1
|
Bakman AS, Boichenko SS, Kuznetsova AA, Ishchenko AA, Saparbaev M, Kuznetsov NA. Coordination between human DNA polymerase β and apurinic/apyrimidinic endonuclease 1 in the course of DNA repair. Biochimie 2024; 216:126-136. [PMID: 37806619 DOI: 10.1016/j.biochi.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Coordination of enzymatic activities in the course of base excision repair (BER) is essential to ensure complete repair of damaged bases. Two major mechanisms underlying the coordination of BER are known today: the "passing the baton" model and a model of preassembled stable multiprotein repair complexes called "repairosomes." In this work, we aimed to elucidate the coordination between human apurinic/apyrimidinic (AP) endonuclease APE1 and DNA polymerase Polβ in BER through studying an impact of APE1 on Polβ-catalyzed nucleotide incorporation into different model substrates that mimic different single-strand break (SSB) intermediates arising along the BER pathway. It was found that APE1's impact on separate stages of Polβ's catalysis depends on the nature of a DNA substrate. In this complex, APE1 removed 3' blocking groups and corrected Polβ-catalyzed DNA synthesis in a coordinated manner. Our findings support the hypothesis that Polβ not only can displace APE1 from damaged DNA within the "passing the baton" model but also performs the gap-filling reaction in the ternary complex with APE1 according to the "repairosome" model. Taken together, our results provide new insights into coordination between APE1 and Polβ during the BER process.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia
| | - Stanislav S Boichenko
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805, Villejuif, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805, Villejuif, France
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia.
| |
Collapse
|
2
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Nurmi AK, Pelttari LM, Kiiski JI, Khan S, Nurmikolu M, Suvanto M, Aho N, Tasmuth T, Kalso E, Schleutker J, Kallioniemi A, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. NTHL1 is a recessive cancer susceptibility gene. Sci Rep 2023; 13:21127. [PMID: 38036545 PMCID: PMC10689455 DOI: 10.1038/s41598-023-47441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
In search of novel breast cancer (BC) risk variants, we performed a whole-exome sequencing and variant analysis of 69 Finnish BC patients as well as analysed loss-of-function variants identified in DNA repair genes in the Finns from the Genome Aggregation Database. Additionally, we carried out a validation study of SERPINA3 c.918-1G>C, recently suggested for BC predisposition. We estimated the frequencies of 41 rare candidate variants in 38 genes by genotyping them in 2482-4101 BC patients and in 1273-3985 controls. We further evaluated all coding variants in the candidate genes in a dataset of 18,786 BC patients and 182,927 controls from FinnGen. None of the variants associated significantly with cancer risk in the primary BC series; however, in the FinnGen data, NTHL1 c.244C>T p.(Gln82Ter) associated with BC with a high risk for homozygous (OR = 44.7 [95% CI 6.90-290], P = 6.7 × 10-5) and a low risk for heterozygous women (OR = 1.39 [1.18-1.64], P = 7.8 × 10-5). Furthermore, the results suggested a high risk of colorectal, urinary tract, and basal-cell skin cancer for homozygous individuals, supporting NTHL1 as a recessive multi-tumour susceptibility gene. No significant association with BC risk was detected for SERPINA3 or any other evaluated gene.
Collapse
Affiliation(s)
- Anna K Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Mika Nurmikolu
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Niina Aho
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and FICAN West Cancer Centre, and Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- Tays Cancer Center, Tampere University Hospital, and BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland.
| |
Collapse
|
4
|
Gautam A, Fawcett H, Burdova K, Brazina J, Caldecott KW. APE1-dependent base excision repair of DNA photodimers in human cells. Mol Cell 2023; 83:3669-3678.e7. [PMID: 37816354 DOI: 10.1016/j.molcel.2023.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023]
Abstract
UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.
Collapse
Affiliation(s)
- Amit Gautam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Heather Fawcett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Kamila Burdova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK; Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Prague, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
5
|
Bakman AS, Boichenko SS, Kuznetsova AA, Ishchenko AA, Saparbaev M, Kuznetsov NA. The Impact of Human DNA Glycosylases on the Activity of DNA Polymerase β toward Various Base Excision Repair Intermediates. Int J Mol Sci 2023; 24:ijms24119594. [PMID: 37298543 DOI: 10.3390/ijms24119594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Base excision repair (BER) is one of the important systems for the maintenance of genome stability via repair of DNA lesions. BER is a multistep process involving a number of enzymes, including damage-specific DNA glycosylases, apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligase. Coordination of BER is implemented by multiple protein-protein interactions between BER participants. Nonetheless, mechanisms of these interactions and their roles in the BER coordination are poorly understood. Here, we report a study on Polβ's nucleotidyl transferase activity toward different DNA substrates (that mimic DNA intermediates arising during BER) in the presence of various DNA glycosylases (AAG, OGG1, NTHL1, MBD4, UNG, or SMUG1) using rapid-quench-flow and stopped-flow fluorescence approaches. It was shown that Polβ efficiently adds a single nucleotide into different types of single-strand breaks either with or without a 5'-dRP-mimicking group. The obtained data indicate that DNA glycosylases AAG, OGG1, NTHL1, MBD4, UNG, and SMUG1, but not NEIL1, enhance Polβ's activity toward the model DNA intermediates.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Stanislav S Boichenko
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805 Villejuif, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805 Villejuif, France
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
7
|
Tesfay L, Paul BT, Hegde P, Brewer M, Habbani S, Jellison E, Moore T, Wu H, Torti SV, Torti FM. Complementary anti-cancer pathways triggered by inhibition of sideroflexin 4 in ovarian cancer. Sci Rep 2022; 12:19936. [PMID: 36402786 PMCID: PMC9675821 DOI: 10.1038/s41598-022-24391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
DNA damaging agents are a mainstay of standard chemotherapy for ovarian cancer. Unfortunately, resistance to such DNA damaging agents frequently develops, often due to increased activity of DNA repair pathways. Sideroflexin 4 (SFXN4) is a little-studied inner mitochondrial membrane protein. Here we demonstrate that SFXN4 plays a role in synthesis of iron sulfur clusters (Fe-S) in ovarian cancer cells and ovarian cancer tumor-initiating cells, and that knockdown of SFXN4 inhibits Fe-S biogenesis in ovarian cancer cells. We demonstrate that this has two important consequences that may be useful in anti-cancer therapy. First, inhibition of Fe-S biogenesis triggers the accumulation of excess iron, leading to oxidative stress. Second, because enzymes critical to multiple DNA repair pathways require Fe-S clusters for their function, DNA repair enzymes and DNA repair itself are inhibited by reduction of SFXN4. Through this dual mechanism, SFXN4 inhibition heightens ovarian cancer cell sensitivity to DNA-damaging drugs and DNA repair inhibitors used in ovarian cancer therapy, such as cisplatin and PARP inhibitors. Sensitization is achieved even in drug resistant ovarian cancer cells. Further, knockout of SFXN4 decreases DNA repair and profoundly inhibits tumor growth in a mouse model of ovarian cancer metastasis. Collectively, these results suggest that SFXN4 may represent a new target in ovarian cancer therapy.
