1
|
Ramamonjiharisoa MBM, Liu S. Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. Int J Mol Sci 2025; 26:1294. [PMID: 39941062 PMCID: PMC11818727 DOI: 10.3390/ijms26031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Programmed Ribosomal Frameshifting (PRF) is a mechanism that alters the mRNA reading frame during translation, resulting in the production of out-of-frame proteins. PRF plays crucial roles in maintaining cellular homeostasis and contributes significantly to disease pathogenesis, particularly in viral infections. Notably, PRF can induce immune responses in the SARS-CoV-2 mRNA vaccine, further extending its biological significance. These multiple aspects of PRF highlight its potential as a therapeutic target. Since PRF efficiency can be modulated by cellular factors, its expression or silencing is context-dependent. Therefore, a deeper understanding of PRF is essential for harnessing its therapeutic potential. This review explores PRF biological significance in disease and homeostasis. Such knowledge would serve as a foundation to advance therapeutic strategies targeting PRF modulation, especially in viral infections and vaccine development.
Collapse
Affiliation(s)
- Miora Bruna Marielle Ramamonjiharisoa
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
4
|
Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression. Nat Commun 2022; 13:4284. [PMID: 35879278 PMCID: PMC9310368 DOI: 10.1038/s41467-022-31353-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/10/2022] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 frameshifting element (FSE), a highly conserved mRNA region required for correct translation of viral polyproteins, defines an excellent therapeutic target against Covid-19. As discovered by our prior graph-theory analysis with SHAPE experiments, the FSE adopts a heterogeneous, length-dependent conformational landscape consisting of an assumed 3-stem H-type pseudoknot (graph motif 3_6), and two alternative motifs (3_3 and 3_5). Here, for the first time, we build and simulate, by microsecond molecular dynamics, 30 models for all three motifs plus motif-stabilizing mutants at different lengths. Our 3_6 pseudoknot systems, which agree with experimental structures, reveal interconvertible L and linear conformations likely related to ribosomal pausing and frameshifting. The 3_6 mutant inhibits this transformation and could hamper frameshifting. Our 3_3 systems exhibit length-dependent stem interactions that point to a potential transition pathway connecting the three motifs during ribosomal elongation. Together, our observations provide new insights into frameshifting mechanisms and anti-viral strategies.
Collapse
|
5
|
Yan S, Zhu Q, Jain S, Schlick T. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression. RESEARCH SQUARE 2022:rs.3.rs-1160075. [PMID: 35018371 PMCID: PMC8750709 DOI: 10.21203/rs.3.rs-1160075/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conserved SARS-CoV-2 RNA regions of critical biological functions define excellent targets for anti-viral therapeutics against Covid-19 variants. One such region is the frameshifting element (FSE), responsible for correct translation of viral polyproteins. Here, we analyze molecular-dynamics motions of three FSE conformations, discovered by graph-theory analysis, and associated mutants designed by graph-based inverse folding: two distinct 3-stem H-type pseudoknots and a 3-way junction. We find that the prevalent H-type pseudoknot in literature adopts ring-like conformations, which in combination with 5' end threading could promote ribosomal pausing. An inherent shape switch from "L" to linear that may help trigger the frameshifting is suppressed in our designed mutant. The alternative conformation trajectories suggest a stable intermediate structure with mixed stem interactions of all three conformations, pointing to a possible transition pathway during ribosomal translation. These observations provide new insights into anti-viral strategies and frameshifting mechanisms.
Collapse
Affiliation(s)
- Shuting Yan
- Department of Chemistry, New York University, New York, NY 10003 U.S.A
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 U.S.A
| | - Swati Jain
- Department of Chemistry, New York University, New York, NY 10003 U.S.A
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY 10003 U.S.A
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, P.R. China
| |
Collapse
|
6
|
Anokhina VS, Miller BL. Targeting Ribosomal Frameshifting as an Antiviral Strategy: From HIV-1 to SARS-CoV-2. Acc Chem Res 2021; 54:3349-3361. [PMID: 34403258 DOI: 10.1021/acs.accounts.1c00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of HIV-1 has largely involved targeting viral enzymes using a cocktail of inhibitors. However, resistance to these inhibitors and toxicity in the long term have pushed the field to identify new therapeutic targets. To that end, -1 programmed ribosomal frameshifting (-1 PRF) has gained attention as a potential node for therapeutic intervention. In this process, a ribosome moves one nucleotide backward in the course of translating a mRNA, revealing a new reading frame for protein synthesis. In HIV-1, -1 PRF allows the virus to regulate the ratios of enzymatic and structural proteins as needed for correct viral particle assembly. Two RNA structural elements are central to -1 PRF in HIV: a slippery sequence and a highly conserved stable hairpin called the HIV-1 frameshifting stimulatory signal (FSS). Dysregulation of -1 PRF is deleterious for the virus. Thus, -1 PRF is an attractive target for new antiviral development. It is important to note that HIV-1 is not the only virus exploiting -1 PRF for regulating production of its proteins. Coronaviruses, including the COVID-19 pandemic virus SARS-CoV-2, also rely on -1 PRF. In SARS-CoV-2 and other coronaviruses, -1 PRF is required for synthesis of RNA-dependent RNA polymerase and several other nonstructural proteins. Coronaviruses employ a more complex RNA structural element for regulating -1 PRF called a pseudoknot. The purpose of this Account is primarily to review the development of molecules targeting HIV-1 -1 PRF. These approaches are case studies illustrating how the entire pipeline from screening to the generation of high-affinity leads might be implemented. We consider both target-based and function-based screening, with a particular focus on our group's approach beginning with a resin-bound dynamic combinatorial library (RBDCL) screen. We then used rational design approaches to optimize binding affinity, selectivity, and cellular bioavailability. Our tactic is, to the best of our knowledge, the only study resulting in compounds that bind specifically to the HIV-1 FSS RNA and reduce infectivity of laboratory and drug-resistant strains of HIV-1 in human cells. Lessons learned from strategies targeting -1 PRF HIV-1 might provide solutions in the development of antivirals in areas of unmet medical need. This includes the development of new frameshift-altering therapies for SARS-CoV-2, approaches to which are very recently beginning to appear.
