1
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Moon KM, Lee MK, Park SY, Seo J, Kim AR, Lee B. Docosatrienoic Acid Inhibits Melanogenesis Partly through Suppressing the Intracellular MITF/Tyrosinase Axis. Pharmaceuticals (Basel) 2024; 17:1198. [PMID: 39338360 PMCID: PMC11435182 DOI: 10.3390/ph17091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Melanogenesis, essential for skin photoprotection and pigmentation, can lead to disorders like melasma and hyperpigmentation, which are challenging to treat and affect quality of life. Docosatrienoic acid (DTA), a polyunsaturated omega-3 fatty acid, has been identified as a potential regulator of skin aging. This study investigates DTA's effects on melanogenesis and its underlying molecular mechanisms using in silico and in vitro analyses. SwissSimilarity analysis revealed that DTA shares close structural similarities with known anti-melanogenic lipids, suggesting it may inhibit melanogenesis in similar manners. Our results demonstrated that DTA reduces melanin content and intracellular tyrosinase activity in B16F10 cells, significantly downregulating the mRNA expression of tyrosinase, TRP-1, and TRP-2 by inhibiting MITF translocation to the nucleus. While DTA exhibited mild inhibitory effects on mushroom tyrosinase activity and antioxidant properties at higher concentrations, direct inhibition of tyrosinase is likely not the primary mechanism, as the observed anti-melanogenic effects occurred at much lower concentrations compared to those required for direct tyrosinase inhibition. Together, DTA-mediated modulation of MITF and tyrosinase mRNA expression offers a novel approach to treating hyperpigmentation. DTA's potential extends into the cosmetic industry, enhancing product stability, functionality, and aesthetics. Further research is needed to explore DTA's broader applications in skincare and cosmetic formulations.
Collapse
Affiliation(s)
- Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Min-Kyeoun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 48513, Republic of Korea
| | - Su-Yeon Park
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Jaeseong Seo
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Ah-reum Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Li J, Yin S, Wei Z, Xiao Z, Kang Z, Wu Y, Huang Y, Jia Q, Peng Y, Ru Z, Sun X, Yang Y, Yang Q, Wang J, Liu C, Yang M, Wang Y, Yang X. Newly identified peptide Nigrocin-OA27 inhibits UVB induced melanin production via the MITF/TYR pathway. Peptides 2024; 177:171215. [PMID: 38608837 DOI: 10.1016/j.peptides.2024.171215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Melasma is a common skin disease induced by an increase in the content of melanin in the skin, which also causes serious physical and mental harm to patients. In this research, a novel peptide (Nigrocin-OA27) from Odorrana andersonii is shown to exert a whitening effect on C57 mice pigmentation model. The peptide also demonstrated non-toxic and antioxidant capacity, and can significantly reduce melanin content in B16 cells. Topical application effectively delivered Nigrocin-OA27 to skin's epidermal and dermal layers and exhibited significant preventive and whitening effects on the UVB-induced ear pigmentation model in C57 mice. The whitening mechanism of Nigrocin-OA27 may be related to reduced levels of the microphthalmia-associated transcription factor and the key enzyme for melanogenesis-tyrosinase (TYR). Nigrocin-OA27 also inhibited the catalytic activity by adhering to the active core of TYR, thereby reducing melanin formation and deposition. In conclusion, Nigrocin-OA27 may be a potentially effective external agent to treat melasma by inhibiting aberrant skin melanin synthesis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yubing Huang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuliu Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qian Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
5
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Hooda R, Madke B, Choudhary A. Photoaging: Reversal of the Oxidative Stress Through Dietary Changes and Plant-Based Products. Cureus 2023; 15:e37321. [PMID: 37182009 PMCID: PMC10168638 DOI: 10.7759/cureus.37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Redox flagging represents all life processes, and maintaining a physiological level of antioxidants is essential for the legitimate working of the cell. Genetics and environmental triggers are two major culminating factors for skin aging, both chronological and photoaging. The latter, however, relies principally upon the level of ultraviolet radiation (UVR) exposure and the skin phototype. Apart from causing DNA damage, UVR also stimulates the receptors present in keratinocytes as well as fibroblasts. This in turn leads to the breakdown of collagen and a breach in the generation of new collagen. It is speculated that the breakdown of collagen in the dermis is ensured by the defective restoration that ultimately hampers the structural integrity of skin, leading to wrinkled and atrophic skin. The skin has an admixture of various endogenous antioxidants that work synergistically with vitamins and minerals to maintain cellular equilibrium. Although, their role in safeguarding the cells against the detrimental effects induced by UVR is still questionable and requires further research. However, the advancement in the biology of skin has led to the development of strategies that aim at skin rejuvenation and retarding the progression of photoaging and its visible signs. Photoaging in this article is reviewed in light of current concepts in pathogenesis and its prevention. In addition, the article focuses on both prevailing and forthcoming treatment strategies primarily through plant-based products that will help slow down the process of photoaging.
Collapse
Affiliation(s)
- Reet Hooda
- Dermatology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Science, Wardha, IND
| | - Bhushan Madke
- Dermatology, Venereology, and Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Science, Wardha, IND
| | | |
Collapse
|
7
|
Srivastava J, Young MM, Yadav VK, Phadatare PR, Meyer TA, Chaudhuri RK, Premi S. The Role of Acetyl Zingerone and Its Derivatives in Inhibiting UV-Induced, Incident, and Delayed Cyclobutane Pyrimidine Dimers. Antioxidants (Basel) 2023; 12:antiox12020278. [PMID: 36829837 PMCID: PMC9952391 DOI: 10.3390/antiox12020278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are ultraviolet radiation (UV)-induced carcinogenic DNA photoproducts that lead to UV signature mutations in melanoma. Previously, we discovered that, in addition to their incident formation (iCPDs), UV exposure induces melanin chemiexcitation (MeCh), where UV generates peroxynitrite (ONOO-), which oxidizes melanin into melanin-carbonyls (MCs) in their excited triplet state. Chronic MeCh and energy transfer by MCs to DNA generates CPDs for several hours after UV exposure ends (dark CPD, dCPDs). We hypothesized that MeCh and the resulting dCPDs can be inhibited using MeCh inhibitors, and MC and ONOO- scavengers. Here, we investigated the efficacy of Acetyl Zingerone (AZ), a plant-based phenolic alkanone, and its chemical analogs in inhibiting iCPDs and dCPDs in skin fibroblasts, keratinocytes, and isogenic pigmented and albino melanocytes. While AZ and its methoxy analog, 3-(4-Methoxy-benzyl)-Pentane-2,4-dione (MBPD) completely inhibited the dCPDs, MBPD also inhibited ~50% of iCPDs. This suggests the inhibition of ~80% of total CPDs at any time point post UV exposure by MBPD, which is markedly significant. MBPD downregulated melanin synthesis, which is indispensable for dCPD generation, but this did not occur with AZ. Meanwhile, AZ and MBPD both upregulated the expression of nucleotide excision repair (NER) pathways genes including Xpa, Xpc, and Mitf. AZ and its analogs were non-toxic to the skin cells and did not act as photosensitizers. We propose that AZ and MBPD represent "next-generation skin care additives" that are safe and effective for use not only in sunscreens but also in other specialized clinical applications owing to their extremely high efficacy in blocking both iCPDs and dCPDs.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Montana M. Young
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Vipin Kumar Yadav
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Pravin R. Phadatare
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | | | - Ratan K. Chaudhuri
- SYTHEON, 10 Waterview Blvd, Parsippany, NJ 07054, USA
- Correspondence: (R.K.C.); (S.P.)
| | - Sanjay Premi
- Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
- Correspondence: (R.K.C.); (S.P.)
| |
Collapse
|
8
|
Melanogenesis and the Targeted Therapy of Melanoma. Biomolecules 2022; 12:biom12121874. [PMID: 36551302 PMCID: PMC9775438 DOI: 10.3390/biom12121874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pigment production is a unique character of melanocytes. Numerous factors are linked with melanin production, including genetics, ultraviolet radiation (UVR) and inflammation. Understanding the mechanism of melanogenesis is crucial to identify new preventive and therapeutic strategies in the treatment of melanoma. Here, we reviewed the current available literatures on the mechanisms of melanogenesis, including the signaling pathways of UVR-induced pigment production, MC1R's central determinant roles and MITF as a master transcriptional regulator in melanogenesis. Moreover, we further highlighted the role of targeting BRAF, NRAS and MC1R in melanoma prevention and treatment. The combination therapeutics of immunotherapy and targeted kinase inhibitors are becoming the newest therapeutic option in advanced melanoma.
