1
|
Patil AS, Patil AS, Ugare P, Jain E, Masareddy RS. Advancements in hyperpigmentation management: exploring conventional methods, phytoconstituents, novel approaches, and instrumental techniques. J COSMET LASER THER 2025; 27:1-16. [PMID: 39871800 DOI: 10.1080/14764172.2025.2455157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Hyperpigmentation is a common dermatological condition characterized by the darkening of patches of skin compared to the surrounding areas. It can occur in individuals of all skin types and ethnicities, and is caused by an overproduction or accumulation of melanin, the pigment responsible for the color of our skin, hair, and eyes. This comprehensive overview aims to delve into the various types, causes, risk factors, clinical manifestations, diagnosis, and treatment options for hyperpigmentation. Additionally, it explores the global and national prevalence of hyperpigmentation, its etiology, pathophysiology and diagnosis and treatment strategies. Furthermore, examines the formulations and dosage forms used to treat hyperpigmentation, including their side effects. It also discusses combination drugs and their associated side effects, as well as novel drug delivery systems and nanocarriers employed in the treatment of hyperpigmentation, providing insight into future prospects in this field.
Collapse
Affiliation(s)
- Arpana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Pratik Ugare
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Esha Jain
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Rajashree S Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| |
Collapse
|
2
|
Mishra L, Mishra M. Recent progress towards the development of fluorescent probes for the detection of disease-related enzymes. J Mater Chem B 2025; 13:763-801. [PMID: 39639834 DOI: 10.1039/d4tb01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Normal physiological functions as well as regulatory mechanisms for various pathological conditions depend on the activity of enzymes. Thus, determining the in vivo activity of enzymes is crucial for monitoring the physiological metabolism and diagnosis of diseases. Traditional enzyme detection methods are inefficient for in vivo detection, which have different limitations, such as high cost, laborious, and inevitable invasive procedures, low spatio-temporal resolution, weak anti-interference ability, and restricted scope of application. Because of its non-destructive nature, ultra-environmental sensitivity, and high spatiotemporal resolution, fluorescence imaging technology has emerged as a potent tool for the real-time visualization of live cells, thereby imaging the motility of proteins and intracellular signalling networks in tissues and cells and evaluating the binding and attraction of molecules. In the last few years, significant advancements have been achieved in detecting and imaging enzymes in biological systems. In this regard, the high sensitivity and unparalleled spatiotemporal resolution of fluorescent probes in association with confocal microscopy have garnered significant interest. In this review, we focus on providing a concise summary of the latest developments in the design of fluorogenic probes used for monitoring disease-associated enzymes and their application in biological imaging. We anticipate that this study will attract considerable attention among researchers in the relevant field, encouraging them to pursue advances in the development and application of fluorescent probes for the real-time monitoring of enzyme activity in live cells and in vivo models while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Chen Y, Wang C, Wu Y, Wang Y, Meng Y, Wu F, Zhang H, Cheng YY, Jiang X, Shi J, Li H, Zhao P, Wu J, Zheng B, Jin D, Bu W. Nutrient-delivery and metabolism reactivation therapy for melanoma. NATURE NANOTECHNOLOGY 2024; 19:1399-1408. [PMID: 38862714 DOI: 10.1038/s41565-024-01690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
To fulfil the demands of rapid proliferation, tumour cells undergo significant metabolic alterations. Suppression of hyperactivated metabolism has been proven to counteract tumour growth. However, whether the reactivation of downregulated metabolic pathways has therapeutic effects remains unexplored. Here we report a nutrient-based metabolic reactivation strategy for effective melanoma treatment. L-Tyrosine-oleylamine nanomicelles (MTyr-OANPs) were constructed for targeted supplementation of tyrosine to reactivate melanogenesis in melanoma cells. We found that reactivation of melanogenesis using MTyr-OANPs significantly impeded the proliferation of melanoma cells, primarily through the inhibition of glycolysis. Furthermore, leveraging melanin as a natural photothermal reagent for photothermal therapy, we demonstrated the complete eradication of tumours in B16F10 melanoma-bearing mice through treatment with MTyr-OANPs and photothermal therapy. Our strategy for metabolism activation-based tumour treatment suggests specific nutrients as potent activators of metabolic pathways.
Collapse
Affiliation(s)
- Yang Chen
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Chaochao Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Yelin Wu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Yun Meng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Fan Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Jieyun Shi
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
| | - Bin Zheng
- Cedars-Sinai Cancer Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, P. R. China.
| | - Wenbo Bu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China.
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
4
|
Shu D, Xie W, Liu H, Li J, Jiao J, Mao G, Yang S, Zhang K. Fluorescence monitoring of refluxed tyrosinase using endoplasmic reticulum-localized enzymatic activity-based sensing. Chem Commun (Camb) 2024; 60:5618-5621. [PMID: 38713525 DOI: 10.1039/d4cc00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
A tyrosinase-activatable fluorescent probe with endoplasmic reticulum targetability was developed for the first time. It can ratiometrically fluoresce and hence be used to monitor refluxed tyrosinase into the endoplasmic reticulum.
Collapse
Affiliation(s)
- Dunji Shu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Wenzhi Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Huihong Liu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jingjing Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jinglong Jiao
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China.
| |
Collapse
|
5
|
Hong C, Zhang Y, Yang L, Xu H, Cheng K, Lv Z, Chen K, Li Y, Wu H. Epimedin B exhibits pigmentation by increasing tyrosinase family proteins expression, activity, and stability. J Pharm Anal 2024; 14:69-85. [PMID: 38352950 PMCID: PMC10859565 DOI: 10.1016/j.jpha.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3β (GSK3β)/β-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Haoyang Xu
- International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Kaixian Chen
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| |
Collapse
|
6
|
Logesh R, Prasad SR, Chipurupalli S, Robinson N, Mohankumar SK. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim Biophys Acta Rev Cancer 2023; 1878:188968. [PMID: 37657683 DOI: 10.1016/j.bbcan.2023.188968] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Sagar Rajendra Prasad
- Department of Pharmacognosy, Varadaraja Institute of Pharmaceutical Education and Research, Tumkur 572102, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Nirmal Robinson
- Cellular Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Suresh Kumar Mohankumar
- Pharmacy, Swansea University Medical School, Singleton Park, Swansea University, Wales SA2 8PP, United Kingdom
| |
Collapse
|
7
|
Zhang S, Song Y, Liu M, Yuan Z, Zhang M, Zhang H, Seim I, Fan G, Liu S, Liu X. Chromosome-level genome of butterflyfish unveils genomic features of unique colour patterns and morphological traits. DNA Res 2023; 30:dsad018. [PMID: 37590994 PMCID: PMC10468729 DOI: 10.1093/dnares/dsad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chaetodontidae, known as butterflyfishes, are typical fish in coral ecosystems, exhibiting remarkable interspecific differences including body colour patterns and feeding ecology. In this study, we report genomes of three butterflyfish species (Chelmon rostratus, Chaetodon trifasciatus and Chaetodon auriga) and a closely related species from the Pomacanthidae family, Centropyge bicolour, with an average genome size of 65,611 Mb. Chelmon rostratus, comprising 24 chromosomes assembled to the chromosome level, could be served as a reference genome for butterflyfish. By conducting a collinearity analysis between butterflyfishes and several fishes, we elucidated the specific and conserved genomic features of butterflyfish, with particular emphasis on novel genes arising from tandem duplications and their potential functions. In addition to the two melanocyte-specific tyr genes commonly found in fish, we found the gene tyrp3, a new tyrosinase-related proteins gene in the reef fish, including butterflyfish and clownfish, implicating their involvement in the pigmentation diversity of fish. Additionally, we observed a tandem duplication expansion of three copies of nell1 gene in C. rostratus genome, which likely contribute to its unique jaw development and distinctive morphology of its sharp mouth. These results provided valuable genomic resources for further investigations into the genetic diversity and evolutionary adaptations of reef fish.
