1
|
Mittal L, Tayyeba S, Sinha AK. Finding a breather for Oryza sativa: Understanding hormone signalling pathways involved in rice plants to submergence stress. PLANT, CELL & ENVIRONMENT 2022; 45:279-295. [PMID: 34971465 DOI: 10.1111/pce.14250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
During the course of evolution, different ecotypes of rice (Oryza sativa L.) have evolved distinct strategies to cope with submergence stress. Such contrasting responses are mediated by plant hormones that are principle regulators of growth, development and responses to various biotic and abiotic stresses. These hormones act cooperatively and show extensive crosstalk which is mediated by key regulatory genes that serve as nodes of molecular communication. The presence or absence of such genes leads to significant changes in hormone signalling pathways and hence, governs the type of response that the plant will exhibit. As flooding is one of the leading causes of crop loss across all the major rice-producing countries, it is crucial to deeply understand the molecular nexus governing the response to submergence to produce flood resilient varieties. This review focuses on the hormonal signalling pathways that mediate two contrasting responses of the rice plant to submergence stress namely, rapid internode elongation to escape flood waters and quiescence response that enables the plant to survive under complete submergence. The significance of several key genes such as Sub1A-1, SLR1, SD1 and SK1/SK2, in defining the ultimate response to submergence has also been discussed.
Collapse
Affiliation(s)
- Lavanya Mittal
- National Institute of Plant Genome Research, New Delhi, India
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, New Delhi, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
2
|
Yue J, Yang H, Yang S, Wang J. TDIF overexpression in poplars retards internodal elongation and enhances leaf venation through interaction with other phytohormones. TREE PHYSIOLOGY 2020; 40:60-72. [PMID: 31860723 DOI: 10.1093/treephys/tpz126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
As a member of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) peptide family, tracheary element differentiation inhibitory factor (TDIF) plays crucial roles in vascular meristem maintenance by promoting cell proliferation and inhibiting xylem cell differentiation. In Populus trichocarpa, six TDIF-encoding genes are all expressed in vascular tissues, and in Arabidopsis PtTDIFpro:GUS lines, the expression driven by PtTDIF promoters were predominantly detected in stem vascular bundles, initiating leaves and leaf veins. Although exogenous application of two poplar TDIF peptides did not evidently affect the shoot growth in vitro, overexpression of PtTDIF genes in hybrid poplar severely retarded the internodal elongation by upregulating the expression of GA2ox and GA20ox genes and thus decreasing the level of endogenous gibberellins (GAs), which phenotypic defect could be rescued by exogenously applied GA3. In addition, TDIF overexpression unexpectedly induced a more complex venation pattern in poplar leaves, which was underpinned by the elevated expression of WOX4 and WOX13 genes. Upon TDIF treatment, the DR5:GUS poplar leaves revealed a higher GUS activity and in TDIF-overexpressing leaves, the transcript abundances of several PIN-FORMED (PIN) genes, especially that of PIN1, were increased, which implied an integration of TDIF and auxin in mediating this process. Collectively, data of this work presented novel activities of TDIF involved in internode elongation and leaf vein formation, thus revealing the divergent functions of TDIF in perennial tree species from those in annual herbaceous Arabidopsis.
Collapse
Affiliation(s)
- Jing Yue
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| |
Collapse
|
3
|
Singh A, Septiningsih EM, Balyan HS, Singh NK, Rai V. Genetics, Physiological Mechanisms and Breeding of Flood-Tolerant Rice (Oryza sativa L.). PLANT & CELL PHYSIOLOGY 2017; 58:185-197. [PMID: 28069894 DOI: 10.1093/pcp/pcw206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Flooding of rice fields is a serious problem in the river basins of South and South-East Asia where about 15 Mha of lowland rice cultivation is regularly affected. Flooding creates hypoxic conditions resulting in poor germination and seedling establishment. Flash flooding, where rice plants are completely submerged for 10-15 d during their vegetative stage, causes huge losses. Water stagnation for weeks to months also leads to substantial yield losses when large parts of rice aerial tissues are inundated. The low-yielding traditional varieties and landraces of rice adapted to these flooding conditions have been replaced by flood-sensitive high-yielding rice varieties. The 'FR13A' rice variety and the Submergence 1A (SUB1A) gene were identified for flash flooding and subsequently introgressed to high-yielding rice varieties. The challenge is to find superior alleles of the SUB1A gene, or even new genes that may confer greater tolerance to submergence. Similarly, genes have been identified in tolerant landraces of rice for their ability to survive by rapid stem elongation (SNORKEL1 and SNORKEL2) during deep-water flooding, and for anaerobic germination ability (TPP7). Research on rice genotypes and novel genes that are tolerant to prolonged water stagnation is in progress. These studies will greatly assist in devising more efficient and precise molecular breeding strategies for developing climate-resilient high-yielding rice varieties for flood-prone regions. Here we review the state of our knowledge of flooding tolerance in rice and its application in varietal improvement.
Collapse
Affiliation(s)
- Anuradha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Endang M Septiningsih
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Harendra S Balyan
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
4
|
Wu J, Zhao HB, Yu D, Xu X. Transcriptome profiling of the floating-leaved aquatic plant Nymphoides peltata in response to flooding stress. BMC Genomics 2017; 18:119. [PMID: 28143394 PMCID: PMC5282827 DOI: 10.1186/s12864-017-3515-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Waterlogging or flooding is one of the most challenging abiotic stresses experienced by plants. Unlike many flooding-tolerant plants, floating-leaved aquatic plants respond actively to flooding stress by fast growth and elongation of its petioles to make leaves re-floating. However, the molecular mechanisms of this plant group responding to flood have not been investigated before. Here, we investigated the genetic basis of this adaptive response by characterizing the petiole transcriptomes of a floating-leaved species Nymphoides peltata under normal and flooding conditions. RESULTS Clean reads under normal and flooding conditions with pooled sampling strategy were assembled into 124,302 unigenes. A total of 8883 unigenes were revealed to be differentially expressed between normal and flooding conditions. Among them, top ranked differentially expressed genes were mainly involved in antioxidant process, photosynthesis process and carbohydrate metabolism, including the glycolysis and a modified tricarboxylic acid cycle - alanine metabolism. Eight selected unigenes with significantly differentiated expression changes between normal and flooding conditions were validated by qRT-PCR. CONCLUSIONS Among these processes, antioxidant process and glycolysis are commonly induced by waterlogging or flooding environment in plants, whereas photosynthesis and alanine metabolism are rarely occurred in other flooding-tolerant plants, suggesting the significant contributions of the two processes in the active response of N. peltata to flooding stress. Our results provide a valuable genomic resource for future studies on N. peltata and deepen our understanding of the genetic basis underlying the response to flooding stress in aquatic plants.
