1
|
Tian H, Yin Y, Li X, Zhang Z, Feng S, Jin S, Han X, Yang M, Xu C, Hu L, Liu C, Kong F, Chen Q, Qi Z. Identification of HSSP1 as a regulator of soybean protein content through QTL analysis and Soy-SPCC network. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40249859 DOI: 10.1111/pbi.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Soybeans (Glycine max L. Merr.) are a major source of plant-based protein for human nutrition and livestock feed. Enhancing the protein content of soybean seeds is vital for meeting growing dietary needs and promoting sustainable agricultural practices. In this study, we first performed QTL (Quantitative Trait Loci) mapping analysis and constructed a Soybean Seed Protein Content Co-expression (Soy-SPCC) network to identify key genes associated with soybean seed protein accumulation. Next, we investigated the role of High Seed Storage Protein1 (HSSP1) in regulating soybean seed protein content through a comprehensive analysis. Functional validation through overexpression and gene knockout experiments demonstrated that HSSP1, a key component of the Soy-SPCC network, significantly influences seed storage protein levels. Particularly, HSSP1 enhances the expression of GmCG1 by binding directly to its cis-acting element, leading to increased protein content in soybean seeds. Furthermore, we performed a molecular module stacking breeding analysis of 120 candidate genes identified from the Soy-SPCC network, including HSSP1, to identify genetic variations associated with protein content. This study provides a novel perspective on soybean protein regulation. The identification of HSSP1 as a critical regulator offers valuable insights for developing high-protein soybean varieties and advancing breeding strategies aimed at improving soybean seed quality.
Collapse
Affiliation(s)
- Huilin Tian
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanbin Yin
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Li
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhanguo Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Shaowei Feng
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Song Jin
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Han
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Limin Hu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Tian R, Yang Z, Yang R, Wang S, Shen Q, Wang G, Wang H, Zhou Q, Tang J, Fu Z. Regulation of maize kernel development via divergent activation of α-Zein genes by transcription factors O11, O2, and PBF1. J Genet Genomics 2025:S1673-8527(25)00117-1. [PMID: 40254161 DOI: 10.1016/j.jgg.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
α-Zeins, the major maize endosperm storage proteins, are transcriptionally regulated by Opaque 2 (O2) and PROLAMIN-BOX BINDING FACTOR1 (PBF1), with Opaque 11 (O11) functioning upstream of them. However, whether O11 directly binds to α-zein genes and its regulatory interactions with O2 and PBF1 remain unclear. Using the small-kernel mutant sw1, which exhibits decreased 19-kDa and increased 22-kDa α-zein, we positionally cloned O11 and found it directly binds to G-box/E-box motifs. O11 activates 19-kDa α-zein transcription, stronger than PBF1 but weaker than O2. Notably, PBF1 competitively binds to overlapping E-box/P-box motif, and represses O11-mediated transactivation. Although O11 does not physically interact with O2, it participates in the O2-centered hierarchical network to enhance α-zein expression. sw1 o2 and sw1 pbf1 double mutants exhibit smaller, more opaque kernels with further reduced 19-kDa and 22-kDa α-zeins compared to the single mutants, suggesting distinct regulatory effects of these transcription factors on 19-kDa and 22-kDa α-zein genes. Promoter motif analysis suggests that O11, PBF1, and O2 directly regulate 19-kDa α-zein genes, while O11 indirectly controls 22-kDa α-zein genes via O2 and PBF1 modulation. These findings identify the unique and coordinated roles of O11, O2, and PBF1 in regulating α-zein genes and kernel development.
Collapse
Affiliation(s)
- Runmiao Tian
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Zeyuan Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ruihua Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Sihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qingwen Shen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Guifeng Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hongqiu Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Qingqian Zhou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jihua Tang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| | - Zhiyuan Fu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /College of Agronomy/Shengnong Laboratory, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
3
|
Li M, Fan D, Wen Z, Meng J, Li P, Cheng T, Zhang Q, Sun L. Genome-wide identification of the Dof gene family: How it plays a part in mediating cold stress response in Prunus mume. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109215. [PMID: 39515001 DOI: 10.1016/j.plaphy.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
DNA binding with a finger transcription factor (Dof) takes part in several plant physiological activities such as seed germination, flowering time, cold and drought resistance. Although the function, molecular phylogeny and expression pattern of Dof genes in Prunus mume was not clear yet. Here, the gene structure, motif, chromosome location and phylogenetic relationship of the Dof gene family in Prunus species was explored. We identified 24 members of the Dof gene family from P. mume, which were divided into 3 different subgroups. All these PmDof genes can be mapped to the pseudochromosome. Only one pair of tandem duplication genes are located in Chr3, whereas 8 pairs of segmentally duplicated PmDof genes located in Chr1, Chr2, Chr4, Chr5, and Chr7. Motif and gene structure analysis showed that each group had a similar conservative motif and similar exon/intron composition. Cis-acting elements analysis indicate that PmDofs may be involved in regulating abiotic stress response. Gene expression patterns showed that most PmDofs genes were specifically expressed in different tissues and at different stages. We next found that PmDofs genes display an obvious expression preference or specificity in cold stress response according to qRT-PCR analysis. We further observe a great cold resistance in PmDof10/11/20 OE lines, they showed lower electrolyte leakage rate, MDA content and higher soluble sugar/protein, POD/SOD/proline content than WT after -5 °C 6h freezing treatment. This research offers fresh perspectives on the development of PmDofs, enhancing our comprehension of the structure and role of plant Dof gene families.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dongqing Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhenying Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Juan Meng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lidan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Zheng K, Lv M, Qian J, Lian Y, Liu R, Huo S, Rehman OU, Lin Q, Zhou Z, Liu X, Cao S. Identification and Characterization of the DOF Gene Family in Phoebe bournei and Its Role in Abiotic Stress-Drought, Heat and Light Stress. Int J Mol Sci 2024; 25:11147. [PMID: 39456929 PMCID: PMC11508201 DOI: 10.3390/ijms252011147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Phoebe bournei is a second-class endangered and protected species unique to China, and it holds significant ecological and economic value. DNA binding one zinc finger (Dof) transcription factors are plant-specific regulators. Numerous studies have demonstrated that Dof genes are involved in plant growth, development and responses to abiotic stress. In this study, we identified and analyzed 34 PbDof gene members at the whole-genome level. The results indicated that the 34 PbDof genes were unevenly distributed across 12 chromosomes. We utilized the Dof genes from Arabidopsis thaliana and P. bournei to construct a phylogenetic tree and categorized these genes into eight subgroups. In the collinearity analysis, there were 16 homologous gene pairs between AtDof and PbDof and nine homologous gene pairs between ZmDof and PbDof. We conducted a cis-acting element analysis and found that cis-acting elements involved in light response were the most abundant in PbDof genes. Through SSR site prediction, we analyzed that the evolution level of Dof genes is low. Additionally, we assessed the expression profiles of eight PbDof genes under high temperature, drought, and light stress using qRT-PCR. In particular, PbDof08 and PbDof16 are significantly upregulated under the three stresses. This study provides foundational information for PbDof genes and offers new insights for further research on the mechanism of Dof transcription factors responding to stress, as well as the adaptation of P. bournei to environmental changes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengmeng Lv
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Jiaying Qian
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Zhongyang Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
5
|
Tian X, Li Y, Wang S, Zou H, Xiao Q, Ma B, Ma F, Li M. Glucose uptake from the rhizosphere mediated by MdDOF3-MdHT1.2 regulates drought resistance in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1566-1581. [PMID: 38205680 PMCID: PMC11123392 DOI: 10.1111/pbi.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.