Collapse
Affiliation(s)
- Lia Tesfay
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Bibbin T Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Poornima Hegde
- Department of Pathology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Molly Brewer
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Samrin Habbani
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, 47907, USA
| | - Evan Jellison
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Timothy Moore
- Statistical Consulting Services, Center for Open Research Resources, University of Connecticut, Storrs, CT, 06269, USA
| | - Hao Wu
- Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA
| | - Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
8
|
Konis SMR, Hughes JR, Parsons JL. TRIM26 Maintains Cell Survival in Response to Oxidative Stress through Regulating DNA Glycosylase Stability. Int J Mol Sci 2022; 23:ijms231911613. [PMID: 36232914 PMCID: PMC9569934 DOI: 10.3390/ijms231911613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative DNA base lesions in DNA are repaired through the base excision repair (BER) pathway, which consequently plays a vital role in the maintenance of genome integrity and in suppressing mutagenesis. 8-oxoguanine DNA glycosylase (OGG1), endonuclease III-like protein 1 (NTH1), and the endonuclease VIII-like proteins 1-3 (NEIL1-3) are the key enzymes that initiate repair through the excision of the oxidized base. We have previously identified that the E3 ubiquitin ligase tripartite motif 26 (TRIM26) controls the cellular response to oxidative stress through regulating both NEIL1 and NTH1, although its potential, broader role in BER is unclear. We now show that TRIM26 is a central player in determining the response to different forms of oxidative stress. Using siRNA-mediated knockdowns, we demonstrate that the resistance of cells to X-ray radiation and hydrogen peroxide generated as a consequence of trim26 depletion can be reversed through suppression of selective DNA glycosylases. In particular, a knockdown of neil1 or ogg1 can enhance sensitivity and DNA repair rates in response to X-rays, whereas a knockdown of neil1 or neil3 can produce the same effect in response to hydrogen peroxide. Our study, therefore, highlights the importance of TRIM26 in balancing cellular DNA glycosylase levels required for an efficient BER response.
Collapse
Affiliation(s)
- Sifaddin M. R. Konis
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Jonathan R. Hughes
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6 West Derby Street, Liverpool L7 8TX, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington CH63 4JY, UK
- Correspondence: ; Tel.: +44-151-794-8848
| |
Collapse
|
9
|
Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol 2022; 10:984245. [PMID: 36158192 PMCID: PMC9491825 DOI: 10.3389/fcell.2022.984245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Unit for precision medicine, Akershus University Hospital, Nordbyhagen, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Nicola Pietro Montaldo,
| |
Collapse
|
10
|
Polymorphic variant Asp239Tyr of human DNA glycosylase NTHL1 is inactive for removal of a variety of oxidatively-induced DNA base lesions from genomic DNA. DNA Repair (Amst) 2022; 117:103372. [PMID: 35870279 DOI: 10.1016/j.dnarep.2022.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
Base excision repair is the major pathway for the repair of oxidatively-induced DNA damage, with DNA glycosylases removing modified bases in the first step. Human NTHL1 is specific for excision of several pyrimidine- and purine-derived lesions from DNA, with loss of function NTHL1 showing a predisposition to carcinogenesis. A rare single nucleotide polymorphism of the Nthl1 gene leading to the substitution of Asp239 with Tyr within the active site, occurs within global populations. In this work, we overexpressed and purified the variant NTHL1-Asp239Tyr (NTHL1-D239Y) and determined the substrate specificity of this variant relative to wild-type NTHL1 using gas chromatography-tandem mass spectrometry with isotope-dilution, and oxidatively-damaged genomic DNA containing multiple pyrimidine- and purine-derived lesions. Wild-type NTHL1 excised seven DNA base lesions with different efficiencies, whereas NTHL1-D239Y exhibited no glycosylase activity for any of these lesions. We also measured the activities of human glycosylases OGG1 and NEIL1, and E. coli glycosylases Nth and Fpg under identical experimental conditions. Different substrate specificities among these DNA glycosylases were observed. When mixed with NTHL1-D239Y, the activity of NTHL1 was not reduced, indicating no substrate binding competition. These results and the inactivity of the variant D239Y toward the major oxidatively-induced DNA lesions points to the importance of the understanding of this variant's role in carcinogenesis and the potential of individual susceptibility to cancer in individuals carrying this variant.