Collapse
Affiliation(s)
- Viktoriya S. Anokhina
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States
- Department of Dermatology, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
7
|
A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses. Viruses 2021; 13:v13081639. [PMID: 34452503 PMCID: PMC8402677 DOI: 10.3390/v13081639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent outbreaks of zoonotic coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have caused tremendous casualties and great economic shock. Although some repurposed drugs have shown potential therapeutic efficacy in clinical trials, specific therapeutic agents targeting coronaviruses have not yet been developed. During coronavirus replication, a replicase gene cluster, including RNA-dependent RNA polymerase (RdRp), is alternatively translated via a process called -1 programmed ribosomal frameshift (−1 PRF) by an RNA pseudoknot structure encoded in viral RNAs. The coronavirus frameshifting has been identified previously as a target for antiviral therapy. In this study, the frameshifting efficiencies of MERS-CoV, SARS-CoV and SARS-CoV-2 were determined using an in vitro −1 PRF assay system. Our group has searched approximately 9689 small molecules to identify potential −1 PRF inhibitors. Herein, we found that a novel compound, 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline (KCB261770), inhibits the frameshifting of MERS-CoV and effectively suppresses viral propagation in MERS-CoV-infected cells. The inhibitory effects of 87 derivatives of furo[2,3-b]quinolines were also examined showing less prominent inhibitory effect when compared to compound KCB261770. We demonstrated that KCB261770 inhibits the frameshifting without suppressing cap-dependent translation. Furthermore, this compound was able to inhibit the frameshifting, to some extent, of SARS-CoV and SARS-CoV-2. Therefore, the novel compound 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline may serve as a promising drug candidate to interfere with pan-coronavirus frameshifting.
Collapse
|
8
|
Schlick T, Zhu Q, Dey A, Jain S, Yan S, Laederach A. To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element. J Am Chem Soc 2021; 143:11404-11422. [PMID: 34283611 PMCID: PMC8315264 DOI: 10.1021/jacs.1c03003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SARS-CoV-2 frameshifting RNA element (FSE) is an excellent target for therapeutic intervention against Covid-19. This small gene element employs a shifting mechanism to pause and backtrack the ribosome during translation between Open Reading Frames 1a and 1b, which code for viral polyproteins. Any interference with this process has a profound effect on viral replication and propagation. Pinpointing the structures adapted by the FSE and associated structural transformations involved in frameshifting has been a challenge. Using our graph-theory-based modeling tools for representing RNA secondary structures, "RAG" (RNA-As-Graphs), and chemical structure probing experiments, we show that the 3-stem H-type pseudoknot (3_6 dual graph), long assumed to be the dominant structure, has a viable alternative, an HL-type 3-stem pseudoknot (3_3) for longer constructs. In addition, an unknotted 3-way junction RNA (3_5) emerges as a minor conformation. These three conformations share Stems 1 and 3, while the different Stem 2 may be involved in a conformational switch and possibly associations with the ribosome during translation. For full-length genomes, a stem-loop motif (2_2) may compete with these forms. These structural and mechanistic insights advance our understanding of the SARS-CoV-2 frameshifting process and concomitant virus life cycle, and point to three avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, United States
- New York University-East China Normal University Center for Computational Chemistry, New York University-Shanghai, Shanghai 200062, P. R. China
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Swati Jain
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States
| | - Shuting Yan
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Schlick T, Zhu Q, Dey A, Jain S, Yan S, Laederach A. To knot or not to knot: Multiple conformations of the SARS-CoV-2 frameshifting RNA element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.31.437955. [PMID: 33821274 PMCID: PMC8020974 DOI: 10.1101/2021.03.31.437955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The SARS-CoV-2 frameshifting RNA element (FSE) is an excellent target for therapeutic intervention against Covid-19. This small gene element employs a shifting mechanism to pause and backtrack the ribosome during translation between Open Reading Frames 1a and 1b, which code for viral polyproteins. Any interference with this process has profound effect on viral replication and propagation. Pinpointing the structures adapted by the FSE and associated structural transformations involved in frameshifting has been a challenge. Using our graph-theory-based modeling tools for representing RNA secondary structures, "RAG" (RNA-As-Graphs), and chemical structure probing experiments, we show that the 3-stem H-type pseudoknot (3_6 dual graph), long assumed to be the dominant structure has a viable alternative, an HL-type 3-stem pseudoknot (3_3) for longer constructs. In addition, an unknotted 3-way junction RNA (3_5) emerges as a minor conformation. These three conformations share Stems 1 and 3, while the different Stem 2 may be involved in a conformational switch and possibly associations with the ribosome during translation. For full-length genomes, a stem-loop motif (2_2) may compete with these forms. These structural and mechanistic insights advance our understanding of the SARS-CoV-2 frameshifting process and concomitant virus life cycle, and point to three avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, P.R. China
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Swati Jain
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Shuting Yan
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Burgers LD, Fürst R. Natural products as drugs and tools for influencing core processes of eukaryotic mRNA translation. Pharmacol Res 2021; 170:105535. [PMID: 34058326 DOI: 10.1016/j.phrs.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Eukaryotic protein synthesis is the highly conserved, complex mechanism of translating genetic information into proteins. Although this process is essential for cellular homoeostasis, dysregulations are associated with cellular malfunctions and diseases including cancer and diabetes. In the challenging and ongoing search for adequate treatment possibilities, natural products represent excellent research tools and drug leads for new interactions with the translational machinery and for influencing mRNA translation. In this review, bacterial-, marine- and plant-derived natural compounds that interact with different steps of mRNA translation, comprising ribosomal assembly, translation initiation and elongation, are highlighted. Thereby, the exact binding and interacting partners are unveiled in order to accurately understand the mode of action of each natural product. The pharmacological relevance of these compounds is furthermore assessed by evaluating the observed biological activities in the light of translational inhibition and by enlightening potential obstacles and undesired side-effects, e.g. in clinical trials. As many of the natural products presented here possess the potential to serve as drug leads for synthetic derivatives, structural motifs, which are indispensable for both mode of action and biological activities, are discussed. Evaluating the natural products emphasises the strong diversity of their points of attack. Especially the fact that selected binding partners can be set in direct relation to different diseases emphasises the indispensability of natural products in the field of drug development. Discovery of new, unique and unusual interacting partners again renders them promising tools for future research in the field of eukaryotic mRNA translation.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
11
|
The genomic structure of a human chromosome 22 nucleolar organizer region determined by TAR cloning. Sci Rep 2021; 11:2997. [PMID: 33542373 PMCID: PMC7862453 DOI: 10.1038/s41598-021-82565-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.
