1
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
2
|
Etingov I, Pintel DJ. Inactivation of checkpoint kinase 1 (Chk1) during parvovirus minute virus of mice (MVM) infection inhibits cellular homologous recombination repair and facilitates viral genome replication. J Virol 2024; 98:e0088924. [PMID: 39565136 DOI: 10.1128/jvi.00889-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
During infection, the autonomous parvovirus minute virus of mice (MVM) induces cellular DNA breaks and localizes to such sites, which presumably affords an environment beneficial for genome replication. MVM replication also benefits from the DNA damage response (DDR) mediated by the ataxia-telangiectasia mutated (ATM) kinase, while the ataxia telangiectasia and Rad-3 related (ATR) arm of the DDR is disabled, which prevents activation of its primary target, checkpoint kinase 1 (Chk1). We find here that Chk1 inactivation strongly correlates with dephosphorylation of one of its targets, RAD51, known to play a pivotal role in homologous recombination repair (HRR), thus leading to substantial inhibition of DNA repair in infected cells. We demonstrate colocalization of replicating MVM DNA with cellular double-strand breaks (DSBs) during infection, and show that an agent that exogenously induces cellular DSBs significantly increases viral DNA replication levels, establishing a role for cellular genome damage in facilitating virus DNA replication. Additionally, overexpression of active Chk1 during MVM infection was found to re-establish the activating phosphorylation of RAD51 Thr 309, significantly suppress infection-induced reduction of HRR efficiency with a concomitant increase in cellular genome DSBs, and reduce viral DNA replication levels. Thus, we conclude that during infection, MVM inhibition of Chk1 activation enhances viral replication, at least in part, by inhibiting cellular HRR.IMPORTANCEThe autonomous parvovirus minute virus of mice (MVM) has a compact DNA genome encoding a minimum number of proteins. During infection, it induces cellular DNA damage and both utilizes and modifies the subsequent cellular DNA damage response (DDR) in various ways to facilitate its replication. One of MVM's activities in this regard is to inhibit one of the primary arms of the DDR, the ataxia telangiectasia and Rad-3 related (ATR) pathway, which prevents activation of checkpoint kinase 1 (Chk1), a key protein involved in controlling the cellular DDR and preserving genome integrity. We show that prevention by MVM of Chk1 activation leads to inhibition of homologous recombination repair (HRR) of cellular DNA, which helps sustain viral replication. This work illuminates another way in which autonomous parvoviruses adjust the cellular environment for their replicative advantage.
Collapse
Affiliation(s)
- Igor Etingov
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA
| |
Collapse
|
3
|
Pussila M, Laiho A, Törönen P, Björkbacka P, Nykänen S, Pylvänäinen K, Holm L, Mecklin JP, Renkonen-Sinisalo L, Lehtonen T, Lepistö A, Linden J, Mäki-Nevala S, Peltomäki P, Nyström M. Mitotic abnormalities precede microsatellite instability in lynch syndrome-associated colorectal tumourigenesis. EBioMedicine 2024; 103:105111. [PMID: 38583260 PMCID: PMC11002576 DOI: 10.1016/j.ebiom.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.
Collapse
Affiliation(s)
- Marjaana Pussila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Aleksi Laiho
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pauliina Björkbacka
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sonja Nykänen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsi Pylvänäinen
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Liisa Holm
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Well Being Services County of Central Finland, Department of Science, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Taru Lehtonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jere Linden
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Finland; HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Nyström
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Hu J, Crickard JB. All who wander are not lost: the search for homology during homologous recombination. Biochem Soc Trans 2024; 52:367-377. [PMID: 38323621 PMCID: PMC10903458 DOI: 10.1042/bst20230705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that functions to maintain genomic integrity. A vital component of the HR reaction is the identification of template DNA to be used during repair. This occurs through a mechanism known as the homology search. The homology search occurs in two steps: a collision step in which two pieces of DNA are forced to collide and a selection step that results in homologous pairing between matching DNA sequences. Selection of a homologous template is facilitated by recombinases of the RecA/Rad51 family of proteins in cooperation with helicases, translocases, and topoisomerases that determine the overall fidelity of the match. This menagerie of molecular machines acts to regulate critical intermediates during the homology search. These intermediates include recombinase filaments that probe for short stretches of homology and early strand invasion intermediates in the form of displacement loops (D-loops) that stabilize paired DNA. Here, we will discuss recent advances in understanding how these specific intermediates are regulated on the molecular level during the HR reaction. We will also discuss how the stability of these intermediates influences the ultimate outcomes of the HR reaction. Finally, we will discuss recent physiological models developed to explain how the homology search protects the genome.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - J. Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
5
|
Minello A, Carreira A. BRCA1/2 Haploinsufficiency: Exploring the Impact of Losing one Allele. J Mol Biol 2024; 436:168277. [PMID: 37714298 DOI: 10.1016/j.jmb.2023.168277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Since their discovery in the late 20th century, significant progress has been made in elucidating the functions of the tumor suppressor proteins BRCA1 and BRCA2. These proteins play vital roles in maintaining genome integrity, including DNA repair, replication fork protection, and chromosome maintenance. It is well-established that germline mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer; however, the precise mechanism underlying tumor formation in this context is not fully understood. Contrary to the long-standing belief that the loss of the second wild-type allele is necessary for tumor development, a growing body of evidence suggests that tumorigenesis can occur despite the presence of a single functional allele. This entails that heterozygosity in BRCA1/2 confers haploinsufficiency, where a single copy of the gene is not sufficient to fully suppress tumor formation. Here we provide an overview of the findings and the ongoing debate regarding BRCA haploinsufficiency. We further put out the challenges in studying this topic and discuss its potential relevance in the prevention and treatment of BRCA-related cancers.
Collapse
Affiliation(s)
- Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France; Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
6
|
Al Zouabi L, Stefanutti M, Roumeliotis S, Le Meur G, Boumard B, Riddiford N, Rubanova N, Bohec M, Gervais L, Servant N, Bardin AJ. Molecular underpinnings and environmental drivers of loss of heterozygosity in Drosophila intestinal stem cells. Cell Rep 2023; 42:113485. [PMID: 38032794 DOI: 10.1016/j.celrep.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
During development and aging, genome mutation leading to loss of heterozygosity (LOH) can uncover recessive phenotypes within tissue compartments. This phenomenon occurs in normal human tissues and is prevalent in pathological genetic conditions and cancers. While studies in yeast have defined DNA repair mechanisms that can promote LOH, the predominant pathways and environmental triggers in somatic tissues of multicellular organisms are not well understood. Here, we investigate mechanisms underlying LOH in intestinal stem cells in Drosophila. Infection with the pathogenic bacteria, Erwinia carotovora carotovora 15, but not Pseudomonas entomophila, increases LOH frequency. Using whole genome sequencing of somatic LOH events, we demonstrate that they arise primarily via mitotic recombination. Molecular features and genetic evidence argue against a break-induced replication mechanism and instead support cross-over via double Holliday junction-based repair. This study provides a mechanistic understanding of mitotic recombination, an important mediator of LOH, and its effects on stem cells in vivo.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Marine Stefanutti
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Spyridon Roumeliotis
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Gwenn Le Meur
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Benjamin Boumard
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Nick Riddiford
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Natalia Rubanova
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France; Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
| | - Mylène Bohec
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Louis Gervais
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
| | - Allison J Bardin
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France.
| |
Collapse
|
7
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Kim H, Suyama M. Genome-wide identification of copy neutral loss of heterozygosity reveals its possible association with spatial positioning of chromosomes. Hum Mol Genet 2023; 32:1175-1183. [PMID: 36349694 PMCID: PMC10026252 DOI: 10.1093/hmg/ddac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.