Collapse
|
9
|
Wilkinson EL, Ashton L, Kerns JG, Allinson SL, Mort RL. Fingerprinting of skin cells by live cell Raman spectroscopy reveals melanoma cell heterogeneity and cell-type-specific responses to UVR. Exp Dermatol 2022; 31:1543-1553. [PMID: 35700136 PMCID: PMC9796253 DOI: 10.1111/exd.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Raman spectroscopy is an emerging dermatological technique with the potential to discriminate biochemically between cell types in a label-free and non-invasive manner. Here, we use live single-cell Raman spectroscopy and principal component analysis (PCA) to fingerprint mouse melanoblasts, melanocytes, keratinocytes and melanoma cells. We show the differences in their spectra are attributable to biomarkers in the melanin biosynthesis pathway and that melanoma cells are a heterogeneous population that sit on a trajectory between undifferentiated melanoblasts and differentiated melanocytes. We demonstrate the utility of Raman spectroscopy as a highly sensitive tool to probe the melanin biosynthesis pathway and its immediate response to ultraviolet (UV) irradiation revealing previously undescribed opposing responses to UVA and UVB irradiation in melanocytes. Finally, we identify melanocyte-specific accumulation of β-carotene correlated with a stabilisation of the UVR response in lipids and proteins consistent with a β-carotene-mediated photoprotective mechanism. In summary, our data show that Raman spectroscopy can be used to determine the differentiation status of cells of the melanocyte lineage and describe the immediate and temporal biochemical changes associated with UV exposure which differ depending on cell type, differentiation status and competence to synthesise melanin. Our work uniquely applies Raman spectroscopy to discriminate between cell types by biological function and differentiation status while they are growing in culture. In doing so, we demonstrate for the first time its utility as a tool with which to probe the melanin biosynthesis pathway.
Collapse
Affiliation(s)
- Emma L. Wilkinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Lorna Ashton
- Department of ChemistryLancaster UniversityLancasterUK
| | - Jemma G. Kerns
- Lancaster Medical School, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Sarah L. Allinson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
10
|
Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7881717. [PMID: 35087618 PMCID: PMC8789419 DOI: 10.1155/2022/7881717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress represents an imbalance between the generation of reactive oxygen and nitrogen species and the ability of antioxidant systems to decompose those products. Oxidative stress is implicated in the pathogenesis of hyperpigmentation, hypopigmentation, melanoma, and other skin diseases. Regulatory networks involving oxidative stress and related pathways are widely represented in hypopigmentation diseases, particularly vitiligo. However, there is no complete review into the role of oxidative stress in the pathogenesis of hyperpigmentation disorders, especially regarding associations involving oxidative stress and cellular signaling pathways. Here, we review oxidative and antioxidant systems, oxidative stress-induced signal transduction mechanisms, and effects of antioxidant drugs used in preclinical and clinical settings in hyperpigmentation disorders.
Collapse
|
11
|
Chan TK, Bramono D, Bourokba N, Krishna V, Wang ST, Neo BH, Lim RYX, Kim H, Misra N, Lim S, Betts RJ. Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and induce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci 2021; 104:83-94. [PMID: 34690024 DOI: 10.1016/j.jdermsci.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Urban pollution is correlated with an increased prevalence of skin pigmentation disorders, however the physiological processes underlying this association are unclear. OBJECTIVES To delineate the relationship between polycyclic aromatic hydrocarbons (PAHs), a key constituent of atmospheric pollution, and immunity/skin pigmentation pathways. METHODS We exposed peripheral blood mononuclear cells (PBMC) to PAHs and performed cytokines/chemokine profiling. We then examined the effect of immune activation on pigmentation by co-culturing PBMC and Benzo(a)pyrene (BaP) with reconstructed human pigmented epidermis (RHPE). To study the mechanism, we treated keratinocytes with conditioned medium from BaP-exposed PBMC and studied DNA damage responses, aryl hydrocarbon receptor (AhR) activation and pro-pigmentation factor, proopiomelanocortin (POMC) secretion. RESULTS PAHs induced up-regulation of inflammatory cytokines/chemokine in PBMC. Co-culturing of RHPE with PBMC+BaP resulted in increased melanin content and localization. BaP-conditioned medium significantly increased DNA damage, p53 stabilization, AhR activation and POMC secretion in keratinocytes. We found that IFNγ induced DNA damage, while TNFα and IL-8 potentiated POMC secretion in keratinocytes. Importantly, BaP-conditioned medium-induced DNA damage and POMC secretion is prevented by antioxidants vitamin E, vitamin C and sulforaphane, as well as the prototypical corticosteroid dexamethasone. Finally, vitamin C and sulforaphane enhanced the genome protective and depigmentation effects of dexamethasone, providing proof-of-concept for a combinatorial approach for the prevention and/or correction of PAH-induced pigment spots formation. CONCLUSION Our study reveals the importance of systemic immunity in regulating PAH-induced skin pigmentation, and provide a new keratinocyte DNA damage response mechanistic target for the prevention or reversal of pollution-associated skin pigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyoju Kim
- L'Oréal Research & Innovation, Singapore
| | - Namita Misra
- L'Oréal Research & Innovation, Aulnay sous Bois, France
| | - Shawn Lim
- L'Oréal Research & Innovation, Singapore
| | | |
Collapse
|
12
|
Chen J, Liu Y, Zhao Z, Qiu J. Oxidative stress in the skin: Impact and related protection. Int J Cosmet Sci 2021; 43:495-509. [PMID: 34312881 DOI: 10.1111/ics.12728] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Skin, our first interface to the external environment, is subjected to oxidative stress caused by a variety of factors such as solar ultraviolet, infrared and visible light, environmental pollution, including ozone and particulate matters, and psychological stress. Excessive reactive species, including reactive oxygen species and reactive nitrogen species, exacerbate skin pigmentation and aging, which further lead to skin tone unevenness, pigmentary disorder, skin roughness and wrinkles. Besides these, skin microbiota are also a very important factor ensuring the proper functions of skin. While environmental factors such as UV and pollutants impact skin microbiota compositions, skin dysbiosis results in various skin conditions. In this review, we summarize the generation of oxidative stress from exogenous and endogenous sources. We further introduce current knowledge on the possible roles of oxidative stress in skin pigmentation and aging, specifically with emphasis on oxidative stress and skin pigmentation. Meanwhile, we summarize the science and rationale of using three well-known antioxidants, namely vitamin C, resveratrol and ferulic acid, in the treatment of hyperpigmentation. Finally, we discuss the strategy for preventing oxidative stress-induced skin pigmentation and aging.
Collapse
Affiliation(s)
| | - Yang Liu
- L'Oreal Research and Innovation, Shanghai, China
| | - Zhao Zhao
- L'Oreal Research and Innovation, Shanghai, China
| | - Jie Qiu
- L'Oreal Research and Innovation, Shanghai, China
| |
Collapse
|
13
|
Grether-Beck S, Felsner I, Brenden H, Marini A, Jaenicke T, Aue N, Welss T, Uthe I, Krutmann J. Air pollution-induced tanning of human skin. Br J Dermatol 2021; 185:1026-1034. [PMID: 33991337 DOI: 10.1111/bjd.20483] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Melanism is more frequent in animals living in polluted areas on urban-industrial sites. Given that an increasing number of people are exposed to elevated air pollution levels, it is possible that environmental pollutants affect melanogenesis in human skin. Epidemiological studies have shown that exposure to traffic-related air pollutants such as diesel exhaust particles (DEP) is associated with more clinical signs of hyperpigmentation. However, mechanistic evidence linking DEP exposure to pigmentation has been elusive. OBJECTIVES To develop an ex vivo skin model to allow for repetitive topical application of relevant ambient DEP, and to provide proof of concept in humans. METHODS We measured skin pigmentation, melanin and pigmentation-associated gene expression, and evaluated oxidative stress. RESULTS Repetitive exposure of ex vivo skin to DEP at nontoxic concentrations increased skin pigmentation. This increase was visible to the naked eye, time dependent, and associated with an increase in melanin content and the transcription of genes involved in de novo melanin synthesis. Similarly, in healthy participants (n = 76), repetitive topical application of DEP at nontoxic concentrations increased skin pigmentation. DEP-induced pigmentation was mediated by an oxidative stress response. After the application of DEP, epidermal antioxidants were depleted, lipid peroxidation and oxidative DNA damage were enhanced, and in a vehicle-controlled, double-blind clinical study DEP-induced pigmentation was prevented by the topical application of an antioxidant mixture. CONCLUSIONS Similar to solar radiation, air pollutants cause skin tanning. As eumelanin is an antioxidant, it is proposed that this response serves to protect human skin against air pollution-induced oxidative stress.