Collapse
Affiliation(s)
- Jinwei Wu
- Department of Ecology, College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, China
| | - Hua-Bin Zhao
- Department of Ecology, College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, China
| | - Dan Yu
- Department of Ecology, College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, China
| | - Xinwei Xu
- Department of Ecology, College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| |
Collapse
|
5
|
Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:665-70. [PMID: 27151292 DOI: 10.1093/abbs/gmw041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns. PLoS One 2016; 11:e0149912. [PMID: 26934874 PMCID: PMC4774966 DOI: 10.1371/journal.pone.0149912] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/06/2016] [Indexed: 02/07/2023] Open
Abstract
Waterlogging is a common adverse environmental condition that limits plant growth. Sesame (Sesamum indicum) is considered a drought-tolerant oil crop but is typically susceptible to harmful effects from waterlogging. The present study used comparative analysis to explore the waterlogging stress response associated with two sesame genotypes. The RNA-seq dataset generated during a time course of 0, 3, 9 and 15 h of waterlogging as well as 20 h post-drainage indicated that stress gradually suppressed the expression of sesame genes, with 9 h as the critical time point for the response of sesame to waterlogging stress. Of the 19,316 genes expressed during waterlogging, 72.1% were affected significantly. Sesame of both tolerant and susceptible genotypes showed decreased numbers of upregulated differentially expressed genes (DEGs) but increased numbers of downregulated DEGs at the onset of waterlogging. However, the tolerant-genotype sesame exhibited 25.5% more upregulated DEGs and 29.7% fewer downregulated DEGs than those of the susceptible-genotype strain between 3 and 15 h. The results indicated that the tolerant sesame displayed a more positive gene response to waterlogging. A total of 1,379 genes were significantly induced and commonly expressed in sesame under waterlogging conditions from 3 to 15 h regardless of tolerance level; of these genes, 98 are known homologous stress responsive genes, while the remaining 1,281 are newly reported here. This gene set may represent the core genes that function in response to waterlogging, including those related mainly to energy metabolism and phenylpropanoid biosynthesis. Furthermore, a set of 3,016 genes functioning in energy supply and cell repair or formation was activated in sesame recovery from waterlogging stress. A comparative analysis between sesame of the tolerant and susceptible genotypes revealed 66 genes that may be candidates for improving sesame tolerance to waterlogging. This study provided a comprehensive picture of the sesame gene expression pattern in response to waterlogging stress. These results will help dissect the mechanism of the sesame response to waterlogging and identify candidate genes to improve its tolerance.
Collapse
|
7
|
Eschbach V, Kobbe D. Different replication protein A complexes of Arabidopsis thaliana have different DNA-binding properties as a function of heterotrimer composition. PLANT & CELL PHYSIOLOGY 2014; 55:1460-1472. [PMID: 24880780 DOI: 10.1093/pcp/pcu076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The heterotrimeric RPA (replication protein A) protein complex has single-stranded DNA-binding functions that are important for all DNA processing pathways in eukaryotic cells. In Arabidopsis thaliana, which has five homologs of the RPA1 subunit and two homologs each of RPA2 and RPA3, in theory 20 RPA complexes could form. Using Escherichia coli as a heterologous expression system and analysing the results of the co-purification of the different subunits, we conclude that AtRPA1a interacts with the AtRPA2b subunit, and AtRPA1b interacts with AtRPA2a. Additionally either AtRPA3a or AtRPA3b is part of the complexes. As shown by electrophoretic mobility shift assays, all of the purified AtRPA complexes bind single-stranded DNA, but differences in DNA binding, especially with respect to modified DNA, could be revealed for all four of the analyzed RPA complexes. Thus, the RPA3 subunits influence the DNA-binding properties of the complexes differently despite their high degree of similarity of 82%. The data support the idea that in plants a subfunctionalization of RPA homologs has occurred and that different complexes act preferentially in different pathways.
Collapse
Affiliation(s)
- Verena Eschbach
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Li X, Chang Y, Xin X, Zhu C, Li X, Higgins JD, Wu C. Replication protein A2c coupled with replication protein A1c regulates crossover formation during meiosis in rice. THE PLANT CELL 2013; 25:3885-99. [PMID: 24122830 PMCID: PMC3877797 DOI: 10.1105/tpc.113.118042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 05/18/2023]
Abstract
Replication protein A (RPA) is a conserved heterotrimeric protein complex comprising RPA1, RPA2, and RPA3 subunits involved in multiple DNA metabolism pathways attributable to its single-stranded DNA binding property. Unlike other species possessing a single RPA2 gene, rice (Oryza sativa) possesses three RPA2 paralogs, but their functions remain unclear. In this study, we identified RPA2c, a rice gene preferentially expressed during meiosis. A T-DNA insertional mutant (rpa2c) exhibited reduced bivalent formation, leading to chromosome nondisjunction. In rpa2c, chiasma frequency is reduced by ~78% compared with the wild type and is accompanied by loss of the obligate chiasma. The residual ~22% chiasmata fit a Poisson distribution, suggesting loss of crossover control. RPA2c colocalized with the meiotic cohesion subunit REC8 and the axis-associated protein PAIR2. Localization of REC8 was necessary for loading of RPA2c to the chromosomes. In addition, RPA2c partially colocalized with MER3 during late leptotene, thus indicating that RPA2c is required for class I crossover formation at a late stage of homologous recombination. Furthermore, we identified RPA1c, an RPA1 subunit with nearly overlapping distribution to RPA2c, required for ~79% of chiasmata formation. Our results demonstrate that an RPA complex comprising RPA2c and RPA1c is required to promote meiotic crossovers in rice.
Collapse
Affiliation(s)
- Xingwang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaodong Xin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Address correspondence to
| |
Collapse
|
9
|
Namkoong S, Lee EJ, Jang IS, Park J. Elevated level of human RPA interacting protein α (hRIPα) in cervical tumor cells is involved in cell proliferation through regulating RPA transport. FEBS Lett 2012; 586:3753-60. [PMID: 23010595 DOI: 10.1016/j.febslet.2012.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded DNA binding protein that is essential for DNA replication, repair, and recombination, and human RPA interacting protein α (hRIPα) is the nuclear transporter of RPA. Here, we report the regulatory role of hRIPα protein in cell proliferation. Western blot analysis revealed that the level of hRIPα was frequently elevated in cervical tumors tissues and hRIPα knockdown by siRNA inhibited cellular proliferation through deregulation of the cell cycle. In addition, overexpression of hRIPα resulted in increased clonogenicity. These results indicate that hRIPα is involved in cell proliferation through regulation of RPA transport.