Collapse
Affiliation(s)
- Suyu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Meiru Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Mengqi Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4102, Queensland, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
8
|
Chiriţoiu GN, Munteanu CV, Şulea TA, Spiridon L, Petrescu AJ, Jandus C, Romero P, Petrescu ŞM. Methionine oxidation selectively enhances T cell reactivity against a melanoma antigen. iScience 2023; 26:107205. [PMID: 37485346 PMCID: PMC10362274 DOI: 10.1016/j.isci.2023.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The impact of the peptide amino acids side-chain modifications on the immunological recognition has been scarcely explored. We investigate here the effect of methionine oxidation on the antigenicity of the melanoma immunodominant peptide 369-YMDGTMSQV-377 (YMD). Using CD8+ T cell activation assays, we found that the antigenicity of the sulfoxide form is higher when compared to the YMD peptide. This is consistent with free energy computations performed on HLA-A∗02:01/YMD/TCR complex showing that this is lowered upon oxidation, paired with a steep increase in order at atomic level. Oxidized YMD forms were identified at the melanoma cell surface by LC-MS/MS analysis. These results demonstrate that methionine oxidation in the antigenic peptides may generate altered peptide ligands with increased antigenicity, and that this oxidation may occur in vivo, opening up the possibility that high-affinity CD8+ T cells might be naturally primed in the course of melanoma progression, as a result of immunosurveillance.
Collapse
Affiliation(s)
- Gabriela N. Chiriţoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Cristian V.A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Teodor A. Şulea
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Laurenţiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Pedro Romero
- Departement of Oncology, UNIL-CHUV, University of Lausanne, Epalinges, Switzerland
| | - Ştefana M. Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| |
Collapse
|
9
|
Long E, Yin J, Funderburk KM, Xu M, Feng J, Kane A, Zhang T, Myers T, Golden A, Thakur R, Kong H, Jessop L, Kim EY, Jones K, Chari R, Machiela MJ, Yu K, Iles MM, Landi MT, Law MH, Chanock SJ, Brown KM, Choi J. Massively parallel reporter assays and variant scoring identified functional variants and target genes for melanoma loci and highlighted cell-type specificity. Am J Hum Genet 2022; 109:2210-2229. [PMID: 36423637 PMCID: PMC9748337 DOI: 10.1016/j.ajhg.2022.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The most recent genome-wide association study (GWAS) of cutaneous melanoma identified 54 risk-associated loci, but functional variants and their target genes for most have not been established. Here, we performed massively parallel reporter assays (MPRAs) by using malignant melanoma and normal melanocyte cells and further integrated multi-layer annotation to systematically prioritize functional variants and susceptibility genes from these GWAS loci. Of 1,992 risk-associated variants tested in MPRAs, we identified 285 from 42 loci (78% of the known loci) displaying significant allelic transcriptional activities in either cell type (FDR < 1%). We further characterized MPRA-significant variants by motif prediction, epigenomic annotation, and statistical/functional fine-mapping to create integrative variant scores, which prioritized one to six plausible candidate variants per locus for the 42 loci and nominated a single variant for 43% of these loci. Overlaying the MPRA-significant variants with genome-wide significant expression or methylation quantitative trait loci (eQTLs or meQTLs, respectively) from melanocytes or melanomas identified candidate susceptibility genes for 60% of variants (172 of 285 variants). CRISPRi of top-scoring variants validated their cis-regulatory effect on the eQTL target genes, MAFF (22q13.1) and GPRC5A (12p13.1). Finally, we identified 36 melanoma-specific and 45 melanocyte-specific MPRA-significant variants, a subset of which are linked to cell-type-specific target genes. Analyses of transcription factor availability in MPRA datasets and variant-transcription-factor interaction in eQTL datasets highlighted the roles of transcription factors in cell-type-specific variant functionality. In conclusion, MPRAs along with variant scoring effectively prioritized plausible candidates for most melanoma GWAS loci and highlighted cellular contexts where the susceptibility variants are functional.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James Feng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alexander Kane
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Timothy Myers
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyxandra Golden
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rohit Thakur
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hyunkyung Kong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Pellin MA. The Use of Oncept Melanoma Vaccine in Veterinary Patients: A Review of the Literature. Vet Sci 2022; 9:597. [PMID: 36356074 PMCID: PMC9693055 DOI: 10.3390/vetsci9110597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 04/28/2024] Open
Abstract
The Oncept melanoma vaccine is xenogeneic DNA vaccine targeting tyrosinase. It is USDA approved for treatment of stage II to III canine oral melanoma and is also used off-label for melanomas arising in other locations and in other species. While the vaccine appears safe, the published data is mixed as to whether it provides a survival benefit, and the use of the vaccine is somewhat controversial in the veterinary oncology community. In this paper, the published literature describing the use of Oncept is reviewed and evaluated.
Collapse
Affiliation(s)
- MacKenzie A Pellin
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
11
|
A systematic exploration reveals the potential of spermidine for hypopigmentation treatment through the stabilization of melanogenesis-associated proteins. Sci Rep 2022; 12:14478. [PMID: 36008447 PMCID: PMC9411574 DOI: 10.1038/s41598-022-18629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Spermidine (SPD), a polyamine naturally present in living organisms, is known to prolong the lifespan of animals. In this study, the role of SPD in melanogenesis was investigated, showing potential as a pigmenting agent. SPD treatment increased melanin production in melanocytes in a dose dependent manner. Computational analysis with RNA-sequencing data revealed the alteration of protein degradation by SPD treatment without changes in the expressions of melanogenesis-related genes. Indeed, SPD treatment significantly increased the stabilities of tyrosinase-related protein (TRP)-1 and -2 while inhibiting ubiquitination, which was confirmed by treatment of proteasome inhibitor MG132. Inhibition of protein synthesis by cycloheximide (CHX) showed that SPD treatment increased the resistance of TRP-1 and TRP-2 to protein degradation. To identify the proteins involved in SPD transportation in melanocytes, the expression of several solute carrier (SLC) membrane transporters was assessed and, among 27 transporter genes, SLC3A2, SLC7A1, SLC18B1, and SLC22A18 were highly expressed, implying they are putative SPD transporters in melanocytes. Furthermore, SLC7A1 and SLC22A18 were downregulated by SPD treatment, indicating their active involvement in polyamine homeostasis. Finally, we applied SPD to a human skin equivalent and observed elevated melanin production. Our results identify SPD as a potential natural product to alleviate hypopigmentation.
Collapse
|
12
|
Mo X, Kazmi HR, Preston-Alp S, Zhou B, Zaidi MR. Interferon-gamma induces melanogenesis via post-translational regulation of tyrosinase. Pigment Cell Melanoma Res 2022; 35:342-355. [PMID: 35266648 PMCID: PMC9050958 DOI: 10.1111/pcmr.13036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
Abstract
Melanogenesis (melanin pigment production) in melanocytes is canonically stimulated by the alpha melanocyte stimulating hormone (αMSH), which activates the cyclic-AMP-mediated expression of the melanocyte inducing transcription factor (MITF) and its downstream melanogenic genes, including the principal rate-limiting melanogenic enzyme tyrosinase (TYR). Here, we report that interferon-gamma (IFNG; type II interferon), but not interferon-alpha (a type I interferon), induces a noncanonical melanogenic pathway in mouse and human melanocytic cells. Inhibition of IFNG pathway by the JAK1/2 inhibitor ruxolitinib or knocking out Stat1 gene abrogated the IFNG-induced melanogenesis. Interestingly, IFNG-induced melanogenesis was independent of MITF. IFNG markedly increased the TYR protein expression but did not affect the mRNA expression, suggesting a post-translational regulatory mechanism. In contrast, IFNG had no effect on the expression of other melanogenesis-related proteins, for example, tyrosinase-related protein 1 (TYRP1) and dopachrome tautomerase (DCT). Glycosidase digestion assays revealed that IFNG treatment increased the mature glycosylated form of TYR, but not its de novo synthesis. Moreover, cycloheximide chase assay showed that degradation of TYR was decreased in IFNG-treated cells. These results suggest that the IFNG-STAT1 pathway regulates melanogenesis via regulation of the post-translational processing and protein stability of TYR.