Collapse
Affiliation(s)
- S Grether-Beck
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - I Felsner
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - H Brenden
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - A Marini
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - T Jaenicke
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - N Aue
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - T Welss
- Henkel Beauty Care, Düsseldorf, Germany
| | - I Uthe
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - J Krutmann
- IUF - Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Modulating skin colour: role of the thioredoxin and glutathione systems in regulating melanogenesis. Biosci Rep 2021; 41:228417. [PMID: 33871027 PMCID: PMC8112849 DOI: 10.1042/bsr20210427] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Different skin colour among individuals is determined by the varying amount and types of melanin pigment. Melanin is produced in melanocytes, a type of dendritic cell located in the basal layer of the epidermis, through the process of melanogenesis. Melanogenesis consists of a series of biochemical and enzymatic reactions catalysed by tyrosinase and other tyrosinase-related proteins, leading to the formation of two types of melanin, eumelanin and pheomelanin. Melanogenesis can be regulated intrinsically by several signalling pathways, including the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), stem cell factor (SCF)/c-kit and wingless-related integration site (Wnt)/β-catenin signalling pathways. Ultraviolet radiation (UVR) is the major extrinsic factor in the regulation of melanogenesis, through the generation of reactive oxygen species (ROS). Antioxidants or antioxidant systems, with the ability to scavenge ROS, may decrease melanogenesis. This review focuses on the two main cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, and discusses their roles in melanogenesis. In the Trx system, high levels/activities of thioredoxin reductase (TrxR) are correlated with melanin formation. The GSH system is linked with regulating pheomelanin formation. Exogenous addition of GSH has been shown to act as a depigmenting agent, suggesting that other antioxidants may also have the potential to act as depigmenting agents for the treatment of human hyperpigmentation disorders.
Collapse
|
15
|
Pennington BO, Bailey JK, Faynus MA, Hinman C, Hee MN, Ritts R, Nadar V, Zhu D, Mitra D, Martinez-Camarillo JC, Lin TC, Thomas BB, Hinton DR, Humayun MS, Lebkowski J, Johnson LV, Clegg DO. Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo. Sci Rep 2021; 11:6286. [PMID: 33737600 PMCID: PMC7973769 DOI: 10.1038/s41598-021-85631-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.
Collapse
Affiliation(s)
- Britney O. Pennington
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Jeffrey K. Bailey
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Mohamed A. Faynus
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Cassidy Hinman
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Mitchell N. Hee
- grid.133342.40000 0004 1936 9676College of Creative Studies, Biology, University of California, Santa Barbara, CA USA
| | - Rory Ritts
- grid.133342.40000 0004 1936 9676Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, CA USA
| | - Vignesh Nadar
- Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | - Danhong Zhu
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Debbie Mitra
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Juan Carlos Martinez-Camarillo
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - Tai-Chi Lin
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Biju B. Thomas
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - David R. Hinton
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - Mark S. Humayun
- grid.42505.360000 0001 2156 6853Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853Department of Biomedical Engineering, Denney Research Center (DRB) of the University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Portola Valley, CA USA
| | | | - Dennis O. Clegg
- grid.133342.40000 0004 1936 9676Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, 6131 Biology 2 Bldg 571, NRI, UC Santa Barbara, Santa Barbara, CA 93106 USA ,Regenerative Patch Technologies LLC, Portola Valley, CA USA ,grid.133342.40000 0004 1936 9676Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, CA USA
| |
Collapse
|
16
|
Ouyang Y, Chen J, Jiang L, Li Y, Hu Y, Li S, Huang J, Zeng Q. UVB-Induced ciRS-7 Activates Melanogenesis by Paracrine Effects. DNA Cell Biol 2021; 40:523-531. [PMID: 33687273 DOI: 10.1089/dna.2020.5489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as or ciRS-7) is an important member of the circular RNA family and is involved in the regulation of numerous biological functions. Keratinocytes and fibroblasts (FBs) affect melanogenesis through paracrine effects. However, whether ciRS-7 is involved in melanogenesis by regulating paracrine effects remains unclear. This study demonstrates for the first time that ciRS-7 is highly expressed in keratinocytes, FBs, and melanocytes (MCs). Ultraviolet B (UVB) irradiation promotes ciRS-7 expression in keratinocytes and FBs. Following inhibition of ciRS-7 expression in keratinocytes and FBs, the culture supernatant from these cells inhibited melanogenesis of MCs. Further analyses revealed that the expression and secretion of fibroblast growth factor 2 (FGF2) and phosphorylation of STAT3 and AKT in keratinocytes and FBs were significantly downregulated following inhibition of ciRS-7 expression, whereas the level of miR-7 was increased. Overexpression of miR-7 in keratinocytes and FBs significantly inhibited the expression of FGF2. In conclusion, our findings demonstrate that UVB-induced ciRS-7 triggers melanogenesis in MCs through regulation of the miR-7/STAT3 and AKT/FGF2 paracrine axis in both keratinocytes and FBs. ciRS-7 may serve as a regulator in the development of pigmented skin diseases.
Collapse
Affiliation(s)
- Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yumeng Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
17
|
Shakhbazova A, Wu H, Chambers CJ, Sivamani RK. A Systematic Review of Nutrition, Supplement, and Herbal-Based Adjunctive Therapies for Vitiligo. J Altern Complement Med 2020; 27:294-311. [PMID: 33337930 DOI: 10.1089/acm.2020.0292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Vitiligo is an autoimmune skin condition that affects people globally anywhere, from <0.1% to more than 8% of individuals. The disease destroys skin melanocytes, resulting in a patchy depigmentation of the skin. About 50% of all patients develop the disease before their 20s. Methods: We systematically searched the literature and reviewed the evidence for the use of nutritional supplements and diet in the management of vitiligo. Embase and Medline were searched for diet, herbal, and nutrition-based clinical studies. Additional filters were applied that looked for controlled trial or randomized controlled trial and article or article in press or letter and English and clinical study. We selected clinical studies in humans that showed how diet or natural supplements can improve the symptoms of vitiligo in all of our searches. Results: There were 62 manuscripts that resulted from the PubMed search and 259 from the Embase search. A final of 26 studies were reviewed, and other supplemental case and case-control studies were used to introduce diet components that may influence either exacerbation or amelioration of vitiligo. Possible mechanisms of action are introduced for natural and supplemental interventions. Conclusion: Some of the supplements reviewed include Gingko biloba, oral Polypodium leucotomos, alpha lipoic acid, vitamins B12, D, and E, folic acid, phenylalanine, canthaxanthin, Nigella sativa oil, and other combined herbal bio-actives. Overall, the growing evidence is promising, but more studies are needed in this area to further explore the impact that supplements and diet can have on vitiligo management. The most promising therapies included oral phenylalanine as adjuvant therapy with UVA therapy, oral G. biloba as monotherapy, both of which can be used with other traditional therapies, and oral P. leucotomos with phototherapy or photochemotherapy.
Collapse
Affiliation(s)
| | - Hera Wu
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Cindy J Chambers
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Raja K Sivamani
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, University of California, Davis, Sacramento, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA
| |
Collapse
|
18
|
Catanzaro E, Bishayee A, Fimognari C. On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Mar Drugs 2020; 18:E544. [PMID: 33143013 PMCID: PMC7692561 DOI: 10.3390/md18110544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.