Collapse
Affiliation(s)
- Xiaocheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Shaoteng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Qian Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
6
|
He J, Wang J, Zhang Z. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2124-2140. [PMID: 38551088 DOI: 10.1111/tpj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024]
Abstract
The basal region of maize (Zea mays) kernels, which includes the pedicel, placenta-chalazal, and basal endosperm transfer layers, serves as the maternal/filial interface for nutrient transfer from the mother plant to the developing seed. However, transcriptome dynamics of this maternal/filial interface remain largely unexplored. To address this gap, we conducted high-temporal-resolution RNA sequencing of the basal and upper kernel regions between 4 and 32 days after pollination and deeply analyzed transcriptome dynamics of the maternal/filial interface. Utilizing 790 specifically and highly expressed genes in the basal region, we performed the gene ontology (GO) term and weighted gene co-expression network analyses. In the early-stage basal region, we identified five MADS-box transcription factors (TFs) as hubs. Their homologs have been demonstrated as pivotal regulators at the maternal/filial interface of rice or Arabidopsis, suggesting their potential roles in maize kernel development. In the filling-stage basal region, numerous GO terms associated with transcriptional regulation and transporters are significantly enriched. Furthermore, we investigated the molecular function of three hub TFs. Through genome-wide DNA affinity purification sequencing combined with promoter transactivation assays, we suggested that these three TFs act as regulators of 10 basal-specific transporter genes involved in the transfer of sugars, amino acids, and ions. This study provides insights into transcriptomic dynamic and regulatory modules of the maternal/filial interface. In the future, genetic investigation of these hub regulators must advance our understanding of maternal/filial interface development and function.
Collapse
Affiliation(s)
- Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
7
|
Peng D, Pan S, Du X, Chen E, He J, Zhang Z. Central Roles of ZmNAC128 and ZmNAC130 in Nutrient Uptake and Storage during Maize Grain Filling. Genes (Basel) 2024; 15:663. [PMID: 38927600 PMCID: PMC11203180 DOI: 10.3390/genes15060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Grain filling is critical for determining yield and quality, raising the question of whether central coordinators exist to facilitate the uptake and storage of various substances from maternal to filial tissues. The duplicate NAC transcription factors ZmNAC128 and ZmNAC130 could potentially serve as central coordinators. By analyzing differentially expressed genes from zmnac128 zmnac130 mutants across different genetic backgrounds and growing years, we identified 243 highly and differentially expressed genes (hdEGs) as the core target genes. These 243 hdEGs were associated with storage metabolism and transporters. ZmNAC128 and ZmNAC130 play vital roles in storage metabolism, and this study revealed two additional starch metabolism-related genes, sugary enhancer1 and hexokinase1, as their direct targets. A key finding of this study was the inclusion of 17 transporter genes within the 243 hdEGs, with significant alterations in the levels of more than 10 elements/substances in mutant kernels. Among them, six out of the nine upregulated transporter genes were linked to the transport of heavy metals and metalloids (HMMs), which was consistent with the enrichment of cadmium, lead, and arsenic observed in mutant kernels. Interestingly, the levels of Mg and Zn, minerals important to biofortification efforts, were reduced in mutant kernels. In addition to their direct involvement in sugar transport, ZmNAC128 and ZmNAC130 also activate the expression of the endosperm-preferential nitrogen and phosphate transporters ZmNPF1.1 and ZmPHO1;2. This coordinated regulation limits the intake of HMMs, enhances biofortification, and facilitates the uptake and storage of essential nutrients.
Collapse
Affiliation(s)
- Di Peng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Shuxing Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Xin Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Erwang Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| | - Junjun He
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China;
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (D.P.); (S.P.); (X.D.); (E.C.)
| |
Collapse
|
8
|
Hurst JP, Sato S, Ferris T, Yobi A, Zhou Y, Angelovici R, Clemente TE, Holding DR. Editing the 19 kDa alpha-zein gene family generates non-opaque2-based quality protein maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:946-959. [PMID: 37988568 PMCID: PMC10955486 DOI: 10.1111/pbi.14237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Maize grain is deficient in lysine. While the opaque2 mutation increases grain lysine, o2 is a transcription factor that regulates a wide network of genes beyond zeins, which leads to pleiotropic and often negative effects. Additionally, the drastic reduction in 19 kDa and 22 kDa alpha-zeins causes a floury kernel, unsuitable for agricultural use. Quality protein maize (QPM) overcame the undesirable kernel texture through the introgression of modifying alleles. However, QPM still lacks a functional o2 transcription factor, which has a penalty on non-lysine amino acids due to the o2 mutation. CRISPR/cas9 gives researchers the ability to directly target genes of interest. In this paper, gene editing was used to specifically target the 19 kDa alpha zein gene family. This allows for proteome rebalancing to occur without an o2 mutation and without a total alpha-zein knockout. The results showed that editing some, but not all, of the 19 kDa zeins resulted in up to 30% more lysine. An edited line displayed an increase of 30% over the wild type. While not quite the 55% lysine increase displayed by QPM, the line had little collateral impact on other amino acid levels compared to QPM. Additionally, the edited line containing a partially reduced 19 kDa showed an advantage in kernel texture that had a complete 19 kDa knockout. These results serve as proof of concept that editing the 19 kDa alpha-zein family alone can enhance lysine while retaining vitreous endosperm and a functional O2 transcription factor.
Collapse
Affiliation(s)
- J. Preston Hurst
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| | - Shirley Sato
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Tyler Ferris
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| | - Abou Yobi
- University of Missouri‐ColumbiaColumbiaMissouriUSA
| | - You Zhou
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | | - Tom E. Clemente
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| |
Collapse
|
9
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Cao S, Liu B, Wang D, Rasheed A, Xie L, Xia X, He Z. Orchestrating seed storage protein and starch accumulation toward overcoming yield-quality trade-off in cereal crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:468-483. [PMID: 38409921 DOI: 10.1111/jipb.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Collapse
Affiliation(s)
- Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Bingyan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Awais Rasheed
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
11
|
Plessis A, Ravel C, Risacher T, Duchateau N, Dardevet M, Merlino M, Torney F, Martre P. Storage protein activator controls grain protein accumulation in bread wheat in a nitrogen dependent manner. Sci Rep 2023; 13:22736. [PMID: 38123623 PMCID: PMC10733432 DOI: 10.1038/s41598-023-49139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The expression of cereal grain storage protein (GSP) genes is controlled by a complex network of transcription factors (TFs). Storage protein activator (SPA) is a major TF acting in this network but its specific function in wheat (Triticum aestivum L.) remains to be determined. Here we generated an RNAi line in which expression of the three SPA homoeologs was reduced. In this line and its null segregant we analyzed GSP accumulation and expression of GSP and regulatory TF genes under two regimes of nitrogen availability. We show that down regulation of SPA decreases grain protein concentration at maturity under low but not high nitrogen supply. Under low nitrogen supply, the decrease in SPA expression also caused a reduction in the total quantity of GSP per grain and in the ratio of GSP to albumin-globulins, without significantly affecting GSP composition. The slight reduction in GSP gene expression measured in the SPA RNAi line under low nitrogen supply did not entirely account for the more significant decrease in GSP accumulation, suggesting that SPA regulates additional levels of GSP synthesis. Our results demonstrate a clear role of SPA in the regulation of grain nitrogen metabolism when nitrogen is a limiting resource.
Collapse
Affiliation(s)
- Anne Plessis
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Catherine Ravel
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France.
