1
|
Payá G, Bautista V, Camacho M, Esclapez J, Bonete MJ. Comprehensive Bioinformatics Analysis of the Biodiversity of Lsm Proteins in the Archaea Domain. Microorganisms 2023; 11:1196. [PMID: 37317170 DOI: 10.3390/microorganisms11051196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action.
Collapse
Affiliation(s)
- Gloria Payá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| |
Collapse
|
2
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
3
|
In vitro characterisation of the MS2 RNA polymerase complex reveals host factors that modulate emesviral replicase activity. Commun Biol 2022; 5:264. [PMID: 35338258 PMCID: PMC8956599 DOI: 10.1038/s42003-022-03178-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA phage MS2 is one of the most important model organisms in molecular biology and virology. Despite its comprehensive characterisation, the composition of the RNA replication machinery remained obscure. Here, we characterised host proteins required to reconstitute the functional replicase in vitro. By combining a purified replicase sub-complex with elements of an in vitro translation system, we confirmed that the three host factors, EF-Ts, EF-Tu, and ribosomal protein S1, are part of the active replicase holocomplex. Furthermore, we found that the translation initiation factors IF1 and IF3 modulate replicase activity. While IF3 directly competes with the replicase for template binding, IF1 appears to act as an RNA chaperone that facilitates polymerase readthrough. Finally, we demonstrate in vitro formation of RNAs containing minimal motifs required for amplification. Our work sheds light on the MS2 replication machinery and provides a new promising platform for cell-free evolution.
Collapse
|
4
|
Tishchenko SV, Mikhailina AO, Lekontseva NV, Stolboushkina EA, Nikonova EY, Nikonov OS, Nikulin AD. Structural Investigations of RNA–Protein Complexes in Post-Ribosomal Era. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Structural studies of RNA–protein complexes are important for understanding many molecular mechanisms occurring in cells (e.g., regulation of protein synthesis and RNA-chaperone activity of proteins). Various objects investigated at the Institute of Protein Research of the Russian Academy of Sciences are considered. Based on the analysis of the structures of the complexes of the ribosomal protein L1 with specific regions on both mRNA and rRNA, the principles of regulation of the translation of the mRNA of its own operon are presented. The studies of the heterotrimeric translation initiation factor IF2 of archaea and eukaryotes are described, and the data on the interaction of glycyl-tRNA-synthetase with viral IRES are reported. The results of studying the interaction of RNA molecules with one of functionally important sites of the Hfq protein are presented, and the differences in the RNA-binding properties of the Hfq and archaeal Lsm proteins are revealed.
Collapse
|
5
|
Payá G, Bautista V, Camacho M, Bonete MJ, Esclapez J. Functional analysis of Lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei. Biochimie 2021; 187:33-47. [PMID: 33992715 DOI: 10.1016/j.biochi.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
The Sm, like-Sm, and Hfq proteins belonging to the Sm superfamily of proteins are represented in all domains of life. These proteins are involved in several RNA metabolism pathways. The functions of bacterial Hfq and eukaryotic Sm proteins have been described, but knowledge about the in vivo functions of archaeal Sm proteins remains limited. This study aims to improve the understanding of Lsm proteins and their role using the haloarchaeon Haloferax mediterranei as a model microorganism. The Haloferax mediterranei genome contains one lsm gene that overlaps with the rpl37e gene. To determine the expression of lsm and rpl37e genes and the co-transcription of both, reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed under different standard and stress conditions. The results suggest that the expression of lsm and rpl37e is constitutive. Co-transcription occurs at sub-optimal salt concentrations and temperatures, depending on the growth phase. The halophilic Lsm protein contains two Sm motifs, Sm1 and Sm2, and the sequence encoding the Sm2 motif also constitutes the promoter of the rpl37e gene. To investigate their biological functions, the lsm deletion mutant and the Sm1 motif deletion mutant, where the Sm2 motif remained intact, were generated and characterised. Comparison of the lsm deletion mutant, Sm1 deletion mutant, and the parental strain HM26 under standard and stress growth conditions revealed growth differences. Finally, swarming assays in complex and defined media showed greater swarming capacity in the deletion mutants.