Collapse
Affiliation(s)
- Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
19
|
Felton SJ, Shin BB, Watson REB, Kift R, Webb AR, Rhodes LE. Photoprotection conferred by low level summer sunlight exposures against pro-inflammatory UVR insult. Photochem Photobiol Sci 2020; 19:810-818. [PMID: 33856672 DOI: 10.1039/c9pp00452a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/31/2020] [Indexed: 11/21/2022]
Affiliation(s)
- S J Felton
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - B B Shin
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R E B Watson
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R Kift
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - A R Webb
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - L E Rhodes
- Dermatology Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Shoji T, Masumoto S, Moriichi N, Ohtake Y, Kanda T. Administration of Apple Polyphenol Supplements for Skin Conditions in Healthy Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2020; 12:E1071. [PMID: 32294883 PMCID: PMC7231294 DOI: 10.3390/nu12041071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
This clinical study was performed to evaluate the effects of continuous apple polyphenol (AP) administration on facial skin conditions and pigmentation induced by ultraviolet (UV) irradiation in healthy women participants. Participants (n = 65, age 20-39 years) were randomized to receive tablets containing AP (300 or 600 mg/day) or placebo in a double-blinded, placebo-controlled clinical trial. Continuous administration of AP for 12 weeks significantly prevented UV irradiation induced skin pigmentation (erythema value, melanin value, L value), although a dose-dependent relationship was not clearly observed. In contrast, no significant differences were detected between the groups with regard to water content and trans-epidermal water loss. Our study demonstrated that APs and their major active compounds, procyanidins, have several health benefits. Here, we report that continuous administration of AP for 12 weeks alleviated UV irradiation induced skin pigmentation, when compared with placebo, in healthy women.
Collapse
Affiliation(s)
- Toshihiko Shoji
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries Ltd., 1-21 Midori 1-chome, Moriya-shi, Ibaraki 305-0106, Japan; (S.M.); (N.M.); (Y.O.); (T.K.)
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba-shi, Ibaraki 305–8605, Japan
| | - Saeko Masumoto
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries Ltd., 1-21 Midori 1-chome, Moriya-shi, Ibaraki 305-0106, Japan; (S.M.); (N.M.); (Y.O.); (T.K.)
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1269, Japan
| | - Nina Moriichi
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries Ltd., 1-21 Midori 1-chome, Moriya-shi, Ibaraki 305-0106, Japan; (S.M.); (N.M.); (Y.O.); (T.K.)
| | - Yasuyuki Ohtake
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries Ltd., 1-21 Midori 1-chome, Moriya-shi, Ibaraki 305-0106, Japan; (S.M.); (N.M.); (Y.O.); (T.K.)
- Asahi Group Foods, Ltd., 2-4-1 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
| | - Tomomasa Kanda
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries Ltd., 1-21 Midori 1-chome, Moriya-shi, Ibaraki 305-0106, Japan; (S.M.); (N.M.); (Y.O.); (T.K.)
- Asahi Group Holdings Ltd., 1-21 Midori 1-chome, Moriya-shi, Ibaraki 305-0106, Japan
| |
Collapse
|
21
|
Karlsson M, Steinvall I, Sjöberg F, Olofsson P, Elmasry M. Burn scar outcome at six and 12 months after injury in children with partial thickness scalds: Effects of dressing treatment. Burns 2020; 46:546-551. [PMID: 32165027 DOI: 10.1016/j.burns.2020.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In line with other researchers in the field of burns' care, we think that research investigating the long-term outcome of scars is largely lacking. As scarring is of the utmost importance to the patient, clinicians who treat burns must aim to find treatments that lead to a good end result. The aim of this study was to study scar outcomes at six and 12 months after injury. It is an extension of a previous randomised controlled trial (RCT) in which two dressings (porcine xenograft and silver foam dressing) were examined with respect to their ability to help heal partial thickness scalds. METHOD Children aged six months - six years with acute partial thickness scalds, on the trunk, or extremities, or both, were included. In the previous study, the silver foam was found to have significantly shorter healing times than the xenograft. Children were assessed at six and 12 months after injury for this study, and photographs were taken of the burn site, and both the patient and observer scar assessment scale (POSAS) and the Vancouver scar scale (VSS) were completed and evaluated by blinded observers. RESULTS Of the 58 children from the original RCT, 39 returned to the clinic for evaluation of their scars at six months, and 34 at 12 months after injury. There were no differences in POSAS, VSS total scores, or incidence of hypertrophic scarring between the different dressings. Fifteen children were assessed as having hypertrophic scarring, all of whom had healing times that had extended beyond 14 days. CONCLUSIONS This study compared burn scarring after two different treatments for burns in children with partial-thickness scalds and the data suggested that neither dressing had a more favourable impact on scar outcome. The conclusion is, however, tempered by the non-return of all the patients to the follow up. However, as anticipated, regardless of the dressing used, longer healing times were associated with higher scar scores (more scarring) and hypertrophic scarring.
Collapse
Affiliation(s)
- Matilda Karlsson
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Folke Sjöberg
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Anesthesiology and Intensive Care, Linköping University, Linköping, Sweden
| | - Pia Olofsson
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Swafford AJM, Oakley TH. Light-induced stress as a primary evolutionary driver of eye origins. Integr Comp Biol 2020; 59:739-750. [PMID: 31539028 DOI: 10.1093/icb/icz064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eyes are quintessential complex traits and our understanding of their evolution guides models of trait evolution in general. A long-standing account of eye evolution argues natural selection favors morphological variations that allow increased functionality for sensing light. While certainly true in part, this focus on visual performance does not entirely explain why diffuse photosensitivity persists even after eyes evolve, or why eyes evolved many times, each time using similar building blocks. Here, we briefly review a vast literature indicating most genetic components of eyes historically responded to stress caused directly by light, including ultraviolet damage of DNA, oxidative stress, and production of aldehydes. We propose light-induced stress had a direct and prominent role in the evolution of eyes by bringing together genes to repair and prevent damage from light-stress, both before and during the evolution of eyes themselves. Stress-repair and stress-prevention genes were perhaps originally deployed as plastic responses to light and/or as beneficial mutations genetically driving expression where light was prominent. These stress-response genes sense, shield, and refract light but only as reactions to ongoing light stress. Once under regulatory-genetic control, they could be expressed before light stress appeared, evolve as a module, and be influenced by natural selection to increase functionality for sensing light, ultimately leading to complex eyes and behaviors. Recognizing the potentially prominent role of stress in eye evolution invites discussions of plasticity and assimilation and provides a hypothesis for why similar genes are repeatedly used in convergent eyes. Broadening the drivers of eye evolution encourages consideration of multi-faceted mechanisms of plasticity/assimilation and mutation/selection for complex novelties and innovations in general.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
23
|
Jha J, Singh MK, Singh L, Pushker N, Bajaj MS, Sen S, Kashyap S. Expression of BAP1 and ATM proteins: Association with AJCC tumor category in uveal melanoma. Ann Diagn Pathol 2019; 44:151432. [PMID: 31864162 DOI: 10.1016/j.anndiagpath.2019.151432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Our aim is to detect the association of BAP1 with ATM protein with AJCC tumor category and its prognostic significance. METHODS Based on AJCC tumor category, 69 patients samples were categorized into group A (LBD > 15 mm & tumor thickness ≥ 8 mm) and group B (LBD ≤ 15 mm & tumor thickness < 8 mm) subjected to immunohistochemistry to assess the nuclear expression of ATM and BAP1 proteins. Mutational analysis of BAP1 was performed on five samples from each group. RESULTS Group A tumors showed insertion mutation of BAP1 gene while there was no mutation seen in group B tumor. At translational level loss of ATM and BAP1 was found in 65% and 66% of cases respectively. Loss of ATM with BAP1 was seen in 55% of cases which was more frequent in group A which was statically significant with metastasis (p = 0.006), advanced tumor staging (p = 0.021) and reduced metastasis-free survival (p = 0.048). On multivariate analysis loss of ATM along with BAP1 came out to be an independent prognostic marker (p = 0.035). CONCLUSION Our data suggest that loss of BAP1 along with ATM might serve as a potential prognostic indicator in patients with an advanced AJCC tumor category, which leads to an increased risk of metastasis.