Collapse
Affiliation(s)
- Sim Namkoong
- Division of Biological Science and Technology, Yonsei University, Wonju 220-100, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. Mechanisms for coping with submergence and waterlogging in rice. RICE (NEW YORK, N.Y.) 2012; 5:2. [PMID: 24764502 PMCID: PMC3834488 DOI: 10.1186/1939-8433-5-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/27/2012] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa L.), unlike other cereals, can grow well in paddy fields and is highly tolerant of excess water stress, from either submergence (in which part or all of the plant is under water) or waterlogging (in which excess water in soil limits gas diffusion). Rice handles submergence stress by internal aeration and growth controls. A quiescence strategy based on Submergence-1A (SUB1A) or an escape strategy based on SNORKEL1 (SK1) and SNORKEL2 (SK2) is used for the growth controls. On the other hand, rice handles waterlogging stress by forming lysigenous aerenchyma and a barrier to radial O2 loss (ROL) in roots in order to supply O2 to the root tip. In this article, we summarize recent advances in understanding the mechanisms of responding to excess water stresses (i.e., submergence and waterlogging) in rice and other gramineous plants.
Collapse
Affiliation(s)
- Shunsaku Nishiuchi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takaki Yamauchi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Hirokazu Takahashi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Lukasz Kotula
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Fukumoto T, Kano A, Ohtani K, Yamasaki-Kokudo Y, Kim BG, Hosotani K, Saito M, Shirakawa C, Tajima S, Izumori K, Ohara T, Shigematsu Y, Tanaka K, Ishida Y, Nishizawa Y, Tada Y, Ichimura K, Gomi K, Akimitsu K. Rare sugar D-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L. PLANTA 2011; 234:1083-95. [PMID: 21717189 DOI: 10.1007/s00425-011-1463-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/10/2011] [Indexed: 05/04/2023]
Abstract
One of the rare sugars, D-allose, which is the epimer of D-glucose at C3, has an inhibitory effect on rice growth, but the molecular mechanisms of the growth inhibition by D-allose were unknown. The growth inhibition caused by D-allose was prevented by treatment with hexokinase inhibitors, D-mannoheptulose and N-acetyl-D-glucosamine. Furthermore, the Arabidopsis glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1, showed a D-allose-insensitive phenotype. D-Allose strongly inhibited the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half rice seeds. The growth of the slender rice1 (slr1) mutant, which exhibits a constitutive gibberellin-responsive phenotype, was also inhibited by D-allose, and the growth inhibition of the slr1 mutant by D-allose was also prevented by D-mannoheptulose treatment. The expressions of gibberellin-responsive genes were down-regulated by D-allose treatment, and the down-regulations of gibberellin-responsive genes were also prevented by D-mannoheptulose treatment. These findings reveal that D-allose inhibits the gibberellin-signaling through a hexokinase-dependent pathway.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Faculty of Agriculture, Rare Sugar Research Center and Gene Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hattori Y, Nagai K, Ashikari M. Rice growth adapting to deepwater. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:100-5. [PMID: 20934370 DOI: 10.1016/j.pbi.2010.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 05/24/2023]
Abstract
Flooding is one of the most hazardous natural disasters, and there are several levels of flooding. Recently, research on flood-tolerant rice plants revealed that some rice varieties have evolved to overcome two different flood types, 'flash flood' and 'deepwater flood', using two different mechanisms, and their molecular mechanisms were determined. During flash flooding, the tolerant plants that are fully submerged for a few weeks stop elongating and thus avoid energy consumption that will be needed to restart growth when the water recedes. On the contrary, during deepwater flooding, with water depth up to several meters for several months, the deepwater-flood-tolerant rice plants promote elongation of internodes to keep the foliage above the water surface and thus allow respiration and photosynthesis.
Collapse
Affiliation(s)
- Yoko Hattori
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | | | | |
Collapse
|
13
|
Nagai K, Hattori Y, Ashikari M. Stunt or elongate? Two opposite strategies by which rice adapts to floods. JOURNAL OF PLANT RESEARCH 2010; 123:303-9. [PMID: 20354754 DOI: 10.1007/s10265-010-0332-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 05/20/2023]
Abstract
Expansion of habitat is important for the perpetuation of species. In particular, plants which are sedentary must evolve specialized functions to adapt itself to new environment. Deepwater rice is cultivated mainly in the lowland areas of South and Southeast Asia that are flooded during the rainy season. The internodes of deepwater rice elongates in response to increasing water level to keep its leaves above the water surface and avoid anoxia. This elongation is stimulated by ethylene-regulated genes, Snorkel1 and Snorkel2. In contrast, when a flash flood occurs at the seedling stage, submergence-tolerant rice, which carries Submergence-1A, remains stunted and survives in water for a few weeks to avoid the energy consumption associated with plant elongation, and restarts its growth using its conserved energy after the water recedes. Interestingly, both Snorkel genes and Submergence-1A encode ethylene-responsive factor-type transcription factor and are connected to gibberellin biosynthesis or signal transduction. However, deepwater and submergence-tolerant rice seem to have opposite flooding response; namely, escape by elongation or remain stunted under water until flood recedes.
Collapse
Affiliation(s)
- Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | | |
Collapse
|
14
|
Whittle CA, Malik MR, Li R, Krochko JE. Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus. PLANT MOLECULAR BIOLOGY 2010; 72:279-99. [PMID: 19949835 DOI: 10.1007/s11103-009-9567-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 10/26/2009] [Indexed: 05/20/2023]
Abstract
Transcriptome data for plant reproductive organs/cells currently is very limited as compared to sporophytic tissues. Here, we constructed cDNA libraries and obtained ESTs for Brassica napus pollen (4,864 ESTs), microspores (i.e., early stage pollen development; 6,539 ESTs) and ovules (10,468 ESTs). Clustering and assembly of the 21,871 ESTs yielded a total of 10,782 unigenes, with 3,362 contigs and 7,420 singletons. The pollen transcriptome contained high levels of polygalacturonases and pectinesterases, which are involved in cell wall synthesis and expansion, and very few transcription factors or transcripts related to protein synthesis. The set of genes expressed in mature pollen showed little overlap with genes expressed in ovules or in microspores, suggesting in the latter case that a marked differentiation had occurred from the early microspore stages through to pollen development. Remarkably, the microspores and ovules exhibited a high number of co-expressed genes (N = 1,283) and very similar EST functional profiles, including high transcript numbers for transcriptional and translational processing genes, protein modification genes and unannotated genes. In addition, examination of expression values for genes co-expressed among microspores and ovules revealed a highly statistically significant correlation among these two tissues (R = 0.360, P = 1.2 x 10(-40)) as well as a lack of differentially expressed genes. Overall, the results provide new insights into the transcriptional profile of rarely studied ovules, the transcript changes during pollen development, transcriptional regulation of pollen tube growth and germination, and describe the parallels in the transcript populations of microspore and ovules which could have implications for understanding the molecular foundation of microspore totipotency in B. napus.