Collapse
Affiliation(s)
- Hyeonjeong Kim
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Liu W, Faltas BM. Loss of function mutations in CDKN1A are permissive for APOBEC3-induced mutagenesis in urothelial carcinoma. Am J Cancer Res 2022; 12:2419-2421. [PMID: 35693069 PMCID: PMC9185619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023] Open
Abstract
Mutagenic mechanisms that shape the genomic landscape and dysfunction of DNA repair converge to promote bladder tumorigenesis. A recent study by Arnoff and El-Deiry highlights the unique interactions between CDKN1A loss of function mutations, which play a key role in cell cycle regulation, modulating DNA repair, and inducing cell apoptosis and senescence, and APOBEC3-induced mutagenesis, the predominant contributor of mutations in urothelial carcinoma.
Collapse
Affiliation(s)
- Weisi Liu
- Department of Medicine, Weill Cornell MedicineNew York, NY, USA
| | - Bishoy M Faltas
- Department of Medicine, Weill Cornell MedicineNew York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell MedicineNew York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell MedicineNew York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell MedicineNew York, NY, USA
| |
Collapse
|
10
|
Li S, Chen LL, Wang XH, Zhu HJ, Li XL, Feng X, Guo L, Ou XH, Ma JY. Chromosomal variants accumulate in genomes of the spontaneous aborted fetuses revealed by chromosomal microarray analysis. PLoS One 2021; 16:e0259518. [PMID: 34727132 PMCID: PMC8562782 DOI: 10.1371/journal.pone.0259518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Spontaneous abortion is an impeding factor for the success rates of human assistant reproductive technology (ART). Causes of spontaneous abortion include not only the pregnant mothers’ health conditions and lifestyle habits, but also the fetal development potential. Evidences had shown that fetal chromosome aneuploidy is associated with fetal spontaneous abortion, however, it is still not definite that whether other genome variants, like copy number variations (CNVs) or loss of heterozygosity (LOHs) is associated with the spontaneous abortion. To assess the relationship between the fetal genome variants and abortion during ART, a chromosomal microarray data including chromosomal information of 184 spontaneous aborted fetuses, 147 adult female patients and 78 adult male patients during ART were collected. We firstly analyzed the relationship of fetal aneuploidy with maternal ages and then compared the numbers and lengths of CNVs (< 4Mbp) and LOHs among adults and aborted fetuses. In addition to the already known association between chromosomal aneuploidy and maternal ages, from the chromosomal microarray data we found that the numbers and the accumulated lengths of short CNVs and LOHs in the aborted fetuses were significantly larger or longer than those in adults. Our findings indicated that the increased numbers and accumulated lengths of CNVs or LOHs might be associated with the spontaneous abortion during ART.
Collapse
Affiliation(s)
- Sen Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei-Ling Chen
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xing-Hua Wang
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Jing Zhu
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-Long Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Guo
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jun-Yu Ma
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Combes GF, Vučković AM, Perić Bakulić M, Antoine R, Bonačić-Koutecky V, Trajković K. Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers (Basel) 2021; 13:4206. [PMID: 34439360 PMCID: PMC8393257 DOI: 10.3390/cancers13164206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation. This article reviews liganded nanoclusters among the different nanomaterials used for molecular cancer diagnosis and the relevance of this new class of nanomaterials as non-linear optical probe and contrast agents.
Collapse
Affiliation(s)
- Guillaume F. Combes
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Ana-Marija Vučković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
| | - Rodolphe Antoine
- UMR 5306, Centre National de la Recherche Scientifique (CNRS), Institute Lumière Matière, Claude Bernard University Lyon 1, F-69622 Villeurbanne, France;
| | - Vlasta Bonačić-Koutecky
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Interdisciplinary Center for Advanced Science and Technology (ICAST), University of Split, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katarina Trajković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| |
Collapse
|
12
|
Elbakry A, Löbrich M. Homologous Recombination Subpathways: A Tangle to Resolve. Front Genet 2021; 12:723847. [PMID: 34408777 PMCID: PMC8365153 DOI: 10.3389/fgene.2021.723847] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
Homologous recombination (HR) is an essential pathway for DNA double-strand break (DSB) repair, which can proceed through various subpathways that have distinct elements and genetic outcomes. In this mini-review, we highlight the main features known about HR subpathways operating at DSBs in human cells and the factors regulating subpathway choice. We examine new developments that provide alternative models of subpathway usage in different cell types revise the nature of HR intermediates involved and reassess the frequency of repair outcomes. We discuss the impact of expanding our understanding of HR subpathways and how it can be clinically exploited.
Collapse
Affiliation(s)
- Amira Elbakry
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Wilde JJ, Aida T, Del Rosario RCH, Kaiser T, Qi P, Wienisch M, Zhang Q, Colvin S, Feng G. Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Cell 2021; 184:3267-3280.e18. [PMID: 34043941 PMCID: PMC8240950 DOI: 10.1016/j.cell.2021.04.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Tomomi Aida
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Kaiser
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Peimin Qi
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Martin Wienisch
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Steven Colvin
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Guoping Feng
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Abstract
Homologous recombination is a critical mechanism for the repair of DNA double-strand breaks (DSBs). It occurs predominantly between identical sister chromatids and at lower frequency can also occur between homologs. Interhomolog homologous recombination (IH-HR) has the potential lead to substantial loss of genetic information, i.e., loss of heterozygosity (LOH), when it is accompanied by crossing over. In this chapter, we describe a system to study IH-HR induced by a defined DSB in mouse embryonic stem cells derived from F1 hybrid mice. This system is based on the placement of mutant selectable marker genes, one of which contains an I-SceI endonuclease cleavage site, on the two homologs such that repair of the I-SceI-generated DSB from the homolog leads to drug resistance. Loss of heterozygosity arising during IH-HR is analyzed using a PCR-based approach. Finally, we present a strategy to analyze the role of BLM helicase in this system.