Collapse
Affiliation(s)
- Gloria Payá
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Vanesa Bautista
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Mónica Camacho
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - María-José Bonete
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Julia Esclapez
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| |
Collapse
|
6
|
Hanson C, Bishop MM, Barney JT, Vargis E. Effect of growth media and phase on Raman spectra and discrimination of mycobacteria. JOURNAL OF BIOPHOTONICS 2019; 12:e201900150. [PMID: 31291064 DOI: 10.1002/jbio.201900150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 06/09/2023]
Abstract
When developing a Raman spectral library to identify bacteria, differences between laboratory and real world conditions must be considered. For example, culturing bacteria in laboratory settings is performed under conditions for ideal bacteria growth. In contrast, culture conditions in the human body may differ and may not support optimized bacterial growth. To address these differences, researchers have studied the effect of conditions such as growth media and phase on Raman spectra. However, the majority of these studies focused on Gram-positive or Gram-negative bacteria. This article focuses on the influence of growth media and phase on Raman spectra and discrimination of mycobacteria, an acid-fast genus. Results showed that spectral differences from growth phase and media can be distinguished by spectral observation and multivariate analysis. Results were comparable to those found for other types of bacteria, such as Gram-positive and Gram-negative. In addition, the influence of growth phase and media had a significant impact on machine learning models and their resulting classification accuracy. This study highlights the need for machine learning models and their associated spectral libraries to account for various growth parameters and stages to further the transition of Raman spectral analysis of bacteria from laboratory to clinical settings.
Collapse
|
7
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
8
|
Abstract
Bacteriophages of the Leviviridae family are small viruses with short single-stranded RNA (ssRNA) genomes. Protein-RNA interactions play a key role throughout the phage life cycle, and all of the conserved phage proteins - the maturation protein, the coat protein and the replicase - are able to recognize specific structures in the RNA genome. The phage-coded replicase subunit associates with several host proteins to form a catalytically active complex. Recognition of the genomic RNA by the replicase complex is achieved in a remarkably complex manner that exploits the RNA-binding properties of host proteins and the particular three-dimensional structure of the phage genome. The coat protein recognizes a hairpin structure at the beginning of the replicase gene. The binding interaction serves to regulate the expression of the replicase gene and can be remarkably different in various ssRNA phages. The maturation protein is a minor structural component of the virion that binds to the genome, mediates attachment to the host and guides the genome into the cell. The maturation protein has two distinct RNA-binding surfaces that are in contact with different regions of the genome. The maturation and coat proteins also work together to ensure the encapsidation of the phage genome in new virus particles. In this chapter, the different ssRNA phage protein-RNA interactions, as well as some of their practical applications, are discussed in detail.
Collapse
Affiliation(s)
| | - Kaspars Tārs
- Biomedical Research and Study Center, Riga, Latvia.
| |
Collapse
|
9
|
Jungfleisch J, Blasco-Moreno B, Díez J. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses. Viruses 2016; 8:v8120340. [PMID: 28009841 PMCID: PMC5192400 DOI: 10.3390/v8120340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Bernat Blasco-Moreno
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Juana Díez
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
10
|
Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K, Hilker R, Becker A, Allers T, Soppa J, Marchfelder A. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie 2015; 117:129-37. [DOI: 10.1016/j.biochi.2015.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
|
11
|
Talukder A, Ishihama A. Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli. SCIENCE CHINA-LIFE SCIENCES 2015. [PMID: 26208826 DOI: 10.1007/s11427-015-4898-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genomic DNA of bacteria is highly compacted in a single or a few bodies known as nucleoids. Here, we have isolated Escherichia coli nucleoid by sucrose density gradient centrifugation. The sedimentation rates, structures as well as protein/ DNA composition of isolated nucleoids were then compared under various growth phases. The nucleoid structures were found to undergo changes during the cell growth; i. e., the nucleoid structure in the stationary phase was more tightly compacted than that in the exponential phase. In addition to factor for inversion stimulation (Fis), histone-like nucleoid structuring protein (H-NS), heat-unstable nucleoid protein (HU) and integration host factor (IHF) here we have identified, three new candidates of E. coli nucleoid, namely DNA-binding protein from starved cells (Dps), host factor for phage Qβ (Hfq) and suppressor of td(-) phenotype A (StpA). Our results reveal that the major components of exponential phase nucleoid are Fis, HU, H-NS, StpA and Hfq, while Dps occupies more than half of the stationary phase nucleoid. It has been known for a while that Dps is the main nucleoid-associated protein at stationary phase. From these results and the prevailing information, we propose a model for growth phase dependent changes in the structure and protein composition of nucleoid in E. coli.