| | | | - Nathalie Duchateau
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - Mireille Dardevet
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - Marielle Merlino
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
| | - François Torney
- Centre de Recherche, Limagrain Europe, 63 720, Chappes, France
| | - Pierre Martre
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont Ferrand, France
- LEPSE, Université de Montpellier, INRAE, Institut SupAgro Montpellier, 34000, Montpellier, France
| |
Collapse
|
12
|
Wei Z, Zhang H, Fang M, Lin S, Zhu M, Li Y, Jiang L, Cui T, Cui Y, Kui H, Peng L, Gou X, Li J. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. MOLECULAR PLANT 2023; 16:1759-1772. [PMID: 37742075 DOI: 10.1016/j.molp.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Photosynthetic efficiency is the primary determinant of crop yield, including vegetative biomass and grain yield. Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits. In this study, we identified an Arabidopsis gain-of-function mutant, cogwheel1-3D, that shows a significantly enlarged rosette and increased biomass compared with wild-type plants. Overexpression of COG1, a Dof transcription factor, recapitulated the phenotype of cogwheel1-3D, whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass. Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis. Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins. Physiological, biochemical, and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves. Furthermore, combined results of bioinformatic, genetic, and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species. These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxiu Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Limin Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianliang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Chen E, Yu H, He J, Peng D, Zhu P, Pan S, Wu X, Wang J, Ji C, Chao Z, Xu Z, Wu Y, Chao D, Wu Y, Zhang Z. The transcription factors ZmNAC128 and ZmNAC130 coordinate with Opaque2 to promote endosperm filling in maize. THE PLANT CELL 2023; 35:4066-4090. [PMID: 37542515 PMCID: PMC10615213 DOI: 10.1093/plcell/koad215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Endosperm filling in maize (Zea mays), which involves nutrient uptake and biosynthesis of storage reserves, largely determines grain yield and quality. However, much remains unclear about the synchronization of these processes. Here, we comprehensively investigated the functions of duplicate NAM, ATAF1/2, and CUC2 (NAC)-type transcription factors, namely, ZmNAC128 and ZmNAC130, in endosperm filling. The gene-edited double mutant zmnac128 zmnac130 exhibits a poorly filled kernel phenotype such that the kernels have an inner cavity. RNA sequencing and protein abundance analysis revealed that the expression of many genes involved in the biosynthesis of zein and starch is reduced in the filling endosperm of zmnac128 zmnac130. Further, DNA affinity purification and sequencing combined with chromatin-immunoprecipitation quantitative PCR and promoter transactivation assays demonstrated that ZmNAC128 and ZmNAC130 are direct regulators of 3 (16-, 27-, and 50-kD) γ-zein genes and 6 important starch metabolism genes (Brittle2 [Bt2], pullulanase-type starch debranching enzyme [Zpu1], granule-bound starch synthase 1 [GBSS1], starch synthase 1 [SS1], starch synthase IIa [SSIIa], and sucrose synthase 1 [Sus1]). ZmNAC128 and ZmNAC130 recognize an additional cis-element in the Opaque2 (O2) promoter to regulate its expression. The triple mutant zmnac128 zmnac130 o2 exhibits extremely poor endosperm filling, which results in more than 70% of kernel weight loss. ZmNAC128 and ZmNAC130 regulate the expression of the transporter genes sugars that will eventually be exported transporter 4c (ZmSWEET4c), sucrose and glucose carrier 1 (ZmSUGCAR1), and yellow stripe-like2 (ZmYSL2) and in turn facilitate nutrient uptake, while O2 plays a supporting role. In conclusion, ZmNAC128 and ZmNAC130 cooperate with O2 to facilitate endosperm filling, which involves nutrient uptake in the basal endosperm transfer layer (BETL) and the synthesis of zeins and starch in the starchy endosperm (SE).
Collapse
Affiliation(s)
- Erwang Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Huiqin Yu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Di Peng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Panpan Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Shuxing Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Xu Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhenfei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhuopin Xu
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031,China
| | - Yuejin Wu
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031,China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032,China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027,China
| |
Collapse
|
14
|
Merlino M, Gaudin JC, Dardevet M, Martre P, Ravel C, Boudet J. Wheat DOF transcription factors TaSAD and WPBF regulate glutenin gene expression in cooperation with SPA. PLoS One 2023; 18:e0287645. [PMID: 37352279 PMCID: PMC10289392 DOI: 10.1371/journal.pone.0287645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Grain storage proteins (GSPs) quantity and composition determine the end-use value of wheat flour. GSPs consists of low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins. GSP gene expression is controlled by a complex network of DNA-protein and protein-protein interactions, which coordinate the tissue-specific protein expression during grain development. The regulatory network has been most extensively studied in barley, particularly the two transcription factors (TFs) of the DNA binding with One Finger (DOF) family, barley Prolamin-box Binding Factor (BPBF) and Scutellum and Aleurone-expressed DOF (SAD). They activate hordein synthesis by binding to the Prolamin box, a motif in the hordein promoter. The BPBF ortholog previously identified in wheat, WPBF, has a transcriptional activity in expression of some GSP genes. Here, the wheat ortholog of SAD, named TaSAD, was identified. The binding of TaSAD to GSP gene promoter sequences in vitro and its transcriptional activity in vivo were investigated. In electrophoretic mobility shift assays, recombinant TaSAD and WPBF proteins bound to cis-motifs like those located on HMW-GS and LMW-GS gene promoters known to bind DOF TFs. We showed by transient expression assays in wheat endosperms that TaSAD and WPBF activate GSP gene expression. Moreover, co-bombardment of Storage Protein Activator (SPA) with WPBF or TaSAD had an additive effect on the expression of GSP genes, possibly through conserved cooperative protein-protein interactions.
Collapse
Affiliation(s)
- Marielle Merlino
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | | | - Mireille Dardevet
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | - Pierre Martre
- LEPSE, Univ. Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Catherine Ravel
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| | - Julie Boudet
- INRAE, Clermont Auvergne University, UMR GDEC, Clermont-Ferrand, France
| |
Collapse
|
15
|
Wang X, Liu Y, Hao C, Li T, Majeed U, Liu H, Li H, Hou J, Zhang X. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:123. [PMID: 37147554 DOI: 10.1007/s00122-023-04365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Wheat NAC-A18 regulates both starch and storage protein synthesis in the grain, and a haplotype with positive effects on grain weight showed increased frequency during wheat breeding in China. Starch and seed storage protein (SSP) directly affect the processing quality of wheat grain. The synthesis of starch and SSP are also regulated at the transcriptional level. However, only a few starch and SSP regulators have been identified in wheat. In this study, we discovered a NAC transcription factor, designated as NAC-A18, which acts as a regulator of both starch and SSP synthesis. NAC-A18, is predominately expressed in wheat developing grains, encodes a transcription factor localized in the nucleus, with both activation and repression domains. Ectopic expression of wheat NAC-A18 in rice significantly decreased starch accumulation and increased SSP accumulation and grain size and weight. Dual-luciferase reporter assays indicated that NAC-A18 could reduce the expression of TaGBSSI-A1 and TaGBSSI-A2, and enhance the expression of TaLMW-D6 and TaLMW-D1. A yeast one hybrid assay demonstrated that NAC-A18 bound directly to the cis-element "ACGCAA" in the promoters of TaLMW-D6 and TaLMW-D1. Further analysis indicated that two haplotypes were formed at NAC-A18, and that NAC-A18_h1 was a favorable haplotype correlated with higher thousand grain weight. Based on limited population data, NAC-A18_h1 underwent positive selection during Chinese wheat breeding. Our study demonstrates that wheat NAC-A18 regulates starch and SSP accumulation and grain size. A molecular marker was developed for the favorable allele for breeding applications.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Yang L, Min X, Wei Z, Liu N, Li J, Zhang Y, Yang Y. Genome-Wide Identification and Expression Analysis of the Dof Transcription Factor in Annual Alfalfa Medicago polymorpha. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091831. [PMID: 37176890 PMCID: PMC10181442 DOI: 10.3390/plants12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The Dof transcription factor is a plant-specific transcription gene family that plays various biological functions in plant development and stress response. However, no relevant research has been conducted on Medicago polymorpha. Here, 36 MpDof genes were identified in the M. polymorpha genome and further divided into 10 groups based on the comparative phylogenetic analysis. The essential information of MpDof genes, such as chromosomal localization, gene structure, conserved motifs, and selective pressures were systematically analyzed. All 36 MpDof genes were predicted to contain more cis-acting elements related to hormone response. MpDof24 and MpDof25 were predicted to interact with MpDof11 and MpDof26 to involve in the photoperiod blooms process. The MpDof genes showed a diverse expression pattern in different tissues. Notably, MpDof29 and MpDof31 were specifically expressed in the large pod and root, respectively, suggesting their crucial role in the pod and root development. qRT-PCR analysis indicated that the expression levels of MpDof10, MpDof25, MpDof26, and MpDof29 were obviously up-regulated under drought, salt, and cold stress. Collectively, genome-wide identification, evolutionary, and expression analysis of the Dof transcription gene family in M. polymorpha will provide new information to further understand and utilize the function of these Dof genes in Medicago plants.
Collapse
Affiliation(s)
- Linghua Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Xueyang Min
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Nana Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Jiaqing Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Youxin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Yuwei Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institution of Grassland Science, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
18
|
Yang T, Wu X, Wang W, Wu Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. MOLECULAR PLANT 2023; 16:145-167. [PMID: 36495013 DOI: 10.1016/j.molp.2022.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Seeds are a major source of nutrients for humans and animal livestock worldwide. With improved living standards, high nutritional quality has become one of the main targets for breeding. Storage protein content in seeds, which is highly variable depending on plant species, serves as a pivotal criterion of seed nutritional quality. In the last few decades, our understanding of the molecular genetics and regulatory mechanisms of storage protein synthesis has greatly advanced. Here, we systematically and comprehensively summarize breakthroughs on the conservation and divergence of storage protein synthesis in dicot and monocot plants. With regard to storage protein accumulation, we discuss evolutionary origins, developmental processes, characteristics of main storage protein fractions, regulatory networks, and genetic modifications. In addition, we discuss potential breeding strategies to improve storage protein accumulation and provide perspectives on some key unanswered problems that need to be addressed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. THE PLANT CELL 2023; 35:409-434. [PMID: 36222567 PMCID: PMC9806651 DOI: 10.1093/plcell/koac302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.
