105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Klebsiella oxytoca (pneumoniae), enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Previous genetic studies led to the conclusion that nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism. In the presence of nitrate or nitrite, the nasR gene product is hypothesized to inhibit transcription termination at the factor-independent terminator site located in the nasF operon leader region. To test this model in vitro, we first purified NasR as both a maltose binding protein fusion form (MBP-NasR) and a His6-tagged form (His6-NasR). Templates for in vitro transcription contained the nasF operon leader region, with a substitution of the sigma70-dependent tac promoter for the native sigmaN-dependent promoter. We found that in vitro transcription of the leader template terminated at the terminator site, and that MBP-NasR and His6-NasR proteins both caused transcription readthrough of this site in response to nitrate or nitrite. Half-maximal antitermination required nitrate or nitrite at moderate (1 to 10 microM) concentrations, and several other anions tested, including chlorate, were without effect. Previous in vivo analysis of leader deletions identified regions required for both negative regulation (the terminator) and for positive regulation. Results from in vitro transcription of these deletion templates correlated fully with the in vivo analysis. Finally, electrophoresis mobility shift analysis revealed that His6-NasR bound specifically to nasF leader RNA. This binding was independent of nitrate in vitro. These results strongly support the conclusions drawn from previous in vivo analysis, and establish that NasR mediates ligand-responsive transcription antitermination through interaction with nasF leader RNA.
Collapse
Affiliation(s)
- W Chai
- Section of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | |
Collapse
|
49
|
Martinussen J, Hammer K. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically. J Bacteriol 1998; 180:4380-6. [PMID: 9721272 PMCID: PMC107444 DOI: 10.1128/jb.180.17.4380-4386.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of carbamoylphosphate is catalyzed by the heterodimeric enzyme carbamoylphosphate synthetase. The genes encoding the two subunits of this enzyme in procaryotes are normally transcribed as an operon, but the gene encoding the large subunit (carB) in Lactococcus lactis is shown to be transcribed as an isolated unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis, L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by means of the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines, most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame showing a high degree of similarity to those of glutathione peroxidases from other organisms was identified.
Collapse
Affiliation(s)
- J Martinussen
- Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark. jm@un,dty,dk
| | | |
Collapse
|
50
|
Tomchick DR, Turner RJ, Switzer RL, Smith JL. Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. Structure 1998; 6:337-50. [PMID: 9551555 DOI: 10.1016/s0969-2126(98)00036-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The expression of pyrimidine nucleotide biosynthetic (pyr) genes in Bacillus subtilis is regulated by transcriptional attenuation. The PyrR attenuation protein binds to specific sites in pyr mRNA, allowing the formation of downstream terminator structures. UMP and 5-phosphoribosyl-1-pyrophosphate (PRPP), a nucleotide metabolite, are co-regulators with PyrR. The smallest RNA shown to bind tightly to PyrR is a 28-30 nucleotide stem-loop that contains a purine-rich bulge and a putative-GNRA tetraloop. PyrR is also a uracil phosphoribosyltransferase (UPRTase), although the relationship between enzymatic activity and RNA recognition is unclear, and the UPRTase activity of PyrR is not physiologically significant in B. subtilis. Elucidating the role of PyrR structural motifs in UMP-dependent RNA binding is an important step towards understanding the mechanism of pyr transcriptional attenuation. RESULTS The 1.6 A crystal structure of B. subtilis PyrR has been determined by multiwavelength anomalous diffraction, using a Sm co-crystal. As expected, the structure of PyrR is homologous to those proteins of the large type I PRTase structural family; it is most similar to hypoxanthine-guanine-xanthine PRTase (HGXPRTase). The PyrR dimer differs from other PRTase dimers, suggesting it may have evolved specifically for RNA binding. A large, basic, surface at the dimer interface is an obvious RNA-binding site and uracil specificity is probably provided by hydrogen bonds from mainchain and sidechain atoms in the hood subdomain. These models of RNA and UMP binding are consistent with biological data. CONCLUSIONS The B. subtilis protein PyrR has adapted the substrate- and product-binding capacities of a PRTase, probably an HGXPRTase, producing a new regulatory function in which the substrate and product are co-regulators of transcription termination. The structure is consistent with the idea that PyrR regulatory function is independent of catalytic activity, which is likely to be extremely low under physiological conditions.
Collapse
Affiliation(s)
- D R Tomchick
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|