Collapse
Affiliation(s)
- Jayanti Jha
- Department of Ocular Pathology, Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, India
| | - Mithalesh Kumar Singh
- Department of Ocular Pathology, Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, India
| | - Lata Singh
- Department of Biosciences, JMI, New Delhi, India
| | - Neelam Pushker
- Department of Ophthalmology, Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, India
| | - Mandeep Singh Bajaj
- Department of Ophthalmology, Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, India
| | - Seema Sen
- Department of Ocular Pathology, Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, India.
| |
Collapse
|
24
|
Yim S, Lee J, Jo H, Scholten J, Willingham R, Nicoll J, Baswan SM. Chrysanthemum Morifolium Extract And Ascorbic Acid-2-Glucoside (AA2G) Blend Inhibits UVA-Induced Delayed Cyclobutane Pyrimidine Dimer (CPD) Production In Melanocytes. Clin Cosmet Investig Dermatol 2019; 12:823-832. [PMID: 32009811 PMCID: PMC6859469 DOI: 10.2147/ccid.s223802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Background Solar ultraviolet radiation (UV) induces DNA damages in skin via direct absorption of UVB or indirectly by photosensitization mediated through UVA. Recent findings have revealed that UVA induces cyclobutane pyrimidine dimer (CPD) generation via chemiexcitation in melanocytes hours after the exposure. This UVA-induced delayed CPD (dark CPD) constitutes the majority of CPD in melanocytes. These findings indicate that sun light can damage the skin hours after the exposure, suggesting the need for skin care products post sun exposure. The main objective of this study was to investigate whether a blend of Chrysanthemum Morifolium flower extract (Chrys) and vitamin C derivative, Ascorbic Acid-2-Glucoside (AA2G), can provide protective effects against reactive oxygen species, melanin formation and UVA-induced dark CPD. Methods Intracellular ROS levels were measured in epidermal keratinocytes using DHR123 dye. Melanogenesis inhibition efficacy was determined using B16 cells. As for the dark CPD measurement, Melan-a cells were treated with or without actives for 6 days, then irradiated with UVA at various doses. Cells were exposed with anti-CPD mAb followed by secondary Ab. CPD levels were determined by measuring fluorescent intensity using a high content imaging analysis. Results Chrys, AA2G and their blend at various concentrations demonstrated ROS scavenging activity. Though Chrys alone did not show significant melanogenesis inhibition in B16 assay, the blend of Chrys with AA2G demonstrated additive effects in comparison with AA2G alone. The blend of AA2G and Chrys at various concentrations exhibited enhanced efficacy for inhibiting dark CPD compared to AA2G alone. Conclusion The results from this study indicate that the use of natural antioxidant, Chrys in combination with AA2G, provides protection against UVA-induced delayed CPD formation by enhancing ROS scavenging activity and melanogenesis inhibition. These findings could potentially be applied for formulating post-sun exposure skin care products, possibly extending to evening-after care products.
Collapse
Affiliation(s)
- Sunghan Yim
- Analytical Sciences R&D, Amway Corporation, Ada, MI, USA
| | - Jeesun Lee
- Asia Innovation Center, Global Discovery R&D, Amway Corporation, Seoul, South Korea
| | - Hae Jo
- Asia Innovation Center, Global Discovery R&D, Amway Corporation, Seoul, South Korea
| | - Jeff Scholten
- Analytical Sciences R&D, Amway Corporation, Ada, MI, USA
| | | | - Jim Nicoll
- Zen-Bio, Inc., Research Triangle Park, Durham, NC, USA
| | | |
Collapse
|
25
|
Nunes CJ, Otake AH, Bustos SO, Fazzi RB, Chammas R, Da Costa Ferreira AM. Unlike reactivity of mono- and binuclear imine-copper(II) complexes toward melanoma cells via a tyrosinase-dependent mechanism. Chem Biol Interact 2019; 311:108789. [PMID: 31401089 DOI: 10.1016/j.cbi.2019.108789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
The cytotoxicity of a dinuclear imine-copper (II) complex 2, and its analogous mononuclear complex 1, toward different melanoma cells, particularly human SKMEL-05 and SKMEL-147, was investigated. Complex 2, a tyrosinase mimic, showed much higher activity in comparison to complex 1, and its reactivity was verified to be remarkably activated by UVB-light, while the mononuclear compound showed a small or negligible effect. Further, a significant dependence on the melanin content in the tumor cells, both from intrinsic pigmentation or stimulated by irradiation, was observed in the case of complex 2. Similar tests with keratinocytes and melanocytes indicated a much lower sensitivity to both copper (II) complexes, even after exposition to UV light. Clonogenic assays attested that the fractions of melanoma cells survival were much lower under treatment with complex 2 compared to complex 1, both with or without previous irradiation of the cells. The process also involves generation of reactive oxygen species (ROS), as verified by EPR spectroscopy, and by using fluorescence indicators. Autophagic assays indicated a remarkable formation of cytoplasmic vacuoles in melanomas treated with complex 2, while this effect was not observed in similar treatment with complex 1. Monitoring of specific protein LC3 corroborated the simultaneous occurrence of autophagy. A balance interplay between different modes of cell death, apoptosis and autophagy, occurs when melanomas were treated with the dinuclear complex 2, in contrast to the mononuclear complex 1. These results pointed out to different mechanisms of action of such complexes, depending on its nuclearity.
Collapse
Affiliation(s)
- Cléia Justino Nunes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Andréia Hanada Otake
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, 01246-000, SP, Brazil
| | - Silvina Odete Bustos
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, 01246-000, SP, Brazil
| | - Rodrigo Boni Fazzi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, 01246-000, SP, Brazil
| | - Ana Maria Da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
| |
Collapse
|
26
|
Kim JK, Park NH, Hwang JS. Skin Lightening Effect of the Dietary Intake of Citrus Peel Extract Against UV-Induced Pigmentation. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19859979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent studies revealed that citrus peel has beneficial effects in various disorders associated with nitric oxide and/or oxidative stress. In this study, we investigated the effects of Jeju citrus ( Citrus unshiu) peel using various in vitro and in vivo methods. First, the inhibitory effect of citrus peel extract (CPE) on enzymatic activity of tyrosinase was evaluated. Tyrosinase activity was dose-dependently decreased by CPE. Second, the effect of CPE on melanogenesis was determined by measuring the melanin content in melan-a cells. The inhibitory effect of CPE on melanin synthesis was greater than that of vitamin C. Finally, the effect of long-term supplementation with CPE on ultraviolet B-induced skin pigmentation was examined in guinea pigs. Administration of CPE improved Δ L-value compared with the nontreated ultraviolet control group. As a strong inhibitor of melanogenesis, CPE could be used as a depigmentation agent and a supplement for skin lightening.
Collapse
Affiliation(s)
- Jeong-Kee Kim
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Nok-Hyun Park
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Jae-Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
27
|
Djurdjevič I, Furmanek T, Miyazawa S, Sušnik Bajec S. Comparative transcriptome analysis of trout skin pigment cells. BMC Genomics 2019; 20:359. [PMID: 31072301 PMCID: PMC6509846 DOI: 10.1186/s12864-019-5714-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Enormous variability in skin colour and patterning is a characteristic of teleost fish, including Salmonidae fishes, which present themselves as a suitable model for studying mechanisms of pigment patterning. In order to screen for candidate genes potentially involved in the specific skin pigment pattern in marble trout (labyrinthine skin pattern) and brown trout (spotted skin pattern), we conducted comparative transcriptome analysis between differently pigmented dermis sections of the adult skin of the two species. RESULTS Differentially expressed genes (DEGs) possibly associated with skin pigment pattern were identified. The expression profile of 27 DEGs was further tested with quantitative real-time PCR on a larger number of samples. Expression of a subset of ten of these genes was analysed in hybrid (marble x brown) trout individuals and compared with the complexity of their skin pigment pattern. A correlation between the phenotype and the expression profile assessed for hybrid individuals was detected for four (gja5, clcn2, cdkn1a and tjp1) of the ten candidate genes tested. The potential role of these genes in skin pigment pattern maintenance is discussed. CONCLUSIONS Our results indicate that the maintenance of different pigment patterns in trout is dependent upon specific communication-involving gap junctions, tight junctions and ion channels-between chromatophores present in differentially pigmented skin regions.