Collapse
|
12
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F, Pöhlmann S, Rodnina MV. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 2019; 47:5210-5222. [PMID: 30968122 PMCID: PMC6547452 DOI: 10.1093/nar/gkz202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a –1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support –1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant –1-frameshifting efficiency to ensure successful virus propagation.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.,Faculty of Biology and Psychology, University of Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Szajwaj M, Wawiórka L, Molestak E, Michalec-Wawiórka B, Mołoń M, Wojda I, Tchórzewski M. The influence of ricin-mediated rRNA depurination on the translational machinery in vivo - New insight into ricin toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118554. [DOI: 10.1016/j.bbamcr.2019.118554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 11/29/2022]
|
15
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
16
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Zakari M, Trimble Ross R, Peak A, Blanchette M, Seidel C, Gerton JL. The SMC Loader Scc2 Promotes ncRNA Biogenesis and Translational Fidelity. PLoS Genet 2015; 11:e1005308. [PMID: 26176819 PMCID: PMC4503661 DOI: 10.1371/journal.pgen.1005308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
The Scc2-Scc4 complex is essential for loading the cohesin complex onto DNA. Cohesin has important roles in chromosome segregation, DSB repair, and chromosome condensation. Here we report that Scc2 is important for gene expression in budding yeast. Scc2 and the transcriptional regulator Paf1 collaborate to promote the production of Box H/ACA snoRNAs which guide pseudouridylation of RNAs including ribosomal RNA. Mutation of SCC2 was associated with defects in the production of ribosomal RNA, ribosome assembly, and splicing. While the scc2 mutant does not have a general defect in protein synthesis, it shows increased frameshifting and reduced cap-independent translation. These findings suggest Scc2 normally promotes a gene expression program that supports translational fidelity. We hypothesize that translational dysfunction may contribute to the human disorder Cornelia de Lange syndrome, which is caused by mutations in NIPBL, the human ortholog of SCC2.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Universite Pierre et Marie Curie (Paris VI), Paris, France
| | - Rhonda Trimble Ross
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|
18
|
Gigova A, Duggimpudi S, Pollex T, Schaefer M, Koš M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA (NEW YORK, N.Y.) 2014; 20:1632-44. [PMID: 25125595 PMCID: PMC4174444 DOI: 10.1261/rna.043398.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Andriana Gigova
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sujitha Duggimpudi
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tim Pollex
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Matthias Schaefer
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Martin Koš
- Biochemistry Center and Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Advani VM, Belew AT, Dinman JD. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway. ACTA ACUST UNITED AC 2014; 1:e24418. [PMID: 24563826 PMCID: PMC3908577 DOI: 10.4161/trla.24418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
We have previously shown that ~10% of all eukaryotic mRNAs contain potential programmed -1 ribosomal frameshifting (-1 PRF) signals and that some function as mRNA destabilizing elements through the Nonsense-Mediated mRNA Decay (NMD) pathway by directing translating ribosomes to premature termination codons. Here, the connection between -1 PRF, NMD and telomere end maintenance are explored. Functional -1 PRF signals were identified in the mRNAs encoding two components of yeast telomerase, EST1 and EST2, and in mRNAs encoding proteins involved in recruiting telomerase to chromosome ends, STN1 and CDC13. All of these elements responded to mutants and drugs previously known to stimulate or inhibit -1 PRF, further supporting the hypothesis that they promote -1 PRF through the canonical mechanism. All affected the steady-state abundance of a reporter mRNA and the wide range of -1 PRF efficiencies promoted by these elements enabled the determination of an inverse logarithmic relationship between -1 PRF efficiency and mRNA accumulation. Steady-state abundances of the endogenous EST1, EST2, STN1 and CDC13 mRNAs were similarly inversely proportional to changes in -1 PRF efficiency promoted by mutants and drugs, supporting the hypothesis that expression of these genes is post-transcriptionally controlled by -1 PRF under native conditions. Overexpression of EST2 by ablation of -1 PRF signals or inhibition of NMD promoted formation of shorter telomeres and accumulation of large budded cells at the G2/M boundary. A model is presented describing how limitation and maintenance of correct stoichiometries of telomerase components by -1 PRF is used to maintain yeast telomere length.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park MD, USA
| | - Ashton T Belew
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park MD, USA
| |
Collapse
|
20
|
Xie P. A dynamical model of programmed −1 ribosomal frameshifting. J Theor Biol 2013; 336:119-31. [DOI: 10.1016/j.jtbi.2013.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
21
|
Dinman JD. Mechanisms and implications of programmed translational frameshifting. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:661-73. [PMID: 22715123 PMCID: PMC3419312 DOI: 10.1002/wrna.1126] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While ribosomes must maintain translational reading frame in order to translate primary genetic information into polypeptides, cis‐acting signals located in mRNAs represent higher order information content that can be used to fine‐tune gene expression. Classes of signals have been identified that direct a fraction of elongating ribosomes to shift reading frame by one base in the 5′ (−1) or 3′ (+1) direction. This is called programmed ribosomal frameshifting (PRF). Although mechanisms of PRF differ, a common feature is induction of ribosome pausing, which alters kinetic partitioning rates between in‐frame and out‐of‐frame codons at specific ‘slippery’ sequences. Many viruses use PRF to ensure synthesis of the correct ratios of virus‐encoded proteins required for proper viral particle assembly and maturation, thus identifying PRF as an attractive target for antiviral therapeutics. In contrast, recent studies indicate that PRF signals may primarily function as mRNA destabilizing elements in cellular mRNAs. These studies suggest that PRF may be used to fine‐tune gene expression through mRNA decay pathways. The possible regulation of PRF by noncoding RNAs is also discussed. WIREs RNA 2012 doi: 10.1002/wrna.1126 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Regulation
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:569870. [PMID: 22545064 PMCID: PMC3321566 DOI: 10.1155/2012/569870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/16/2012] [Indexed: 01/17/2023]
Abstract
Programmed ribosomal frameshifting (PRF) serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.
Collapse
|
23
|
Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2012; 44:660-6. [PMID: 22099312 DOI: 10.1016/j.molcel.2011.09.017] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 05/17/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.
Collapse
Affiliation(s)
- Karen Jack
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Türkel S, Kaplan G, Farabaugh PJ. Glucose signalling pathway controls the programmed ribosomal frameshift efficiency in retroviral-like element Ty3 in Saccharomyces cerevisiae. Yeast 2011; 28:799-808. [PMID: 21989811 PMCID: PMC7169698 DOI: 10.1002/yea.1906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/13/2011] [Accepted: 08/30/2011] [Indexed: 12/22/2022] Open
Abstract
Ty3 elements of S. cerevisiae contain two overlapping coding regions, GAG3 and POL3, which are functional homologues of retroviral gag and pol genes, respectively. Pol3 is translated as a Gag3‐Pol3 fusion protein dependent on a +1 programmed frameshift at a site with the overlap between the two genes. We show that the Ty3 frameshift frequency varies up to 10‐fold in S. cerevisiae cells depending on carbon source. Frameshift efficiency is significantly lower in cells growing on glucose as carbon source than in cells growing on poor alternative carbon sources (glycerol/lactate or galactose). Our results indicate that Ty3 programmed ribosomal frameshift efficiency in response to glucose signalling requires two protein kinases: Snf1p and cAMP‐dependent protein kinase A (PKA). Increased frameshifting on alternative carbon sources also appears to require cytoplasmic localization of Snf1p, mediated by the Sip2p protein. In addition to the two required protein kinases, our results implicate that Stm1p, a ribosome‐associated protein involved in nutrient sensing, is essential for the carbon source‐dependent regulation of Ty3 frameshifting. These data indicate that Ty3 programmed ribosomal frameshift is not a constitutive process but that it is regulated in response to the glucose‐signalling pathway. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sezai Türkel
- Uludag University, Faculty of Arts and Sciences, Department of Biology, 16059-, Bursa, Turkey.