Collapse
|
15
|
Gillman R, Lopes Floro K, Wankell M, Hebbard L. The role of DNA damage and repair in liver cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188493. [PMID: 33316376 DOI: 10.1016/j.bbcan.2020.188493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is rapidly becoming a major cause of global mortality due to the ever-increasing prevalence of obesity. DNA damage is known to play an important role in cancer initiation, however DNA repair systems are also vital for the survival of cancer cells. Given the function of the liver and its exposure to the gut, it is likely that DNA damage and repair would be of particular importance in hepatocellular carcinoma. However, many contemporary reports have neglected the role of individual pathways of DNA damage and repair in their hypotheses. This review, therefore, aims to provide a concise overview for researchers in the field of liver cancer to understand the pathways of DNA damage and repair and their individual roles in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rhys Gillman
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Kylie Lopes Floro
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia.
| |
Collapse
|
16
|
Yoshioka KI, Matsuno Y. Genomic destabilization and its associated mutagenesis increase with senescence-associated phenotype expression. Cancer Sci 2020; 112:515-522. [PMID: 33222327 PMCID: PMC7893996 DOI: 10.1111/cas.14746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer develops through multiple rounds of clonal evolution of cells with abrogated defense systems. Such clonal evolution is triggered by genomic destabilization with associated mutagenesis. However, what increases the risk of genomic destabilization remains unclear. Genomic instability is usually the result of erroneous repair of DNA double‐strand breaks (DSB); paradoxically, however, most cancers develop with genomic instability but lack mutations in DNA repair systems. In this manuscript, we review current knowledge regarding a cellular state that increases the risk of genomic destabilization, in which cells exhibit phenotypes often observed during senescence. In addition, we explore the pathways that lead to genomic destabilization and its associated mutagenesis, which ultimately result in cancer.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tokyo, Japan.,Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
17
|
Davis L, Khoo KJ, Zhang Y, Maizels N. POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks. Proc Natl Acad Sci U S A 2020; 117:22900-22909. [PMID: 32873648 PMCID: PMC7502765 DOI: 10.1073/pnas.2008073117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interhomolog recombination (IHR) occurs spontaneously in somatic human cells at frequencies that are low but sufficient to ameliorate some genetic diseases caused by heterozygous mutations or autosomal dominant mutations. Here we demonstrate that DNA nicks or double-strand breaks (DSBs) targeted by CRISPR-Cas9 to both homologs can stimulate IHR and associated copy-neutral loss of heterozygosity (cnLOH) in human cells. The frequency of IHR is 10-fold lower at nicks than at DSBs, but cnLOH is evident in a greater fraction of recombinants. IHR at DSBs occurs predominantly via reciprocal end joining. At DSBs, depletion of POLQ caused a dramatic increase in IHR and in the fraction of recombinants exhibiting cnLOH, suggesting that POLQ promotes end joining in cis, which limits breaks available for recombination in trans These results define conditions that may produce cnLOH as a mutagenic signature in cancer and may, conversely, promote therapeutic correction of both compound heterozygous and dominant negative mutations associated with genetic disease.
Collapse
Affiliation(s)
- Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Kevin J Khoo
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195
| | - Yinbo Zhang
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195;
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
18
|
Massonneau J, Lacombe-Burgoyne C, Boissonneault G. pH-induced variations in the TK1 gene model. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503128. [PMID: 32087849 DOI: 10.1016/j.mrgentox.2019.503128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
A physiological decrease in extracellular pH (pHe) alters the efficiency of DNA repair and increases formation of DNA double-strand breaks (DSBs). Whether this could translate into genetic instability and variations, was investigated using the TK6 cell model, in which positive selection of the TK1 gene loss-of-function mutations can be achieved from resistance to trifluorothymidine. Cell exposure to suboptimal pH (down to 6.9) for 3 weeks resulted in the 100 % frequency of a stronger frameshift mutation that has spread to both TK1 alleles, whereas weaker frameshift mutations within the 3'exon were eliminated during the selection. Suboptimal pHe values were also found to alter the proportion of the TK1 splicing variant expressed as percent spliced in index values and promote selection of truncated exons as well as intron retention. Although recovery at pH 7.4 did not reverse the selected frameshift mutation, reversal of splice variants and exon truncation towards control values were observed. Hence, suboptimal pHe can induce a combination of mutational events and splicing alterations within the same gene in the resistant clones. This model of positive selection for loss-of-function clearly demonstrates that suboptimal pHe may confer a similar growth advantage when such instability occurs within tumor suppressor genes.
Collapse
Affiliation(s)
- Julien Massonneau
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chloë Lacombe-Burgoyne
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
19
|
Gómez-Herreros F. DNA Double Strand Breaks and Chromosomal Translocations Induced by DNA Topoisomerase II. Front Mol Biosci 2019; 6:141. [PMID: 31921889 PMCID: PMC6915882 DOI: 10.3389/fmolb.2019.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 01/03/2023] Open
Abstract
DNA double strand breaks (DSBs) are the most cytotoxic lesions of those occurring in the DNA and can lead to cell death or result in genome mutagenesis and chromosomal translocations. Although most of these rearrangements have detrimental effects for cellular survival, single events can provide clonal advantage and result in abnormal cellular proliferation and cancer. The origin and the environment of the DNA break or the repair pathway are key factors that influence the frequency at which these events appear. However, the molecular mechanisms that underlie the formation of chromosomal translocations remain unclear. DNA topoisomerases are essential enzymes present in all cellular organisms with critical roles in DNA metabolism and that have been linked to the formation of deleterious DSBs for a long time. DSBs induced by the abortive activity of DNA topoisomerase II (TOP2) are “trending topic” because of their possible role in genome instability and oncogenesis. Furthermore, transcription associated TOP2 activity appears to be one of the most determining causes behind the formation of chromosomal translocations. In this review, the origin of recombinogenic TOP2 breaks and the determinants behind their tendency to translocate will be summarized.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
20
|
Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019; 11:cancers11111643. [PMID: 31653100 PMCID: PMC6895985 DOI: 10.3390/cancers11111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
21
|
Prusinski Fernung LE, Yang Q, Sakamuro D, Kumari A, Mas A, Al-Hendy A. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol Reprod 2019; 99:735-748. [PMID: 29688260 DOI: 10.1093/biolre/ioy097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the major negative impact uterine fibroids (UFs) have on female reproductive health, little is known about early events that initiate development of these tumors. Somatic fibroid-causing mutations in mediator complex subunit 12 (MED12), the most frequent genetic alterations in UFs (up to 85% of tumors), are implicated in transforming normal myometrial stem cells (MSCs) into tumor-forming cells, though the underlying mechanism(s) leading to these mutations remains unknown. It is well accepted that defective DNA repair increases the risk of acquiring tumor-driving mutations, though defects in DNA repair have not been explored in UF tumorigenesis. In the Eker rat UF model, a germline mutation in the Tsc2 tumor suppressor gene predisposes to UFs, which arise due to "second hits" in the normal allele of this gene. Risk for developing these tumors is significantly increased by early-life exposure to endocrine-disrupting chemicals (EDCs), suggesting increased UF penetrance is modulated by early drivers for these tumors. We analyzed DNA repair capacity using analyses of related gene and protein expression and DNA repair function in MSCs from adult rats exposed during uterine development to the model EDC diethylstilbestrol. Adult MSCs isolated from developmentally exposed rats demonstrated decreased DNA end-joining ability, higher levels of DNA damage, and impaired ability to repair DNA double-strand breaks relative to MSCs from age-matched, vehicle-exposed rats. These data suggest that early-life developmental EDC exposure alters these MSCs' ability to repair and reverse DNA damage, providing a driver for acquisition of mutations that may promote the development of these tumors in adult life.