Collapse
Affiliation(s)
- Ida Djurdjevič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | | | - Seita Miyazawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Simona Sušnik Bajec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| |
Collapse
|
28
|
Wei EX, Li X, Nan H. Extremity nevus count is an independent risk factor for basal cell carcinoma and melanoma, but not squamous cell carcinoma. J Am Acad Dermatol 2019; 80:970-978. [PMID: 30713015 DOI: 10.1016/j.jaad.2018.09.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/04/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND The presence of nevi portends an increased risk for melanoma. OBJECTIVE We sought to examine the association between extremity nevus count and the risk of melanoma and keratinocyte cancers. METHODS We evaluated prospective cohorts of 176,317 women (the Nurses' Health Study, 1986-2012 and the Nurses' Health Study 2, 1989-2013) and 32,383 men (Health Professionals Follow-up Study, 1986-2012). Information on nevus count (none, 1-5, 6-14, ≥15) on the extremity was collected at baseline. RESULTS There were 1704 incident cases of melanoma, 2296 incident cases of squamous cell carcinoma, and 30,457 incident cases of basal cell carcinoma, with a total of 4,655,043 person-years for melanoma and 4,267,708 person-years for keratinocyte cancers. The presence of an extremity nevus was associated with an increased risk of melanoma in all anatomic areas and increased risk of basal cell carcinoma (BCC). Individuals with ≥15 nevi had the highest risk of melanoma and BCC compared to those without any extremity nevi (melanoma hazard ratio 2.79 [95% confidence interval 2.04-3.83]; BCC HR 1.40 [95% confidence interval 1.32-1.49]). No significant association was observed for squamous cell carcinoma. LIMITATIONS Limitations of our study included self-reported nevus count and detection bias. CONCLUSIONS Extremity nevus count is a helpful clinical marker in risk-stratifying individuals for BCC and melanoma on all body sites.
Collapse
Affiliation(s)
- Erin X Wei
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana; Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana.
| |
Collapse
|
29
|
Nahhas AF, Abdel-Malek ZA, Kohli I, Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:420-428. [PMID: 30198587 DOI: 10.1111/phpp.12423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an integral element that influences a variety of biochemical reactions throughout the body and is known to play a notable role in melanogenesis. Exogenous triggers of oxidative stress, such as ultraviolet radiation (UVR) and visible light (VL), lead to pigment formation through somewhat different pathways, but both share a common endpoint-the potential to generate cosmetically undesirable hyperpigmentation. Though organic and inorganic sunscreens are available to protect against the UVR portion of the electromagnetic spectrum, coverage is lacking to protect against the VL spectrum. In this manuscript, we review the phases of tanning, pathways of melanogenesis triggered by UVR and VL, and the associated impact of oxidative stress. We also discuss the known intrinsic mechanisms and paracrine regulation of melanocytes that influence their response to UVR. Understanding these mechanisms and their role in UVR-induced hyperpigmentation should potentially lead to identification of useful targets that can be coupled with antioxidant therapy to alleviate this effect.
Collapse
Affiliation(s)
- Amanda F Nahhas
- Department of Dermatology, Beaumont-Farmington Hills, Farmington Hills, Michigan.,Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
30
|
Carney BC, Chen JH, Luker JN, Alkhalil A, Jo DY, Travis TE, Moffatt LT, Simbulan-Rosenthal CM, Rosenthal DS, Shupp JW. Pigmentation Diathesis of Hypertrophic Scar: An Examination of Known Signaling Pathways to Elucidate the Molecular Pathophysiology of Injury-Related Dyschromia. J Burn Care Res 2018; 40:58-71. [DOI: 10.1093/jbcr/iry045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bonnie C Carney
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Jason H Chen
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, District of Columbia
| | - Jenna N Luker
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Abdulnaser Alkhalil
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Daniel Y Jo
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Taryn E Travis
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, District of Columbia
| | - Lauren T Moffatt
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jeffrey W Shupp
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, District of Columbia
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, District of Columbia
- Department of Surgery, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
31
|
Hudson A, Mir A, Carroll B. High-risk human papillomavirus in a child with digital pigmented Bowen's disease: Case report and dermoscopic findings. Pediatr Dermatol 2018; 35:e265-e267. [PMID: 29931706 DOI: 10.1111/pde.13552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Squamous cell carcinoma in situ, also known as Bowen's disease (BD), is a skin malignancy most commonly seen in middle-aged and elderly adults. Pediatric BD is rare and can be a diagnostic challenge for physicians. Digital BD has largely been associated with human papilloma virus. We report an immunocompetent 11-year-old girl with periungual pigmented BD induced by high-risk human papilloma virus.
Collapse
Affiliation(s)
- Andrew Hudson
- Department of Dermatology, Texas Tech Health Science Center (HSC), Lubbock, TX, USA
| | - Adnan Mir
- Department of Dermatology, Texas Tech Health Science Center (HSC), Lubbock, TX, USA
| | - Bryan Carroll
- Department of Dermatology, Texas Tech Health Science Center (HSC), Lubbock, TX, USA
| |
Collapse
|
32
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
33
|
Choi SY, Bin BH, Kim W, Lee E, Lee TR, Cho EG. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression. J Dermatol Sci 2018. [PMID: 29525471 DOI: 10.1016/j.jdermsci.2018.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. OBJECTIVE To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. METHODS Human epidermal melanocytes were exposed twice with 20 mJ/cm2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated β-galactosidase (SA-β-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. RESULTS The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. CONCLUSION Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation.
Collapse
Affiliation(s)
- Suh-Yeon Choi
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Bum-Ho Bin
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Wanil Kim
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eunkyung Lee
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Tae Ryong Lee
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eun-Gyung Cho
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea.
| |
Collapse
|
34
|
Marathe HG, Watkins-Chow DE, Weider M, Hoffmann A, Mehta G, Trivedi A, Aras S, Basuroy T, Mehrotra A, Bennett DC, Wegner M, Pavan WJ, de la Serna IL. BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Res 2017; 45:6442-6458. [PMID: 28431046 PMCID: PMC5499657 DOI: 10.1093/nar/gkx259] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.
Collapse
Affiliation(s)
- Himangi G Marathe
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dawn E Watkins-Chow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gaurav Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Archit Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Shweta Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Tupa Basuroy
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Aanchal Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| |
Collapse
|
35
|
Felton SJ, Cooke MS, Kift R, Berry JL, Webb AR, Lam PMW, de Gruijl FR, Vail A, Rhodes LE. Concurrent beneficial (vitamin D production) and hazardous (cutaneous DNA damage) impact of repeated low-level summer sunlight exposures. Br J Dermatol 2016; 175:1320-1328. [PMID: 27411377 PMCID: PMC5215649 DOI: 10.1111/bjd.14863] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Background The concurrent impact of repeated low‐level summer sunlight exposures on vitamin D production and cutaneous DNA damage, potentially leading to mutagenesis and skin cancer, is unknown. Objectives This is an experimental study (i) to determine the dual impact of repeated low‐level sunlight exposures on vitamin D status and DNA damage/repair (via both skin and urinary biomarkers) in light‐skinned adults; and (ii) to compare outcomes following the same exposures in brown‐skinned adults. Methods Ten white (phototype II) and six South Asian volunteers (phototype V), aged 23–59 years, received 6 weeks’ simulated summer sunlight exposures (95% ultraviolet A/5% ultraviolet B, 1·3 standard erythemal doses three times weekly) wearing summer clothing exposing ~35% body surface area. Assessments made were circulating 25‐hydroxyvitamin D [25(OH)D], immunohistochemistry for cyclobutane pyrimidine dimer (CPD)‐positive nuclei and urinary biomarkers of direct and oxidative (8‐oxo‐deoxyguanosine) DNA damage. Results Serum 25(OH)D rose from mean 36·5 ± 13·0 to 54·3 ± 10·5 nmol L−1 (14·6 ± 5·2 to 21·7 ± 4·2 ng mL−1) in phototype II vs. 17·2 ± 6·3 to 25·5 ± 9·5 nmol L−1 (6·9 ± 2·5 to 10·2 ± 3·8 ng mL−1) in phototype V (P < 0·05). Phototype II skin showed CPD‐positive nuclei immediately postcourse, mean 44% (range 27–84) cleared after 24 h, contrasting with minimal DNA damage and full clearance in phototype V (P < 0·001). The findings did not differ from those following single ultraviolet radiation (UVR) exposure. Urinary CPDs remained below the detection threshold in both groups; 8‐oxo‐deoxyguanosine was higher in phototype II than V (P = 0·002), but was unaffected by UVR. Conclusions Low‐dose summer sunlight exposures confer vitamin D sufficiency in light‐skinned people concurrently with low‐level, nonaccumulating DNA damage. The same exposures produce minimal DNA damage but less vitamin D in brown‐skinned people. This informs tailoring of sun‐exposure policies. What's already known about this topic? Repeated low‐level exposures to simulated U.K. sunlight can produce vitamin D sufficiency in light‐skinned people, but the concurrent impact on cutaneous DNA damage is unknown.