| | | | | |
Collapse
|
25
|
Rakauskaite R, Liao PY, Rhodin MHJ, Lee K, Dinman JD. A rapid, inexpensive yeast-based dual-fluorescence assay of programmed--1 ribosomal frameshifting for high-throughput screening. Nucleic Acids Res 2011; 39:e97. [PMID: 21602263 PMCID: PMC3152369 DOI: 10.1093/nar/gkr382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Programmed −1 ribosomal frameshifting (−1 PRF) is a mechanism that directs elongating ribosomes to shift-reading frame by 1 base in the 5′ direction that is utilized by many RNA viruses. Importantly, rates of −1 PRF are fine-tuned by viruses, including Retroviruses, Coronaviruses, Flavivriuses and in two endogenous viruses of the yeast Saccharomyces cerevisiae, to deliver the correct ratios of different viral proteins for efficient replication. Thus, −1 PRF presents a novel target for antiviral therapeutics. The underlying molecular mechanism of −1 PRF is conserved from yeast to mammals, enabling yeast to be used as a logical platform for high-throughput screens. Our understanding of the strengths and pitfalls of assays to monitor −1 PRF have evolved since the initial discovery of −1 PRF. These include controlling for the effects of drugs on protein expression and mRNA stability, as well as minimizing costs and the requirement for multiple processing steps. Here we describe the development of an automated yeast-based dual fluorescence assay of −1 PRF that provides a rapid, inexpensive automated pipeline to screen for compounds that alter rates of −1 PRF which will help to pave the way toward the discovery and development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Rasa Rakauskaite
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
26
|
Liao PY, Choi YS, Dinman JD, Lee KH. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting. Nucleic Acids Res 2010; 39:300-12. [PMID: 20823091 PMCID: PMC3017607 DOI: 10.1093/nar/gkq761] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Several important viruses including the human immunodeficiency virus type 1 (HIV-1) and the SARS-associated Coronavirus (SARS-CoV) employ programmed −1 ribosomal frameshifting (PRF) for their protein expression. Here, a kinetic framework is developed to describe −1 PRF. The model reveals three kinetic pathways to −1 PRF that yield two possible frameshift products: those incorporating zero frame encoded A-site tRNAs in the recoding site, and products incorporating −1 frame encoded A-site tRNAs. Using known kinetic rate constants, the individual contributions of different steps of the translation elongation cycle to −1 PRF and the ratio between two types of frameshift products were evaluated. A dual fluorescence reporter was employed in Escherichia coli to empirically test the model. Additionally, the study applied a novel mass spectrometry approach to quantify the ratios of the two frameshift products. A more detailed understanding of the mechanisms underlying −1 PRF may provide insight into developing antiviral therapeutics.
Collapse
Affiliation(s)
- Pei-Yu Liao
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
27
|
Meskauskas A, Dinman JD. A molecular clamp ensures allosteric coordination of peptidyltransfer and ligand binding to the ribosomal A-site. Nucleic Acids Res 2010; 38:7800-13. [PMID: 20660012 PMCID: PMC2995063 DOI: 10.1093/nar/gkq641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the ribosome is mainly comprised of rRNA and many of its critical functions occur through RNA–RNA interactions, distinct domains of ribosomal proteins also participate in switching the ribosome between different conformational/functional states. Prior studies demonstrated that two extended domains of ribosomal protein L3 form an allosteric switch between the pre- and post-translocational states. Missing was an explanation for how the movements of these domains are communicated among the ribosome's functional centers. Here, a third domain of L3 called the basic thumb, that protrudes roughly perpendicular from the W-finger and is nestled in the center of a cagelike structure formed by elements from three separate domains of the large subunit rRNA is investigated. Mutagenesis of basically charged amino acids of the basic thumb to alanines followed by detailed analyses suggests that it acts as a molecular clamp, playing a role in allosterically communicating the ribosome's tRNA occupancy status to the elongation factor binding region and the peptidyltransferase center, facilitating coordination of their functions through the elongation cycle. The observation that these mutations affected translational fidelity, virus propagation and cell growth demonstrates how small structural changes at the atomic scale can propagate outward to broadly impact the biology of cell.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
28
|
|
29
|
Marcheschi RJ, Mouzakis KD, Butcher SE. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA. ACS Chem Biol 2009; 4:844-54. [PMID: 19673541 DOI: 10.1021/cb900167m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 requires a -1 translational frameshift to properly synthesize the viral enzymes required for replication. The frameshift mechanism is dependent upon two RNA elements, a seven-nucleotide slippery sequence (UUUUUUA) and a downstream RNA structure. Frameshifting occurs with a frequency of approximately 5%, and increasing or decreasing this frequency may result in a decrease in viral replication. Here, we report the results of a high-throughput screen designed to find small molecules that bind to the HIV-1 frameshift site RNA. Out of 34,500 compounds screened, 202 were identified as positive hits. We show that one of these compounds, doxorubicin, binds the HIV-1 RNA with low micromolar affinity (K(d) = 2.8 microM). This binding was confirmed and localized to the RNA using NMR. Further analysis revealed that this compound increased the RNA stability by approximately 5 degrees C and decreased translational frameshifting by 28% (+/-14%), as measured in vitro.
Collapse
Affiliation(s)
- Ryan J. Marcheschi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kathryn D. Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
30
|
Baeza M, Sanhueza M, Flores O, Oviedo V, Libkind D, Cifuentes V. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas. Virol J 2009; 6:160. [PMID: 19814805 PMCID: PMC2764699 DOI: 10.1186/1743-422x-6-160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. RESULTS Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, while the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. CONCLUSION The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in X. dendrorhous.