Collapse
Affiliation(s)
- Xuan Mo
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hasan Raza Kazmi
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sarah Preston-Alp
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Bo Zhou
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - M Raza Zaidi
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Preferential stimulation of melanocytes by M2 macrophages to produce melanin through vascular endothelial growth factor. Sci Rep 2022; 12:6416. [PMID: 35440608 PMCID: PMC9019043 DOI: 10.1038/s41598-022-08163-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory hyperpigmentation is a skin discoloration process that occurs following an inflammatory response or wound. As the skin begins to heal, macrophages first exhibit a proinflammatory phenotype (M1) during the early stages of tissue repair and then transition to a pro-healing, anti-inflammatory phenotype (M2) in later stages. During this process, M1 macrophages remove invading bacteria and M2 macrophages remodel surrounding tissue; however, the relationship between macrophages and pigmentation is unclear. In this study, we examined the effect of macrophages on melanin pigmentation using human induced pluripotent stem cells. Functional melanocytes were differentiated from human induced pluripotent stem cells and named as hiMels. The generated hiMels were then individually cocultured with M1 and M2 macrophages. Melanin synthesis decreased in hiMels cocultured with M1 macrophages but significantly increased in hiMels cocultured with M2 macrophages. Moreover, the expression of vascular endothelial growth factor was increased in M2 cocultured media. Our findings suggest that M2 macrophages, and not M1 macrophages, induce hyperpigmentation in scarred areas of the skin during tissue repair.
Collapse
|
14
|
Sirés-Campos J, Lambertos A, Delevoye C, Raposo G, Bennett DC, Sviderskaya E, Jiménez-Cervantes C, Olivares C, García-Borrón JC. Mahogunin Ring Finger 1 regulates pigmentation by controlling the pH of melanosomes in melanocytes and melanoma cells. Cell Mol Life Sci 2021; 79:47. [PMID: 34921635 PMCID: PMC8738503 DOI: 10.1007/s00018-021-04053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
Mahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III-IV. Expression, post-translational processing and enzymatic activity of the rate-limiting melanogenic enzyme tyrosinase measured in cell-free extracts were comparable in control and MGRN1-depleted cells. However, tyrosinase activity measured in situ in live cells and expression of genes associated with regulation of pH increased upon MGRN1 repression. Using pH-sensitive fluorescent probes, we found that downregulation of MGRN1 expression in melanocytes and melanoma cells increased the pH of acidic organelles, including melanosomes, strongly suggesting a previously unknown role of MGRN1 in the regulation of melanosomal pH. Among the pH regulatory genes upregulated by Mgrn1 knockdown, we identified those encoding several subunits of the vacuolar adenosine triphosphatase V-ATPase (mostly Atp6v0d2) and a calcium channel of the transient receptor potential channel family, Mucolipin 3 (Mcoln3). Manipulation of expression of the Mcoln3 gene showed that overexpression of Mcoln3 played a significant role in neutralization of the pH of acidic organelles and activation of tyrosinase in MGRN1-depleted cells. Therefore, lack of MGRN1 led to cell-autonomous stimulation of pigment production in melanocytes mostly by increasing tyrosinase specific activity through neutralization of the melanosomal pH in a MCOLN3-dependent manner.
Collapse
Affiliation(s)
- Julia Sirés-Campos
- University of Murcia, Murcia, Spain.,Institut Curie, UMR144, Structure and Membrane Compartments, PSL Research University, CNRS, 75005, Paris, France
| | | | - Cédric Delevoye
- Institut Curie, UMR144, Structure and Membrane Compartments, PSL Research University, CNRS, 75005, Paris, France.,Institut Curie, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University, CNRS, 75005, Paris, France
| | - Graça Raposo
- Institut Curie, UMR144, Structure and Membrane Compartments, PSL Research University, CNRS, 75005, Paris, France.,Institut Curie, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University, CNRS, 75005, Paris, France
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Elena Sviderskaya
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, SW17 0RE, UK
| | | | | | | |
Collapse
|
15
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
16
|
Identification of the ceRNA networks in α-MSH-induced melanogenesis of melanocytes. Aging (Albany NY) 2020; 13:2700-2726. [PMID: 33318297 PMCID: PMC7880406 DOI: 10.18632/aging.202320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
α-MSH is known for melanogenesis stimulation, and ceRNA is a new method involved in physiological regulation. However, whether ceRNA participates in α-MSH-induced melanogenesis remains unknown. We used ceRNA array to detect the expression profiles of lncRNAs, circRNAs, and mRNAs in melanocytes after α-MSH treatment. Moreover, the melanogenesis-related ceRNA regulatory networks were screened and validated. The expression profile analysis showed that 20 lncRNAs and 49 circRNAs changed five-fold after α-MSH treatment, while 933 mRNAs changed two-fold. Based on differentially expressed genes, GO and KEGG analysis were conducted and revealed that 14 genes were enriched in melanogenesis. Then, multiple lncRNA or circRNA-miRNA-mRNA ceRNA networks and lncRNA/circRNA-miRNA-mRNA quaternary ceRNA networks were identified. Thereinto, ENST00000606533, circ_0091223, and TYR expression were upregulated in α-MSH-treated melanocytes, while their complementary miR-1291 was decreased. Dual-luciferase reporter assay further verified that ENST00000606533 and circ_0091223 could bind to miR-1291. ENST00000606533 and circ_0091223 siRNAs decreased circ_0091223, ENST00000606533, and TYR expression, but increased miR-1291 expression. Conversely, miR-1291 mimics inhibited ENST00000606533, circ_0091223, and TYR expression. Moreover, miR-1291 inhibitor could reverse the inhibitory effect of the two siRNAs on TYR expression. Hence, the "ENST00000606533/circ_0091223-miR-1291-TYR" ceRNA network is involved in α-MSH-induced melanogenesis, and ceRNA networks may be potential therapeutic targets for skin pigmentation disorders.
Collapse
|
17
|
Kanuka M, Ouchi F, Kato N, Katsuki R, Ito S, Miura K, Hikida M, Tamura T. Endoplasmic Reticulum Associated Degradation of Spinocerebellar Ataxia-Related CD10 Cysteine Mutant. Int J Mol Sci 2020; 21:ijms21124237. [PMID: 32545905 PMCID: PMC7352294 DOI: 10.3390/ijms21124237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is one of the most severe neurodegenerative diseases and is often associated with misfolded protein aggregates derived from the genetic mutation of related genes. Recently, mutations in CD10 such as C143Y have been identified as SCA type 43. CD10, also known as neprilysin or neuroendopeptidase, digests functional neuropeptides, such as amyloid beta, in the extracellular region. In this study, we explored the cellular behavior of CD10 C143Y to gain an insight into the functional relationship of the mutation and SCA pathology. We found that wild-type CD10 is expressed on the plasma membrane and exhibits endopeptidase activity in a cultured cell line. CD10 C143Y, however, forms a disulfide bond-mediated oligomer that does not appear by the wild-type CD10. Furthermore, the CD10 C143Y mutant was retained in the endoplasmic reticulum (ER) by the molecular chaperone BiP and was degraded through the ER-associated degradation (ERAD) process, in which representative ERAD factors including EDEM1, SEL1L, and Hrd1 participate in the degradation. Suppression of CD10 C143Y ERAD recovers intracellular transport but not enzymatic activity. Our results indicate that the C143Y mutation in CD10 negatively affects protein maturation and results in ER retention and following ERAD. These findings provide beneficial insight into SCA type 43 pathology.