Collapse
Affiliation(s)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Alpana Kumari
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Aymara Mas
- Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain.,Igenomix, Paterna, Valencia, Spain.,Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Valencia, Spain
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Tiwari V, Wilson DM. DNA Damage and Associated DNA Repair Defects in Disease and Premature Aging. Am J Hum Genet 2019; 105:237-257. [PMID: 31374202 PMCID: PMC6693886 DOI: 10.1016/j.ajhg.2019.06.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information is constantly being attacked by intrinsic and extrinsic damaging agents, such as reactive oxygen species, atmospheric radiation, environmental chemicals, and chemotherapeutics. If DNA modifications persist, they can adversely affect the polymerization of DNA or RNA, leading to replication fork collapse or transcription arrest, or can serve as mutagenic templates during nucleic acid synthesis reactions. To combat the deleterious consequences of DNA damage, organisms have developed complex repair networks that remove chemical modifications or aberrant base arrangements and restore the genome to its original state. Not surprisingly, inherited or sporadic defects in DNA repair mechanisms can give rise to cellular outcomes that underlie disease and aging, such as transformation, apoptosis, and senescence. In the review here, we discuss several genetic disorders linked to DNA repair defects, attempting to draw correlations between the nature of the accumulating DNA damage and the pathological endpoints, namely cancer, neurological disease, and premature aging.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
23
|
Yang X, Lu Y, He F, Hou F, Xing C, Xu P, Wang QF. Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway. Carcinogenesis 2019; 40:1021-1030. [PMID: 30770924 DOI: 10.1093/carcin/bgy157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/11/2018] [Indexed: 12/29/2022] Open
Abstract
Abstract
Benzene, a widespread environmental pollutant, induces DNA double-strand breaks (DSBs) and DNA repair, which may further lead to oncogenic mutations, chromosomal rearrangements and leukemogenesis. However, the molecular mechanisms underlying benzene-induced DNA repair and carcinogenesis remain unclear. The human osteosarcoma cell line (U2OS/DR-GFP), which carries a GFP-based homologous recombination (HR) repair reporter, was treated with hydroquinone, one of the major benzene metabolites, to identify the potential effects of benzene on DSB HR repair. RNA-sequencing was further employed to identify the potential key pathway that contributed to benzene-initiated HR repair. We found that treatment with hydroquinone induced a significant increase in HR. NF-κB pathway, which plays a critical role in carcinogenesis in multiple tumors, was significantly activated in cells recovered from hydroquinone treatment. Furthermore, the upregulation of NF-κB by hydroquinone was also found in human hematopoietic stem and progenitor cells. Notably, the inhibition of NF-κB activity by small molecule inhibitors (QNZ and JSH-23) significantly reduced the frequency of hydroquinone-initiated HR (−1.36- and −1.77-fold, respectively, P < 0.01). Our results demonstrate an important role of NF-κB activity in promoting HR repair induced by hydroquinone. This finding sheds light on the underlying mechanisms involved in benzene-induced genomic instability and leukemogenesis and may contribute to the larger exploration of the influence of other environmental pollutants on carcinogenesis.
Collapse
Affiliation(s)
- Xuejing Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yedan Lu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fenxia Hou
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Caihong Xing
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peiyu Xu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Woodard LE, Galvan DL, Wilson MH. Site-Directed Genome Modification with Engineered Zinc Finger Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lauren E. Woodard
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| | - Daniel L. Galvan
- University of Texas at MD Anderson Cancer Center; Section of Nephrology; Houston TX 77030 USA
| | - Matthew H. Wilson
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| |
Collapse
|
25
|
Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018; 9:14692-14722. [PMID: 29581875 PMCID: PMC5865701 DOI: 10.18632/oncotarget.24461] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
Collapse
Affiliation(s)
- Franco Cortese
- Biogerontology Research Foundation, London, UK
- Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreyan Osipov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Jakub Stefaniak
- Biogerontology Research Foundation, London, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Alexey Moskalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Jane Schastnaya
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Charles Cantor
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Alexander Aliper
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Bioinformatics, D. Rogachev Federal Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Polina Mamoshina
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Computer Science Department, University of Oxford, Oxford, UK
| | - Igor Ushakov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Alex Sapetsky
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Quentin Vanhaelen
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Alchinova
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Space Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail Karganov
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Olga Kovalchuk
- Canada Cancer and Aging Research Laboratories, Ltd., Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ruth Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrey Shtemberg
- Laboratory of Extreme Physiology, Institute of Medical and Biological Problems RAS, Moscow, Russia
| | - Marjan Moreels
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Evgeny Izumchenko
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, Baltimore, MD, USA
| | - João Pedro de Magalhães
- Biogerontology Research Foundation, London, UK
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Artem V. Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | | | - Afshin Beheshti
- Wyle Laboratories, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA, USA
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Dmitry Kaminskiy
- Biogerontology Research Foundation, London, UK
- Deep Knowledge Life Sciences, London, UK
| | - Ivan V. Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alex Zhavoronkov
- Biogerontology Research Foundation, London, UK
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Brustel J, Kozik Z, Gromak N, Savic V, Sweet SMM. Large XPF-dependent deletions following misrepair of a DNA double strand break are prevented by the RNA:DNA helicase Senataxin. Sci Rep 2018; 8:3850. [PMID: 29497062 PMCID: PMC5832799 DOI: 10.1038/s41598-018-21806-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023] Open
Abstract
Deletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we find that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene. Deletions are reduced upon RNaseH1 over-expression and increased after knockdown of the DNA:RNA helicase Senataxin, implicating a role for DNA:RNA hybrids. We further demonstrate that the majority of these large deletions are dependent on the 3′ flap endonuclease XPF. DNA:RNA hybrids were detected by DNA:RNA immunoprecipitation in our system after DSB generation. These hybrids were reduced by RNaseH1 over-expression and increased by Senataxin knock-down, consistent with a role in deletions. Overall, these data are consistent with DNA:RNA hybrid generation at the site of a DSB, mis-processing of which results in genome instability in the form of large deletions.