Collapse
Affiliation(s)
- Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Oriana Flores
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Oviedo
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología. Bariloche, Río Negro, Argentina
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Cardno TS, Poole ES, Mathew SF, Graves R, Tate WP. A homogeneous cell-based bicistronic fluorescence assay for high-throughput identification of drugs that perturb viral gene recoding and read-through of nonsense stop codons. RNA (NEW YORK, N.Y.) 2009; 15:1614-21. [PMID: 19535460 PMCID: PMC2714747 DOI: 10.1261/rna.1586709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
Recoding mechanisms are programmed protein synthesis events used commonly by viruses but only very rarely in cells for cellular gene expression. For example, HIV-1 has an absolute reliance on frameshifting to produce the correct ratio of key proteins critical for infectivity. To exploit such recoding sites as therapeutic targets, a simple homogeneous assay capable of detecting small perturbations in these low-frequency (<5%) events is required. Current assays based on dual luciferase reporters use expensive substrates and are labor-intensive, both impediments for high-throughput screening. We have developed a cell-based bifluorophore assay able to measure accurately small recoding changes (<0.1%) with a high Z'-factor in 24- or 96-well formats that could be extended to 384 wells. In cases of nonsense mutations arising within coding regions of genes, the assay is suitable for assessing the potential of screened compounds to increase read-through at these nonprogrammed stop signals of variable termination efficiency.
Collapse
Affiliation(s)
- Tony S Cardno
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
32
|
Atkins JF, Gesteland RF, Pennell S. Pseudoknot-Dependent Programmed —1 Ribosomal Frameshifting: Structures, Mechanisms and Models. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2009; 24. [PMCID: PMC7119991 DOI: 10.1007/978-0-387-89382-2_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Programmed —1 ribosomal frameshifting is a translational recoding strategy that takes place during the elongation phase of protein biosynthesis. Frameshifting occurs in response to specific signals in the mRNA; a slippery sequence, where the ribosome changes frame, and a stimulatory RNA secondary structure, usually a pseudoknot, located immediately downstream. During the frameshift the ribosome slips backwards by a single nucleotide (in the 5′-wards/—1 direction) and continues translation in the new, overlapping reading frame, generating a fusion protein composed of the products of both the original and the —1 frame coding regions. In eukaryotes, frameshifting is largely a phenomenon of virus gene expression and associated predominantly with the expression of viral replicases. Research on frameshifting impacts upon diverse topics, including the ribosomal elongation cycle, RNA structure and function, tRNA modification, virus replication, antiviral intervention, evolution and bioinformatics. This chapter focuses on the structure and function of frameshift-stimulatory RNA pseudoknots and mechanistic aspects of ribosomal frameshifting. A variety of models of the frameshifting process are discussed in the light of recent advances in our understanding of ribosome structure and the elongation cycle.
Collapse
Affiliation(s)
- John F. Atkins
- grid.223827.e0000000121930096Molecular Biology Program, University of Utah, N. 2030 E. 15, Salt Late City, 84112-5330 U.S.A.
| | - Raymond F. Gesteland
- grid.223827.e0000000121930096Dept. Bioengineering, University of Utah, Salt Lake City, 84112 U.S.A.
| | | |
Collapse
|
33
|
Yang Y, Wang XB, Frerking M, Zhou Q. Spine expansion and stabilization associated with long-term potentiation. J Neurosci 2008; 28:5740-51. [PMID: 18509035 PMCID: PMC2561912 DOI: 10.1523/jneurosci.3998-07.2008] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 02/14/2008] [Accepted: 03/05/2008] [Indexed: 11/21/2022] Open
Abstract
Stable expression of long-term synaptic plasticity is critical for the developmental refinement of neural circuits and for some forms of learning and memory. Although structural remodeling of dendritic spines is associated with the stable expression of long-term potentiation (LTP), the relationship between structural and physiological plasticity remains unclear. To define whether these two processes are related or distinct, we simultaneously monitored EPSPs and dendritic spines, using combined patch-clamp recording and two-photon time-lapse imaging in the same CA1 pyramidal neurons in acute hippocampal slices. We found that theta burst stimulation paired with postsynaptic spiking, which reliably induced LTP, also induced a rapid and persistent expansion of dendritic spines. Like LTP, this expansion was NMDA receptor dependent. Spine expansion occurred even when LTP was inhibited by postsynaptic inhibition of exocytosis or PKA (protein kinase A); however, under these conditions, the spine expansion was unstable and collapsed spontaneously. Furthermore, similar changes in LTP and spine expansion were observed when hippocampal neurons were treated with protein synthesis inhibitors. Like LTP, spine expansion was reversed by low-frequency stimulation (LFS) via a phosphatase-dependent mechanism, but only if the LFS was applied in a critical time window after induction. These results indicate that the initial expression of LTP and spine expansion is dissociable, but there is a high degree of mechanistic overlap between the stabilization of structural plasticity and LTP.
Collapse
Affiliation(s)
- Yunlei Yang
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Xiao-bin Wang
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Matthew Frerking
- Neurological Science Institute, Oregon Health & Science University, Portland, Oregon 97006
| | - Qiang Zhou
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, and
| |
Collapse
|
34
|
Dulude D, Théberge-Julien G, Brakier-Gingras L, Heveker N. Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1. RNA (NEW YORK, N.Y.) 2008; 14:981-91. [PMID: 18367719 PMCID: PMC2327360 DOI: 10.1261/rna.887008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/04/2008] [Indexed: 05/26/2023]
Abstract
The human immunodeficiency virus of type 1 (HIV-1) uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes, and changes in frameshift efficiency reduce replicative fitness of the virus. We used a fluorescent two-reporter system to screen for peptides that reduce HIV-1 frameshift in bacteria, knowing that the frameshift can be reproduced in Escherichia coli. Expression of one reporter, the green fluorescent protein (GFP), requires the HIV-1 frameshift, whereas the second reporter, the red fluorescent protein (RFP), is used to assess normal translation. A peptide library biased for RNA binding was inserted into the sequence of the protein thioredoxin and expressed in reporter-containing bacteria, which were then screened by fluorescence-activated cell sorting (FACS). We identified peptide sequences that reduce frameshift efficiency by over 50% without altering normal translation. The identified sequences are also active against different frameshift stimulatory signals, suggesting that they bind a target important for frameshifting in general, probably the ribosome. Successful transfer of active sequences to a different scaffold in a eukaryotic test system demonstrates that the anti-frameshift activity of the peptides is neither due to scaffold-dependent conformation nor effects of the scaffold protein itself on frameshifting. The method we describe identifies peptides that will provide useful tools to further study the mechanism of frameshift and may permit the development of lead compounds of therapeutic interest.