Collapse
Affiliation(s)
- Mai Kanuka
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Fuka Ouchi
- Department of Life Science, Faculty of Engineering Science, Akita University, Akita 010-8502, Japan;
| | - Nagisa Kato
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Riko Katsuki
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Saori Ito
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Kohta Miura
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Masaki Hikida
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
- Department of Life Science, Faculty of Engineering Science, Akita University, Akita 010-8502, Japan;
| | - Taku Tamura
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
- Department of Life Science, Faculty of Engineering Science, Akita University, Akita 010-8502, Japan;
- Correspondence: ; Tel.: +81-18-889-2377
| |
Collapse
|
18
|
Wuttikul K, Boonme P, Thammarat C, Khongkow P. N-acetylglucosamine microemulsions: Assessment of skin penetration, cytotoxicity, and anti-melanogenesis. J Cosmet Dermatol 2020; 20:304-309. [PMID: 32368847 DOI: 10.1111/jocd.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND N-acetylglucosamine (NAG) is an amino sugar which can reduce melanin production. NAG has previously been formulated for topical use in many nanocarrier systems, excluding microemulsions (MEs). In this study, NAG was prepared in the form of MEs and assessed in terms of skin permeability, cytotoxicity, and effectiveness for cosmetic applications. AIMS To investigate the skin penetration, cytotoxicity, and anti-melanogenesis of N-acetylglucosamine loaded microemulsions (NAG-MEs). METHODS Two NAG-MEs (NME1 and NME2) were prepared. The in vitro penetration study of NAG-MEs was evaluated by modified Franz diffusion cells using full-thickness porcine ear skin as the membrane. The optimized formula was then selected for further assessment of cytotoxicity and efficiency. In vitro cytotoxicity was examined using human keratinocytes (HaCaT cells) and B16 melanoma cells. Anti-melanogenic activity was investigated by determination of melanin production of B16 melanoma cells. RESULTS The cumulative amounts of NAG from NME1 and NME2 in the receptor fluid at 24 hours were 1010.46 ± 31.63 and 1260.99 ± 100.19 µg/cm2 and those accumulated in the skin membrane were 155.59 ± 19.19 and 181.11 ± 20.38 µg/cm2 , respectively. NME2 and its blank counterpart (Blank-ME2) showed no adverse effects on the viability of both HaCaT and B16 melanoma cells. The anti-melanogenic activity data showed that the NME2 treated B16 cells exhibited a significant melanin reduction. CONCLUSIONS NAG-MEs could allow NAG penetrate through and accumulate in full-thickness porcine ear skin. NME2 was safe for both normal human keratinocytes and melanoma cells. It also showed effectiveness on anti-melanogenic activity in B16 melanoma cells.
Collapse
Affiliation(s)
- Krisada Wuttikul
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand.,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Prapaporn Boonme
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand.,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Chayanee Thammarat
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pasarat Khongkow
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
19
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
20
|
Darvishi S, Pick H, Lin TE, Zhu Y, Li X, Ho PC, Girault HH, Lesch A. Tape-Stripping Electrochemical Detection of Melanoma. Anal Chem 2019; 91:12900-12908. [DOI: 10.1021/acs.analchem.9b02819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sorour Darvishi
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l’Industrie 17, CH-1950 Sion, Switzerland
| | - Horst Pick
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yingdi Zhu
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l’Industrie 17, CH-1950 Sion, Switzerland
| | - Xiaoyun Li
- Department of Oncology, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Ch. des Boveresses 155, CH-1015 Epalinges, Switzerland
| | - Hubert H. Girault
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l’Industrie 17, CH-1950 Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, IT-40136 Bologna, Italy
| |
Collapse
|
21
|
MITF has a central role in regulating starvation-induced autophagy in melanoma. Sci Rep 2019; 9:1055. [PMID: 30705290 PMCID: PMC6355916 DOI: 10.1038/s41598-018-37522-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 01/27/2023] Open
Abstract
The MITF transcription factor is a master regulator of melanocyte development and a critical factor in melanomagenesis. The related transcription factors TFEB and TFE3 regulate lysosomal activity and autophagy processes known to be important in melanoma. Here we show that MITF binds the CLEAR-box element in the promoters of lysosomal and autophagosomal genes in melanocytes and melanoma cells. The crystal structure of MITF bound to the CLEAR-box reveals how the palindromic nature of this motif induces symmetric MITF homodimer binding. In metastatic melanoma tumors and cell lines, MITF positively correlates with the expression of lysosomal and autophagosomal genes, which, interestingly, are different from the lysosomal and autophagosomal genes correlated with TFEB and TFE3. Depletion of MITF in melanoma cells and melanocytes attenuates the response to starvation-induced autophagy, whereas the overexpression of MITF in melanoma cells increases the number of autophagosomes but is not sufficient to induce autophagic flux. Our results suggest that MITF and the related factors TFEB and TFE3 have separate roles in regulating a starvation-induced autophagy response in melanoma. Understanding the normal and pathophysiological roles of MITF and related transcription factors may provide important clinical insights into melanoma therapy.
Collapse
|
22
|
Micevic G, Thakral D, McGeary M, Bosenberg MW. PD-L1 methylation regulates PD-L1 expression and is associated with melanoma survival. Pigment Cell Melanoma Res 2018; 32:435-440. [PMID: 30343532 DOI: 10.1111/pcmr.12745] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/30/2018] [Accepted: 10/01/2018] [Indexed: 11/27/2022]
Abstract
The aim of this study is to determine the significance of programmed death ligand 1 (PD-L1 or CD274) methylation in relation to PD-L1 expression and survival in melanoma. Despite the clinical importance of therapies targeting the PD-1/PD-L1 immune checkpoint in melanoma, factors regulating PD-L1 expression, including epigenetic mechanisms, are not completely understood. In this study, we examined PD-L1 promoter methylation in relation to PD-L1 expression and overall survival in melanoma patients. Our results suggest that DNA methylation regulates PD-L1 expression in melanoma, and we identify the key methylated CpG loci in the PD-L1 promoter, establish PD-L1 methylation as an independent survival prognostic factor, provide proof of concept for altering PD-L1 expression by hypomethylating agents, and uncover that PD-L1 methylation is associated with an interferon signaling transcriptional phenotype. Based on our findings, measuring and altering PD-L1 promoter DNA methylation may have potential prognostic and therapeutic applications in melanoma.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.,Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Durga Thakral
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Meaghan McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.,Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Fürst K, Steder M, Logotheti S, Angerilli A, Spitschak A, Marquardt S, Schumacher T, Engelmann D, Herchenröder O, Rupp RAW, Pützer BM. DNp73-induced degradation of tyrosinase links depigmentation with EMT-driven melanoma progression. Cancer Lett 2018; 442:299-309. [PMID: 30445206 DOI: 10.1016/j.canlet.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 11/26/2022]
Abstract
Melanoma is an aggressive cancer with poor prognosis, requiring personalized management of advanced stages and establishment of molecular markers. Melanomas derive from melanocytes, which specifically express tyrosinase, the rate-limiting enzyme of melanin-synthesis. We demonstrate that melanomas with high levels of DNp73, a cancer-specific variant of the p53 family member p73 and driver of melanoma progression show, in contrast to their less-aggressive low-DNp73 counterparts, hypopigmentation in vivo. Mechanistically, reduced melanin-synthesis is mediated by a DNp73-activated IGF1R/PI3K/AKT axis leading to tyrosinase ER-arrest and proteasomal degradation. Tyrosinase loss triggers reactivation of the EMT signaling cascade, a mesenchymal-like cell phenotype and increased invasiveness. DNp73-induced depigmentation, Slug increase and changes in cell motility are recapitulated in neural crest-derived melanophores of Xenopus embryos, underscoring a previously unnoticed physiological role of tyrosinase as EMT inhibitor. This data provides a mechanism of hypopigmentation accompanying cancer progression, which can be exploited in precision diagnosis of patients with melanoma-associated hypopigmentation (MAH), currently seen as a favorable prognostic factor. The DNp73/IGF1R/Slug signature in colorless lesions might aid to clinically discriminate between patients with MAH-associated metastatic disease and those, where MAH is indeed a sign of regression.
Collapse
Affiliation(s)
- Katharina Fürst
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Marc Steder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Alessandro Angerilli
- Biomedical Center Munich, Molecular Biology, Ludwig-Maximilians-University Munich, 82152, Planegg Martinsried, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Toni Schumacher
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Ralph A W Rupp
- Biomedical Center Munich, Molecular Biology, Ludwig-Maximilians-University Munich, 82152, Planegg Martinsried, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.
| |
Collapse
|
24
|
Farney SK, Dolinska MB, Sergeev YV. Dynamic analysis of human tyrosinase intra-melanosomal domain and mutant variants to further understand oculocutaneous albinism type 1. ACTA ACUST UNITED AC 2018; 7:621-632. [PMID: 30868138 PMCID: PMC6411056 DOI: 10.15406/japlr.2018.07.00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human tyrosinase (Tyr) is a Type I membrane glycoprotein that is the rate-limiting enzyme for controlling the production of melanin pigment in melanosomes. Currently, ~300 Tyr mutations are known to be involved in the genetic disease oculocutaneous albinism type 1 (OCA1), which exists in two forms, OCA1A and OCA1B. OCA1A is caused by a full loss of Tyr enzymatic activity, resulting in the absence of pigment in the skin, hair, and eyes, while OCA1B has reduced Tyr activity and pigment. Here, we used molecular modeling to try to understand the role of genetic changes at the protein level in inherited disease. The significant part of Tyr intra-melanosomal domain and five OCA1 mutant variants were built by homology modeling, glycosylated in silico, and refined using molecular dynamics in water. The modeling confirmed experimental results that N347 and N371 glycosylation is vital for protein stability. The changes caused by the T373K mutation indicate a significant impact on protein structure, as expected for OCA1A. In addition, evaluation of free energy changes in OCA1B mutants showed a strong association with the changes observed in our unfolding/refolding experiments in vitro. In conclusion, our results could be useful for understanding the role of OCA1 mutant variants in melanin pigment production, in silico searching for inhibitors and activators of tyrosinase activity, and genotype-to- phenotype analysis in OCA1.