Collapse
|
11
|
Kawada T, Kino K, Tokorodani K, Anabuki R, Morikawa M, Kobayashi T, Ohara K, Ohshima T, Miyazawa H. Analysis of nucleotide insertion opposite urea and translesion synthesis across urea by DNA polymerases. Genes Environ 2022; 44:7. [PMID: 35168664 PMCID: PMC8845263 DOI: 10.1186/s41021-022-00236-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract Urea (Ua) is produced in DNA as the result of oxidative damage to thymine and guanine. It was previously reported that Klenow fragment (Kf) exo− incorporated dATP opposite Ua, and that DNA polymerase β was blocked by Ua. We report here the following nucleotide incorporations opposite Ua by various DNA polymerases: DNA polymerase α, dATP and dGTP (dATP > dGTP); DNA polymerase δ, dATP; DNA polymerase ζ, dATP; Kf exo−, dATP; Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), dGTP and dATP (dGTP > dATP); and DNA polymerase η, dCTP, dGTP, dATP, and dTTP (dCTP > dGTP > dATP > dTTP). DNA polymerases β and ε were blocked by Ua. Elongation by DNA polymerases δ and ζ stopped after inserting dATP opposite Ua. Importantly, the elongation efficiency to full-length beyond Ua using DNA polymerase η and Dpo4 were almost the same as that of natural DNA. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s41021-022-00236-3.
Collapse
Affiliation(s)
- Taishu Kawada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| | - Kyousuke Tokorodani
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Ryuto Anabuki
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Masayuki Morikawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kazuaki Ohara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Takayuki Ohshima
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| |
Collapse
|
12
|
Marsden CG, Das L, Nottoli TP, Kathe SD, Doublié S, Wallace SS, Sweasy JB. Mouse Embryonic Fibroblasts Isolated From Nthl1 D227Y Knockin Mice Exhibit Defective DNA Repair and Increased Genome Instability. DNA Repair (Amst) 2022; 109:103247. [PMID: 34826736 PMCID: PMC8787541 DOI: 10.1016/j.dnarep.2021.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
Oxidative DNA damage as a result of normal cellular metabolism, inflammation, or exposure to exogenous DNA damaging agents if left unrepaired, can result in genomic instability, a precursor to cancer and other diseases. Nth-like DNA glycosylase 1 (NTHL1) is an evolutionarily conserved bifunctional DNA glycosylase that primarily removes oxidized pyrimidine lesions. NTHL1 D239Y is a germline variant identified in both heterozygous and homozygous state in the human population. Here, we have generated a knockin mouse model carrying Nthl1 D227Y (mouse homologue of D239Y) using CRISPR-cas9 genome editing technology and investigated the cellular effects of the variant in the heterozygous (Y/+) and homozygous (Y/Y) state using murine embryonic fibroblasts. We identified a significant increase in double stranded breaks, genomic instability, replication stress and impaired proliferation in both the Nthl1 D227Y heterozygous Y/+ and homozygous mutant Y/Y MEFs. Importantly, we identified that the presence of the D227Y variant interferes with repair by the WT protein, possibly by binding and shielding the lesions. The cellular phenotypes observed in D227Y mutant MEFs suggest that both the heterozygous and homozygous carriers of this NTHL1 germline mutation may be at increased risk for the development of DNA damage-associated diseases, including cancer.
Collapse
Affiliation(s)
- Carolyn G. Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Lipsa Das
- Present address: Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA
| | - Timothy P. Nottoli
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Scott D. Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Joann B. Sweasy
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510,Present address: Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA,Corresponding author contact information: Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ 85724-5024, USA,
| |
Collapse
|
13
|
Carroll BL, Zahn KE, Hanley JP, Wallace SS, Dragon JA, Doublié S. Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Res 2021; 49:13165-13178. [PMID: 34871433 PMCID: PMC8682792 DOI: 10.1093/nar/gkab1162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - John P Hanley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
de Sousa MML, Ye J, Luna L, Hildrestrand G, Bjørås K, Scheffler K, Bjørås M. Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction. Int J Mol Sci 2021; 22:12924. [PMID: 34884729 PMCID: PMC8657561 DOI: 10.3390/ijms222312924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain requires a high rate of oxygen consumption to perform intense metabolic activities, accounting for 20% of total body oxygen consumption. This high oxygen uptake results in the generation of free radicals, including reactive oxygen species (ROS), which, at physiological levels, are beneficial to the proper functioning of fundamental cellular processes. At supraphysiological levels, however, ROS and associated lesions cause detrimental effects in brain cells, commonly observed in several neurodegenerative disorders. In this review, we focus on the impact of oxidative DNA base lesions and the role of DNA glycosylase enzymes repairing these lesions on brain function and disease. Furthermore, we discuss the role of DNA base oxidation as an epigenetic mechanism involved in brain diseases, as well as potential roles of DNA glycosylases in different epigenetic contexts. We provide a detailed overview of the impact of DNA glycosylases on brain metabolism, cognition, inflammation, tissue loss and regeneration, and age-related neurodegenerative diseases based on evidence collected from animal and human models lacking these enzymes, as well as post-mortem studies on patients with neurological disorders.