Collapse
Affiliation(s)
- Dominic Dulude
- Département de Biochimie, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | | | | | | |
Collapse
|
35
|
Staple DW, Venditti V, Niccolai N, Elson-Schwab L, Tor Y, Butcher SE. Guanidinoneomycin B recognition of an HIV-1 RNA helix. Chembiochem 2008; 9:93-102. [PMID: 18058789 PMCID: PMC2782590 DOI: 10.1002/cbic.200700251] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Indexed: 01/16/2023]
Abstract
Aminoglycoside antibiotics are small-molecule drugs that bind RNA. The affinity and specificity of aminoglycoside binding to RNA can be increased through chemical modification, such as guanidinylation. Here, we report the binding of guanidinoneomycin B (GNB) to an RNA helix from the HIV-1 frameshift site. The binding of GNB increases the melting temperature (T(m)) of the frameshift-site RNA by at least 10 degrees C, to a point at which a melting transition is not even observed in 2 M urea. A structure of the complex was obtained by using multidimensional heteronuclear NMR spectroscopic methods. We also used a novel paramagnetic-probe assay to identify the site of GNB binding to the surface of the RNA. GNB makes major-groove contacts to two sets of Watson-Crick bases and is in van der Waals contact with a highly structured ACAA tetraloop. Rings I and II of GNB fit into the major groove and form the binding interface with the RNA, whereas rings III and IV are exposed to the solvent and disordered. The binding of GNB causes a broadening of the major groove across the binding site.
Collapse
Affiliation(s)
- David W. Staple
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (USA)
| | - Vincenzo Venditti
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena (Italy)
| | - Neri Niccolai
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena (Italy)
| | - Lev Elson-Schwab
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (USA)
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (USA)
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (USA)
| |
Collapse
|
36
|
Deng L, Dai P, Ciro A, Smee DF, Djaballah H, Shuman S. Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J Virol 2007; 81:13392-402. [PMID: 17928345 PMCID: PMC2168821 DOI: 10.1128/jvi.00770-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/20/2007] [Indexed: 11/20/2022] Open
Abstract
The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.
Collapse
Affiliation(s)
- Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Miyauchi K, Komano J, Myint L, Futahashi Y, Urano E, Matsuda Z, Chiba T, Miura H, Sugiura W, Yamamoto N. Rapid propagation of low-fitness drug-resistant mutants of human immunodeficiency virus type 1 by a streptococcal metabolite sparsomycin. Antivir Chem Chemother 2006; 17:167-74. [PMID: 17066895 DOI: 10.1177/095632020601700401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here we report that sparsomycin, a streptococcal metabolite, enhances the replication of HIV-1 in multiple human T cell lines at a concentration of 400 nM. In addition to wild-type HIV-1, sparsomycin also accelerated the replication of low-fitness, drug-resistant mutants carrying either D30N or L90M within HIV-1 protease, which are frequently found mutations in HIV-1-infected patients on highly active antiretroviral therapy (HAART). Of particular interest was that replication enhancement appeared profound when HIV-1 such as the L90M-carrying mutant displayed relatively slower replication kinetics. The presence of sparsomycin did not immediately select the fast-replicating HIV-1 mutants in culture. In addition, sparsomycin did not alter the 50% inhibitory concentration (IC50) of antiretroviral drugs directed against HIV-1 including nucleoside reverse transcriptase inhibitors (lamivudine and stavudine), non-nucleoside reverse transcriptase inhibitor (nevirapine) and protease inhibitors (nelfinavir, amprenavir and indinavir). The IC50s of both zidovudine and lopinavir against multidrug resistant HIV-1 in the presence of sparsomycin were similar to those in the absence of sparsomycin. The frameshift reporter assay and Western blot analysis revealed that the replication-boosting effect was partly due to the sparsomycin's ability to increase the -1 frameshift efficiency required to produce the Gag-Pol transcript. In conclusion, the use of sparsomycin should be able to facilitate the drug resistance profiling of the clinical isolates and the study on the low-fitness viruses.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Muldoon-Jacobs KL, Dinman JD. Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting. EUKARYOTIC CELL 2006; 5:762-70. [PMID: 16607023 PMCID: PMC1459665 DOI: 10.1128/ec.5.4.762-770.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ribosome-associated molecular chaperone complexes RAC (Ssz1p/Zuo1p) and Ssb1p/Ssb2p expose a link between protein folding and translation. Disruption of the conserved nascent peptide-associated complex results in cell growth and translation fidelity defects. To better understand the consequences of deletion of either RAC or Ssb1p/2p, experiments relating to cell growth and programmed ribosomal frameshifting (PRF) were assayed. Genetic analyses revealed that deletion of Ssb1p/Ssb2p or of Ssz1p/Zuo1p resulted in specific inhibition of -1 PRF and defects in Killer virus maintenance, while no effects were observed on +1 PRF. These factors may provide a new set of targets to exploit against viruses that use -1 PRF. Quantitative measurements of growth profiles of isogenic wild-type and mutant cells showed that translational inhibitors exacerbate underlying growth defects in these mutants. Previous studies have identified -1 PRF signals in yeast chromosomal genes and have demonstrated an inverse relationship between -1 PRF efficiency and mRNA stability. Analysis of published DNA microarray experiments reveals conditions under which Ssb1, Ssb2, Ssz1, and Zuo1 transcript levels are regulated independently of those of genes encoding ribosomal proteins. Thus, the findings presented here suggest that these trans-acting factors could be used by cells to posttranscriptionally regulate gene expression through -1 PRF.
Collapse
Affiliation(s)
- Kristi L Muldoon-Jacobs
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
39
|
Wills NM, Atkins JF. The potential role of ribosomal frameshifting in generating aberrant proteins implicated in neurodegenerative diseases. RNA (NEW YORK, N.Y.) 2006; 12:1149-53. [PMID: 16714280 PMCID: PMC1484430 DOI: 10.1261/rna.84406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aberrant forms of proteins ubiquitin B and beta-amyloid precusor protein, UBB+1 and APP+1, are implicated in human neurodegenerative diseases. They have their carboxyl-terminal regions derived from an alternative reading frame. Transcription slippage has been invoked to explain the production of these proteins from abnormal mRNA. However, ribosomal frameshifting on wild-type mRNA may account for the great majority of the aberrant protein. Ribosomal frameshifting may also be involved in the progression of triplet expansion diseases such as Huntington's and spinocerebellar ataxias. In a particular spinocerebellar ataxia, SCA3, Toulouse and colleagues recently discovered -1 frameshifting in a transcript containing an expanded CAG-repeat. Antibiotics that affect mammalian ribosomes may have complex effects on frameshifting and disease progression.