Collapse
Affiliation(s)
- Julien Brustel
- Genome Damage and Stability Centre (GDSC), University of Sussex, Brighton, BN1 9RQ, UK
| | - Zuzanna Kozik
- Genome Damage and Stability Centre (GDSC), University of Sussex, Brighton, BN1 9RQ, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, South Parks Road, OX1 3RE, UK
| | - Velibor Savic
- Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, BN1 9RQ, UK.,Horizon Discovery Ltd, 8100 Cambridge Research Park, Cambridge, CB25 9TL, UK
| | - Steve M M Sweet
- Genome Damage and Stability Centre (GDSC), University of Sussex, Brighton, BN1 9RQ, UK. .,NantOmics, 9600 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
27
|
Abstract
The mechanistic understanding of how DNA double-strand breaks (DSB) are repaired is rapidly advancing in part due to the advent of inducible site-specific break model systems as well as the employment of next-generation sequencing (NGS) technologies to sequence repair junctions at high depth. Unfortunately, the sheer volume of data produced by these methods makes it difficult to analyze the structure of repair junctions manually or with other general-purpose software. Here, we describe methods to produce amplicon libraries of DSB repair junctions for sequencing, to map the sequencing reads, and then to use a robust, custom python script, Hi-FiBR, to analyze the sequence structure of mapped reads. The Hi-FiBR analysis processes large data sets quickly and provides information such as number and type of repair events, size of deletion, size of insertion and inserted sequence, microhomology usage, and whether mismatches are due to sequencing error or biological effect. The analysis also corrects for common alignment errors generated by sequencing read mapping tools, allowing high-throughput analysis of DSB break repair fidelity to be accurately conducted regardless of which suite of NGS analysis software is available.
Collapse
|
28
|
Gallagher DN, Haber JE. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol 2018; 13:397-405. [PMID: 29083855 DOI: 10.1021/acschembio.7b00760] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CRISPR/Cas9-mediated gene editing may involve nonhomologous end-joining to create various insertion/deletions (indels) or may employ homologous recombination to modify precisely the target DNA sequence. Our understanding of these processes has been guided by earlier studies using other site-specific endonucleases, both in model organisms such as budding yeast and in mammalian cells. We briefly review what has been gleaned from such studies using the HO and I-SceI endonucleases and how these findings guide current gene editing strategies.
Collapse
Affiliation(s)
- Danielle N. Gallagher
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| | - James E. Haber
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| |
Collapse
|
29
|
van Wietmarschen N, Merzouk S, Halsema N, Spierings DCJ, Guryev V, Lansdorp PM. BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes. Nat Commun 2018; 9:271. [PMID: 29348659 PMCID: PMC5773480 DOI: 10.1038/s41467-017-02760-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022] Open
Abstract
Bloom syndrome is a cancer predisposition disorder caused by mutations in the BLM helicase gene. Cells from persons with Bloom syndrome exhibit striking genomic instability characterized by excessive sister chromatid exchange events (SCEs). We applied single-cell DNA template strand sequencing (Strand-seq) to map the genomic locations of SCEs. Our results show that in the absence of BLM, SCEs in human and murine cells do not occur randomly throughout the genome but are strikingly enriched at coding regions, specifically at sites of guanine quadruplex (G4) motifs in transcribed genes. We propose that BLM protects against genome instability by suppressing recombination at sites of G4 structures, particularly in transcribed regions of the genome. Bloom syndrome is characterized by high levels of sister chromatid exchanges (SCEs). Here, the authors use single-cell DNA template strand-sequencing to map SCEs in patient cells, and propose that the BLM helicase protects the genome against unwanted recombination at sites of G-quadruplex structures.
Collapse
Affiliation(s)
- Niek van Wietmarschen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sarra Merzouk
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
30
|
McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. Eukaryotic DNA Polymerases in Homologous Recombination. Annu Rev Genet 2017; 50:393-421. [PMID: 27893960 DOI: 10.1146/annurev-genet-120215-035243] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homologous recombination (HR) is a central process to ensure genomic stability in somatic cells and during meiosis. HR-associated DNA synthesis determines in large part the fidelity of the process. A number of recent studies have demonstrated that DNA synthesis during HR is conservative, less processive, and more mutagenic than replicative DNA synthesis. In this review, we describe mechanistic features of DNA synthesis during different types of HR-mediated DNA repair, including synthesis-dependent strand annealing, break-induced replication, and meiotic recombination. We highlight recent findings from diverse eukaryotic organisms, including humans, that suggest both replicative and translesion DNA polymerases are involved in HR-associated DNA synthesis. Our focus is to integrate the emerging literature about DNA polymerase involvement during HR with the unique aspects of these repair mechanisms, including mutagenesis and template switching.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155;
| | | | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,College of Health Sciences, California Northstate University, Rancho Cordova, California 95670
| | - Paula Gonçalves Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616;
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
31
|
Woods ML, Barnes CP. Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair. PLoS Comput Biol 2016; 12:e1005131. [PMID: 27741226 PMCID: PMC5065155 DOI: 10.1371/journal.pcbi.1005131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks are lesions that form during metabolism, DNA replication and exposure to mutagens. When a double-strand break occurs one of a number of repair mechanisms is recruited, all of which have differing propensities for mutational events. Despite DNA repair being of crucial importance, the relative contribution of these mechanisms and their regulatory interactions remain to be fully elucidated. Understanding these mutational processes will have a profound impact on our knowledge of genomic instability, with implications across health, disease and evolution. Here we present a new method to model the combined activation of non-homologous end joining, single strand annealing and alternative end joining, following exposure to ionising radiation. We use Bayesian statistics to integrate eight biological data sets of double-strand break repair curves under varying genetic knockouts and confirm that our model is predictive by re-simulating and comparing to additional data. Analysis of the model suggests that there are at least three disjoint modes of repair, which we assign as fast, slow and intermediate. Our results show that when multiple data sets are combined, the rate for intermediate repair is variable amongst genetic knockouts. Further analysis suggests that the ratio between slow and intermediate repair depends on the presence or absence of DNA-PKcs and Ku70, which implies that non-homologous end joining and alternative end joining are not independent. Finally, we consider the proportion of double-strand breaks within each mechanism as a time series and predict activity as a function of repair rate. We outline how our insights can be directly tested using imaging and sequencing techniques and conclude that there is evidence of variable dynamics in alternative repair pathways. Our approach is an important step towards providing a unifying theoretical framework for the dynamics of DNA repair processes.