Collapse
Affiliation(s)
| | | | - Xi Shi
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yibo Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | | |
Collapse
|
20
|
Cao R, Zhao S, Jiao G, Duan Y, Ma L, Dong N, Lu F, Zhu M, Shao G, Hu S, Sheng Z, Zhang J, Tang S, Wei X, Hu P. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. PLANT COMMUNICATIONS 2022; 3:100463. [PMID: 36258666 PMCID: PMC9700205 DOI: 10.1016/j.xplc.2022.100463] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 05/11/2023]
Abstract
Starch and storage proteins are the main components of rice (Oryza sativa L.) grains. Despite their importance, the molecular regulatory mechanisms of storage protein and starch biosynthesis remain largely elusive. Here, we identified a rice opaque endosperm mutant, opaque3 (o3), that overaccumulates 57-kDa proglutelins and has significantly lower protein and starch contents than the wild type. The o3 mutant also has abnormal protein body structures and compound starch grains in its endosperm cells. OPAQUE3 (O3) encodes a transmembrane basic leucine zipper (bZIP) transcription factor (OsbZIP60) and is localized in the endoplasmic reticulum (ER) and the nucleus, but it is localized mostly in the nucleus under ER stress. We demonstrated that O3 could activate the expression of several starch synthesis-related genes (GBSSI, AGPL2, SBEI, and ISA2) and storage protein synthesis-related genes (OsGluA2, Prol14, and Glb1). O3 also plays an important role in protein processing and export in the ER by directly binding to the promoters and activating the expression of OsBIP1 and PDIL1-1, two major chaperones that assist with folding of immature secretory proteins in the ER of rice endosperm cells. High-temperature conditions aggravate ER stress and result in more abnormal grain development in o3 mutants. We also revealed that OsbZIP50 can assist O3 in response to ER stress, especially under high-temperature conditions. We thus demonstrate that O3 plays a central role in rice grain development by participating simultaneously in the regulation of storage protein and starch biosynthesis and the maintenance of ER homeostasis in endosperm cells.
Collapse
Affiliation(s)
- Ruijie Cao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaolu Zhao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China; Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng 224002, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingqing Duan
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuyang Ma
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Nannan Dong
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Feifei Lu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingdong Zhu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
21
|
Li J, Jia X, Yang Y, Chen Y, Wang L, Liu L, Li M. Genome-Wide Identification of the DOF Gene Family Involved in Fruitlet Abscission in Areca catechu L. Int J Mol Sci 2022; 23:ijms231911768. [PMID: 36233072 PMCID: PMC9569674 DOI: 10.3390/ijms231911768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Fruitlet abscission frequently occurs in Areca catechu L. and causes considerable production loss. However, the inducement mechanism of fruitlet abscission remains mysterious. In this study, we observed that the cell architecture in the abscission zone (AZ) was distinct with surrounding tissues, and varied obviously before and after abscission. Transcriptome analysis of the “about-to-abscise” and “non-abscised” AZs were performed in A. catechu, and the genes encoding the plant-specific DOF (DNA-binding with one finger) transcription factors showed a uniform up-regulation in AZ, suggesting a role of the DOF transcription in A. catechu fruitlet abscission. In total, 36 members of the DOF gene family distributed in 13 chromosomes were identified from the A. catechu genome. The 36 AcDOF genes were classified into nine subgroups based on phylogenic analysis. Six of them showed an AZ-specific expression pattern, and their expression levels varied according to the abscission process. In total, nine types of phytohormone response cis-elements and five types of abiotic stress related cis-elements were identified in the promoter regions of the AcDOF genes. In addition, histochemical staining showed that lignin accumulation of vascular bundles in AZ was significantly lower than that in pedicel and mesocarp, indicating the specific characteristics of the cell architecture in AZ. Our data suggests that the DOF transcription factors might play a role in fruitlet abscission regulation in A. catechu.
Collapse
Affiliation(s)
- Jia Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaocheng Jia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linkai Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Liyun Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-13319516033
| |
Collapse
|
22
|
Ectopic Expression of Arabidopsis thaliana zDof1.3 in Tomato ( Solanum lycopersicum L.) Is Associated with Improved Greenhouse Productivity and Enhanced Carbon and Nitrogen Use. Int J Mol Sci 2022; 23:ijms231911229. [PMID: 36232530 PMCID: PMC9570051 DOI: 10.3390/ijms231911229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
A large collection of transgenic tomato lines, each ectopically expressing a different Arabidopsis thaliana transcription factor, was screened for variants with alterations in leaf starch. Such lines may be affected in carbon partitioning, and in allocation to the sinks. We focused on ‘L4080’, which harbored an A. thaliana zDof (DNA-binding one zinc finger) isoform 1.3 (AtzDof1.3) gene, and which had a 2−4-fold higher starch-to-sucrose ratio in source leaves over the diel (p < 0.05). Our aim was to determine whether there were associated effects on productivity. L4080 plants were altered in nitrogen (N) and carbon (C) metabolism. The N-to-C ratio was higher in six-week-old L4080, and when treated with 1/10 N, L4080 growth was less inhibited compared to the wild-type and this was accompanied by faster root elongation (p < 0.05). The six-week-old L4080 acquired 42% more dry matter at 720 ppm CO2, compared to ambient CO2 (p < 0.05), while the wild-type (WT) remained unchanged. GC-MS-TOF data showed that L4080 source leaves were enriched in amino acids compared to the WT, and at 49 DPA, fruit had 25% greater mass, higher sucrose, and increased yield (25%; p < 0.05) compared to the WT. An Affymetrix cDNA array analysis suggested that only 0.39% of the 9000 cDNAs were altered by 1.5-fold (p < 0.01) in L4080 source leaves. 14C-labeling of fruit disks identified potential differences in 14-DPA fruit metabolism suggesting that post-transcriptional regulation was important. We conclude that AtzDof1.3 and the germplasm derived therefrom, should be investigated for their ‘climate-change adaptive’ potential.
Collapse
|
23
|
Guo Z, Chen Q, Zhu J, Wang Y, Li Y, Li Q, Zhao K, Li Y, Tang R, Shi X, Tan K, Kong L, Jiang Y, Jiang Q, Wang J, Chen G, Wei Y, Zheng Y, Qi P. The Qc5 Allele Increases Wheat Bread-Making Quality by Regulating SPA and SPR. Int J Mol Sci 2022; 23:7581. [PMID: 35886927 PMCID: PMC9323144 DOI: 10.3390/ijms23147581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Common wheat (Triticum aestivum L.) is an important food crop with a unique processing quality. The Q gene positively regulates the processing quality of wheat, but the underlying mechanism remains unclear. Here, a new Q allele (Qc5) responsible for compact spikes and good bread performance was identified. Compared with the Q allele widely distributed in modern common wheat cultivars, Qc5 had a missense mutation outside the miRNA172-binding site. This missense mutation led to a more compact messenger RNA (mRNA) secondary structure around the miRNA172-binding region, resulting in increased Qc5 expression during the spike development stage and a consequent increase in spike density. Furthermore, this missense mutation weakened the physical interaction between Qc5 and storage protein activator (SPA) in seeds and suppressed the expression of storage protein repressor (SPR). These changes increased the grain protein content and improved the bread-making quality of wheat. In conclusion, a missense mutation increases Q expression because of the resulting highly folded mRNA secondary structure around the miRNA172-binding site. Furthermore, this mutation improves the bread-making quality of wheat by repressing the expression of SPR and influencing the physical interaction between Q and SPA. These findings provide new insights into the miRNA172-directed regulation of gene expression, with implications for wheat breeding.