Collapse
Affiliation(s)
- Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Jing Ye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Gunn Hildrestrand
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Karine Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Katja Scheffler
- Department of Neurology, St. Olavs Hospital, 7006 Trondheim, Norway;
- Department of Laboratory Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| |
Collapse
|
15
|
Adamowicz M, Hailstone R, Demin AA, Komulainen E, Hanzlikova H, Brazina J, Gautam A, Wells SE, Caldecott KW. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nat Cell Biol 2021; 23:1287-1298. [PMID: 34811483 PMCID: PMC8683375 DOI: 10.1038/s41556-021-00792-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1−/− mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1−/− cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease. Adamowicz et al. report that toxic PARP1 activity, induced by ataxia-associated mutations in XRCC1, impairs the recovery of global transcription during DNA base excision repair by promoting aberrant recruitment and activity of the histone ubiquitin protease USP3.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Richard Hailstone
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Annie A Demin
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Emilia Komulainen
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Hana Hanzlikova
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK.,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Amit Gautam
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Sophie E Wells
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. .,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
16
|
Hinton TV, Batelu S, Gleason N, Stemmler TL. Molecular characteristics of proteins within the mitochondrial Fe-S cluster assembly complex. Micron 2021; 153:103181. [PMID: 34823116 DOI: 10.1016/j.micron.2021.103181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Iron-Sulfur (Fe-S) clusters are essential for life, as they are widely utilized in nearly every biochemical pathway. When bound to proteins, Fe-S clusters assist in catalysis, signal recognition, and energy transfer events, as well as additional cellular pathways including cellular respiration and DNA repair and replication. In Eukaryotes, Fe-S clusters are produced through coordinated activity by mitochondrial Iron-Sulfur Cluster (ISC) assembly pathway proteins through direct assembly, or through the production of the activated sulfur substrate used by the Cytosolic Iron-Sulfur Cluster Assembly (CIA) pathway. In the mitochondria, Fe-S cluster assembly is accomplished through the coordinated activity of the ISC pathway protein complex composed of a cysteine desulfurase, a scaffold protein, the accessory ISD11 protein, the acyl carrier protein, frataxin, and a ferredoxin; downstream events that accomplish Fe-S cluster transfer and delivery are driven by additional chaperone/delivery proteins that interact with the ISC assembly complex. Deficiency in human production or activity of Fe-S cluster containing proteins is often detrimental to cell and organism viability. Here we summarize what is known about the structure and functional activities of the proteins involved in the early steps of assembling [2Fe-2S] clusters before they are transferred to proteins devoted to their delivery. Our goal is to provide a comprehensive overview of how the ISC assembly apparatus proteins interact to make the Fe-S cluster which can be delivered to proteins downstream to the assembly event.
Collapse
Affiliation(s)
- Tiara V Hinton
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Noah Gleason
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Wallace SS. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. Int J Radiat Biol 2021; 98:367-382. [PMID: 34187282 DOI: 10.1080/09553002.2021.1948141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To summarize succinctly the 50 years of research undertaken in my laboratory and to provide an overview of my career in science. It is certainly a privilege to have been asked by Carmel Mothersill and Penny Jeggo to contribute to this special issue of the International Journal of Radiation Biology focusing on the work of women in the radiation sciences. CONCLUSION My students, post-docs and I identified and characterized a number of the enzymes that recognize and remove radiation-damaged DNA bases, the DNA glycosylases, which are the first enzymes in the Base Excision Repair (BER) pathway. Although this pathway actually evolved to repair oxidative and other endogenous DNA damages, it is also responsible for removing the vast majority of radiation-induced DNA damages including base damages, alkali-labile lesions and single strand breaks. However, because of its high efficiency, attempted BER of clustered lesions produced by ionizing radiation, can have disastrous effects on cellular DNA. We also evaluated the potential biological consequences of many of the radiation-induced DNA lesions. In addition, with collaborators, we employed computational techniques, x-ray crystallography and single molecule approaches to answer many questions at the molecular level.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
19
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
20
|
Wallace SS. Molecular radiobiology and the origins of the base excision repair pathway: an historical perspective. Int J Radiat Biol 2021; 99:891-902. [DOI: 10.1080/09553002.2021.1908639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
21
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
22
|
Huang Z, Chen Y, Zhang Y. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci 2020. [DOI: 10.1007/s12038-020-00055-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Marsden CG, Jaruga P, Coskun E, Maher RL, Pederson DS, Dizdaroglu M, Sweasy JB. Expression of a germline variant in the N-terminal domain of the human DNA glycosylase NTHL1 induces cellular transformation without impairing enzymatic function or substrate specificity. Oncotarget 2020; 11:2262-2272. [PMID: 32595826 PMCID: PMC7299534 DOI: 10.18632/oncotarget.27548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023] Open
Abstract
Oxidatively-induced DNA damage, widely accepted as a key player in the onset of cancer, is predominantly repaired by base excision repair (BER). BER is initiated by DNA glycosylases, which locate and remove damaged bases from DNA. NTHL1 is a bifunctional DNA glycosylase in mammalian cells that predominantly removes oxidized pyrimidines. In this study, we investigated a germline variant in the N-terminal domain of NTHL1, R33K. Expression of NTHL1 R33K in human MCF10A cells resulted in increased proliferation and anchorage-independent growth compared to NTHL1 WT-expressing cells. However, wt-NTHL1 and R33K-NTHL1 exhibited similar substrate specificity, excision kinetics, and enzyme turnover in vitro and in vivo. The results of this study indicate an important function of R33 in BER that is disrupted by the R33K mutation. Furthermore, the cellular transformation induced by R33K-NTHL1 expression suggests that humans harboring this germline variant may be at increased risk for cancer incidence.