Collapse
Affiliation(s)
- AliAzam Talukder
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh. .,Micro-Nano Technology Research Center, Hosei University, Tokyo, 184-0003, Japan.
| | - Akira Ishihama
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan.,Micro-Nano Technology Research Center, Hosei University, Tokyo, 184-0003, Japan
| |
Collapse
|
12
|
Obregon KA, Hoch CT, Sukhodolets MV. Sm-like protein Hfq: Composition of the native complex, modifications, and interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:950-66. [PMID: 25896386 DOI: 10.1016/j.bbapap.2015.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/25/2014] [Accepted: 03/02/2015] [Indexed: 01/15/2023]
Abstract
The bacterial Sm-like protein Hfq has been linked functionally to reactions that involve RNA; however, its explicit role and primary cellular localization remain elusive. We carried out a detailed biochemical characterization of native Escherichia coli Hfq obtained through methods that preserve its posttranslational modifications. ESI-MS analyses indicate modifications in 2-3 subunits/hexamer with a molecular mass matching that of an oxidized C:18 lipid. We show that the majority of cellular Hfq cannot be extracted without detergents and that purified Hfq can be retained on hydrophobic matrices. Analyses of purified Hfq and the native Hfq complexes observed in whole-cell E. coli extracts indicate the existence of dodecameric assemblies likely stabilized by interlocking C-terminal polypeptides originating from separate Hfq hexamers and/or accessory nucleic acid. We demonstrate that cellular Hfq is redistributed between transcription complexes and an insoluble fraction that includes protein complexes harboring polynucleotide phosphorylase (PNP). This distribution pattern is consistent with a function at the interface of the apparatuses responsible for synthesis and degradation of RNA. Taken together with the results of prior studies, these results suggest that Hfq could function as an anchor/coupling factor responsible for de-solubilization of RNA and its tethering to the degradosome complex.
Collapse
Affiliation(s)
- Karla A Obregon
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Connor T Hoch
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
13
|
The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J Virol 2013; 87:6192-200. [PMID: 23536653 DOI: 10.1128/jvi.03327-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Positive-strand RNA viruses depend on recruited host factors to control critical replication steps. Previously, it was shown that replication of evolutionarily diverse positive-strand RNA viruses, such as hepatitis C virus and brome mosaic virus, depends on host decapping activators LSm1-7, Pat1, and Dhh1 (J. Diez et al., Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918, 2000; A. Mas et al., J. Virol. 80:246 -251, 2006; N. Scheller et al., Proc. Natl. Acad. Sci. U. S. A. 106:13517-13522, 2009). By using a system that allows the replication of the insect Flock House virus (FHV) in yeast, here we show that LSm1-7, Pat1, and Dhh1 control the ratio of subgenomic RNA3 to genomic RNA1 production, a key feature in the FHV life cycle mediated by a long-distance base pairing within RNA1. Depletion of LSM1, PAT1, or DHH1 dramatically increased RNA3 accumulation during replication. This was not caused by differences between RNA1 and RNA3 steady-state levels in the absence of replication. Importantly, coimmunoprecipitation assays indicated that LSm1-7, Pat1, and Dhh1 interact with the FHV RNA genome and the viral polymerase. By using a strategy that allows dissecting different stages of the replication process, we found that LSm1-7, Pat1, and Dhh1 did not affect the early replication steps of RNA1 recruitment to the replication complex or RNA1 synthesis. Furthermore, their function on RNA3/RNA1 ratios was independent of the membrane compartment, where replication occurs and requires ATPase activity of the Dhh1 helicase. Together, these results support that LSm1-7, Pat1, and Dhh1 control RNA3 synthesis. Their described function in mediating cellular mRNP rearrangements suggests a parallel role in mediating key viral RNP transitions, such as the one required to maintain the balance between the alternative FHV RNA1 conformations that control RNA3 synthesis.