Collapse
Affiliation(s)
- Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | |
Collapse
|
40
|
Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R. tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Mol Microbiol 2006; 59:677-88. [PMID: 16390459 DOI: 10.1111/j.1365-2958.2005.04972.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zymocin-induced cell death in Saccharomyces cerevisiae requires the toxin-target (TOT) effector Elongator, a protein complex with functions in transcription, exocytosis and tRNA modification. In line with the latter, trm9Delta cells lacking a tRNA methylase specific for wobble uridine (U(34)) residues survive zymocin and in excess, the Trm9 substrate tRNA(Glu) copies zymocin protection of Elongator mutants. Phenotypes typical of a tot3/elp3Delta Elongator mutant are absent from trm9Delta cells but copied in a tot3Deltatrm9Delta double mutant suggesting that Elongator acts upstream of Trm9. Consistent with Elongator-dependent tRNA modification being more important to mRNA decoding than Trm9, SUP4 and SOE1TRNA suppressors are highly sensitive to loss of Elongator and tRNA U(34) hypomodification. As Trm9 overexpression counteracts the effect of high-copy tRNA(Glu), zymocin suppression by high-copy tRNA(Glu) may reflect tRNA hypomethylation of trm9Delta cells. Thus, Trm9 methylation may enable recognition of tRNA by zymocin, a notion supported by a dramatic reduction of tRNA(Glu) levels in zymocin-treated cells and by cytotoxic zymocin residues conserved between bacterial nucleases and a tRNA modifying GTPase. In sum, Trm9 is a bona fideTOT pathway component whose methylation may be hijacked by zymocin to target tRNA function and eventually, mRNA translation.
Collapse
Affiliation(s)
- Daniel Jablonowski
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Saale, Germany
| | | | | | | | | |
Collapse
|
41
|
Meskauskas A, Petrov AN, Dinman JD. Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 2006; 25:10863-74. [PMID: 16314511 PMCID: PMC1316954 DOI: 10.1128/mcb.25.24.10863-10874.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is accumulating evidence that many ribosomal proteins are involved in shaping rRNA into their functionally correct conformations through RNA-protein interactions. Moreover, although rRNA seems to play the central role in all aspects of ribosome function, ribosomal proteins may be involved in facilitating communication between different functional regions in ribosome, as well as between the ribosome and cellular factors. In an effort to more fully understand how ribosomal proteins may influence ribosome function, we undertook large-scale mutational analysis of ribosomal protein L3, a core protein of the large subunit that has been implicated in numerous ribosome-associated functions in the past. A total of 98 different rpl3 alleles were genetically characterized with regard to their effects on killer virus maintenance, programmed -1 ribosomal frameshifting, resistance/hypersensitivity to the translational inhibitor anisomycin and, in specific cases, the ability to enhance translation of a reporter mRNA lacking the 5' (7)mGppp cap structure and 3' poly(A) tail. Biochemical studies reveal a correlation between an increased affinity for aminoacyl-tRNA and the extent of anisomycin resistance and a decreased peptidyltransferase activity and increased frameshifting efficiency. Immunoblot analyses reveal that the superkiller phenotype is not due to a defect in the ability of ribosomes to recruit the Ski-complex, suggesting that the defect lies in a reduced ability of mutant ribosomes to distinguish between cap(+)/poly(A)(+) and cap(-)/poly(A)(-) mRNAs. The results of these analyses are discussed with regard to how protein-rRNA interactions may affect ribosome function.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, 20742, USA
| | | | | |
Collapse
|
42
|
Brierley I, Dos Ramos FJ. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 2005; 119:29-42. [PMID: 16310880 PMCID: PMC7114087 DOI: 10.1016/j.virusres.2005.10.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 07/31/2005] [Accepted: 10/19/2005] [Indexed: 01/11/2023]
Abstract
Ribosomal frameshifting is a mechanism of gene expression used by several RNA viruses to express replicase enzymes. This article focuses on frameshifting in two human pathogens, the retrovirus human immunodeficiency virus type 1 (HIV-1) and the coronavirus responsible for severe acute respiratory syndrome (SARS). The nature of the frameshift signals of HIV-1 and the SARS–CoV will be described and the impact of this knowledge on models of frameshifting will be considered. The role of frameshifting in the replication cycle of the two pathogens and potential antiviral therapies targeting frameshifting will also be discussed.
Collapse
Affiliation(s)
- Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
43
|
Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dontsova OA, Dinman JD. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:235-47. [PMID: 16047201 PMCID: PMC1276653 DOI: 10.1007/s00438-005-0020-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semi-dominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression.
Collapse
|
44
|
Toulouse A, Au-Yeung F, Gaspar C, Roussel J, Dion P, Rouleau GA. Ribosomal frameshifting on MJD-1 transcripts with long CAG tracts. Hum Mol Genet 2005; 14:2649-60. [PMID: 16087686 DOI: 10.1093/hmg/ddi299] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expanded CAG tract diseases are a heterogeneous group of late-onset neurodegenerative disorders characterized by the accumulation of insoluble protein material and premature neuronal cell death. Recent work has provided support for several mechanisms that may account for neurodegeneration, but no unifying mechanism has emerged. We have previously demonstrated that in SCA3, the expanded CAG tract in the MJD-1 transcript is prone to frameshifting, which may lead to the production of polyalanine-containing proteins. To further examine the occurrence of frameshifting and understand its mechanism and possible role in pathogenesis, a cellular model was established. We show that this phenomenon results from ribosomal slippage to the -1 frame exclusively, that ribosomal frameshifting depends on the presence of long CAG tracts and that polyalanine-frameshifted proteins may enhance polyglutamine-associated toxicity, possibly contributing to pathogenesis. Finally, we present evidence that anisomycin, a ribosome-interacting drug that reduces -1 frameshifting, also reduces toxicity, suggesting a new therapeutic opportunity for these disorders.
Collapse
Affiliation(s)
- André Toulouse
- Department of Medicine and Research Center, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Suite Y3616-2, 1560 Sherbrooke Street East, Montreal, Quebec H2L 4M1, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Plant EP, Pérez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol 2005; 3:e172. [PMID: 15884978 PMCID: PMC1110908 DOI: 10.1371/journal.pbio.0030172] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 03/14/2005] [Indexed: 12/16/2022] Open
Abstract
A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.
Collapse
Affiliation(s)
- Ewan P Plant
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Gabriela C Pérez-Alvarado
- 2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jonathan L Jacobs
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Bani Mukhopadhyay
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Mirko Hennig
- 2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jonathan D Dinman
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| |
Collapse
|
46
|
Mäkeläinen K, Mäkinen K. Factors affecting translation at the programmed -1 ribosomal frameshifting site of Cocksfoot mottle virus RNA in vivo. Nucleic Acids Res 2005; 33:2239-47. [PMID: 15843686 PMCID: PMC1083427 DOI: 10.1093/nar/gki521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ratio between proteins P27 and replicase of Cocksfoot mottle virus (CfMV) is regulated via a -1 programmed ribosomal frameshift (-1 PRF). A minimal frameshift signal with a slippery U UUA AAC heptamer and a downstream stem-loop structure was inserted into a dual reporter vector and directed -1 PRF with an efficiency of 14.4 +/- 1.9% in yeast and 2.4 +/- 0.7% in bacteria. P27-encoding CfMV sequence flanking the minimal frameshift signal caused approximately 2-fold increase in the -1 PRF efficiencies both in yeast and in bacteria. In addition to the expected fusion proteins, termination products ending putatively at the frameshift site were found in yeast cells. We propose that the amount of premature translation termination from control mRNAs played a role in determining the calculated -1PRF efficiency. Co-expression of CfMV P27 with the dual reporter vector containing the minimal frameshift signal reduced the production of the downstream reporter, whereas replicase co-expression had no pronounced effect. This finding allows us to propose that CfMV protein P27 may influence translation at the frameshift site but the mechanism needs to be elucidated.