Collapse
Affiliation(s)
- Carolyn G Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.,Present address: Saint Michael's College, Colchester, VT 05439, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.,Present address: Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Robyn L Maher
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
24
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
25
|
Scheffler K, Bjørås KØ, Bjørås M. Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair (Amst) 2019; 81:102665. [PMID: 31327582 DOI: 10.1016/j.dnarep.2019.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway
| | - Karine Øian Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, N-0424 Oslo, Norway.
| |
Collapse
|
26
|
Okumura K, Nishihara S, Inoue YH. Genetic identification and characterization of three genes that prevent accumulation of oxidative DNA damage in Drosophila adult tissues. DNA Repair (Amst) 2019; 78:7-19. [PMID: 30947023 DOI: 10.1016/j.dnarep.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/29/2023]
Abstract
Reactive oxygen species generated in the process of energy production represent a major cause of oxidative DNA damage. Production of the oxidized guanine base, 8-oxo-guanine (8-oxoG), results in mismatched pairing with adenine and subsequently leads to G:C to T:A transversions after DNA replication. Our previous study demonstrated that Drosophila CG1795 encodes an ortholog of Ogg1, which is essential for the elimination of 8-oxoG. Moreover, the Drosophila ribosomal protein S3 (RpS3) possesses N-glycosylase activity that eliminates 8-oxoG in vitro. In this study, we show that RpS3 heterozygotes hyper-accumulate 8-oxoG in midgut cell nuclei after oxidant feeding, suggesting thatRpS3 is required for the elimination of 8-oxoG in Drosophila adults. We further showed that several muscle-aging phenotypes were significantly accelerated in RpS3 heterozygotes. Ogg1 is localized in the nucleus, while RpS3 is in the cytoplasm, closely associated with endoplasmic reticulum networks. Results of genetic analyses also suggest that these two proteins operate similarly but independently in the elimination of oxidized guanine bases from genomic DNA. Next, we obtained genetic evidence suggesting that CG42813 functions as the Drosophila ortholog of mammalian Mth1 in the elimination of oxidized dGTP (8-oxo-dGTP) from the nucleotide pool. Depletion of this gene significantly increased the number of DNA damage foci in the nuclei of Drosophila midgut cells. Furthermore, several aging-related phenotypes such as age-dependent loss of adult locomotor activities and accumulation of polyubiquitylated proteins in adult muscles were also significantly accelerated in CG42813-depleted flies. Lastly, we investigated the phenotype of adults depleted of CG9272, which encodes a protein with homology to mammalian Nth1 that is essential for the elimination of oxidized thymine. Excessive accumulation of oxidized bases was observed in the epithelial cell nuclei after oxidant feeding. In conclusion, three genes that prevent accumulation of oxidative DNA damage were identified in Drosophila.
Collapse
Affiliation(s)
- Kazuko Okumura
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Shunta Nishihara
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan.
| |
Collapse
|
27
|
NTH1 Is a New Target for Ubiquitylation-Dependent Regulation by TRIM26 Required for the Cellular Response to Oxidative Stress. Mol Cell Biol 2018; 38:MCB.00616-17. [PMID: 29610152 PMCID: PMC5974432 DOI: 10.1128/mcb.00616-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
Endonuclease III-like protein 1 (NTH1) is a DNA glycosylase required for the repair of oxidized bases, such as thymine glycol, within the base excision repair pathway. We examined regulation of NTH1 protein by the ubiquitin proteasome pathway and identified the E3 ubiquitin ligase tripartite motif 26 (TRIM26) as the major enzyme targeting NTH1 for polyubiquitylation. We demonstrate that TRIM26 catalyzes ubiquitylation of NTH1 predominantly on lysine 67 present within the N terminus of the protein in vitro In addition, the stability of a ubiquitylation-deficient protein mutant of NTH1 (lysine to arginine) at this specific residue was significantly increased in comparison to the wild-type protein when transiently expressed in cultured cells. We also demonstrate that cellular NTH1 protein is induced in response to oxidative stress following hydrogen peroxide treatment of cells and that accumulation of NTH1 on chromatin is exacerbated in the absence of TRIM26 through small interfering RNA (siRNA) depletion. Stabilization of NTH1 following TRIM26 siRNA also causes significant acceleration in the kinetics of DNA damage repair and cellular resistance to oxidative stress, which can be recapitulated by moderate overexpression of NTH1. This demonstrates the importance of TRIM26 in regulating the cellular levels of NTH1, particularly under conditions of oxidative stress.
Collapse
|
28
|
Klattenhoff AW, Thakur M, Chu CS, Ray D, Habib SL, Kidane D. Loss of NEIL3 DNA glycosylase markedly increases replication associated double strand breaks and enhances sensitivity to ATR inhibitor in glioblastoma cells. Oncotarget 2017; 8:112942-112958. [PMID: 29348879 PMCID: PMC5762564 DOI: 10.18632/oncotarget.22896] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023] Open
Abstract
DNA endonuclease eight-like glycosylase 3 (NEIL3) is one of the DNA glycosylases that removes oxidized DNA base lesions from single-stranded DNA (ssDNA) and non-B DNA structures. Approximately seven percent of human tumors have an altered NEIL3 gene. However, the role of NEIL3 in replication-associated repair and its impact on modulating treatment response is not known. Here, we report that NEIL3 is localized at the DNA double-strand break (DSB) sites during oxidative DNA damage and replication stress. Loss of NEIL3 significantly increased spontaneous replication-associated DSBs and recruitment of replication protein A (RPA). In contrast, we observed a marked decrease in Rad51 on nascent DNA strands at the replication fork, suggesting that HR-dependent repair is compromised in NEIL3-deficient cells. Interestingly, NEIL3-deficient cells were sensitive to ataxia–telangiectasia and Rad3 related protein (ATR) inhibitor alone or in combination with PARP1 inhibitor. This study elucidates the mechanism by which NEIL3 is critical to overcome oxidative and replication-associated genotoxic stress. Our findings may have important clinical implications to utilize ATR and PARP1 inhibitors to enhance cytotoxicity in tumors that carry altered levels of NEIL3.