Collapse
|
14
|
Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012; 94:1544-53. [DOI: 10.1016/j.biochi.2012.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 01/16/2023]
|
15
|
Murina VN, Nikulin AD. RNA-binding Sm-like proteins of bacteria and archaea. similarity and difference in structure and function. BIOCHEMISTRY (MOSCOW) 2012; 76:1434-49. [PMID: 22339597 DOI: 10.1134/s0006297911130050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins play a significant role in many processes of RNA metabolism, such as splicing and processing, regulation of DNA transcription and RNA translation, etc. Among the great number of RNA-binding proteins, so-called RNA-chaperones occupy an individual niche; they were named for their ability to assist RNA molecules to gain their accurate native spatial structure. When binding with RNAs, they possess the capability of altering (melting) their secondary structure, thus providing a possibility for formation of necessary intramolecular contacts between individual RNA sites for proper folding. These proteins also have an additional helper function in RNA-RNA and RNA-protein interactions. Members of such class of the RNA-binding protein family are Sm and Sm-like proteins (Sm-Like, LSm). The presence of these proteins in bacteria, archaea, and eukaryotes emphasizes their biological significance. These proteins are now attractive for researchers because of their implication in many processes associated with RNAs in bacterial and archaeal cells. This review is focused on a comparison of architecture of bacterial and archaeal LSm proteins and their interaction with different RNA molecules.
Collapse
Affiliation(s)
- V N Murina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
16
|
Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 2012; 38:276-99. [DOI: 10.3109/1040841x.2012.664540] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Soper TJ, Doxzen K, Woodson SA. Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA (NEW YORK, N.Y.) 2011; 17:1544-50. [PMID: 21705431 PMCID: PMC3153977 DOI: 10.1261/rna.2767211] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Bacterial small RNAs (sRNAs) modulate gene expression by base-pairing with target mRNAs. Many sRNAs require the Sm-like RNA binding protein Hfq as a cofactor. Well-characterized interactions between DsrA sRNA and the rpoS mRNA leader were used to understand how Hfq stimulates sRNA pairing with target mRNAs. DsrA annealing stimulates expression of rpoS by disrupting a secondary structure in the rpoS leader, which otherwise prevents translation. Both RNAs bind Hfq with similar affinity but interact with opposite faces of the Hfq hexamer. Using mutations that block interactions between two of the three components, we demonstrate that Hfq binding to a functionally critical (AAN)(4) motif in rpoS mRNA rescues DsrA binding to a hyperstable rpoS mutant. We also show that Hfq cannot stably bridge the RNAs. Persistent ternary complexes only form when the two RNAs are complementary. Thus, Hfq mainly acts by binding and restructuring the rpoS mRNA. However, Hfq binding to DsrA is needed for maximum annealing in vitro, indicating that transient interactions with both RNAs contribute to the regulatory mechanism.
Collapse
MESH Headings
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/metabolism
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/metabolism
Collapse
Affiliation(s)
- Toby J. Soper
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kevin Doxzen
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sarah A. Woodson
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, Maryland 21218, USA
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Corresponding author.E-mail .
| |
Collapse
|
18
|
Abstract
Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
19
|
Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proc Natl Acad Sci U S A 2010; 107:10884-9. [PMID: 20534494 DOI: 10.1073/pnas.1003015107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The RNA-dependent RNA polymerase core complex formed upon infection of Escherichia coli by the bacteriophage Qbeta is composed of the viral catalytic beta-subunit as well as the host translation elongation factors EF-Tu and EF-Ts, which are required for initiation of RNA replication. We have determined the crystal structure of the complex between the beta-subunit and the two host proteins to 2.5-A resolution. Whereas the basic catalytic machinery in the viral subunit appears similar to other RNA-dependent RNA polymerases, a unique C-terminal region of the beta-subunit engages in extensive interactions with EF-Tu and may contribute to the separation of the transient duplex formed between the template and the nascent product to allow exponential amplification of the phage genome. The evolution of resistance by the host appears to be impaired because of the interactions of the beta-subunit with parts of EF-Tu essential in recognition of aminoacyl-tRNA.