Collapse
Affiliation(s)
- Katri Mäkeläinen
- Department of Applied BiologyPO Box 27University of HelsinkiFIN-00014 Helsinki, Finland
- Institute of BiotechnologyPO Box 56University of HelsinkiFIN-00014 Helsinki, Finland
| | - Kristiina Mäkinen
- Department of Applied BiologyPO Box 27University of HelsinkiFIN-00014 Helsinki, Finland
- Institute of BiotechnologyPO Box 56University of HelsinkiFIN-00014 Helsinki, Finland
- To whom correspondence should be addressed. Tel: +358 9 19158342; Fax: +358 9 19158633;
| |
Collapse
|
47
|
Kim JH, Curtis-Long MJ, Seo WD, Ryu YB, Yang MS, Park KH. Stereodivergent Syntheses of Anisomycin Derivatives from d-Tyrosine. J Org Chem 2005; 70:4082-7. [PMID: 15876100 DOI: 10.1021/jo050079w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structures: see text] Enantiomerically pure 2-alkyl-3-acetoxy-4-iodopyrrolidines with all groups cis, and all adjacent groups trans (10 and 17), important precursors for the synthesis of pyrrolidinediols, have been prepared from D-tyrosine through regio- and diastereoselective reduction of a vinyl ketone and subsequent iodoamidation controlled by minimization of nonbonding steric interactions. Highly stereodivergent Woodward-Prevost methodology, applied to both iodopyrrolidines, yielded enantiomerically pure (2R,3R,4R)-, (2R,3R,4S)-, and (2R,3S,4R)-deacetylanisomycin (3, 4, and 5), each in excellent de. Incorporation of differential protection of the hydroxyl groups led to a one-pot synthesis of (2R,3R,4R)-anisomycin 2.
Collapse
Affiliation(s)
- Jin Hyo Kim
- Department of Agricultural Chemistry, Division of Applied Life Science (BK21 programs), Gyeongsang National University, Jinju, 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Manktelow E, Shigemoto K, Brierley I. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting. Nucleic Acids Res 2005; 33:1553-63. [PMID: 15767280 PMCID: PMC1065257 DOI: 10.1093/nar/gki299] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ribosomal frameshifting signal of the mouse embryonal carcinoma differentiation regulated (Edr) gene represents the sole documented example of programmed −1 frameshifting in mammalian cellular genes [Shigemoto,K., Brennan,J., Walls,E,. Watson,C.J., Stott,D., Rigby,P.W. and Reith,A.D. (2001), Nucleic Acids Res., 29, 4079–4088]. Here, we have employed site-directed mutagenesis and RNA structure probing to characterize the Edr signal. We began by confirming the functionality and magnitude of the signal and the role of a GGGAAAC motif as the slippery sequence. Subsequently, we derived a model of the Edr stimulatory RNA and assessed its similarity to those stimulatory RNAs found at viral frameshift sites. We found that the structure is an RNA pseudoknot possessing features typical of retroviral frameshifter pseudoknots. From these experiments, we conclude that the Edr signal and by inference, the human orthologue PEG10, do not represent a novel ‘cellular class’ of programmed −1 ribosomal frameshift signal, but rather are similar to viral examples, albeit with some interesting features. The similarity to viral frameshift signals may complicate the design of antiviral therapies that target the frameshift process.
Collapse
Affiliation(s)
| | - Kazuhiro Shigemoto
- Department of Environmental Health and Social Medicine, Ehime University School of MedicineShitsukawa, Toon, Ehime 791-0295 Japan
| | - Ian Brierley
- To whom correspondence should be addressed. Tel: +44 1223 336914; Fax: +44 1223 336926;
| |
Collapse
|
49
|
Abstract
Bicistronic reporter assay systems have become a mainstay of molecular biology. While the assays themselves encompass a broad range of diverse and unrelated experimental protocols, the numerical data garnered from these experiments often have similar statistical properties. In general, a primary dataset measures the paired expression of two internally controlled reporter genes. The expression ratio of these two genes is then normalized to an external control reporter. The end result is a ‘ratio of ratios’ that is inherently sensitive to propagation of the error contributed by each of the respective numerical components. The statistical analysis of this data therefore requires careful handling in order to control for the propagation of error and its potentially misleading effects. A careful survey of the literature found no consistent method for the statistical analysis of data generated from these important and informative assay systems. In this report, we present a detailed statistical framework for the systematic analysis of data obtained from bicistronic reporter assay systems. Specifically, a dual luciferase reporter assay was employed to measure the efficiency of four programmed −1 frameshift signals. These frameshift signals originate from the L-A virus, the SARS-associated Coronavirus and computationally identified frameshift signals from two Saccharomyces cerevisiae genes. Furthermore, these statistical methods were applied to prove that the effects of anisomycin on programmed −1 frameshifting are statistically significant. A set of Microsoft Excel spreadsheets, which can be used as templates for data generated by dual reporter assay systems, and an online tutorial are available at our website (http://dinmanlab.umd.edu/statistics). These spreadsheets could be easily adapted to any bicistronic reporter assay system.
Collapse
Affiliation(s)
- Jonathan L Jacobs
- Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
50
|
Brierley I, Vidakovic M. V, 2.Ribosomal frameshifting in astroviruses. ACTA ACUST UNITED AC 2004; 9:587-606. [PMID: 32287603 PMCID: PMC7133818 DOI: 10.1016/s0168-7069(03)09035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter reviews ribosomal frameshifting with an emphasis on the frameshifting process in astroviruses. Frameshifting is a potential antiviral target. It is possible that the replication cycle of any virus that uses this process could be disrupted by modulation of frameshift efficiencies, but a better understanding of the occurrence and the molecular basis of frameshifting will be required before it can be considered a genuine target. To date, there are no confirmed examples of frameshift signals from conventional eukaryotic cellular genes, although computer-assisted database searches have identified a number of candidates. The frameshift allows the required ratio of viral proteins to be produced, but it may also serve to downregulate levels of viral replicases that may be toxic in high amounts.
Collapse
Affiliation(s)
- Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 l QP, U.K
| | - Marijana Vidakovic
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 l QP, U.K
| |
Collapse
|