Collapse
Affiliation(s)
- Carrie A Whittle
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | |
Collapse
|
15
|
Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. PLANT PHYSIOLOGY 2009. [PMID: 19812186 DOI: 10.2307/40537649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.
Collapse
MESH Headings
- Chromosomes, Plant/drug effects
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/radiation effects
- DNA Fragmentation/drug effects
- DNA Fragmentation/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA Replication/drug effects
- DNA Replication/radiation effects
- DNA, Bacterial/genetics
- Genes, Plant/genetics
- Genetic Complementation Test
- Germ Cells, Plant/drug effects
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/radiation effects
- Meiosis/drug effects
- Meiosis/radiation effects
- Methyl Methanesulfonate/pharmacology
- Mitomycin/pharmacology
- Mitosis/drug effects
- Mitosis/radiation effects
- Mutagens/pharmacology
- Mutation/genetics
- Oryza/cytology
- Oryza/drug effects
- Oryza/embryology
- Oryza/genetics
- Phenotype
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pollen/cytology
- Pollen/drug effects
- Pollen/radiation effects
- RNA Interference/drug effects
- RNA Interference/radiation effects
- Recombination, Genetic/drug effects
- Recombination, Genetic/radiation effects
- Replication Protein A/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C. Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. PLANT PHYSIOLOGY 2009; 151:2162-73. [PMID: 19812186 PMCID: PMC2785997 DOI: 10.1104/pp.109.142877] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/29/2009] [Indexed: 05/18/2023]
Abstract
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.
Collapse
MESH Headings
- Chromosomes, Plant/drug effects
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/radiation effects
- DNA Fragmentation/drug effects
- DNA Fragmentation/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA Replication/drug effects
- DNA Replication/radiation effects
- DNA, Bacterial/genetics
- Genes, Plant/genetics
- Genetic Complementation Test
- Germ Cells, Plant/drug effects
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/radiation effects
- Meiosis/drug effects
- Meiosis/radiation effects
- Methyl Methanesulfonate/pharmacology
- Mitomycin/pharmacology
- Mitosis/drug effects
- Mitosis/radiation effects
- Mutagens/pharmacology
- Mutation/genetics
- Oryza/cytology
- Oryza/drug effects
- Oryza/embryology
- Oryza/genetics
- Phenotype
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pollen/cytology
- Pollen/drug effects
- Pollen/radiation effects
- RNA Interference/drug effects
- RNA Interference/radiation effects
- Recombination, Genetic/drug effects
- Recombination, Genetic/radiation effects
- Replication Protein A/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Takashi Y, Kobayashi Y, Tanaka K, Tamura K. Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. PLANT & CELL PHYSIOLOGY 2009; 50:1965-1976. [PMID: 19812063 DOI: 10.1093/pcp/pcp140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Replication protein A1 (RPA1/RPA70) forms a heterotrimeric complex together with RPA2/RPA32 and RPA3/RPA14 subunits which plays essential roles in various aspects of DNA metabolism including replication, repair, recombination and telomere maintenance. Compared with RPA70 in yeast and mammals, limited information is available about the factor in plants. In this study, we analyzed the functions of AtRPA70a, which is most similar to human RPA70 among four paralogs in Arabidopsis thaliana. RNA blot analysis showed that AtRPA70a is expressed ubiquitously in plant organs containing differentiated and meristematic tissues, while its expression was up-regulated in response to DNA damage stress. Yeast two-hybrid and co-immunoprecipitation analyses showed that AtRPA70a interacted preferentially with Arabidopsis RPA32a, one of two paralogs. Inactivation of AtRPA70a by T-DNA insertion did not affect growth under normal conditions, but resulted in increased sensitivity to genotoxic agents such as methylmethane sulfonate, bleomycin and hydroxyurea. Terminal restriction fragment analysis revealed that telomere lengths in an AtRPA70a-deficient line were significantly larger than in the wild type, whereas those in the mutant expressing antisense AtTERT (telomerase catalytic subunit gene) were shortened during successive generations. These results demonstrate that AtRPA70a is involved in repair of double-strand DNA breaks and possibly contributes to telomerase-dependent telomere length regulation.
Collapse
Affiliation(s)
- Yoshiyuki Takashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
18
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
19
|
Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:313-39. [PMID: 18444902 DOI: 10.1146/annurev.arplant.59.032607.092752] [Citation(s) in RCA: 766] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flooding is an environmental stress for many natural and man-made ecosystems worldwide. Genetic diversity in the plant response to flooding includes alterations in architecture, metabolism, and elongation growth associated with a low O(2) escape strategy and an antithetical quiescence scheme that allows endurance of prolonged submergence. Flooding is frequently accompanied with a reduction of cellular O(2) content that is particularly severe when photosynthesis is limited or absent. This necessitates the production of ATP and regeneration of NAD(+) through anaerobic respiration. The examination of gene regulation and function in model systems provides insight into low-O(2)-sensing mechanisms and metabolic adjustments associated with controlled use of carbohydrate and ATP. At the developmental level, plants can escape the low-O(2) stress caused by flooding through multifaceted alterations in cellular and organ structure that promote access to and diffusion of O(2). These processes are driven by phytohormones, including ethylene, gibberellin, and abscisic acid. This exploration of natural variation in strategies that improve O(2) and carbohydrate status during flooding provides valuable resources for the improvement of crop endurance of an environmental adversity that is enhanced by global warming.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
20
|
Jackson MB. Ethylene-promoted elongation: an adaptation to submergence stress. ANNALS OF BOTANY 2008; 101:229-48. [PMID: 17956854 PMCID: PMC2711016 DOI: 10.1093/aob/mcm237] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/26/2007] [Accepted: 07/13/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. SCOPE Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. CONCLUSIONS Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water.