Collapse
Affiliation(s)
- S Katie Farney
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| | - Monika B Dolinska
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| |
Collapse
|
25
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
26
|
Vijayakumar R, Abd Gani S, Zaidan U, Halmi M. Optimization of the Antioxidant Potentials of Red Pitaya Peels and Its In Vitro Skin Whitening Properties. APPLIED SCIENCES 2018; 8:1516. [DOI: 10.3390/app8091516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this study, response surface methodology (RSM) was employed for the optimization of the antioxidant potentials of red pitaya peels using independent variables: temperature (45–65 °C), ethanol concentration (70–90%, v/v) and time (80–120 min) through its responses, which were DPPH scavenging activity, ferric ion reducing antioxidant power (FRAP), and beta-carotene bleaching (BCB) inhibition, respectively. In Vitro anti-tyrosinase and vitamin C content assays were carried out spectrophotometrically to determine the skin whitening efficacy of the optimized red pitaya peel extract. A gas chromatography-mass spectrometry (GC-MS) analysis was employed to identify the chemical constituents present in the optimized extract. The optimized conditions were ethanol 82% (v/v) for 103 min at 56 °C with values of 75.98% for DPPH, 7.45 mM Fe2+/g dry weight for FRAP and 93.29% for BCB respectively. The in vitro anti-tyrosinase and vitamin C content evaluation of the optimized extract showed a good tyrosinase inhibition of 66.29% with IC50 of 24.06 µg/mL while the vitamin C content was 5.45 mg/g of the extract. The GC-MS analysis revealed the presence of thirty phytoconstituents with l-(+)-ascorbic acid 2,6-dihexadecanoate being the most abundant with a peak area of 14.66%. This study evidently suggests the potential of red pitaya peels to be exploited as a natural skin whitening agent in the cosmeceutical and pharmaceutical formulations.
Collapse
|
27
|
Bose A, Petsko GA, Eliezer D. Parkinson's Disease and Melanoma: Co-Occurrence and Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2018; 8:385-398. [PMID: 29991141 PMCID: PMC6130416 DOI: 10.3233/jpd-171263] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta, depletion of dopamine in the striatum and the presence of Lewy bodies. Cancer is uncontrolled growth of cells in the body and migration of these cells from their site of origin to other parts of the body. PD and cancer are two opposite diseases, one arising from cell proliferation and the other from cell degeneration. This fundamental difference is consistent with inverse comorbidity between most cancers and neurodegenerative diseases. However, a positive association of PD and melanoma has been reported which has recently become of significant interest. A link between PD and cancer has been supported by many epidemiological studies, most of which show that PD patients have a lower risk of developing most cancers than the general population. However, the mechanisms underlying this epidemiological observation are not known. In this review we focus on epidemiological studies correlating PD and melanoma and the possible mechanisms underlying the co-occurrence of the two diseases. We explore possible explanations for the important observations that more PD patients develop melanoma that would otherwise be expected and vice-versa.
Collapse
Affiliation(s)
- Anindita Bose
- Helen and Robert Appel Alzheimer’s disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A. Petsko
- Helen and Robert Appel Alzheimer’s disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Yoshizaki N, Hashizume R, Masaki H. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3',4',5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes. J Dermatol Sci 2017. [PMID: 28629701 DOI: 10.1016/j.jdermsci.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Skin color is determined by melanin contents and its distribution. Melanin is synthesized in melanosomes of melanocytes, catalyzed by tyrosinase, melanogenic enzymes. Regarding the process of melanin synthesis, melanosomal pH is considered to play an important role, because it has been reported to differ between Caucasian and Black melanocytes. OBJECTIVE Although polymethoxyflavone (PMF) has many beneficial effects, it has not been reported which PMF suppresses melanogenesis. In this study, we identified the mechanism underlying the effect of PMF on melanogenesis METHODS: We determined the effects of a PMF mixture extracted from orange peels on melanogenesis, on tyrosinase expression, on the localization of tyrosinase and on the acidification of organelles, including melanosomes, in HM3KO human melanoma cells. RESULTS TREATMENT: with the PMF mixture elicited the suppression of melanogenesis, the degradation of tyrosinase in lysosomes and the mislocalization of tyrosinase associated with the acidification of intracellular organelles, including melanosomes. The neutralization of cell organelle pH by ammonium chloride restored melanogenesis and the correct localization of tyrosinase to melanosomes, which had been suppressed by the PMF mixture. CONCLUSION These results suggest that the PMF mixture suppresses the localization of tyrosinase to melanosomes and consequently inhibits melanogenesis due to the acidification of cell organelles, including melanosomes.
Collapse
Affiliation(s)
- Norihiro Yoshizaki
- Advanced Technology Research Laboratory, NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Ron Hashizume
- Advanced Technology Research Laboratory, NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura-machi, Hachioji-shi, Tokyo 192-0982, Japan
| |
Collapse
|
29
|
Bondarenko A, Lin TE, Stupar P, Lesch A, Cortés-Salazar F, Girault HH, Pick H. Fixation and Permeabilization Approaches for Scanning Electrochemical Microscopy of Living Cells. Anal Chem 2016; 88:11436-11443. [DOI: 10.1021/acs.analchem.6b02379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alexandra Bondarenko
- Laboratoire d’Electrochimie
Physique et Analytique, EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| | - Tzu-En Lin
- Laboratoire d’Electrochimie
Physique et Analytique, EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| | - Petar Stupar
- Laboratory of the
Physics of Living Matter, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Lesch
- Laboratoire d’Electrochimie
Physique et Analytique, EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| | - Fernando Cortés-Salazar
- Laboratoire d’Electrochimie
Physique et Analytique, EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| | - Hubert H. Girault
- Laboratoire d’Electrochimie
Physique et Analytique, EPFL Valais Wallis, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| | - Horst Pick
- Laboratory of
Physical Chemistry of Polymers and Membranes, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Popa IL, Milac AL, Sima LE, Alexandru PR, Pastrama F, Munteanu CVA, Negroiu G. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression. J Biol Chem 2016; 291:12481-12500. [PMID: 27053106 DOI: 10.1074/jbc.m116.714733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma.
Collapse
Affiliation(s)
- Ioana L Popa
- Department of Protein Folding, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Adina L Milac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Livia E Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Petruta R Alexandru
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Florin Pastrama
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Gabriela Negroiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania.
| |
Collapse
|
31
|
The cytoplasmic peptide:N-glycanase (NGLY1) - Structure, expression and cellular functions. Gene 2015; 577:1-7. [PMID: 26611529 DOI: 10.1016/j.gene.2015.11.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022]
Abstract
NGLY1/Ngly1 is a cytosolic peptide:N-glycanase, i.e. de-N-glycosylating enzyme acting on N-glycoproteins in mammals, generating free, unconjugated N-glycans and deglycosylated peptides in which the N-glycosylated asparagine residues are converted to aspartates. This enzyme is known to be involved in the quality control system for the newly synthesized glycoproteins in the endoplasmic reticulum (ER). In this system, misfolded (glyco)proteins are retrotranslocated to the cytosol, where the 26S proteasomes play a central role in degrading the proteins: a process referred to as ER-associated degradation or ERAD in short. PNGase-mediated deglycosylation is believed to facilitate the efficient degradation of some misfolded glycoproteins. Human patients harboring mutations of NGLY1 gene (NGLY1-deficiency) have recently been discovered, clearly indicating the functional importance of this enzyme. This review summarizes the current state of our knowledge on NGLY1 and its gene product in mammalian cells.