Collapse
Affiliation(s)
- Zhenru Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Kan Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yue Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Rui Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Xiaoli Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Kenan Tan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.C.); (J.Z.); (Y.W.); (Y.L.); (Q.L.); (K.Z.); (Y.L.); (R.T.); (X.S.); (K.T.); (L.K.); (Y.J.); (Q.J.); (J.W.); (G.C.); (Y.W.)
| |
Collapse
|
24
|
Niñoles R, Ruiz-Pastor CM, Arjona-Mudarra P, Casañ J, Renard J, Bueso E, Mateos R, Serrano R, Gadea J. Transcription Factor DOF4.1 Regulates Seed Longevity in Arabidopsis via Seed Permeability and Modulation of Seed Storage Protein Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:915184. [PMID: 35845633 PMCID: PMC9284063 DOI: 10.3389/fpls.2022.915184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
Seed longevity is modulated by multiple genetic factors in Arabidopsis thaliana. A previous genome-wide association study using the Elevated Partial Pressure of Oxygen (EPPO) aging assay pinpointed a genetic locus associated with this trait. Reverse genetics identified the transcription factor DOF4.1 as a novel seed longevity factor. dof4.1 loss-of-function plants generate seeds exhibiting higher germination after accelerated aging assays. DOF4.1 is expressed during seed development and RNAseq data show several putative factors that could contribute to the dof4.1 seed longevity phenotype. dof4.1 has reduced seed permeability and a higher levels of seed storage proteins mRNAs (cruciferins and napins) in developing seeds, as compared to wild-type seeds. It has been reported that mutant lines defective in cruciferins or napins present reduced seed longevity. The improved longevity of dof4.1 is totally lost in the quadruple mutant dof4.1 cra crb crc, but not in a dof4.1 line depleted of napins, suggesting a prominent role for cruciferins in this process. Moreover, a negative regulation of DOF4.1 expression by the transcription factor DOF1.8 is suggested by co-inoculation assays in Nicotiana benthamiana. Indeed, DOF1.8 expression anticorrelates with that of DOF4.1 during seed development. In summary, modulation of DOF4.1 levels during seed development contributes to regulate seed longevity.
Collapse
Affiliation(s)
- Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, Valencia, Spain
| | | | | | | | | | | | | | | | - Jose Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, Valencia, Spain
| |
Collapse
|
25
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
26
|
Wang Z, Wong DCJ, Chen Z, Bai W, Si H, Jin X. Emerging Roles of Plant DNA-Binding With One Finger Transcription Factors in Various Hormone and Stress Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:844201. [PMID: 35668792 PMCID: PMC9165642 DOI: 10.3389/fpls.2022.844201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2022] [Indexed: 05/24/2023]
Abstract
Coordinated transcriptional regulation of stress-responsive genes orchestrated by a complex network of transcription factors (TFs) and the reprogramming of metabolism ensure a plant's continued growth and survival under adverse environmental conditions (e.g., abiotic stress). DNA-binding with one finger (Dof) proteins, a group of plant-specific TF, were identified as one of several key components of the transcriptional regulatory network involved in abiotic stress responses. In many plant species, Dofs are often activated in response to a wide range of adverse environmental conditions. Dofs play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Moreover, Dofs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid, jasmonate, SA and redox signaling in response to many abiotic stresses. Taken together, we highlight a unique role of Dofs in hormone and stress signaling that integrates plant response to adverse environmental conditions with different aspects of plant growth and development.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Zhengliang Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wei Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Khan ZH, Dang S, Memaya MB, Bhadouriya SL, Agarwal S, Mehrotra S, Gupta D, Mehrotra R. Genome-wide analysis of AAAG and ACGT cis-elements in Arabidopsis thaliana reveals their involvement with genes downregulated under jasmonic acid response in an orientation independent manner. G3 GENES|GENOMES|GENETICS 2022; 12:6550508. [PMID: 35302624 PMCID: PMC9073683 DOI: 10.1093/g3journal/jkac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022]
Abstract
Cis-regulatory elements are regions of noncoding DNA that regulate the transcription of neighboring genes. The study of cis-element architecture that functions in transcription regulation are essential. AAAG and ACGT are a class of cis-regulatory elements, known to interact with Dof and bZIP transcription factors respectively, and are known to regulate the expression of auxin response, gibberellin response, floral development, light response, seed storage proteins genes, biotic and abiotic stress genes in plants. Analysis of the frequency of occurrence of AAAG and ACGT motifs from varying spacer lengths (0–30 base pair) between these 2 motifs in both possible orientations—AAAG (N) ACGT and ACGT (N) AAAG, in the promoters and genome of Arabidopsis thaliana which indicated preferred orientation of AAAG (N) ACGT over ACGT (N) AAAG across the genome and in promoters. Further, microarray analysis revealed the involvement of these motifs in the genes downregulated under jasmonic acid response in an orientation-independent manner. These results were further confirmed by the transient expression studies with promoter-reporter cassettes carrying AAAG and ACGT motifs in both orientations. Furthermore, cluster analysis on genes with AAAG (N) ACGT and ACGT (N) AAAG motifs orientations revealed clusters of genes to be involved in ABA signaling, transcriptional regulation, DNA binding, and metal ion binding. These findings can be utilized in designing synthetic promoters for the development of stress-tolerant transgenic plants and also provides an insight into the roles of these motifs in transcriptional regulation.
Collapse
Affiliation(s)
- Zaiba H Khan
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| | - Siddhant Dang
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Pilani, Jhunjhunu, Rajasthan 333031, India
| | - Mounil B Memaya
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani , Zuarinagar, Sancoale, Goa 403726, India
| | - Sneha L Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| | - Swati Agarwal
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani , Zuarinagar, Sancoale, Goa 403726, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| | - Divya Gupta
- Faculty of Bioscience, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University , Barabanki, Uttar Pradesh 225003, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani , Zuarinagar, Goa 403726, India
| |
Collapse
|
28
|
Anisimova OK, Kochieva EZ, Shchennikova AV, Filyushin MA. Thaumatin-like Protein (TLP) Genes in Garlic (Allium sativum L.): Genome-Wide Identification, Characterization, and Expression in Response to Fusarium proliferatum Infection. PLANTS 2022; 11:plants11060748. [PMID: 35336630 PMCID: PMC8949454 DOI: 10.3390/plants11060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Plant antifungal proteins include the pathogenesis-related (PR)-5 family of fungi- and other stress-responsive thaumatin-like proteins (TLPs). However, the information on the TLPs of garlic (Allium sativum L.), which is often infected with soil Fusarium fungi, is very limited. In the present study, we identified 32 TLP homologs in the A. sativum cv. Ershuizao genome, which may function in the defense against Fusarium attack. The promoters of A. sativumTLP (AsTLP) genes contained cis-acting elements associated with hormone signaling and response to various types of stress, including those caused by fungal pathogens and their elicitors. The expression of AsTLP genes in Fusarium-resistant and -susceptible garlic cultivars was differently regulated by F. proliferatum infection. Thus, in the roots the mRNA levels of AsTLP7–9 and 21 genes were increased in resistant and decreased in susceptible A. sativum cultivars, suggesting the involvement of these genes in the garlic response to F. proliferatum attack. Our results provide insights into the role of TLPs in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
29
|
Ji C, Xu L, Li Y, Fu Y, Li S, Wang Q, Zeng X, Zhang Z, Zhang Z, Wang W, Wang J, Wu Y. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. MOLECULAR PLANT 2022; 15:468-487. [PMID: 34848346 DOI: 10.1016/j.molp.2021.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 05/12/2023]
Abstract
Maize (Zea mays) endosperm filling is coordinated with cell expansion to enlarge the grain size, but the mechanism coupling the two processes is poorly understood. Starchy endosperm cells basically contain no visible vacuoles for cell expansion. During grain filling, efficient synthesis of storage compounds leads to reduced cytoplasm and thus lowered cell turgor pressure. Although bioactive gibberellins (GAs) are essential for cell expansion, they accumulate at a low level at this stage. In this study, we identified an endosperm-specific GRAS domain-containing protein (ZmGRAS11) that lacks the DELLA domain and promotes cell expansion in the filling endosperm. The zmgras11 loss-of-function mutants showed normal grain filling but delayed cell expansion, thereby resulting in reduced kernel size and weight. Overexpression of ZmGRAS11 led to larger endosperm cells and therefore increased kernel size and weight. Consistent with this, ZmGRAS11 positively regulates the expression of ZmEXPB12, which is essential for cell expansion, at the endosperm filling stage. Moreover, we found that Opaque2 (O2), a central transcription factor that regulates endosperm filling, could directly bind to the promoter of ZmGRAS11 and activate its expression. Taken together, these results suggest that endosperm cell expansion is coupled with endosperm filling, which is orchestrated by the O2-ZmGRAS11-centered transcriptional regulatory network. Our findings also provide potential targets for maize yield improvement by increasing the storage capacity of endosperm cells.