Collapse
Affiliation(s)
- Michael B Jackson
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| |
Collapse
|
21
|
Ishibashi T, Kimura S, Sakaguchi K. A higher plant has three different types of RPA heterotrimeric complex. J Biochem 2007; 139:99-104. [PMID: 16428324 DOI: 10.1093/jb/mvj014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replication protein A (RPA) is a protein complex composed of three subunits known as RPA70, RPA32, and RPA14. Generally, only one version of each of the three RPA genes is present in animals and yeast (with the exception of the human RPA32 ortholog). In rice (Oryza sativa L.), however, two paralogs of RPA70 have been reported. We screened the rice genome for RPA subunit genes, and identified three OsRPA70 (OsRPA70a, OsRPA70b and OsRPA70c), three OsRPA32 (OsRPA32-1, OsRPA32-2 and OsRPA32-3), and one OsRPA14. Through two-hybrid assays and pull down analyses, we showed that OsRPA70a interacted preferentially with OsRPA32-2, OsRPA70b with OsRPA32-1, and OsRPA70c with OsRPA32-3. OsRPA14 interacted with all OsRPA32 paralogs. Thus, rice has three types of RPA complex: OsRPA70a-OsRPA32-2-OsRPA14 (type A), OsRPA70b-OsRPA32-1-OsRPA14 (type B), and OsRPA70c-OsRPA32-3-OsRPA14 (type C). Subcellular localization analysis suggested that the type-A RPA complex is required for chloroplast DNA metabolism, whereas types B and C function in nuclear DNA metabolism.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | | | | |
Collapse
|
22
|
Singh DK, Islam MN, Choudhury NR, Karjee S, Mukherjee SK. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res 2006; 35:755-70. [PMID: 17182628 PMCID: PMC1807949 DOI: 10.1093/nar/gkl1088] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 11/17/2022] Open
Abstract
Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem-loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Mohammad Nurul Islam
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Nirupam Roy Choudhury
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sumona Karjee
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sunil Kumar Mukherjee
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| |
Collapse
|
23
|
Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. Plant responses to UV radiation and links to pathogen resistance. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:1-40. [PMID: 17178464 DOI: 10.1016/s0074-7696(06)55001-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased incident ultraviolet (UV) radiation due to ozone depletion has heightened interest in plant responses to UV because solar UV wavelengths can reduce plant genome stability, growth, and productivity. These detrimental effects result from damage to cell components including nucleic acids, proteins, and membrane lipids. As obligate phototrophs, plants must counter the onslaught of cellular damage due to prolonged exposure to sunlight. They do so by attenuating the UV dose received through accumulation of UV-absorbing secondary metabolites, neutralizing reactive oxygen species produced by UV, monomerizing UV-induced pyrimidine dimers by photoreactivation, extracting UV photoproducts from DNA via nucleotide excision repair, and perhaps transiently tolerating the presence of DNA lesions via replicative bypass of the damage. The signaling mechanisms controlling these responses suggest that UV exposure also may be beneficial to plants by increasing cellular immunity to pathogens. Indeed, pathogen resistance can be enhanced by UV treatment, and recent experiments suggest DNA damage and its processing may have a role.
Collapse
Affiliation(s)
- Bernard A Kunz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | | | | | |
Collapse
|
24
|
Zhang Z, Weinschenk T, Schluesener HJ. Uptake, cellular distribution and novel cellular binding proteins of immunostimulatory CpG oligodeoxynucleotides in glioblastoma cells. Mol Cell Biochem 2005; 272:35-46. [PMID: 16010970 DOI: 10.1007/s11010-005-6605-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glioblastomas are the most malignant and most frequent brain tumors and exciting targets of gene and immunotherapy. Despite rapid development of experimental therapy little is known about the cellular behaviour of therapeutic oligodeoxynucleotides (ODNs). Here we designed uptake, cellular distribution and cellular binding proteins of immunostimulatory CpG-ODNs in glioblastoma cells by flow cytometry, fluorescence microscopy and mass spectrometry. Our data show that the phosphorothioate (PS) CpG-ODNs uptake in T98G and C6 cells is dose-, time-, temperature-dependent and independent of the CpG dinucleotides. Uptake can be inhibited by sodium azide, polyanions but not by chloroquine. After internalisation FITC labelled CpG-ODNs showed a spotted distribution in cytoplasm. Dozens of cellular binding proteins were identified using mass spectrometry. The binding of ODNs to proteins is dependent on modification and sequence but independent on CpG motif. ODNs bind to cellular proteins that are important for RNA processing and transport. Furthermore, three novel membrane proteins were identified, which might contribute to uptake of ODNs. ODNs binding to these proteins might interfere with the physiological function and thus might cause unwanted effects. Such binding also might influence the uptake efficiency or cellular distribution of therapeutic ODNs.
Collapse
Affiliation(s)
- Zhiren Zhang
- Institute of Brain Research, University of Tuebingen, Tuebingen, Germany.
| | | | | |
Collapse
|
25
|
Ishibashi T, Koga A, Yamamoto T, Uchiyama Y, Mori Y, Hashimoto J, Kimura S, Sakaguchi K. Two types of replication protein A in seed plants. FEBS J 2005; 272:3270-81. [PMID: 15978034 DOI: 10.1111/j.1742-4658.2005.04719.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Replication protein A (RPA), a heterotrimeric protein composed of 70, 32 and 14-kDa subunits, has been shown to be essential for DNA replication, repair, recombination, and transcription. Previously, we found that, in two seed plants, rice and Arabidopsis, there are two different types of RPA70-kDa subunit. Substantial biochemical and genetic characterization of these two subunits, termed OsRPA70a and OsRPA70b or AtRPA70a and AtRPA70b, respectively, is described in this report. Inactivation of AtRPA70a by transfer DNA insertion or RNA interference is lethal, so the complex containing RPA70a may be essential for DNA replication. Transfer DNA insertion and RNAi lines for AtRPA70b are morphologically normal, albeit hypersensitive to certain mutagens, such as UV-B and methyl methanesulfonate, suggesting that RPA70b functions mostly in DNA repair. In two-hybrid, pull-down and coexpression analysis, OsRPA70b was found to interact more selectively than OsRPA70a with OsRPA32. The data suggest that two different types of RPA heterotrimer are present in seed plants, and that there may be additional 32 and 14-kDa subunit homologs that interact with OsRPA70a. Each of the two probable plant RPA complexes may have different roles in DNA metabolism.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T. The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:660-72. [PMID: 15703054 DOI: 10.1111/j.1365-313x.2005.02332.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we report the transcript profile of wheat egg cells and proembryos, just after the first cell division. Microdissected female gametophytes of wheat were used to isolate eggs and two-celled proembryos to construct cell type-specific cDNA libraries. In total, 1197 expressed sequence tags (ESTs) were generated. Analysis of these ESTs revealed numerous novel transcripts. In egg cells, 17.6% of the clustered ESTs represented novel transcripts, while 11.4% novel clusters were identified in the two-celled proembryo. Functional classification of sequences with similarity to previously characterized proteins indicates that the unfertilized egg cell has a higher metabolic activity and protein turnover than previously thought. Transcript composition of two-celled proembryos was significantly distinct from egg cells, reflecting DNA replication as well as high transcriptional and translational activity. Several novel transcripts of the egg cell are specific for this cell. In contrast, some fertilization induced novel mRNAs are abundant also in sporophytic tissues indicating a more general role in plant growth and development. The potential functions of genes based on similarity to known genes involved in developmental processes are discussed. Our analysis has identified numerous genes with potential roles in embryo sac function such as signaling, fertilization or induction of embryogenesis.