Collapse
|
32
|
GUAN CUIPING, XU WEN, HONG WEISONG, ZHOU MIAONI, LIN FUQUAN, FU LIFANG, LIU DONGYIN, XU AIE. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes. Mol Med Rep 2015; 11:4285-90. [DOI: 10.3892/mmr.2015.3242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
|
33
|
Endo-β-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells. Proc Natl Acad Sci U S A 2015; 112:1398-403. [PMID: 25605922 DOI: 10.1073/pnas.1414593112] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic peptide:N-glycanase (PNGase; Ngly1 in mice) is a deglycosylating enzyme involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) process. The precise role of Ngly1 in the ERAD process, however, remains unclear in mammals. The findings reported herein, using mouse embryonic fibroblast (MEF) cells, that the ablation of Ngly1 causes dysregulation of the ERAD process. Interestingly, not only delayed degradation but also the deglycosylation of a misfolded glycoprotein was observed in Ngly1(-/-) MEF cells. The unconventional deglycosylation reaction was found to be catalyzed by the cytosolic endo-β-N-acetylglucosaminidase (ENGase), generating aggregation-prone N-GlcNAc proteins. The ERAD dysregulation in cells lacking Ngly1 was restored by the additional knockout of ENGase gene. Thus, our study underscores the functional importance of Ngly1 in the ERAD process and provides a potential mechanism underlying the phenotypic consequences of a newly emerging genetic disorder caused by mutation of the human NGLY1 gene.
Collapse
|
34
|
Tannous A, Patel N, Tamura T, Hebert DN. Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation. Mol Biol Cell 2014; 26:390-405. [PMID: 25428988 PMCID: PMC4310732 DOI: 10.1091/mbc.e14-08-1254] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a central quality control gatekeeper in the mammalian endoplasmic reticulum (ER). The reglucosylation of glycoproteins supports their rebinding to the carbohydrate-binding ER molecular chaperones calnexin and calreticulin. A cell-based reglucosylation assay was used to investigate the role of UGT1 in ER protein surveillance or the quality control process. UGT1 was found to modify wild-type proteins or proteins that are expected to eventually traffic out of the ER through the secretory pathway. Trapping of reglucosylated wild-type substrates in their monoglucosylated state delayed their secretion. Whereas terminally misfolded substrates or off-pathway proteins were most efficiently reglucosylated by UGT1, the trapping of these mutant substrates in their reglucosylated or monoglucosylated state did not delay their degradation by the ER-associated degradation pathway. This indicated that monoglucosylated mutant proteins were actively extracted from the calnexin/calreticulin binding-reglucosylation cycle for degradation. Therefore trapping proteins in their monoglucosylated state was sufficient to delay their exit to the Golgi but had no effect on their rate of degradation, suggesting that the degradation selection process progressed in a dominant manner that was independent of reglucosylation and the glucose-containing A-branch on the substrate glycans.
Collapse
Affiliation(s)
- Abla Tannous
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003 Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Nishant Patel
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Daniel N Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003 Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
35
|
Curcumin does not switch melanin synthesis towards pheomelanin in B16F10 cells. Arch Dermatol Res 2014; 307:89-98. [PMID: 25398276 DOI: 10.1007/s00403-014-1523-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023]
Abstract
Melanin, the basic skin pigment present also in the majority of melanomas, has a huge impact on the efficiency of photodynamic, radio- or chemotherapies of melanoma. Moreover, the melanoma cells produce more melanin than normal melanocytes in adjacent skin do. Thus, attention has been paid to natural agents that are safe and effective in suppression of melanogenesis. B16F10 cells were studied by electron paramagnetic resonance (EPR) spectroscopy. The cells were cultured for 24-72 h in RPMI or DMEM with or without curcumin. The results confirmed that curcumin has no significant effect on B16F10 cells viability at concentrations of 1-10 µM. Curcumin at concentration of 10 µM significantly inhibited their proliferation and stimulated differentiation. We have not stimulated melanogenesis hormonally but we found a strong increase in melanogenesis in DMEM, containing more L-Tyr, as compared to RPMI. The EPR studies revealed that the effect of curcumin on melanogenesis in RPMI-incubated cells was not significant, and only in DMEM was curcumin able to inhibit melanogenesis. The effect of curcumin was only quantitative, as it did not switch eumelanogenesis towards pheomelanogenesis under any conditions. Interestingly, we observed elevation of production of hydrogen peroxide in DMEM-incubated cells, in parallel to the facilitation of melanogenesis. Curcumin significantly but transiently intensified the already pronounced generation of H2O2 in DMEM. We conclude that the quantitative effect of curcumin on melanogenesis in melanoma is intricate. It depends on the basic melanogenetic efficiency of the cells, and can be observed only in strongly pigmented cells. Qualitatively, curcumin does not switch melanogenesis towards pheomelanogenesis, either in strongly, or in weakly melanized melanoma cells.
Collapse
|
36
|
Suzuki T. The cytoplasmic peptide:N-glycanase (Ngly1)--basic science encounters a human genetic disorder. J Biochem 2014; 157:23-34. [DOI: 10.1093/jb/mvu068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Shoshani O, Zipori D. Stress as a fundamental theme in cell plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:371-7. [PMID: 25038585 DOI: 10.1016/j.bbagrm.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/16/2023]
Abstract
Over a decade of intensive investigation of the possible plasticity of mammalian cells has eventually substantiated that mammalian species are endowed with a remarkable capacity to change mature cell fates. We review below the evidence for the occurrence of processes such as dedifferentiation and transdifferentiation within mammalian tissues in vivo, and in cells removed from their protective microenvironment and seeded in culture under conditions poorly resembling their physiological state in situ. Overall, these studies point to one major conclusion: stressful conditions, whether due to in vivo tissue damage or otherwise to isolation of cells from their in vivo restrictive niches, lead to extreme fate changes. Some examples of dedifferentiation are discussed in detail showing that rare cells within the population tend to turn back into less mature ones due to severe cell damage. It is proposed that cell stress, mechanistically sensed by isolation from neighboring cells, leads to dedifferentiation, in an attempt to build a new stem cell reservoir for subsequent regeneration of the damaged tissue. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
Affiliation(s)
- Ofer Shoshani
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Jagirdar K, Smit DJ, Ainger SA, Lee KJ, Brown DL, Chapman B, Zhen Zhao Z, Montgomery GW, Martin NG, Stow JL, Duffy DL, Sturm RA. Molecular analysis of common polymorphisms within the human Tyrosinase locus and genetic association with pigmentation traits. Pigment Cell Melanoma Res 2014; 27:552-64. [PMID: 24739399 DOI: 10.1111/pcmr.12253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/13/2023]
Abstract
We have compared the melanogenic activities of cultured melanocytes carrying two common TYR alleles as homozygous 192S-402R wild-type, heterozygous and homozygous variant. This includes assays of TYR protein, DOPAoxidase activity, glycosylation and temperature sensitivity of protein and DOPAoxidase levels. Homozygous wild-type strains on average had higher levels of TYR protein and enzyme activity than other genotypes. Homozygous 402Q/Q melanocytes produced significantly less TYR protein, displayed altered trafficking and glycosylation, with reduced DOPAoxidase. However, near wild-type TYR activity levels could be recovered at lower growth temperature. In a sample population from Southeast Queensland, these two polymorphisms were present on four TYR haplotypes, designated as WT 192S-402R, 192Y-402R and 192S-402Q with a double-variant 192Y-402Q of low frequency at 1.9%. Based on cell culture findings and haplotype associations, we have used an additive model to assess the penetrance of the ten possible TYR genotypes derived from the combination of these haplotypes.
Collapse
Affiliation(s)
- Kasturee Jagirdar
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Docosahexaenoic acid inhibits melanin synthesis in murine melanoma cells in vitro through increasing tyrosinase degradation. Acta Pharmacol Sin 2014; 35:489-95. [PMID: 24562306 DOI: 10.1038/aps.2013.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
AIM To investigate the effects of docosahexaenoic acid (DHA) on melanin synthesis and related regulatory mechanisms. METHODS B16F10 mouse melanoma cells were exposed to DHA for 3 d, and melanin content and tyrosinase activity were measured. Western blot analysis was used to analyze the protein levels in DHA-mediated signal transduction pathways. RESULTS DHA (1-25 μmol/L) did not affect the viability of B16F10 cells, but decreased α-MSH-induced melanin synthesis in a concentration-dependent manner. DHA concentration-dependently reduced tyrosinase activity in the cells, but did not affect mushroom tyrosinase activity in a cell-free system. Furthermore, DHA treatment significantly reduced tyrosinase level without affecting microphthalmia-associated transcription factor (MITF) in the cells. DHA did not activate ERK and Akt in the cells. Pretreatment with the proteasome inhibitor MG132 (80 nmol/L) abolished DHA-induced tyrosinase reduction. CONCLUSION DHA inhibits melanogenesis in B16F10 cells in vitro through increasing tyrosinase degradation. The results suggest that DHA may be a potential agent for treatment of hyperpigmentary disorders of skin.