Collapse
Affiliation(s)
- Alex W Klattenhoff
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Megha Thakur
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Christopher S Chu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Debolina Ray
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Samy L Habib
- South Texas Veterans Health System and Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| |
Collapse
|
29
|
Ignatov A, Bondarenko K, Makarova A. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Acta Naturae 2017; 9:12-26. [PMID: 29104772 PMCID: PMC5662270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a major cause of replication interruption, mutations, and cell death. DNA damage is removed by several types of repair processes. The involvement of specialized DNA polymerases in replication provides an important mechanism that helps tolerate persistent DNA damage. Specialized DNA polymerases incorporate nucleotides opposite lesions with high efficiency but demonstrate low accuracy of DNA synthesis. In this review, we summarize the types and mechanisms of formation and repair of non-bulky DNA lesions, and we provide an overview of the role of specialized DNA polymerases in translesion DNA synthesis.
Collapse
Affiliation(s)
- A.V. Ignatov
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
- Department of Molecular Biology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| | - K.A. Bondarenko
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| | - A.V. Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| |
Collapse
|
30
|
Abstract
Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next-generation sequencing of the germline and tumor genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter, we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis.
Collapse
|
31
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
32
|
Massaad MJ, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, Glauzy S, Olson BG, Morbach H, Ohsumi TK, Schmitz K, Kyriacos M, Kane J, Torisu K, Nakabeppu Y, Notarangelo LD, Chouery E, Megarbane A, Kang PB, Al-Idrissi E, Aldhekri H, Meffre E, Mizui M, Tsokos GC, Manis JP, Al-Herz W, Wallace SS, Geha RS. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest 2016; 126:4219-4236. [PMID: 27760045 DOI: 10.1172/jci85647] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals. The same homozygous NEIL3 mutation was also identified in an asymptomatic individual who exhibited elevated levels of serum autoantibodies and defective peripheral B cell tolerance, but normal B cell function. Further analysis of the patients revealed an absence of LPS-responsive beige-like anchor (LRBA) protein expression, a known cause of immunodeficiency. We next examined the contribution of NEIL3 to the maintenance of self-tolerance in Neil3-/- mice. Although Neil3-/- mice displayed normal B cell function, they exhibited elevated serum levels of autoantibodies and developed nephritis following treatment with poly(I:C) to mimic microbial stimulation. In Neil3-/- mice, splenic T and B cells as well as germinal center B cells from Peyer's patches showed marked increases in apoptosis and cell death, indicating the potential release of self-antigens that favor autoimmunity. These findings demonstrate that deficiency in NEIL3 is associated with increased lymphocyte apoptosis, autoantibodies, and predisposition to autoimmunity.
Collapse
|
33
|
Ormeño F, Barrientos C, Ramirez S, Ponce I, Valenzuela L, Sepúlveda S, Bitar M, Kemmerling U, Machado CR, Cabrera G, Galanti N. Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase. PLoS One 2016; 11:e0157270. [PMID: 27284968 PMCID: PMC4902261 DOI: 10.1371/journal.pone.0157270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing.
Collapse
Affiliation(s)
- Fernando Ormeño
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Barrientos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Santiago Ramirez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Ponce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sofía Sepúlveda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GC); (NG)
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GC); (NG)
| |
Collapse
|
34
|
Schuermann D, Scheidegger SP, Weber AR, Bjørås M, Leumann CJ, Schär P. 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair. Nucleic Acids Res 2016; 44:2187-98. [PMID: 26733580 PMCID: PMC4797279 DOI: 10.1093/nar/gkv1520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Simon P Scheidegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Rikshospitalet, PO Box 4950 Nydalen, N-0424 Oslo, Norway Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PO Box 8905, N-7491 Trondheim, Norway
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
35
|
Reddy PT, Jaruga P, Nelson BC, Lowenthal MS, Jemth AS, Loseva O, Coskun E, Helleday T, Dizdaroglu M. Production, Purification, and Characterization of ¹⁵N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods Enzymol 2015; 566:305-32. [PMID: 26791985 DOI: 10.1016/bs.mie.2015.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by a variety of damaging agents, resulting in the formation of a multiplicity of lesions, which are mutagenic and cytotoxic. Unless repaired by DNA repair mechanisms before DNA replication, DNA lesions can lead to genomic instability, which is one of the hallmarks of cancer. Oxidatively induced DNA damage is mainly repaired by base excision repair pathway with the involvement of a plethora of proteins. Cancer tissues develop greater DNA repair capacity than normal tissues by overexpressing DNA repair proteins. Increased DNA repair in tumors that removes DNA lesions generated by therapeutic agents before they became toxic is a major mechanism in the development of therapy resistance. Evidence suggests that DNA repair capacity may be a predictive biomarker of patient response. Thus, knowledge of DNA-protein expressions in disease-free and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. Our laboratory has developed methodologies that use mass spectrometry with isotope dilution for the measurement of expression of DNA repair proteins in human tissues and cultured cells. For this purpose, full-length (15)N-labeled analogs of a number of human DNA repair proteins have been produced and purified to be used as internal standards for positive identification and accurate quantification. This chapter describes in detail the protocols of this work. The use of (15)N-labeled proteins as internal standards for the measurement of several DNA repair proteins in vivo is also presented.