Collapse
Affiliation(s)
- Mae L. Woods
- Department of Cell and Developmental Biology, University College London, London, England
| | - Chris P. Barnes
- Department of Cell and Developmental Biology, University College London, London, England
- Department of Genetics, Evolution and Environment, University College London, London, England
| |
Collapse
|
32
|
Danforth DN. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:109-46. [PMID: 27559297 PMCID: PMC4990153 DOI: 10.4137/bcbcr.s39384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
Abstract
Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Alexandrov ID, Alexandrova MV, Afanasyeva KP. Interchromosomal gene conversion as a regular mechanism of loss of heterozygosity (LOH) in early zygote of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2015; 460:59-61. [PMID: 25772993 DOI: 10.1134/s1607672915010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 11/23/2022]
Affiliation(s)
- I D Alexandrov
- Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980, Russia
| | | | | |
Collapse
|
34
|
Singh N, Traisak P, Martin KA, Kaplan MJ, Cohen PL, Denny MF. Genomic alterations in abnormal neutrophils isolated from adult patients with systemic lupus erythematosus. Arthritis Res Ther 2014; 16:R165. [PMID: 25107306 PMCID: PMC4262380 DOI: 10.1186/ar4681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Patients with systemic lupus erythematosus (SLE) have an abnormal population of neutrophils, called low-density granulocytes (LDGs), that express the surface markers of mature neutrophils, yet their nuclear morphology resembles an immature cell. Because a similar discrepancy in maturation status is observed in myelodysplasias, and disruption of neutrophil development is frequently associated with genomic alterations, genomic DNA isolated from autologous pairs of LDGs and normal-density neutrophils was compared for genomic changes. METHODS Alterations in copy number and losses of heterozygosity (LOH) were detected by cytogenetic microarray analysis. Microsatellite instability (MSI) was detected by capillary gel electrophoresis of fluorescently labeled PCR products. RESULTS Control neutrophils and normal-density SLE neutrophils had similar levels of copy number variations, while the autologous SLE LDGs had an over twofold greater number of copy number alterations per genome. The additional copy number alterations found in LDGs were prevalent in six of the thirteen SLE patients, and occurred preferentially on chromosome 19, 17, 8, and X. These same SLE patients also displayed an increase in LOH. Several SLE patients had a common LOH on chromosome 5q that includes several cytokine genes and a DNA repair enzyme. In addition, three SLE patients displayed MSI. Two patients displayed MSI in greater than one marker, and one patient had MSI and increased copy number alterations. No correlations between genomic instability and immunosuppressive drugs, disease activity or disease manifestations were apparent. CONCLUSIONS The increased level of copy number alterations and LOH in the LDG samples relative to autologous normal-density SLE neutrophils suggests somatic alterations that are consistent with DNA strand break repair, while MSI suggests a replication error-prone status. Thus, the LDGs isolated have elevated levels of somatic alterations that are consistent with genetic damage or genomic instability. This suggests that the LDGs in adult SLE patients are derived from cell progenitors that are distinct from the autologous normal-density neutrophils, and may reflect a role for genomic instability in the disease.
Collapse
Affiliation(s)
- Namrata Singh
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Pamela Traisak
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Kayla A Martin
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Mariana J Kaplan
- />Systemic Autoimmunity Branch, Intramural Research Program, NIAMS/NIH, 10 Center Drive, Bethesda, MD 20892 USA
| | - Philip L Cohen
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Michael F Denny
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
35
|
Speers C, Feng FY, Pierce LJ. PARP-1 inhibitors and radiotherapy sensitivity: future prospects for therapy? BREAST CANCER MANAGEMENT 2014. [DOI: 10.2217/bmt.14.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SUMMARY Despite the efficacy of multimodality treatment for women with breast cancer, sustained locoregional control remains a significant issue. Efforts to identify effective targeted therapies for treatment of these patients have intensified in recent years. The PARP family of proteins represents one potential target. PARP-1 is a DNA repair enzyme that plays a critical role in base excision repair, homologous recombination, nonhomologous end joining and transcriptional regulation. In this review, we discuss the rationale for using PARP-1 inhibitors clinically, the role of PARP-1 in DNA damage repair and the potential clinical utility of using PARP-1 inhibitors as a radiosensitization strategy. We will also review the most relevant clinical trials using various PARP-1 inhibitors and the future of biomarker development to predict response to PARP-1 inhibition.
Collapse
Affiliation(s)
- Corey Speers
- Department of Radiation Oncology University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Department of Radiation Oncology University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lori J Pierce
- Department of Radiation Oncology University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
White RR, Sung P, Vestal CG, Benedetto G, Cornelio N, Richardson C. Double-strand break repair by interchromosomal recombination: an in vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS One 2013; 8:e84379. [PMID: 24349572 PMCID: PMC3862804 DOI: 10.1371/journal.pone.0084379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/22/2013] [Indexed: 01/22/2023] Open
Abstract
Homologous recombination (HR) is essential for accurate genome duplication and maintenance of genome stability. In eukaryotes, chromosomal double strand breaks (DSBs) are central to HR during specialized developmental programs of meiosis and antigen receptor gene rearrangements, and form at unusual DNA structures and stalled replication forks. DSBs also result from exposure to ionizing radiation, reactive oxygen species, some anti-cancer agents, or inhibitors of topoisomerase II. Literature predicts that repair of such breaks normally will occur by non-homologous end-joining (in G1), intrachromosomal HR (all phases), or sister chromatid HR (in S/G2). However, no in vivo model is in place to directly determine the potential for DSB repair in somatic cells of mammals to occur by HR between repeated sequences on heterologs (i.e., interchromosomal HR). To test this, we developed a mouse model with three transgenes—two nonfunctional green fluorescent protein (GFP) transgenes each containing a recognition site for the I-SceI endonuclease, and a tetracycline-inducible I-SceI endonuclease transgene. If interchromosomal HR can be utilized for DSB repair in somatic cells, then I-SceI expression and induction of DSBs within the GFP reporters may result in a functional GFP+ gene. Strikingly, GFP+ recombinant cells were observed in multiple organs with highest numbers in thymus, kidney, and lung. Additionally, bone marrow cultures demonstrated interchromosomal HR within multiple hematopoietic subpopulations including multi-lineage colony forming unit–granulocyte-erythrocyte-monocyte-megakaryocte (CFU-GEMM) colonies. This is a direct demonstration that somatic cells in vivo search genome-wide for homologous sequences suitable for DSB repair, and this type of repair can occur within early developmental populations capable of multi-lineage differentiation.