What does this study add? Low‐level simulated sunlight exposures in people of skin phototype II conferred vitamin D sufficiency concurrently with DNA damage, which showed partial clearance at 24 h and no evidence of accumulated damage after 6 weeks of exposures. The same exposures produced minimal DNA damage but less vitamin D in brown‐skinned people (phototype V). The findings are informative for sun‐exposure guidance.
Plain language summary available online
Collapse
Affiliation(s)
- S J Felton
- Dermatology Research Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, U.K
| | - M S Cooke
- Oxidative Stress Group, Department of Environmental and Occupational Health, Florida International University, Miami, FL, U.S.A
| | - R Kift
- School of Earth Atmospheric and Environmental Sciences, University of Manchester, Manchester, U.K
| | - J L Berry
- Department of Clinical Biochemistry, Manchester Royal Infirmary, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, U.K
| | - A R Webb
- School of Earth Atmospheric and Environmental Sciences, University of Manchester, Manchester, U.K
| | - P M W Lam
- Oxidative Stress Group, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, U.K
| | - F R de Gruijl
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - A Vail
- Centre for Biostatistics, Institute of Population Health, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, U.K
| | - L E Rhodes
- Dermatology Research Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, U.K
| |
Collapse
|
36
|
Wound scabs protect regenerating tissue against harmful ultraviolet radiation. Med Hypotheses 2016; 96:39-41. [PMID: 27959273 DOI: 10.1016/j.mehy.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
Benefits attributed to wound scabs include prevention of blood loss and protection against infection. However, when formation of a wound scab is prevented, the risk of infection is reduced. Moreover, in the absence of a wound scab, wounds heal faster and scar formation is reduced. The question arises why we develop a wound scab. Here we show that wound scabs inhibit transmission of ultraviolet radiation (UVR). We compared the UVR transmittance of human wound scabs to sunscreen by measuring the sun protection factor (SPF) with diffuse transmittance spectroscopy. Three wound scabs showed SPFs of 70, 84, and 300, which is more effective than the most protective commercially available sun block. Because our results demonstrate that a wound scab offers natural protection against UVR, and because no beneficial trait is attributed to wound scabs, we hypothesize that the main function of wound scabs is to limit DNA damage in underlying cells during regeneration of wound tissue exposed to sunlight, thereby reducing the risk of developing skin cancer.
Collapse
|
37
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
38
|
Poletini MO, de Assis LVM, Moraes MN, Castrucci AMDL. Estradiol differently affects melanin synthesis of malignant and normal melanocytes: a relationship with clock and clock-controlled genes. Mol Cell Biochem 2016; 421:29-39. [DOI: 10.1007/s11010-016-2781-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
|
39
|
Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes. Biochem Biophys Res Commun 2016; 477:329-35. [DOI: 10.1016/j.bbrc.2016.06.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022]
|
40
|
Shin HJ, Oh CT, Kwon TR, Beak HS, Joo YH, Kim JH, Lee CS, Lee JH, Kim BJ, Shin SS, Park ES. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3β phosphorylation. Int J Mol Med 2015; 36:1353-60. [PMID: 26398893 DOI: 10.3892/ijmm.2015.2348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
Recently, much effort has been made to develop effective dermatological depigmenting compounds. In this study, we investigated the novel candidate compound, AP736 (an adamantyl benzylbenzamide derivative), and its effects on melanogenesis in B16F10 melanoma cells, as well as the mechanisms involved. AP736 has been reported to exert anti-melanogenic effects in melanocytes in vitro and in artificial skin equivalents through the inhibition of key melanogenic enzymes and the suppression of the cAMP-protein kinase A (PKA)-cAMP response element‑binding protein (CREB) signaling pathway. Thus, we examined another pathway of melanogenesis involving the effects of AP736 on the glycogen synthesis kinase 3β (GSK3β) pathway. Melanin content and tyrosinase activity were measured using a spectrophotometer after the cells were treated with AP736. The AP736-induced activation of signaling pathways was examined by western blot analysis. We confirmed that AP736 decreased melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase, the rate-limiting melanogenic enzyme. The expression of microphthalmia-associated transcription factor, tyrosinase, and related signal transduction pathways was also investigated. The Wnt signaling pathway is deeply involved in melanogenesis; therefore, phosphorylation by GSK3β was assessed following treatment with AP736. AP736 induced GSK3β phosphorylation (inactivation), but it did not alter the level of β-catenin. Furthermore, the expression of α-melanocyte-stimulating hormone-induced tyrosinase was downregulated by AP736. Our data suggest that AP736 exerts hypopigmentary effects through the downregulation of tyrosinase via GSK3β phosphorylation.
Collapse
Affiliation(s)
- Hong-Ju Shin
- Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Chang Taek Oh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Tae-Rin Kwon
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Heung Soo Beak
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Yung Hyup Joo
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Jeong-Hwan Kim
- Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Chang Seok Lee
- Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - John Hwan Lee
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | - Song Seok Shin
- Skin Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| |
Collapse
|
41
|
Lee AY. Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res 2015; 28:648-60. [PMID: 26230865 DOI: 10.1111/pcmr.12404] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Melasma is a common skin pigmentation condition. Given therapeutic difficulty as one of the biggest concerns, understanding of the etiology and pathogenesis of melasma becomes essential. UV irradiation, female sex hormones, and inflammatory processes are addressed as triggering factors with genetic predisposition. The mechanism of UV-induced melanogenesis has been extensively investigated as a model system to study melasma pathogenesis. Hitherto, treatment modalities for melasma are similar to other hyperpigmentation disorders. However, individual triggering factors induce a separate pigmentation disease, whose pathogenic mechanisms and clinical phenotypes are different from the ones encountered in melasma. Fortunately, there have been ongoing updates on melasma pathogenesis with regard to major triggering factors. Presence of certain factors working independently of UV exposure and role of dermal factors and microRNAs are being identified as novel discoveries about melasma pathogenesis. In this review, the melasma pathogenesis is reviewed in association with updated and new findings.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| |
Collapse
|
42
|
Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma. Cancers (Basel) 2015; 7:1586-604. [PMID: 26287245 PMCID: PMC4586785 DOI: 10.3390/cancers7030852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics.
Collapse
|
43
|
Evaluation of Cinnamomum osmophloeum Kanehira extracts on tyrosinase suppressor, wound repair promoter, and antioxidant. ScientificWorldJournal 2015; 2015:303415. [PMID: 25839053 PMCID: PMC4370200 DOI: 10.1155/2015/303415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 01/23/2023] Open
Abstract
Cinnamomum osmophloeum Kanehira belongs to the Lauraceae family of Taiwan's endemic plants. In this study, C. osmophloeum Kanehira extract has shown inhibition of tyrosinase activity on B16-F10 cellular system first. Whether extracts inhibited mushroom tyrosinase activity was tested, and a considerable inhibition of mushroom tyrosinase activity by in vitro assays was presented. Animal experiments of C. osmophloeum Kanehira were carried out by observing animal wound repair, and the extracts had greater wound healing power than the vehicle control group (petroleum jelly with 8% DMSO, w/v). In addition, the antioxidant capacity of C. osmophloeum Kanehira extracts in vitro was evaluated. We measured C. osmophloeum Kanehira extract's free radical scavenging capability, metal chelating, and reduction power, such as biochemical activity analysis. The results showed that a high concentration of C. osmophloeum Kanehira extract had a significant scavenging capability of free radical, a minor effect of chelating ability, and moderate reducing power. Further exploration of the possible physiological mechanisms and the ingredient components of skincare product for skin-whitening, wound repair, or antioxidative agents are to be done.