Collapse
Affiliation(s)
- Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Yujie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Fu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China
| | - Xing Zeng
- College of Agronomy, Northeast Agricultural University, Harbin 150030, China
| | - Zhongqin Zhang
- Hebei Sub-center of the Chinese National Maize Improvement Center, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenqin Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200233, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| |
Collapse
|
30
|
Wang L, Dai W, Shi Y, Wang Y, Zhang C. Cloning and activity analysis of the highly expressed gene VviABCG20 promoter in seed and its activity is negatively regulated by the transcription factor VviDof14. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111152. [PMID: 35067313 DOI: 10.1016/j.plantsci.2021.111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in the growth and development of plants by transporting substrates. The VviABCG20 gene is highly expressed in seed and plays an important role in seed development/abortion. However, little is known about the function of the VviABCG20 promoter (pVviABCG20) and its regulatory factors. In our study, we obtained pVviABCG20s from 15 seeded and seedless grape varieties and there were two types of 'a' and 'b' with 41 bp non-deletion or deletion, respectively. The pVviABCG20 activity was higher in seeds, siliques, flowers and roots of pVviABCG20-GUS Arabidopsis. The GUS activity analysis revealed that the activities of P4 (-586 bp) to P7 (-155 bp) were becoming increasingly weaker, and the P7 activity almost disappears compared with the pVviABCG20 (P0, -1604). Yeast one-hybrid and GUS activity analysis indicated that VviDof14 binds to the AAAG element in the P7' (-586 bp) fragment of the pVviABCG20 and regulated the activity negatively. The quantitative real-time PCR analysis suggested that the expression of VviDof14 in Thompson seedless seeds was higher than that in Pinot noir. Our study laid the foundation for further analysis of the functions of the pVviABCG20 and its regulator VviDof14 in grape seed development/abortion.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Weina Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China.
| |
Collapse
|
31
|
Su L, Wan S, Zhou J, Shao QS, Xing B. Transcriptional regulation of plant seed development. PHYSIOLOGIA PLANTARUM 2021; 173:2013-2025. [PMID: 34480800 DOI: 10.1111/ppl.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL-related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple-TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.
Collapse
Affiliation(s)
- Liyang Su
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Junmei Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Song Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
32
|
Li Y, Ma S, Zhao Q, Lv D, Wang B, Xiao K, Zhu J, Li S, Yang W, Liu X, Wang H, Zhou X, Chen R. ZmGRAS11, transactivated by Opaque2, positively regulates kernel size in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2031-2037. [PMID: 34850567 DOI: 10.1111/jipb.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.
Collapse
Affiliation(s)
- Ye Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianqian Zhao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Di Lv
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Xiao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiameng Zhu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
33
|
Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize. Int J Mol Sci 2021; 22:ijms222212137. [PMID: 34830019 PMCID: PMC8624104 DOI: 10.3390/ijms222212137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Maize kernels are the harvested portion of the plant and are related to the yield and quality of maize. The endosperm of maize is a large storage organ that constitutes 80–90% of the dry weight of mature kernels. Maize kernels have long been the study of cereal grain development to increase yield. In this study, a natural mutation that causes abnormal kernel development, and displays a shrunken kernel phenotype, was identified and named “shrunken 2008 (sh2008)”. The starch grains in sh2008 are loose and have a less proteinaceous matrix surrounding them. The total storage protein and the major storage protein zeins are ~70% of that in the wild-type control (WT); in particular, the 19 kDa and 22 kDa α-zeins. Map-based cloning revealed that sh2008 encodes a GT-2 trihelix transcription factor, ZmThx20. Using CRISPR/Cas9, two other alleles with mutated ZmThx20 were found to have the same abnormal kernel. Shrunken kernels can be rescued by overexpressing normal ZmThx20. Comparative transcriptome analysis of the kernels from sh2008 and WT showed that the GO terms of translation, ribosome, and nutrient reservoir activity were enriched in the down-regulated genes (sh2008/WT). In short, these changes can lead to defects in endosperm development and storage reserve filling in seeds.
Collapse
|
34
|
Liu J, Meng Q, Xiang H, Shi F, Ma L, Li Y, Liu C, Liu Y, Su B. Genome-wide analysis of Dof transcription factors and their response to cold stress in rice (Oryza sativa L.). BMC Genomics 2021; 22:800. [PMID: 34742240 PMCID: PMC8572462 DOI: 10.1186/s12864-021-08104-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Rice (Oryza sativa L.) is a food crop for humans worldwide. However, temperature has an effect during the vegetative and reproductive stages. In high-latitude regions where rice is cultivated, cold stress is a major cause of yield loss and plant death. Research has identified a group of plant-specific transcription factors, DNA binding with one zinc fingers (DOFs), with a diverse range of functions, including stress signaling and stress response during plant growth. The aim of this study was to identify Dof genes in two rice subspecies, indica and japonica, and screen for Dof genes that may be involved in cold tolerance during plant growth. Results A total of 30 rice Dofs (OsDofs) were identified using bioinformatics and genome-wide analyses and phylogenetically analyzed. The 30 OsDOFs were classified into six subfamilies, and 24 motifs were identified based on protein sequence alignment. The chromosome locations of OsDofs were determined and nine gene duplication events were identified. A joint phylogenetic analysis was performed on DOF protein sequences obtained from four monocotyledon species to examine the evolutionary relationship of DOF proteins. Expression profiling of OsDofs from two japonica cultivars (Longdao5, which is cold-tolerant, and Longjing11, which is cold-sensitive) revealed that OsDof1 and OsDof19 are cold-inducible genes. We examined the seed setting rates in OsDof1- and OsDof19-overexpression and RNAi lines and found that OsDof1 showed a response to cold stress. Conclusions Our investigation identified OsDof1 as a potential target for genetic breeding of rice with enhanced cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08104-0.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Qinglin Meng
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China.
| | - Hongtao Xiang
- Institute of Farming and Cultivation, Heilongjiang Academy of Agricultural Sciences, 150086, Harbin, China
| | - Fengmei Shi
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Ligong Ma
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Yichu Li
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Chunlai Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Yu Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| | - Baohua Su
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, 150086, Harbin, China
| |
Collapse
|
35
|
Thakur T, Gandass N, Mittal K, Jamwal P, Muthamilarasan M, Salvi P. A rapid, efficient, and low-cost BiFC protocol and its application in studying in vivo interaction of seed-specific transcription factors, RISBZ and RPBF. Funct Integr Genomics 2021; 21:593-603. [PMID: 34436705 DOI: 10.1007/s10142-021-00801-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Proteins regulate cellular and biological processes in all living organisms. More than 80% of the proteins interact with one another to perform their respective functions; therefore, studying the protein-protein-interaction has gained attention in functional characterization studies. Bimolecular fluorescence complement (BiFC) assay is widely adopted to determine the physical interaction of two proteins in vivo. Here, we developed a simple, yet effective BiFC assay for protein-protein-interaction using transient Agrobacterium-mediated-transformation of onion epidermal cells by taking case study of Rice-P-box-Binding-Factor (RPBF) and rice-seed-specific-bZIP (RISBZ) in vivo interaction. Our result revealed that both the proteins, i.e., RISBZ and RPBF, interacted in the nucleus and cytosol. These two transcription factors are known for their coordinate/synergistic regulation of seed-protein content via concurrent binding to the promoter region of the seed storage protein (SSP) encoding genes. We further validated our results with BiFC assay in Nicotiana by agroinfiltration method, which exhibited similar results as Agrobacterium-mediated-transformation of onion epidermal cells. We also examined the subcellular localization of RISBZ and RPBF to assess the efficacy of the protocol. The subcellular localization and BiFC assay presented here is quite easy-to-follow, reliable, and reproducible, which can be completed within 2-3 days without using costly instruments and technologies that demand a high skill set.
Collapse
Affiliation(s)
- Tanika Thakur
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Nishu Gandass
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Kajal Mittal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Pallavi Jamwal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India.