Collapse
Affiliation(s)
- Ryan R. White
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Patricia Sung
- Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - C. Greer Vestal
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Gregory Benedetto
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Noelle Cornelio
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Christine Richardson
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Takabayashi H, Wakai T, Ajioka Y, Korita PV, Yamaguchi N. Alteration of the DNA damage response in colorectal tumor progression. Hum Pathol 2013; 44:1038-46. [PMID: 23332927 DOI: 10.1016/j.humpath.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022]
Abstract
Recent studies have demonstrated increased levels of DNA double-strand breaks (DSBs) and activation of the DNA damage response (DDR) in precancerous lesions during cancer development. Those observations have not been fully elucidated using paraffin-embedded tissues of colorectal tumors. The aims of this study were to analyze the presence of DSBs and DDR activation mediated by p53-binding protein 1 (53BP1), which is a conserved checkpoint and DNA repair protein, and to clarify their association with colorectal tumor progression. We used immunohistochemical staining to investigate the expression of γH2AX, a sensitive marker for DSBs, in 152 colorectal tumors (46 low-grade adenomas, 25 high-grade adenomas, 25 intramucosal carcinomas, and 56 invasive carcinomas). The colocalization of γH2AX and 53BP1, which is strongly associated with the DSB repair process, was analyzed using double-label immunofluorescence. Elevated γH2AX expression was identified in 16 (16.7%) of 96 intramucosal neoplasias and in 19 (33.9%) of 56 invasive carcinomas. Double-label immunofluorescence occasionally revealed cells, particularly in invasive carcinoma, with γH2AX foci that did not colocalize with 53BP1. The percentage of tumor cells with γH2AX foci that colocalized with 53BP1 was significantly lower in invasive carcinoma than in intramucosal neoplasia (median percentage, 54.8% and 88.5%, respectively; P = .001). In conclusion, the number of cells with DSBs increases in intramucosal neoplasia and invasive carcinoma. The decreasing number of cells with colocalization of γH2AX and 53BP1 during the progression from intramucosal neoplasia to invasive carcinoma suggests that DDR, at least mediated by 53BP1, is inefficient during the process of cancer invasion.
Collapse
Affiliation(s)
- Hiroaki Takabayashi
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | | | | | | | | |
Collapse
|
38
|
Uniparental disomy analysis in trios using genome-wide SNP array and whole-genome sequencing data imply segmental uniparental isodisomy in general populations. Gene 2013; 512:267-74. [PMID: 23111162 DOI: 10.1016/j.gene.2012.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 11/24/2022]
|
39
|
Oh JH, Kim YJ, Moon S, Nam HY, Jeon JP, Lee JH, Lee JY, Cho YS. Genotype instability during long-term subculture of lymphoblastoid cell lines. J Hum Genet 2012; 58:16-20. [PMID: 23171997 DOI: 10.1038/jhg.2012.123] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) promise to address the challenge posed by the limited availability of primary cells needed as a source of genomic DNA for genetic studies. However, the genetic stability of LCLs following prolonged culture has never been rigorously investigated. To evaluate genotypic errors caused by EBV integration into human chromosomes, we isolated genomic DNA from human peripheral blood mononuclear cells and LCLs collected from 20 individuals and genotyped the DNA samples using the Affymetrix 500K SNP array set. Genotype concordance measurements between two sources of DNA from the same individual indicated that genotypic discordance is negligible in early-passage LCLs (<20 passages) but substantial in late-passage LCLs (>50 passages). Analysis of concordance on a chromosome-by-chromosome basis identified genomic regions with a high frequency of genotypic errors resulting from the loss of heterozygosity observed in late-passage LCLs. Our findings suggest that, although LCLs harvested during early stages of propagation are a reliable source of genomic DNA for genetic studies, investigations that involve genotyping of the entire genome should not use DNA from late-passage LCLs.
Collapse
Affiliation(s)
- Ji Hee Oh
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Krueger C, King MR, Krueger F, Branco MR, Osborne CS, Niakan KK, Higgins MJ, Reik W. Pairing of homologous regions in the mouse genome is associated with transcription but not imprinting status. PLoS One 2012; 7:e38983. [PMID: 22802932 PMCID: PMC3389011 DOI: 10.1371/journal.pone.0038983] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/09/2023] Open
Abstract
Although somatic homologous pairing is common in Drosophila it is not generally observed in mammalian cells. However, a number of regions have recently been shown to come into close proximity with their homologous allele, and it has been proposed that pairing might be involved in the establishment or maintenance of monoallelic expression. Here, we investigate the pairing properties of various imprinted and non-imprinted regions in mouse tissues and ES cells. We find by allele-specific 4C-Seq and DNA FISH that the Kcnq1 imprinted region displays frequent pairing but that this is not dependent on monoallelic expression. We demonstrate that pairing involves larger chromosomal regions and that the two chromosome territories come close together. Frequent pairing is not associated with imprinted status or DNA repair, but is influenced by chromosomal location and transcription. We propose that homologous pairing is not exclusive to specialised regions or specific functional events, and speculate that it provides the cell with the opportunity of trans-allelic effects on gene regulation.
Collapse
Affiliation(s)
- Christel Krueger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- * E-mail: (CK); (WR)
| | - Michelle R. King
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Miguel R. Branco
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London, United Kingdom
| | - Cameron S. Osborne
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kathy K. Niakan
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Anne McLaren Laboratory for Regenerative Medicine, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CK); (WR)
| |
Collapse
|
41
|
Affiliation(s)
- Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez Almagro, Madrid, Spain
| | | | | |
Collapse
|
42
|
Nagathihalli NS, Nagaraju G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:209-18. [PMID: 21807066 DOI: 10.1016/j.bbcan.2011.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 11/30/2022]
Abstract
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232-6860, USA.
| | | |
Collapse
|
43
|
Gardner L, Malik R, Shimizu Y, Mullins N, ElShamy WM. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res 2011; 13:R53. [PMID: 21595939 PMCID: PMC3218940 DOI: 10.1186/bcr2884] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/16/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5' DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents. METHODS Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively. RESULTS We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome localization and function. CKIε kinase overexpression or Cdc7 kinase silencing, which we show phosphorylates TopoIIα in vitro, restored DNA decatenation and chromosome segregation in geminin-silenced cells before triggering cell death. In vivo, at normal concentration, geminin recruits the deSUMOylating sentrin-specific proteases SENP1 and SENP2 enzymes to deSUMOylate chromosome-bound TopoIIα and promote its release from chromosomes following completion of DNA decatenation. In cells overexpressing geminin, premature departure of TopoIIα from chromosomes is thought to be due to the fact that geminin recruits more of these deSUMOylating enzymes, or recruits them earlier, to bound TopoIIα. This triggers premature release of TopoIIα from chromosomes, which we propose induces aneuploidy in HME cells, since chromosome breakage generated through this mechanism were not sensed and/or repaired and the cell cycle was not arrested. Expression of mitosis-inducing proteins such as cyclin A and cell division kinase 1 was also increased in these cells because of the overexpression of geminin. CONCLUSIONS TopoIIα recruitment and its chromosome decatenation function require a normal level of geminin. Geminin silencing induces a cytokinetic checkpoint in which Cdc7 phosphorylates TopoIIα and inhibits its chromosomal recruitment and decatenation and/or segregation function. Geminin overexpression prematurely deSUMOylates TopoIIα, triggering its premature departure from chromosomes and leading to chromosomal abnormalities and the formation of aneuploid, drug-resistant cancer cells. On the basis of our findings, we propose that therapeutic targeting of geminin is essential for improving the therapeutic potential of TopoIIα agents.