Collapse
Affiliation(s)
- Prasad T Reddy
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA.
| | - Pawel Jaruga
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Bryant C Nelson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Mark S Lowenthal
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erdem Coskun
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miral Dizdaroglu
- Biochemical Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| |
Collapse
|
36
|
Sharbeen G, McCarroll J, Goldstein D, Phillips PA. Exploiting base excision repair to improve therapeutic approaches for pancreatic cancer. Front Nutr 2015; 2:10. [PMID: 25988138 PMCID: PMC4428371 DOI: 10.3389/fnut.2015.00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly chemoresistant and metastatic disease with a dismal 5-year survival rate of 6%. More effective therapeutic targets and approaches are urgently needed to tackle this devastating disease. The base excision repair (BER) pathway has been identified as a predictor of therapeutic response, prognostic factor, and therapeutic target in a variety of cancers. This review will discuss our current understanding of BER in PDA and its potential to improve PDA treatment.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia , Sydney, NSW , Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Australia , Sydney, NSW , Australia
| |
Collapse
|
37
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
38
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
39
|
Barajas-Ornelas RDC, Ramírez-Guadiana FH, Juárez-Godínez R, Ayala-García VM, Robleto EA, Yasbin RE, Pedraza-Reyes M. Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis. J Bacteriol 2014; 196:3012-22. [PMID: 24914186 PMCID: PMC4135629 DOI: 10.1128/jb.01681-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/05/2014] [Indexed: 01/19/2023] Open
Abstract
In growing cells, apurinic/apyrimidinic (AP) sites generated spontaneously or resulting from the enzymatic elimination of oxidized bases must be processed by AP endonucleases before they compromise cell integrity. Here, we investigated how AP sites and the processing of these noncoding lesions by the AP endonucleases Nfo, ExoA, and Nth contribute to the production of mutations (hisC952, metB5, and leuC427) in starved cells of the Bacillus subtilis YB955 strain. Interestingly, cells from this strain that were deficient for Nfo, ExoA, and Nth accumulated a greater amount of AP sites in the stationary phase than during exponential growth. Moreover, under growth-limiting conditions, the triple nfo exoA nth knockout strain significantly increased the amounts of adaptive his, met, and leu revertants produced by the B. subtilis YB955 parental strain. Of note, the number of stationary-phase-associated reversions in the his, met, and leu alleles produced by the nfo exoA nth strain was significantly decreased following disruption of polX. In contrast, during growth, the reversion rates in the three alleles tested were significantly increased in cells of the nfo exoA nth knockout strain deficient for polymerase X (PolX). Therefore, we postulate that adaptive mutations in B. subtilis can be generated through a novel mechanism mediated by error-prone processing of AP sites accumulated in the stationary phase by the PolX DNA polymerase.
Collapse
Affiliation(s)
| | | | - Rafael Juárez-Godínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Victor M Ayala-García
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Ronald E Yasbin
- College of Arts and Sciences, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
40
|
Wallace SS. DNA glycosylases search for and remove oxidized DNA bases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:691-704. [PMID: 24123395 PMCID: PMC3997179 DOI: 10.1002/em.21820] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 05/19/2023]
Abstract
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage.
Collapse
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics The Markey Center for Molecular Genetics The University of Vermont Stafford Hall, 95 Carrigan Drive Burlington, VT 05405-0068, USA Tel: (802) 656-2164; Fax: (802) 656-8749
| |
Collapse
|
41
|
Bliksrud YT, Ellingsen A, Bjørås M. Fumarylacetoacetate inhibits the initial step of the base excision repair pathway: implication for the pathogenesis of tyrosinemia type I. J Inherit Metab Dis 2013; 36:773-8. [PMID: 23138988 DOI: 10.1007/s10545-012-9556-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 10/06/2012] [Accepted: 10/17/2012] [Indexed: 04/08/2023]
Abstract
Hereditary tyrosinemia type I (HT1) is an autosomal recessive disease caused by a deficiency in human fumarylacetoacetate (FAA) hydrolase (FAH), which is the last enzyme in the catabolic pathway of tyrosine. Several reports suggest that intracellular accumulation of intermediates of tyrosine catabolism, such as FAA and succinylacetone (SA) is important for the pathogenesis in liver and kidney of HT1 patients. In this work, we examined the effect of FAA and SA on DNA glycosylases initiating base excision repair (BER), which is the most important pathway for removing mutagenic DNA base lesions. In vitro assays monitoring DNA glycosylase activities demonstrated that FAA but not SA inhibited base removal. In particular, the Neil1 and Neil2 DNA glycosylases were strongly inhibited, whereas inhibition of Nth1 and Ogg1 were less efficient. These DNA glycosylases initiate excision of a broad range of mutagenic oxidative base lesions. Further, FAA showed a modest inhibitory effect on the activity of the alkylbase DNA glycosylase Aag and no significant inhibition of the uracil DNA glycosylase Ung2. These data indicate that FAA inhibition of DNA glycosylases removing oxidative base lesions in HT1 patients may increase mutagenesis, suggesting an important mechanism for development of hepatocarcinoma and somatic mosaicism.
Collapse
Affiliation(s)
- Yngve T Bliksrud
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
42
|
Corral R, Lewinger JP, Joshi AD, Levine AJ, Vandenberg DJ, Haile RW, Stern MC. Genetic variation in the base excision repair pathway, environmental risk factors, and colorectal adenoma risk. PLoS One 2013; 8:e71211. [PMID: 23951112 PMCID: PMC3741365 DOI: 10.1371/journal.pone.0071211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoking, high alcohol intake, and low dietary folate levels are risk factors for colorectal adenomas. Oxidative damage caused by these three factors can be repaired through the base excision repair pathway (BER). We hypothesized that genetic variation in BER might modify colorectal adenoma risk. In a sigmoidoscopy-based study, we examined associations between 182 haplotype tagging SNPs in 14 BER genes, and colorectal adenoma risk, and examined their potential role as modifiers of the effect cigarette smoking, alcohol intake, and dietary folate levels. Among all individuals, no statistically significant associations between BER SNPs and adenoma risk persisted after correction for multiple comparisons. However, among Asian-Pacific Islanders we observed two SNPs in FEN1 and one in NTHL1, and among African-Americans one SNP in APEX1 that were associated with colorectal adenoma risk. Significant associations were also observed between SNPs in the NEIL2 gene and rectal adenoma risk. Three SNPS modified the effect of smoking (MUTYH interaction p = 0.002; OGG1 interaction p = 0.013); FEN1 interaction p = 0.013)), one SNP in LIG3 modified the effect of alcohol consumption (interaction p = 0.024) and two SNPs in LIG3 modified the effect of dietary folate (interaction p = 0.001 and p = 0.08) on colorectal adenoma risk. These findings support a role for genetic variants in the BER pathway as potential modifiers of colorectal adenoma risk. Our findings strengthen the role of oxidative damage induced by key lifestyle and dietary risk factors in colorectal adenoma formation.