Collapse
Affiliation(s)
- Stefanie Sprunck
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Contento AL, Kim SJ, Bassham DC. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. PLANT PHYSIOLOGY 2004; 135:2330-47. [PMID: 15310832 PMCID: PMC520801 DOI: 10.1104/pp.104.044362] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Upon encountering nutrient stress conditions, plant cells undergo extensive metabolic changes and induce nutrient recycling pathways for their continued survival. The role of nutrient mobilization in the response of Arabidopsis suspension cells to Suc starvation was examined. Vacuolar autophagy was induced within 24 h of starvation, with increased expression of vacuolar proteases that are likely to be required for degradation of cytoplasmic components delivered to the vacuole, and thus for nutrient recycling. After 48 h of starvation, culture viability began to decrease, and substantial cell death was evident by 72 h. To provide further insight into the pathways required for survival during Suc deficit, transcriptional profiling during Suc starvation was performed using the ATH1 GeneChip array containing 22,810 probe sets. A significant increase in transcript levels was observed for 343 genes within 48 h of starvation, indicating a response to nutrient stress that utilizes the recycling of cellular components and nutrient scavenging for maintaining cell function, the protection of the cell from death through activation of various defense and stress response pathways, and regulation of these processes by specific protein kinases and transcription factors. These physiological and molecular data support a model in which plant cells initiate a coordinated response of nutrient mobilization at the onset of Suc depletion that is able to maintain cell viability for up to 48 h. After this point, genes potentially involved in cell death increase in expression, whereas those functioning in translation and replication decrease, leading to a decrease in culture viability and activation of cell death programs.
Collapse
Affiliation(s)
- Anthony L Contento
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
28
|
Contento AL, Kim SJ, Bassham DC. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. PLANT PHYSIOLOGY 2004; 135:2330-2347. [PMID: 15310832 DOI: 10.1104/pp.104.044362.2330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Upon encountering nutrient stress conditions, plant cells undergo extensive metabolic changes and induce nutrient recycling pathways for their continued survival. The role of nutrient mobilization in the response of Arabidopsis suspension cells to Suc starvation was examined. Vacuolar autophagy was induced within 24 h of starvation, with increased expression of vacuolar proteases that are likely to be required for degradation of cytoplasmic components delivered to the vacuole, and thus for nutrient recycling. After 48 h of starvation, culture viability began to decrease, and substantial cell death was evident by 72 h. To provide further insight into the pathways required for survival during Suc deficit, transcriptional profiling during Suc starvation was performed using the ATH1 GeneChip array containing 22,810 probe sets. A significant increase in transcript levels was observed for 343 genes within 48 h of starvation, indicating a response to nutrient stress that utilizes the recycling of cellular components and nutrient scavenging for maintaining cell function, the protection of the cell from death through activation of various defense and stress response pathways, and regulation of these processes by specific protein kinases and transcription factors. These physiological and molecular data support a model in which plant cells initiate a coordinated response of nutrient mobilization at the onset of Suc depletion that is able to maintain cell viability for up to 48 h. After this point, genes potentially involved in cell death increase in expression, whereas those functioning in translation and replication decrease, leading to a decrease in culture viability and activation of cell death programs.
Collapse
Affiliation(s)
- Anthony L Contento
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
29
|
Qi Y, Yamauchi Y, Ling J, Kawano N, Li D, Tanaka K. Cloning of a putative monogalactosyldiacylglycerol synthase gene from rice (Oryza sativa L.) plants and its expression in response to submergence and other stresses. PLANTA 2004; 219:450-458. [PMID: 15088147 DOI: 10.1007/s00425-004-1245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 02/24/2004] [Indexed: 05/24/2023]
Abstract
Suppression subtractive hybridization was used to construct a subtractive cDNA library from plants of non-submerged and 7-day-submerged rice (Oryza sativa L., FR13A, a submergence-tolerant cultivar). One clone of the subtractive cDNA library, S23, was expressed abundantly during submergence. The full length of S23 was amplified using 5'- and 3'-rapid amplification of cDNA ends, and found to consist of 1,671 bp with an open reading frame of 1,077 bp (181-1257) encoding 358 amino acids. Its deduced amino acid sequence showed a high homology with monogalactosyldiacylglycerol synthase (UDPgalactose: 1,2-diacylglycerol 3-beta-D-galactosyl transferase; EC 2.4.1.46, MGDG synthase) from Arabidopsis thaliana; therefore, we named the gene OsMGD. Time-course studies showed that the expression of OsMGD in the rice cultivars FR13A and IR42 (submergence-susceptive cultivar) during submergence was gradually increased and that expression in FR13A was higher than in IR42. The expression of OsMGD in FR13A was influenced by benzyladenine and illumination. The accumulation of OsMGD mRNA in both FR13A and IR42 was also increased by ethephon, gibberellin, drought and salt treatment, but cold stress had no effect on the expression of the gene. These results suggest that the expression of OsMGD mRNA requires benzyladenine or illumination, and that the process is also mediated by ethephon and gibberellin. Salt and drought stress have an effect similar to that of submergence. Furthermore, the enhanced expression of OsMGD may relate to photosynthesis, and play an important role during submergence.
Collapse
Affiliation(s)
- Yanhua Qi
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University, Koyama, 680-8553, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Kaźmierczak A. Ethylene is a positive regulator for GA3-induced male sex in Anemia phyllitidis gametophytes. PLANT CELL REPORTS 2003; 22:295-302. [PMID: 14504906 DOI: 10.1007/s00299-003-0680-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 06/26/2003] [Accepted: 06/26/2003] [Indexed: 05/24/2023]
Abstract
Effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) on the development and expression of male sex were tested using the model of the three-zonal structure of 12-day-old (15-celled) Anemia phyllitidis gametophyte. ACC at 10 microM concentration enhanced the number of antheridia induced by gibberellic acid. Cytomorphological measurements showed that this effect was limited to only the antheridial region of gametophytes and depended on transverse expansion of antheridial mother cells. Time-course cytophotometrical measurements showed that this promotive effect of ACC was preceded by reorganization of nuclear chromatin and induction of DNA synthesis in nuclei in the antheridial region cells of fern gametophytes.