Collapse
Affiliation(s)
- Lauren Gardner
- Cancer Institute, Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | | | | | |
Collapse
|
44
|
Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 2011; 25:685-700. [PMID: 21406551 PMCID: PMC3070932 DOI: 10.1101/gad.2011011] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/07/2011] [Indexed: 01/12/2023]
Abstract
In response to DNA double-strand breaks (DSBs), BRCA1 forms biochemically distinct complexes with certain other DNA damage response proteins. These structures, some of which are required for homologous recombination (HR)-type DSB repair, concentrate at distinct nuclear foci that demarcate sites of genome breakage. Polyubiquitin binding by one of these structures, the RAP80/BRCA1 complex, is required for efficient BRCA1 focal recruitment, but the relationship of this process to the execution of HR has been unclear. We found that this complex actively suppresses otherwise exaggerated, BRCA1-driven HR. By controlling the kinetics by which other BRCA1-interacting proteins that promote HR concentrate together with BRCA1 in nuclear foci, RAP80/BRCA1 complexes suppress excessive DSB end processing, HR-type DSB repair, and overt chromosomal instability. Since chromosomal instability emerges when BRCA1 HR function is either unbridled or absent, active tuning of BRCA1 activity, executed in nuclear foci, is important to genome integrity maintenance.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Ralph Scully
- Department of Medicine, Harvard Medical School, Boston Massachusetts 02215, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Bijan Sobhian
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Anyong Xie
- Department of Medicine, Harvard Medical School, Boston Massachusetts 02215, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Elena Shestakova
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David M. Livingston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
46
|
Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol 2011; 18:56-60. [PMID: 21151113 PMCID: PMC3058924 DOI: 10.1038/nsmb.1946] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/01/2010] [Indexed: 12/31/2022]
Abstract
The ubiquitously expressed Rad51 recombinase and the meiosis-specific Dmc1 recombinase promote the formation of strand-invasion products (D-loops) between homologous molecules. Strand-invasion products are processed by either the double-strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to be processed by SDSA need to dissociate, producing non-crossovers, and those destined for DSBR should resist dissociation to generate crossovers. The mechanism that channels recombination intermediates into different homologous-recombination pathways is unknown. Here we show that D-loops in a human DMC1-driven reaction are substantially more resistant to dissociation by branch-migration proteins such as RAD54 than those formed by RAD51. We propose that the intrinsic resistance to dissociation of DMC1 strand-invasion intermediates may account for why DMC1 is essential to ensure the proper segregation of chromosomes in meiosis.
Collapse
Affiliation(s)
- Dmitry V. Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | - Roberto J. Pezza
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Olga M. Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | - Oleg N. Voloshin
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R. Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| |
Collapse
|
47
|
Du N, Baker PM, Do TU, Bien C, Bier-Laning CM, Singh S, Shih SJ, Diaz MO, Vaughan AT. 11q21.1-11q23.3 Is a site of intrinsic genomic instability triggered by irradiation. Genes Chromosomes Cancer 2010; 49:831-43. [PMID: 20607707 PMCID: PMC2921793 DOI: 10.1002/gcc.20791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The chromosome location, 11q21-23, is linked to loss of heterozygosity (LOH) in multiple tumors including those of breast, lung, and head and neck. To examine the process of LOH induction, the H292 cell line (human muco-epidermoid carcinoma) was irradiated or treated with anti-CD95 antibody, and individual clones isolated through two rounds of cloning. Regions of LOH were determined by screening a suite of eight polymorphic microsatellite markers covering 11p15-11q24 using fluorescent primers and genetic analyzer peak discrimination. LOH induction was observed extending through 11q21.1-11q23.3 in 6/49 of clones surviving 4 Gy and 8/50 after 8 Gy. Analysis of selected clones by Affymetrix 6.0 single nucleotide polymorphism (SNP) arrays confirmed the initial assessment indicating a consistent 27.3-27.7 Mbp deletion in multiple clones. The telomeric border of LOH mapped to a 1 Mbp region of elevated recombination. Whole genome analysis of SNP data indicated that site-restricted LOH also occurred across multiple additional genomic locations. These data indicate that 11q21.1-11q23.3, and potentially other regions of this cell line are sites of intrinsic cell-specific instability leading to LOH after irradiation. Such deletions may subsequently be propagated by genetic selection and clonal expansion.
Collapse
Affiliation(s)
- Nga Du
- Department of Radiation Oncology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moscariello M, Sutherland B. Saccharomyces cerevisiae-based system for studying clustered DNA damages. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:447-456. [PMID: 20552213 PMCID: PMC2906745 DOI: 10.1007/s00411-010-0303-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.
Collapse
Affiliation(s)
- Mario Moscariello
- Brookhaven National Laboratory, Biology Department, Upton, NY 11973, USA.
| | | |
Collapse
|
49
|
Hinz JM. Role of homologous recombination in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:582-603. [PMID: 20658649 DOI: 10.1002/em.20577] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Homologous recombination repair (HRR) encompasses mechanisms that employ homologous DNA sequences as templates for repair or tolerance of a wide range of DNA lesions that inhibit DNA replication in S phase. Arguably the most imposing of these DNA lesions is that of the interstrand crosslink (ICL), consisting of a covalently attached chemical bridge between opposing DNA strands. ICL repair requires the coordinated activities of HRR and a number of proteins from other DNA repair and damage response systems, including nucleotide excision repair, base excision repair, mismatch repair, and translesion DNA synthesis (TLS). Interestingly, different organisms favor alternative methods of HRR in the ICL repair process. E. coli perform ICL repair using a homology-driven damage bypass mechanism analogous to daughter strand gap repair. Eukaryotes from yeast to humans initiate ICL repair primarily during DNA replication, relying on HRR activity to restart broken replication forks associated with double-strand break intermediates induced by nucleolytic activities of other excision repair factors. Higher eukaryotes also employ several additional factors, including members of the Fanconi anemia damage-response network, which further promote replication-associated ICL repair through the activation and coordination of various DNA excision repair, TLS, and HRR proteins. This review focuses on the proteins and general mechanisms of HRR associated with ICL repair in different model organisms.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
50
|
Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196-207. [PMID: 20177395 PMCID: PMC3261768 DOI: 10.1038/nrm2851] [Citation(s) in RCA: 703] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Collapse
|