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, India.
| |
Collapse
|
36
|
Jamshidi Kandjani O, Rahbar-Shahrouziasl M, Alizadeh AA, Hamzeh-Mivehroud M, Dastmalchi S. Identification of Novel Mutations in Arabidopsis thaliana DOF 4.2 Coding Gene. Adv Pharm Bull 2021; 11:557-563. [PMID: 34513631 PMCID: PMC8421617 DOI: 10.34172/apb.2021.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: DOF (DNA-binding with One Finger) proteins are plant-specific transcription factors which mediate numerous biological processes. The purpose of the current study is to report new naturally occurring mutations in the gene encoding for one of the members of DOF proteins named DOF 4.2. Methods: The expression of zinc finger domain of DOF 4.2 (DOF 4.2-ZF) was investigated by first synthesis of cDNA library using different parts of Arabidopsis thaliana plant. Then the coding sequence for zinc finger domain of DOF 4.2 protein was prepared using nested PCR experiment and cloned into pGEX-6P-1 expression vector. Finally, the prepared construct was used for protein expression. Furthermore, molecular dynamics (MD) simulation was carried out to predict DNA binding affinity of DOF 4.2-ZF using AMBER package. Results: For the first time a new variant of DOF 4.2-ZF protein with three mutations was detected. One of the mutations is silent while the other two mutations lead to amino acid replacement (S18G) as well as introduction of a stop codon ultimately resulting in a truncated protein production. In order to investigate whether the truncated form is able to recognize DNA binding motif, MD simulations were carried out and the results showed that the chance of binding of DOF 4.2-ZF protein to cognate DNA in its truncated form is very low. Conclusion: The findings demonstrated that the observed mutations adversely affect the DNA binding ability of the truncated form of DOF4.2 if it is expressed in the mutant variant of A. thaliana used in this study.
Collapse
Affiliation(s)
| | - Mahdieh Rahbar-Shahrouziasl
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Luo G, Shen L, Song Y, Yu K, Ji J, Zhang C, Yang W, Li X, Sun J, Zhan K, Cui D, Wang Y, Gao C, Liu D, Zhang A. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1863-1877. [PMID: 33949074 PMCID: PMC8428827 DOI: 10.1111/pbi.13604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jingjing Ji
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Chi Zhang
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Wenlong Yang
- State Key Laboratory of North China Crop Improvement and RegulationCollege of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | | | | | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Dongcheng Liu
- College of Agronomy/Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
38
|
Hurst P, Schnable JC, Holding DR. Tandem duplicate expression patterns are conserved between maize haplotypes of the α-zein gene family. PLANT DIRECT 2021; 5:e346. [PMID: 34541444 PMCID: PMC8438537 DOI: 10.1002/pld3.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Tandem duplication gives rise to copy number variation and subsequent functional novelty among genes as well as diversity between individuals in a species. Functional novelty can result from either divergence in coding sequence or divergence in patterns of gene transcriptional regulation. Here, we investigate conservation and divergence of both gene sequence and gene regulation between the copies of the α-zein gene family in maize inbreds B73 and W22. We used RNA-seq data generated from developing, self-pollinated kernels at three developmental stages timed to coincide with early and peak zein expression. The reference genome annotations for B73 and W22 were modified to ensure accurate inclusion of their respective α-zein gene models to accurately assess copy-specific expression. Expression analysis indicated that although the total expression of α-zeins is higher in W22, the pattern of expression in both lines is conserved. Additional analysis of publicly available RNA-seq data from a diverse population of maize inbreds also demonstrates variation in absolute expression, but conservation of expression patterns across a wide range of maize genotypes and α-zein haplotypes.
Collapse
Affiliation(s)
- Preston Hurst
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - James C. Schnable
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
39
|
Shen L, Luo G, Song Y, Xu J, Ji J, Zhang C, Gregová E, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:992-1007. [PMID: 33305445 PMCID: PMC8131056 DOI: 10.1111/pbi.13524] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 05/23/2023]
Abstract
The synthesis of seed storage protein (SSP) is mainly regulated at the transcriptional level. However, few transcriptional regulators of SSP synthesis have been characterized in common wheat (Triticum aestivum) owing to the complex genome. As the A genome donor of common wheat, Triticum urartu could be an elite model in wheat research considering its simple genome. Here, a novel NAC family transcription factor TuSPR from T. urartu was found preferentially expressed in developing endosperm during grain-filling stages. In common wheat transgenically overexpressing TuSPR, the content of total SSPs was reduced by c. 15.97% attributed to the transcription declines of SSP genes. Both in vitro and in vivo assays showed that TuSPR bound to the cis-element 5'-CANNTG-3' distributed in SSP gene promoters and suppressed the transcription. The homolog in common wheat TaSPR shared a conserved function with TuSPR on SSP synthesis suppression. The knock-down of TaSPR in common wheat resulted in 7.07%-20.34% increases in the total SSPs. Both TuSPR and TaSPR could be superior targets in genetic engineering to manipulate SSP content in wheat, and this work undoubtedly expands our knowledge of SSP gene regulation.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Agronomy CollegeNational Key Laboratory of Wheat and Maize Crop ScienceCollaborative Innovation Center of Grain Crops in HenanHenan Agricultural UniversityZhengzhouChina
| | | | | | - Chi Zhang
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Edita Gregová
- National Agricultural and Food CentreResearch Institute of Plant ProductionPiešťanySlovakia
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Kehui Zhan
- Agronomy CollegeNational Key Laboratory of Wheat and Maize Crop ScienceCollaborative Innovation Center of Grain Crops in HenanHenan Agricultural UniversityZhengzhouChina
| | - Dangqun Cui
- Agronomy CollegeNational Key Laboratory of Wheat and Maize Crop ScienceCollaborative Innovation Center of Grain Crops in HenanHenan Agricultural UniversityZhengzhouChina
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
40
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
41
|
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. THE PLANT CELL 2021; 33:104-128. [PMID: 33751093 PMCID: PMC8136913 DOI: 10.1093/plcell/koaa008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
42
|
Anguraj Vadivel AK, McDowell T, Renaud JB, Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 2021; 4:356. [PMID: 33742087 PMCID: PMC7979867 DOI: 10.1038/s42003-021-01889-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein-protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
43
|
Anguraj Vadivel AK, McDowell T, Renaud JB, Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 2021; 4:356. [PMID: 33742087 DOI: 10.1038/s42003-021-01889-1886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 05/25/2023] Open
Abstract
GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein-protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
44
|
Wang Z, Wang Y, Tong Q, Xu G, Xu M, Li H, Fan P, Li S, Liang Z. Transcriptomic analysis of grapevine Dof transcription factor gene family in response to cold stress and functional analyses of the VaDof17d gene. PLANTA 2021; 253:55. [PMID: 33523295 DOI: 10.1007/s00425-021-03574-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/16/2021] [Indexed: 05/11/2023]
Abstract
Dof genes enhance cold tolerance in grapevine and VaDof17d is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides. DNA-binding with one finger (Dof) proteins comprise a large family that plays important roles in the regulation of abiotic stresses. No in-depth analysis of Dof genes has been performed in the grapevine. In this study, we analyzed a total of 25 putative Dof genes in grapevine at genomic and transcriptomic levels, compiled expression profiles of 11 selected VaDof genes under cold stress and studied the potential function of the VaDof17d gene in grapevine calli. The 25 Dof proteins can be classified into four phylogenetic groups. RNA-seq and qRT-PCR results demonstrated that a total of 11 VaDof genes responded to cold stress. Comparative mRNA sequencing of 35S::VaDof17d grape calli showed that VaDof17d was tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GolS) and raffinose synthase genes. We found that the Dof17d-ED (CRISPR/Cas9-mediated mutagenesis of Dof17d-ED) mutant had low cold tolerance with a decreased RFOs level during cold stress. These results formed the fundamental knowledge for further analysis of the biological roles of Dof genes in the grapevine's adaption to cold stresses.
Collapse
Affiliation(s)
- Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Tong
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meilong Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- State Key Laboratory of the Seedling Bioengineering, Yinchuan, 750004, People's Republic of China
| | - Huayang Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China
- China Wine Industry Technology Institute, Yinchuan, 750021, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China.