Collapse
Affiliation(s)
- Roman Corral
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Juan Pablo Lewinger
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Amit D. Joshi
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - A. Joan Levine
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - David J. Vandenberg
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Robert W. Haile
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Mariana C. Stern
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci U S A 2013; 110:14314-9. [PMID: 23940330 DOI: 10.1073/pnas.1306752110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Base excision repair (BER) removes at least 20,000 DNA lesions per human cell per day and is critical for the maintenance of genomic stability. We hypothesize that aberrant BER, resulting from mutations in BER genes, can lead to genomic instability and cancer. The first step in BER is catalyzed by DNA N-glycosylases. One of these, n(th) endonuclease III-like (NTH1), removes oxidized pyrimidines from DNA, including thymine glycol. The rs3087468 single nucleotide polymorphism of the NTH1 gene is a G-to-T base substitution that results in the NTH1 D239Y variant protein that occurs in ∼6.2% of the global population and is found in Europeans, Asians, and sub-Saharan Africans. In this study, we functionally characterize the effect of the D239Y variant expressed in immortal but nontransformed human and mouse mammary epithelial cells. We demonstrate that expression of the D239Y variant in cells also expressing wild-type NTH1 leads to genomic instability and cellular transformation as assessed by anchorage-independent growth, focus formation, invasion, and chromosomal aberrations. We also show that cells expressing the D239Y variant are sensitive to ionizing radiation and hydrogen peroxide and accumulate double strand breaks after treatment with these agents. The DNA damage response is also activated in D239Y-expressing cells. In combination, our data suggest that individuals possessing the D239Y variant are at risk for genomic instability and cancer.
Collapse
|
44
|
Arigony ALV, de Oliveira IM, Machado M, Bordin DL, Bergter L, Prá D, Pêgas Henriques JA. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597282. [PMID: 23781504 PMCID: PMC3678455 DOI: 10.1155/2013/597282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022]
Abstract
Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.
Collapse
Affiliation(s)
- Ana Lúcia Vargas Arigony
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Iuri Marques de Oliveira
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Miriana Machado
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Diana Lilian Bordin
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Lothar Bergter
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Prá
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- PPG em Promoção da Saúde, Universidade de Santa Cruz do Sul (UNISC), Avenida Independência 2293, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - João Antonio Pêgas Henriques
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
45
|
Abstract
Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins.
Collapse
Affiliation(s)
- Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | |
Collapse
|
46
|
Parsons JL, Dianov GL. Co-ordination of base excision repair and genome stability. DNA Repair (Amst) 2013; 12:326-33. [PMID: 23473643 DOI: 10.1016/j.dnarep.2013.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.
Collapse
Affiliation(s)
- Jason L Parsons
- Department of Molecular and Clinical Cancer Medicine, Cancer Research Centre, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| | | |
Collapse
|
47
|
Abstract
Base excision repair (BER) is a frontline repair system that is responsible for maintaining genome integrity and thus preventing premature aging, cancer and many other human diseases by repairing thousands of DNA lesions and strand breaks continuously caused by endogenous and exogenous mutagens. This fundamental and essential function of BER not only necessitates tight control of the continuous availability of basic components for fast and accurate repair, but also requires temporal and spatial coordination of BER and cell cycle progression to prevent replication of damaged DNA. The major goal of this review is to critically examine controversial and newly emerging questions about mammalian BER pathways, mechanisms regulating BER capacity, BER responses to DNA damage and their links to checkpoint control of DNA replication.
Collapse
Affiliation(s)
- Grigory L Dianov
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
48
|
Liu M, Doublié S, Wallace SS. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutat Res 2012; 743-744:4-11. [PMID: 23274422 DOI: 10.1016/j.mrfmmm.2012.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
DNA glycosylases are the enzymes that initiate the Base Excision Repair (BER) process that protects all organisms from the mutagenic and/or cytotoxic effects of DNA base lesions. Endonuclease VIII like proteins (Neil1, Neil2 and Neil3) are found in vertebrate genomes and are homologous to the well-characterized bacterial DNA glycosylases, Formamidopyrimidine DNA glycosylase (Fpg) and Endonuclease VIII (Nei). Since the initial discovery of the Neil proteins, much progress has been made on characterizing Neil1 and Neil2. It was not until recently, however, that Neil3 was shown to be a functional DNA glycosylase having a different substrate specificity and unusual structural features compared with other Fpg/Nei homologs. Although the biological functions of Neil3 still remain an enigma, this review highlights recent biochemical and structural data that may ultimately shed light on its biological role.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Dr., Burlington, VT 05405-0086, United States.
| |
Collapse
|
49
|
Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:247-71. [PMID: 23076011 DOI: 10.1016/j.bbapap.2012.10.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
Collapse
Affiliation(s)
- Sonja C Brooks
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
50
|
Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012; 31:3757-67. [PMID: 22863778 PMCID: PMC3442271 DOI: 10.1038/emboj.2012.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 02/02/2023] Open
Abstract
Integration of toxin-producing phage into the Vibrio cholerae genome co-opts not only bacterial recombinases, but also a host excision repair enzyme, assigning it an unsuspected structural role. Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTXϕ. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTXϕ-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.
Collapse
|