Collapse
Affiliation(s)
- A Kaźmierczak
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90231 Łódź, Poland.
| |
Collapse
|
31
|
Tanaka N, Konishi H, Khan MMK, Komatsu S. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol Genet Genomics 2003; 270:485-96. [PMID: 14634867 DOI: 10.1007/s00438-003-0929-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 09/09/2003] [Indexed: 11/27/2022]
Abstract
Protein databases constructed using high-resolution two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) were used to explore the proteome expressed in various rice tissues. Proteins from leaf sheath, root, and cultured suspension cells were systematically analyzed using 2D-PAGE, mass spectrometry and Edman sequencing, followed by database searching. In all, 79 of the 431 spots detected by 2D-PAGE in the leaf sheath, 73 of the 508 spots in the root and 140 of the 962 spots in the cultured suspension cells could be identified. Protein lists were constructed for each tissue and used to investigate the effects of gibberellin (GA) treatment. In the leaf sheath, root and cultured suspension cells, 8, 21, and 14 of the identified proteins, respectively, were regulated by GA. These proteins included polypeptides involved in general metabolism, energy production, transcriptional regulation and signal transduction in the leaf sheath; in metabolism and defense in the root; and in metabolism, energy production, cell growth, defense and signal transduction in the cultured suspension cells. These results indicate that the proteome databases assembled in these studies will be useful for the rapid assessment of changes in protein content in specific tissues, and that proteins regulated by GA may play a significant role in tissue growth.
Collapse
Affiliation(s)
- N Tanaka
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan
| | | | | | | |
Collapse
|
32
|
Marwedel T, Ishibashi T, Lorbiecke R, Jacob S, Sakaguchi K, Sauter M. Plant-specific regulation of replication protein A2 (OsRPA2) from rice during the cell cycle and in response to ultraviolet light exposure. PLANTA 2003; 217:457-65. [PMID: 14520573 DOI: 10.1007/s00425-003-1001-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Indexed: 05/04/2023]
Abstract
DNA replication is a process that is highly conserved among eukaryotes. Nonetheless, little is known about the proteins involved in it in plants. Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein with several functions in DNA metabolism in humans and yeast and supposedly also in plants. Here we report on the regulation of OsRPA2, the 32-kDa subunit of RPA from rice ( Oryza sativa L.). We found conserved regulation mechanisms at the level of gene expression between animal and plant RPA2 genes and distinct features of OsRPA2 regulation at the level of protein expression. Unlike in animals or in yeast, protein abundance in rice was regulated in a cell cycle phase-specific manner and was altered after UV-C light exposure. On the other hand, posttranslational modification through phosphorylation did not appear to play a pivotal role in rice as it does in animal cells. Our results indicate that plant-specific mechanisms of regulation have evolved for RPA2 within the generally well-conserved process of DNA replication, suggesting specific requirements for regulation of DNA metabolism in plants as compared to other eukaryotes.
Collapse
Affiliation(s)
- Tanja Marwedel
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. THE PLANT CELL 2003; 15:1591-1604. [PMID: 12837949 DOI: 10.1105/tpc.011650.ble] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The hormone-mediated control of plant growth and development involves both synthesis and response. Previous studies have shown that gibberellin (GA) plays an essential role in Arabidopsis seed germination. To learn how GA stimulates seed germination, we performed comprehensive analyses of GA biosynthesis and response using gas chromatography-mass spectrometry and oligonucleotide-based DNA microarray analysis. In addition, spatial correlations between GA biosynthesis and response were assessed by in situ hybridization. We identified a number of transcripts, the abundance of which is modulated upon exposure to exogenous GA. A subset of these GA-regulated genes was expressed in accordance with an increase in endogenous active GA levels, which occurs just before radicle emergence. The GA-responsive genes identified include those responsible for synthesis, transport, and signaling of other hormones, suggesting the presence of uncharacterized crosstalk between GA and other hormones. In situ hybridization analysis demonstrated that the expression of GA-responsive genes is not restricted to the predicted site of GA biosynthesis, suggesting that GA itself, or GA signals, is transmitted across different cell types during Arabidopsis seed germination.
Collapse
Affiliation(s)
- Mikihiro Ogawa
- Plant Science Center, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. THE PLANT CELL 2003; 15:1591-604. [PMID: 12837949 PMCID: PMC165403 DOI: 10.1105/tpc.011650] [Citation(s) in RCA: 540] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2003] [Accepted: 04/29/2003] [Indexed: 05/18/2023]
Abstract
The hormone-mediated control of plant growth and development involves both synthesis and response. Previous studies have shown that gibberellin (GA) plays an essential role in Arabidopsis seed germination. To learn how GA stimulates seed germination, we performed comprehensive analyses of GA biosynthesis and response using gas chromatography-mass spectrometry and oligonucleotide-based DNA microarray analysis. In addition, spatial correlations between GA biosynthesis and response were assessed by in situ hybridization. We identified a number of transcripts, the abundance of which is modulated upon exposure to exogenous GA. A subset of these GA-regulated genes was expressed in accordance with an increase in endogenous active GA levels, which occurs just before radicle emergence. The GA-responsive genes identified include those responsible for synthesis, transport, and signaling of other hormones, suggesting the presence of uncharacterized crosstalk between GA and other hormones. In situ hybridization analysis demonstrated that the expression of GA-responsive genes is not restricted to the predicted site of GA biosynthesis, suggesting that GA itself, or GA signals, is transmitted across different cell types during Arabidopsis seed germination.
Collapse
Affiliation(s)
- Mikihiro Ogawa
- Plant Science Center, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Yu LX, Setter TL. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. PLANT PHYSIOLOGY 2003; 131:568-82. [PMID: 12586881 PMCID: PMC166833 DOI: 10.1104/pp.014365] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2002] [Revised: 10/07/2002] [Accepted: 11/06/2002] [Indexed: 05/20/2023]
Abstract
The early post-pollination phase of maize (Zea mays) development is particularly sensitive to water deficit stress. Using cDNA microarray, we studied transcriptional profiles of endosperm and placenta/pedicel tissues in developing maize kernels under water stress. At 9 d after pollination (DAP), placenta/pedicel and endosperm differed considerably in their transcriptional responses. In placenta/pedicel, 79 genes were significantly affected by stress and of these 89% were up-regulated, whereas in endosperm, 56 genes were significantly affected and 82% of these were down-regulated. Only nine of the stress-regulated genes were in common between these tissues. Hierarchical cluster analysis indicated that different sets of genes were regulated in the two tissues. After rewatering at 9 DAP, profiles at 12 DAP suggested that two regulons exist, one for genes responding specifically to concurrent imposition of stress, and another for genes remaining affected after transient stress. In placenta, genes encoding recognized stress tolerance proteins, including heat shock proteins, chaperonins, and major intrinsic proteins, were the largest class of genes regulated, all of which were up-regulated. In contrast, in endosperm, genes in the cell division and growth category represented a large class of down-regulated genes. Several cell wall-degrading enzymes were expressed at lower levels than in controls, suggesting that stress delayed normal advance to programmed cell death in the central endosperm. We suggest that the responsiveness of placenta to whole-plant stress factors (water potential, abscisic acid, and sugar flux) and of endosperm to indirect factors may play key roles in determining the threshold for kernel abortion.