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Science, Beijing, 100093, People's Republic of China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
45
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
46
|
Wang J, Chen Z, Zhang Q, Meng S, Wei C. The NAC Transcription Factors OsNAC20 and OsNAC26 Regulate Starch and Storage Protein Synthesis. PLANT PHYSIOLOGY 2020; 184:1775-1791. [PMID: 32989010 PMCID: PMC7723083 DOI: 10.1104/pp.20.00984] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Starch and storage proteins determine the weight and quality of cereal grains. Synthesis of these two grain components has been comprehensively investigated, but the transcription factors responsible for their regulation remain largely unknown. In this study, we investigated the roles of NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20, and OsNAC26 in starch and storage protein synthesis in rice (Oryza sativa) endosperm. OsNAC20 and OsNAC26 showed high levels of amino acid sequence similarity. Both were localized in the aleurone layer, starchy endosperm, and embryo. Mutation of OsNAC20 or OsNAC26 alone had no effect on the grain, while the osnac20/26 double mutant had significantly decreased starch and storage protein content. OsNAC20 and OsNAC26 alone could directly transactivate the expression of starch synthaseI (SSI), pullulanase (Pul), glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α-globulin, and 16 kD prolamin and indirectly influenced plastidial disproportionating enzyme1 (DPE1) expression to regulate starch and storage protein synthesis. Although they could also bind to the promoters of ADP-Glc pyrophosphorylase small subunit 2b (AGPS2b), ADP-Glc pyrophosphorylase large subunit 2 (AGPL2), and starch branching enzymeI (SBEI), and the expression of the three genes was largely decreased in the osnac20/26 mutant, ADP-Glc pyrophosphorylase and starch branching enzyme activities were unchanged in this double mutant. In addition, OsNAC20 and OsNAC26 are main regulators of Pul, GluB4, α-globulin, and 16 kD prolamin In conclusion, OsNAC20 and OsNAC26 play an essential and redundant role in the regulation of starch and storage protein synthesis.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zichun Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qing Zhang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
47
|
Gururani K, Kumar A, Tiwari A, Agarwal A, Gupta S, Pandey D. Transcriptome wide identification and characterization of regulatory genes involved in EAA metabolism and validation through expression analysis in different developmental stages of finger millet spikes. 3 Biotech 2020; 10:347. [PMID: 32728514 DOI: 10.1007/s13205-020-02337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/12/2020] [Indexed: 12/27/2022] Open
Abstract
Finger millet is a rich source of seed storage proteins (SSPs). Various regulatory genes play an important role to maintain the quality and accumulation of SSPs in crop seeds. In the present study, nine regulatory genes of EAAs metabolic pathway, i.e., aspartate kinase, homoserine dehydrogenase, threonine synthase, threonine dehydratase, dihydrodipicolinate synthase, cystathionine γ synthase, anthranilate synthase, acetolactate synthase and lysine 2-oxoglutarato reductase/saccharopine dehydrogenase (LOR/SD) were identified from the transcriptomic data of developing spikes of two finger millet genotypes, i.e., GP-45 and GP-1. Results of sequence alignment search and motif/domain analysis showed high similarity of nucleotide sequences of identified regulatory genes with their respective homologs in rice. Results of promoter analysis revealed the presence of various cis-regulatory elements, like nitrogen responsive cis-elements (O2-site and GCN4), light responsive cis-elements, and stress responsive cis-elements. The presence of nine regulatory genes identified from the transcriptomic data of GP-45 and GP-1 was further confirmed by real time expression analysis in high and low protein containing genotypes, i.e., GE-3885 and GE-1437. Results of real time expression analysis showed significantly higher expression (p ≤ 0.01) of regulatory genes in GE-3885 rather than GE-1437 under control and treatment condition. Crude protein content of GE-3885 was found to be significantly higher (p ≤ 0.01) in comparison to GE-1437 under control condition, while under treatment condition GE-1437 was found to be more responsive to KNO3 treatment rather than GE-3885.
Collapse
Affiliation(s)
- Kavita Gururani
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Anil Kumar
- Rani Laxmi Bai Central Agriculture University, Jhansi, Uttar Pradesh 284003 India
| | - Apoorv Tiwari
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 Uttar Pradesh India
| | - Aparna Agarwal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Supriya Gupta
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| |
Collapse
|
48
|
Gu W, Yu D, Guan Y, Wang H, Qin T, Sun P, Hu Y, Wei J, Zheng H. The dynamic transcriptome of waxy maize (Zea mays L. sinensis Kulesh) during seed development. Genes Genomics 2020; 42:997-1010. [PMID: 32676852 DOI: 10.1007/s13258-020-00967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Waxy maize (Zea mays L. sinensis Kulesh) is a mutant of maize (Zea mays L.) with a mutation at Waxy1 (Wx1) gene locus. The seed of waxy maize has higher viscosity compared to regular maize. By now, we know little about the expression patterns of genes that involved in the seed development of waxy maize. OBJECTIVE By analyzing the transcriptome data during waxy maize seed development, we attempt to dig out the genes that may influence the seed development of waxy maize. METHODS The seeds of waxy maize inbred line SWL01 from six phases after pollination were used to do RNA-seq. Bioinformatics methods were used to analyze the expression patterns of the expressed genes, to identify the genes involved in waxy maize seed development. RESULTS A total of 24,546 genes including 1611 transcription factors (TFs) were detected during waxy maize seed development. Coexpression analysis of expressed genes revealed the dynamic processes of waxy maize seed development. Particularly, 2457 genes including 177 TFs were specially expressed in waxy maize seed, some of which mainly involved in the process of seed dormancy and maturation. In addition, 2681, 5686, 4491, 4386, 3669 and 4624 genes were identified to be differential expressed genes (DEGs) at six phases compared to regular maize B73, and 113 DEGs among them may be key genes that lead the difference of seed development between waxy and regular maizes in milk stage. CONCLUSION In summary, we elucidated the expression patterns of expressed genes during waxy maize seed development globally. A series of genes that associated with seed development were identified in our research, which may provide an important resource for functional study of waxy maize seed development to help molecular assisted breeding.
Collapse
Affiliation(s)
- Wei Gu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Diansi Yu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yuan Guan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hui Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Tao Qin
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Pingdong Sun
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yingxiong Hu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jihui Wei
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hongjian Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China. .,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
49
|
Song Y, Luo G, Shen L, Yu K, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. THE NEW PHYTOLOGIST 2020; 226:1384-1398. [PMID: 31955424 DOI: 10.1111/nph.16435] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2020] [Indexed: 05/20/2023]
Abstract
Starch in wheat grain provides humans with carbohydrates and influences the quality of wheaten food. However, no transcriptional regulator of starch synthesis has been identified first in common wheat (Triticum aestivum) due to the complex genome. Here, a novel basic leucine zipper (bZIP) family transcription factor TubZIP28 was found to be preferentially expressed in the endosperm throughout grain-filling stages in Triticum urartu, the A genome donor of common wheat. When TubZIP28 was overexpressed in common wheat, the total starch content increased by c. 4%, which contributed to c. 5% increase in the thousand kernel weight. The grain weight per plant of overexpression wheat was also elevated by c. 9%. Both in vitro and in vivo assays showed that TubZIP28 bound to the promoter of cytosolic AGPase and enhanced both the transcription and activity of the latter. Knockout of the homologue TabZIP28 in common wheat resulted in declines of both the transcription and activity of cytosolic AGPase in developing endosperms and c. 4% reduction of the total starch in mature grains. To the best of our knowledge, TubZIP28 and TabZIP28 are transcriptional activators of starch synthesis first identified in wheat, and they could be superior targets to improve the starch content and yield potential of wheat.
Collapse
Affiliation(s)
- Yanhong Song
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Kehui Zhan
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Dangqun Cui
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agriculture and Biology Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Aimin Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
50
|
Hassani D, Fu X, Shen Q, Khalid M, Rose JKC, Tang K. Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:466-476. [PMID: 32304658 DOI: 10.1016/j.tplants.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Plants regulate the synthesis of specialized compounds through the actions of individual transcription factors (TFs) or sets of TFs. One such compound, artemisinin from Artemisia annua, is widely used as a pharmacological product in the first-line treatment of malaria. However, the emergence of resistance to artemisinin in Plasmodium species, as well as its low production rates, have required innovative treatments such as exploiting the synergistic effects of flavonoids with artemisinin. We overview current knowledge about flavonoid and artemisinin transcriptional regulation in A. annua, and review the dual action of TFs and structural genes that can regulate both pathways simultaneously. Understanding the concerted action of these TFs and their associated structural genes can guide the development of strategies to further improve flavonoid and artemisinin production.
Collapse
Affiliation(s)
- Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.
| |
Collapse
|