Collapse
|
44
|
Kurahashi A, Shimoda T, Sato M, Fujimori F, Hirama J, Nishibori K. A putative transcription factor Gf.BMR1 in Grifola frondosa, the homolog of BMR1 in Bipolaris oryzae, was strongly induced by near-ultraviolet light and blue light. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Topical Acyclothymidine Dinucleosides (aTds) Promote Non-UV-Mediated Endogenous Defense Mechanisms in Guinea Pig Skin. J Invest Dermatol 2015; 135:1687-1689. [PMID: 25699520 DOI: 10.1038/jid.2015.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
|
47
|
Oh CT, Lee D, Koo K, Lee J, Yoon HS, Choi YM, Kwon TR, Kim BJ. Superoxide dismutase 1 inhibits alpha-melanocyte stimulating hormone and ultraviolet B-induced melanogenesis in murine skin. Ann Dermatol 2014; 26:681-7. [PMID: 25473218 PMCID: PMC4252663 DOI: 10.5021/ad.2014.26.6.681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 11/12/2022] Open
Abstract
Background Over the last decade, the incidence of ultraviolet B (UVB)-related skin problems has increased. Oxidative stress caused by UVB induces the secretion of melanocyte growth and activating factors from keratinocytes, which results in the formation of cutaneous hyperpigmentation. Therefore, increasing the antioxidant abilities of skin cells is thought to be a beneficial strategy for the development of sunscreen agents. Superoxide dismutase 1 (SOD1) is an antioxidant enzyme that is known to exhibit antioxidant properties. Objective The purpose of this study was to investigate the effect of SOD1 on alpha-melanocyte stimulating hormone (α-MSH) and UVB-induced melanogenesis in B16F10 melanoma cells and HRM-2 melanin-possessing hairless mice. Methods The inhibitory effect of SOD1 on tyrosinase activity was evaluated in a cell-free system. Additional experiments were performed using B16F10 melanoma cells to demonstrate the effects of SOD1 in vitro, and HRM-2 melanin-possessing hairless mice were used to evaluate the antimelanogenic effects of SOD1 in vivo. Results We found that SOD1 inhibited melanin production in a dose-dependent manner without causing cytotoxicity in B16F10 melanoma cells. SOD1 did not inhibit tyrosinase activity under cell-free conditions. The results indicate that SOD1 may reduce pigmentation by an indirect, nonenzymatic mechanism. We also found that SOD1 decreased UVB-induced melanogenesis in HRM-2 melanin-possessing hairless mice, as visualized through hematoxylin and eosin staining and Fontana-Masson staining. Conclusion Our results indicate that SOD1 has an inhibitory effect on α-MSH and UVB-induced melanogenesis, indicating that SOD1 may be a promising sunscreen agent.
Collapse
Affiliation(s)
- Chang Taek Oh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea. ; Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Dohyun Lee
- Nutrex Technology R&D Center, Seoul, Korea
| | - Kyotan Koo
- Nutrex Technology R&D Center, Seoul, Korea
| | - Jay Lee
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam, Korea
| | - Ho Sang Yoon
- MB Business Development Team, Pacificpharma, Seoul, Korea
| | - Yoo Mi Choi
- Cosmeceutical Team, Pacificpharma, Seoul, Korea
| | - Tae-Rin Kwon
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea. ; Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea. ; Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| |
Collapse
|
48
|
Seo I, Chu M, Bargo PR, Kollias N. Skin responses to micro scale field size of solar-simulated radiation--preliminary evaluation by reflectance confocal microscopy in vivo. Photochem Photobiol 2014; 90:1427-32. [PMID: 25244438 DOI: 10.1111/php.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/13/2014] [Indexed: 11/26/2022]
Abstract
Erythema and pigment responses of human skin following an acute exposure to ultraviolet radiation (UVR) are frequently used to determine the photosensitivity of the skin. In this study we investigated the responses of the skin to a micro-scale area of UVR exposure (MiR) and compared the responses to a macro-scale area of exposure (MaR). Ten human volunteers were tested with solar-simulated radiation on their upper arm or back using a beam size of 8 mm and 0.2 mm in diameter. The fluence required to produce a minimally perceptible erythema (MED) using the MiR was found to be higher than that for the MaR. The erythema response extended beyond the exposed area and this became pronounced when the beam size was microscopic. Reflectance confocal microscopy in vivo revealed that MiR induced cellular alterations within a confined area of smaller dimensions than the area of exposure. Pigment responses were confined within the areas of cellular damage. The erythema expression of exposed skin recovered faster for the sites receiving MiR even when the applied fluence was higher than the MED for the MaR. Through the use of MiR we were able to visualize spatially dissimilar skin responses of erythema and pigmentation suggesting different cellular mechanisms.
Collapse
Affiliation(s)
- InSeok Seo
- Johnson and Johnson CPPW, Skillman, NJ, USA
| | | | | | | |
Collapse
|
49
|
Gui M, Du J, Guo J, Xiao B, Yang W, Li M. Aqueous Extract of Chrysanthemum morifolium ( Jú Huā) Enhances the Antimelanogenic and Antioxidative Activities of the Mixture of Soy Peptide and Collagen Peptide. J Tradit Complement Med 2014; 4:171-6. [PMID: 25161922 PMCID: PMC4142455 DOI: 10.4103/2225-4110.128897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The possible synergistic effect between the aqueous extract of Chrysanthemum morifolium ( Jú Huā) (AECM) and the peptide mixture (PM) containing soy peptide and collagen peptide was investigated in an ultraviolet (UV) irradiation-induced skin damage mouse model. The irradiated mice were treated with the PM or PM + AECM (containing PM and AECM), respectively. Both PM and PM + AECM groups displayed an apparent photoprotective effect on the UV-irradiated skin damage of mice. Histological evaluation demonstrated that the epidermal hyperplasia and melanocytes in the basal epidermal layer of the UV-irradiated skin in mice decreased when treated with either PM or PM + AECM. Further study showed that soy peptide, collagen peptide, and AECM also inhibited the activities of mushroom tyrosinase with IC50 values of 82.3, 28.2, and 1.6 μg/ml, respectively. Additionally, PM + AECM reduced melanogenesis by 46.2% at the concentration of 10 mg/ml in B16 mouse melanoma cells. Meanwhile, the UV-induced increase of antioxidative indicators, including glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA), was reduced significantly after treatment with 1.83 g/kg/dbw of PM + AECM. This evidence supported the synergistic antioxidative effect of AECM with PM. These results demonstrated that oral intake of PM and AECM had synergistic antimelanogenic and antioxidative effects in UV-irradiated mice.
Collapse
Affiliation(s)
- Min Gui
- Amway (China) Research and Development Center, Shanghai, China
| | - Jun Du
- Amway (China) Research and Development Center, Shanghai, China
| | - Jianmin Guo
- State Key Laboratory of New Drug Evaluation in Guangzhou, Guangzhou Institute of Pharmaceutical Industry, Guangzhou, China
| | - Baiquan Xiao
- State Key Laboratory of New Drug Evaluation in Guangzhou, Guangzhou Institute of Pharmaceutical Industry, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of New Drug Evaluation in Guangzhou, Guangzhou Institute of Pharmaceutical Industry, Guangzhou, China
| | - Minjie Li
- Amway (China) Research and Development Center, Shanghai, China
| |
Collapse
|
50
|
Larsen HAS, Austbø L, Nødtvedt A, Fraser TWK, Rimstad E, Fjelldal PG, Hansen T, Koppang EO. The effect of vaccination, ploidy and smolt production regime on pathological melanin depositions in muscle tissue of Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2014; 37:327-340. [PMID: 23646928 DOI: 10.1111/jfd.12106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
The presence of melanin in muscle fillets of farmed salmon represents a considerable quality problem for the salmon industry with major economic concerns. In this study, we have examined the presence of abnormal pigmentation in vaccinated versus unvaccinated Atlantic salmon, Salmo salar L., and evaluated possible differences between diploid and triploid fish. Furthermore, the impact of the smolt production regime at ambient (4.5 °C) versus elevated temperature (16 °C) was investigated. Pigmented muscle spots were analysed for the expression of genes involved in melanization (tyrosinase gene family) and immune-related response in addition to morphological investigations. The proportion of fish with intramuscular melanin deposits was not significantly different between vaccinated and unvaccinated fish, regardless of ploidy. However, an interaction between vaccination and smolt regime was shown, where smoltification at elevated temperature after vaccination increased the number of affected individuals compared with vaccination followed by simulated natural smoltification. Furthermore, there were overall more fish with melanin spots amongst the triploids compared with their diploid counterparts. Transcription of the tyrosinase gene family confirmed an onsite melanogenesis in all pigment spots. The histological examination and the expression of the immune-related genes revealed a chronic polyphasic myopathy that was not affected by vaccination, ploidy or smolt production regime.
Collapse
Affiliation(s)
- H A S Larsen
- Department of Basic Science and Aquatic Medicine, Section of Anatomy and Pathology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|