Collapse
Affiliation(s)
- Long-Xi Yu
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
36
|
Daughdrill GW, Ackerman J, Isern NG, Botuyan MV, Arrowsmith C, Wold MS, Lowry DF. The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding. Nucleic Acids Res 2001; 29:3270-6. [PMID: 11470885 PMCID: PMC55822 DOI: 10.1093/nar/29.15.3270] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replication protein A (RPA) is a heterotrimeric, multi-functional protein that binds single-stranded DNA (ssDNA) and is essential for eukaryotic DNA metabolism. Using heteronuclear NMR methods we have investigated the domain interactions and ssDNA binding of a fragment from the 70 kDa subunit of human RPA (hRPA70). This fragment contains an N-terminal domain (NTD), which is important for hRPA70-protein interactions, connected to a ssDNA-binding domain (SSB1) by a flexible linker (hRPA70(1-326)). Correlation analysis of the amide (1)H and (15)N chemical shifts was used to compare the structure of the NTD and SSB1 in hRPA70(1-326) with two smaller fragments that corresponded to the individual domains. High correlation coefficients verified that the NTD and SSB1 maintained their structures in hRPA70(1-326), indicating weak interdomain coupling. Weak interdomain coupling was also suggested by a comparison of the transverse relaxation rates for hRPA70(1-326) and one of the smaller hRPA70 fragments containing the NTD and the flexible linker (hRPA70(1-168)). We also examined the structure of hRPA70(1-326) after addition of three different ssDNA substrates. Each of these substrates induced specific amide (1)H and/or (15)N chemical shift changes in both the NTD and SSB1. The NTD and SSB1 have similar topologies, leading to the possibility that ssDNA binding induced the chemical shift changes observed for the NTD. To test this hypothesis we monitored the amide (1)H and (15)N chemical shift changes of hRPA70(1-168) after addition of ssDNA. The same amide (1)H and (15)N chemical shift changes were observed for the NTD in hRPA70(1-168) and hRPA70(1-326). The NTD residues with the largest amide (1)H and/or (15)N chemical shift changes were localized to a basic cleft that is important for hRPA70-protein interactions. Based on this relationship, and other available data, we propose a model where binding between the NTD and ssDNA interferes with hRPA70-protein interactions.
Collapse
Affiliation(s)
- G W Daughdrill
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, PO Box 443052, Life Science South Room 142, Moscow, ID 83844-3052, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ishibashi T, Kimura S, Furukawa T, Hatanaka M, Hashimoto J, Sakaguchi K. Two types of replication protein A 70 kDa subunit in rice, Oryza sativa: molecular cloning, characterization, and cellular & tissue distribution. Gene 2001; 272:335-43. [PMID: 11470540 DOI: 10.1016/s0378-1119(01)00555-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Replication protein A (RPA), which is comprised of three subunits, is an important factor involved in DNA replication, repair, and transcription. We isolated and characterized 70 and 32 kDa subunits of RPA from rice (Oryza sativa cv. Nipponbare) termed OsRPA70a and OsRPA32. OsRPA70a shows a low level of homology with OsRPA1 which was isolated from deepwater rice (Oryza sativa cv. Pin Gaew 56), previously. We also succeeded to isolate OsRPA70b which is homologue to OsRPA1 from Oryza sativa cv. Nipponbare. OsRPA70a shows only 33.8% sequence identity with OsRPA70b, indicating that two different types of 70 kDa RPA subunits are present in Oryza sativa cv. Nipponbare. These subunits showed differences in their expression patterns among tissues. The transcripts of OsRPA70a and OsRPA32 were expressed strongly in proliferating tissues such as root tips and young leaves that contain root apical meristem and marginal meristem, respectively, and weakly in the mature leaves which have no proliferating tissues. On the other hand, OsRPA70b was expressed mostly in the proliferating tissues. The roles of these molecules in plant DNA replication and DNA repair are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Gene Expression
- Gene Expression Regulation, Plant/drug effects
- Molecular Sequence Data
- Molecular Weight
- Oryza/cytology
- Oryza/drug effects
- Oryza/genetics
- Phylogeny
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Subunits
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Replication Protein A
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sucrose/pharmacology
- Tissue Distribution
Collapse
Affiliation(s)
- T Ishibashi
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. PLANT PHYSIOLOGY 2001; 125:955-68. [PMID: 11161052 PMCID: PMC64896 DOI: 10.1104/pp.125.2.955] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2000] [Revised: 09/01/2000] [Accepted: 10/29/2000] [Indexed: 05/20/2023]
Abstract
Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene. A genomic clone (OS-ACS5) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which catalyzes a regulatory step in ethylene biosynthesis, has been isolated from cv IR36, a lowland rice variety. Expression was induced upon short- and long-term submergence in cv IR36 and in cv Plai Ngam, a Thai deepwater rice variety. Under hypoxic conditions, abscisic acid and gibberellin had a reciprocal opposite effect on the activity of OS-ACS5. Gibberellin up-regulated and abscisic acid down-regulated OS-ACS5 mRNA accumulation. Growth experiments indicated that lowland rice responded to submergence with a burst of growth early on, but lacked the ability to sustain elongation growth. Sustained growth, characteristic for deepwater rice, was correlated with a prolonged induction of OS-ACS5. In addition, a more pronounced capacity to convert ACC to ethylene, a limited ACC conjugation, and a high level of endogenous gibberellin(20) were characteristic for the deepwater variety. An elevated level of OS-ACS5 messenger was found in cv IR36 plants treated with exogenous ACC. This observation was concomitant with an increase in the capacity of converting ACC to ethylene and in elongation growth, and resulted in prolonged survival. In conclusion, OS-ACS5 is involved in the rapid elongation growth of deepwater rice by contributing to the initial and long-term increase in ethylene levels. Our data also suggest that ACC limits survival of submerged lowland rice seedlings.
Collapse
Affiliation(s)
- D Van Der Straeten
- Vakgroep Moleculaire Genetica and Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
39
|
van der Knaap E, Song WY, Ruan DL, Sauter M, Ronald PC, Kende H. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase. PLANT PHYSIOLOGY 1999; 120:559-70. [PMID: 10364408 PMCID: PMC59295 DOI: 10.1104/pp.120.2.559] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active, autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.
Collapse
Affiliation(s)
- E van der Knaap
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kende H, Cho HT. Deepwater rice: A model plant to study stem elongation. PLANT PHYSIOLOGY 1998; 118:1105-10. [PMID: 9847084 PMCID: PMC1539197 DOI: 10.1104/pp.118.4.1105] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- H Kende
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | |
Collapse
|