Collapse
|
40
|
Bin BH, Seo J, Yang SH, Lee E, Choi H, Kim KH, Cho EG, Lee TR. Novel inhibitory effect of the antidiabetic drug voglibose on melanogenesis. Exp Dermatol 2014; 22:541-6. [PMID: 23879813 DOI: 10.1111/exd.12195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
Abstract
Overproduction of melanin can lead to medical disorders such as postinflammatory melanoderma and melasma. Therefore, developing antimelanogenic agents is important for both medical and cosmetic purposes. In this report, we demonstrated for the first time that the antidiabetic drug voglibose is a potent antimelanogenic agent. Voglibose is a representative antidiabetic drug possessing inhibitory activity towards human α-glucosidase; it blocked the proper N-glycan modification of tyrosinase, resulting in a dramatic reduction of the tyrosinase protein level by altering its stability and subsequently decreasing melanin production. Acarbose, another antihyperglycaemic drug that has a lower inhibitory effect on human intracellular α-glucosidase compared with voglibose, did not cause any changes in either the N-glycan modification of tyrosinase or the tyrosinase protein level, indicating that voglibose was the most efficient antimelanogenic agent among the widely used antihyperglycaemic agents. Considering that voglibose was originally selected from the valiolamine derivatives in a screen for an oral antidiabetic drug with a strong inhibitory activity towards intestinal α-glucosidase and low cell permeability, we propose an alternative strategy for screening compounds from valiolamine derivatives that show high inhibitory activity towards human intracellular α-glucosidases and high cell permeability, with the goal of obtaining antimelanogenic agents that are effective inside the cells.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bellei B, Pitisci A, Migliano E, Cardinali G, Picardo M. Pyridinyl imidazole compounds interfere with melanosomes sorting through the inhibition of cyclin G-associated Kinase, a regulator of cathepsins maturation. Cell Signal 2014; 26:716-23. [PMID: 24412755 DOI: 10.1016/j.cellsig.2013.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 01/07/2023]
Abstract
Transfer of melanin-containing melanosomes from melanocytes to neighboring keratinocytes results in skin pigmentation. Pharmacological modulation of melanosomal transfer has recently gained much attention as a strategy for modifying normal or abnormal pigmentation. In this study, while investigating the impact of pyridinyl imidazole (PI) compounds, a class of p38 MAPK inhibitors, on melanocyte differentiation we observed that some, but not all PIs interfere with the physiological melanosome sorting producing a strong retention of melanin in the intracellular compartment associated with a general reduction of melanin synthesis. Electron microscopy studies illustrated an accumulation of melanosomes inside melanocytes with enrichment in immature melanosome at stages II and III at the end of dendrites. We identified cyclin G-associated kinase GAK, a protein expressed ubiquitously in various tissues, as the off-target responsible of intracellular melanin accumulation and we report evidence that reduced GAK-dependent cathepsin maturation is implicated in melanosome sorting deficiency. The co-regulation of GAK and cathepsin B and L expression with the melanogenic biosynthetic pathway in normal human melanocytes as well as in B16-F0 melanoma cells strengthen the idea that these proteins represent new possible targets for prevention and treatment of irregular pigmentation.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IRCCS, Rome 00144, Italy.
| | - Angela Pitisci
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IRCCS, Rome 00144, Italy
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute, IRCCS, Rome 00144, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IRCCS, Rome 00144, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IRCCS, Rome 00144, Italy
| |
Collapse
|
42
|
Dolinska MB, Kovaleva E, Backlund P, Wingfield PT, Brooks BP, Sergeev YV. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PLoS One 2014; 9:e84494. [PMID: 24392141 PMCID: PMC3879332 DOI: 10.1371/journal.pone.0084494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023] Open
Abstract
Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.
Collapse
Affiliation(s)
- Monika B. Dolinska
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
| | - Elena Kovaleva
- Chesapeake PERL, Savage, Maryland, United States of America
| | - Peter Backlund
- Eunice Kennedy Shriver National Institute Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Paul T. Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States of America
| | - Brian P. Brooks
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BPB); (YVS)
| | - Yuri V. Sergeev
- National Eye Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BPB); (YVS)
| |
Collapse
|
43
|
Kolb AR, Needham PG, Rothenberg C, Guerriero CJ, Welling PA, Brodsky JL. ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol Biol Cell 2013; 25:276-89. [PMID: 24227888 PMCID: PMC3890348 DOI: 10.1091/mbc.e13-07-0394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Kir2.1 potassium channel is targeted by endoplasmic reticulum–associated degradation in yeast. To identify other Kir2.1 quality control factors, a novel yeast screen was performed. ESCRT components were among the strongest hits from the screen. Consistent with these data, ESCRT also regulates Kir2.1 stability in human cells. Protein quality control (PQC) is required to ensure cellular health. PQC is recognized for targeting the destruction of defective polypeptides, whereas regulated protein degradation mechanisms modulate the concentration of specific proteins in concert with physiological demands. For example, ion channel levels are physiologically regulated within tight limits, but a system-wide approach to define which degradative systems are involved is lacking. We focus on the Kir2.1 potassium channel because altered Kir2.1 levels lead to human disease and Kir2.1 restores growth on low-potassium medium in yeast mutated for endogenous potassium channels. Using this system, first we find that Kir2.1 is targeted for endoplasmic reticulum–associated degradation (ERAD). Next a synthetic gene array identifies nonessential genes that negatively regulate Kir2.1. The most prominent gene family that emerges from this effort encodes members of endosomal sorting complex required for transport (ESCRT). ERAD and ESCRT also mediate Kir2.1 degradation in human cells, with ESCRT playing a more prominent role. Thus multiple proteolytic pathways control Kir2.1 levels at the plasma membrane.
Collapse
Affiliation(s)
- Alexander R Kolb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | | | | | | |
Collapse
|
44
|
Bezrookove V, De Semir D, Nosrati M, Tong S, Wu C, Thummala S, Dar AA, Leong SPL, Cleaver JE, Sagebiel RW, Miller JR, Kashani-Sabet M. Prognostic impact of PHIP copy number in melanoma: linkage to ulceration. J Invest Dermatol 2013; 134:783-790. [PMID: 24005052 PMCID: PMC3945648 DOI: 10.1038/jid.2013.369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022]
Abstract
Ulceration is an important prognostic factor in melanoma whose biologic basis is poorly understood. Here we assessed the prognostic impact of pleckstrin homology domain-interacting protein (PHIP) copy number and its relationship to ulceration. PHIP copy number was determined using fluorescence in situ hybridization (FISH) in a tissue microarray cohort of 238 melanomas. Elevated PHIP copy number was associated with significantly reduced DMFS (P = 0.01) and DSS (P = 0.009) by Kaplan-Meier analyses. PHIP FISH scores were independently predictive of DMFS (P = 0.03) and DSS (P = 0.03). Increased PHIP copy number was an independent predictor of ulceration status (P = 0.04). The combined impact of increased PHIP copy number and tumor vascularity on ulceration status was highly significant (P< 0.0001). Stable suppression of PHIP in human melanoma cells resulted in significantly reduced glycolytic activity in vitro, with lower expression of LDH5, HIF1A, and VEGF, and was accompanied by reduced microvessel density in vivo. These results provide further support for PHIP as a molecular prognostic marker of melanoma, and reveal a significant linkage between PHIP levels and ulceration. Moreover, they suggest that ulceration may be driven by increased glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Vladimir Bezrookove
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - David De Semir
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Schuyler Tong
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Clayton Wu
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Suresh Thummala
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Altaf A Dar
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Stanley P L Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - James E Cleaver
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Richard W Sagebiel
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center and Research Institute, San Francisco, California
| |
Collapse
|
45
|
Cassidy PB, Fain HD, Cassidy JP, Tran SM, Moos PJ, Boucher KM, Gerads R, Florell SR, Grossman D, Leachman SA. Selenium for the prevention of cutaneous melanoma. Nutrients 2013; 5:725-49. [PMID: 23470450 PMCID: PMC3705316 DOI: 10.3390/nu5030725] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/30/2022] Open
Abstract
The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.
Collapse
Affiliation(s)
- Pamela B. Cassidy
- Department of Medicinal Chemistry, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-801-581-6268; Fax: +1-801-585-7477
| | - Heidi D. Fain
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
| | - James P. Cassidy
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
| | - Sally M. Tran
- University of Utah School of Medicine, 50 North Campus Dr., Salt Lake City, UT 84112, USA; E-Mail:
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; E-Mail:
| | - Kenneth M. Boucher
- Biostatistics Unit, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mail:
| | - Russell Gerads
- Applied Speciation, 18804 Northcreek Parkway, Bothell, WA 98011, USA; E-Mail:
| | - Scott R. Florell
- Department of Dermatology, University of Utah School of Medicine, 50 North Campus Dr., Salt Lake City, UT 84112, USA; E-Mail:
| | - Douglas Grossman
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Sancy A. Leachman
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
| |
Collapse
|
46
|
Goh MJ, Lee HK, Cheng L, Kong DY, Yeon JH, He QQ, Cho JC, Na YJ. Depigmentation effect of kadsuralignan F on melan-a murine melanocytes and human skin equivalents. Int J Mol Sci 2013; 14:1655-66. [PMID: 23322017 PMCID: PMC3565339 DOI: 10.3390/ijms14011655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 11/23/2022] Open
Abstract
The development of melanogenic inhibitors is important for the prevention of hyperpigmentation, and, recently, consideration has been given to natural materials or traditionally used ingredients such as Chinese medicine. The aim of this study is the evaluation of a new anti-melanogenic candidate, kadsuralignan F, from the natural plant Kadsura coccinea, as well as the determination of mechanisms of melanogenesis inhibition at a molecular level. Kadsuralignan F significantly reduced melanin synthesis in a dose-dependent manner in a murine melanocyte cell line and human skin equivalents. There was no direct inhibition on mushroom tyrosinase or cell-extract tyrosinase activity, and mRNA expression of tyrosinase and other melanogenic genes such as tyrosinase-related protein-1 (trp-1) or trp-2 were not affected by kadsuralignan F. Interestingly, the protein level of tyrosinase was dramatically downregulated with kadsuralignan F treatment. We found that a decrease of tyrosinase protein by kadsuralignan F was fully recovered by MG132, a proteasome inhibitor, but not by chloroquine, a lysosome inhibitor. In this study, we found that kadsuralignan F, a lignan from an extract of Kadsura coccinea, has an inhibitory activity on melanin synthesis through tyrosinase degradation. These findings suggest that kadsuralignan F can be used as an active ingredient for hyperpigmentation treatment.
Collapse
Affiliation(s)
- Myeong-Jin Goh
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
| | - Hae-Kwang Lee
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
| | - Liang Cheng
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai 200040, China; E-Mails: (L.C.); (D.-Y.K.)
| | - De-Yun Kong
- Department of Traditional Chinese Medicine, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai 200040, China; E-Mails: (L.C.); (D.-Y.K.)
| | - Jae-Ho Yeon
- Amorepacific Shanghai R&I Center, 383 Yumin Road, Jiading District, Shanghai 201801, China; E-Mails: (J.-H.Y.); (Q.-Q.H.)
| | - Quan-Quan He
- Amorepacific Shanghai R&I Center, 383 Yumin Road, Jiading District, Shanghai 201801, China; E-Mails: (J.-H.Y.); (Q.-Q.H.)
| | - Jun-Cheol Cho
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
| | - Yong Joo Na
- Skin Research Institute, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin 446-729, Korea; E-Mails: (M.-J.G.); (H.-K.L.); (J.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-31-280-5966; Fax: +82-31-282-6063
| |
Collapse
|
47
|
Pan T, Zhu J, Hwu WJ, Jankovic J. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells. PLoS One 2012; 7:e45183. [PMID: 23028833 PMCID: PMC3446957 DOI: 10.1371/journal.pone.0045183] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/17/2012] [Indexed: 12/20/2022] Open
Abstract
The relatively high co-occurrence of Parkinson's disease (PD) and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR)-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM), the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn) that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR) and inhibit tyrosine hydroxylase (TH), both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA), led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB) light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in melanoma cells and in dopaminergic neuronal cells.
Collapse
Affiliation(s)
- Tianhong Pan
- Neurology Department, Parkinson Disease Research Laboratory, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis, and the down-regulation of enzyme activity is the most reported method for the inhibition of melanogenesis. Because of the cosmetically important issue of hyperpigmentation, there is a big demand for melanogenesis inhibitors. This encourages researchers to seek potent melanogenesis inhibitors for cosmetic uses. This article reviews melanogenesis inhibitors that have been recently discovered from natural sources. The reaction mechanisms of the inhibitors on tyrosinase activity are also discussed.
Collapse
|
49
|
Ryu HW, Jeong SH, Curtis-Long MJ, Jung S, Lee JW, Woo HS, Cho JK, Park KH. Inhibition effects of mangosenone F from Garcinia mangostana on melanin formation in B16F10 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8372-8378. [PMID: 22779928 DOI: 10.1021/jf3015987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Melanogenesis can be controlled by tyrosinase inhibition or by blocking the maturation processes of tyrosinase and its related proteins. Mangostenone F was isolated from the seedcases of Garcinia mangostana . Mangostenone F was shown to be inactive against tyrosinase (IC50 > 200 μM) but was a potent α-glucosidase inhibitor in vitro (IC50 = 21.0 μM). Mangostenone F was found to inhibit production of melanin in the mouse melanoma cell line B16F10. Importantly, unlike most glycosidase inhibitors, mangostenone F displayed very low cytotoxicity (EC50 > 200 μM). The Western blot for expression levels of proteins involved in melanogenesis showed that mangostenone F down-regulated tyrosinase and TRP-2 expression. Treating B16F10 cells with mangostenone F significantly increased the susceptibility of tyrosinase to endoglycosidase H digestion, indicating that tyrosinase was unable to mature fully and pass to the trans-golgi apparatus. Consistent with these data, in lysate assays, mangostenone F was shown to be a better inhibitor of α-glucosidases than deoxynojirimycin, a representative glycosidase inhibitor.
Collapse
Affiliation(s)
- Hyung Won Ryu
- Division of Applied Life Science (BK21 Program), IALS, Graduate School of Gyeongsang National University , Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawaguchi M, Valencia JC, Namiki T, Suzuki T, Hearing VJ. Diacylglycerol kinase regulates tyrosinase expression and function in human melanocytes. J Invest Dermatol 2012; 132:2791-9. [PMID: 22895365 PMCID: PMC3502659 DOI: 10.1038/jid.2012.261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diacylglycerol increases the melanin content of human melanocytes in vitro and increases the pigmentation of guinea pig skin in vivo, but the mechanism(s) underlying those effects remain unknown. In this study, we characterized the role of diacylglycerol kinase (DGK), which phosphorylates diacylglycerol to generate phosphatidic acid, in the regulation of pigmentation. Ten isoforms of DGK have been identified, and we show that DGKζ is the most abundant isoform expressed by human melanocytic cells. Melanin content, tyrosinase activity and tyrosinase protein levels were significantly reduced by a DGK inhibitor, but tyrosinase and MITF mRNA levels were not changed by that inhibition, and there were no effects on the expression of other melanogenesis-related proteins. Isoform-specific siRNAs showed that knockdown of DGKζ decreased melanin content and tyrosinase expression in melanocytic cells. Over-expression of DGKζ increased tyrosinase protein levels, but did not increase tyrosinase mRNA levels. Glycosidase digestion revealed that inhibition of DGK reduced only the mature form of tyrosinase and the decrease of tyrosinase resulting from DGK inhibition could be blocked partially by protease inhibitors. These results suggest that DGK regulates melanogenesis via modulation of the post-translational processing of tyrosinase, which may be related with the protein degradation machinery.
Collapse
Affiliation(s)
- Masakazu Kawaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|