Collapse
|
20
|
Galão RP, Chari A, Alves-Rodrigues I, Lobão D, Mas A, Kambach C, Fischer U, Díez J. LSm1-7 complexes bind to specific sites in viral RNA genomes and regulate their translation and replication. RNA (NEW YORK, N.Y.) 2010; 16:817-27. [PMID: 20181739 PMCID: PMC2844628 DOI: 10.1261/rna.1712910] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 01/07/2010] [Indexed: 05/18/2023]
Abstract
LSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3'-untranslated region and two internal A-rich single-stranded regions. Importantly, in vivo analysis shows that these sequences regulate the translation and replication of the BMV genome. Furthermore, both RNA-target sequences resemble those found for Hfq, the LSm counterpart in bacteria, suggesting conservation through evolution. Our results provide the first evidence that LSm1-7 complexes interact directly with viral RNA genomes and open new perspectives in the understanding of LSm1-7 functions.
Collapse
Affiliation(s)
- Rui Pedro Galão
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Soper TJ, Woodson SA. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA (NEW YORK, N.Y.) 2008; 14:1907-17. [PMID: 18658123 PMCID: PMC2525945 DOI: 10.1261/rna.1110608] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/02/2008] [Indexed: 05/22/2023]
Abstract
Small noncoding RNAs (sRNAs) regulate the response of bacteria to environmental stress in conjunction with the Sm-like RNA binding protein Hfq. DsrA sRNA stimulates translation of the RpoS stress response factor in Escherichia coli by base-pairing with the 5' leader of the rpoS mRNA and opening a stem-loop that represses translation initiation. We report that rpoS leader sequences upstream of this stem-loop greatly increase the sensitivity of rpoS mRNA to Hfq and DsrA. Native gel mobility shift assays show that Hfq increases the rate of DsrA binding to the full 576 nt rpoS leader as much as 50-fold. By contrast, base-pairing with a 138-nt RNA containing just the repressor stem-loop is accelerated only twofold. Deletion and mutagenesis experiments showed that sensitivity to Hfq requires an upstream AAYAA sequence. Leaders long enough to contain this sequence bind Hfq tightly and form stable ternary complexes with Hfq and DsrA. A model is proposed in which Hfq recruits DsrA to the rpoS mRNA by binding both RNAs, releasing the self-repressing structure in the mRNA. Once base-pairing between DsrA and rpoS mRNA is established, interactions between Hfq and the mRNA may stabilize the RNA complex by removing Hfq from the sRNA.
Collapse
Affiliation(s)
- Toby J Soper
- Program in Cellular, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | | |
Collapse
|
22
|
Functional circularity of legitimate Qbeta replicase templates. J Mol Biol 2008; 379:414-27. [PMID: 18466922 PMCID: PMC7173182 DOI: 10.1016/j.jmb.2008.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/12/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022]
Abstract
Qbeta replicase (RNA-directed RNA polymerase of bacteriophage Qbeta) exponentially amplifies certain RNAs in vitro. Previous studies have shown that Qbeta replicase can initiate and elongate on a variety of RNAs; however, only a minute fraction of them are recognized as 'legitimate' templates. Guanosine 5'-triphosphate (GTP)-dependent initiation on a legitimate template generates a stable replicative complex capable of elongation in the presence of aurintricarboxylic acid, a powerful inhibitor of RNA-protein interactions. On the contrary, initiation on an illegitimate template is GTP independent and does not result in the aurintricarboxylic-acid-resistant replicative complex. This article demonstrates that the 3' and 5' termini of a legitimate template cooperate during and after the initiation step. Breach of the cooperation by dividing the template into fragments or by introducing point mutations at the 5' terminus reduces the rate and the yield of initiation, increases the GTP requirement, decreases the overall rate of template copying, and destabilizes the postinitiation replicative complex. These results revive the old idea of a functional circularity of legitimate Qbeta replicase templates and complement the increasing body of evidence that functional circularity may be a common property of RNA templates directing the synthesis of either RNA or protein molecules.
Collapse
|
23
|
Hosoda K, Matsuura T, Kita H, Ichihashi N, Tsukada K, Yomo T. Kinetic analysis of the entire RNA amplification process by Qbeta replicase. J Biol Chem 2007; 282:15516-27. [PMID: 17412690 DOI: 10.1074/jbc.m700307200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of the RNA replication reaction by Qbeta replicase were investigated. Qbeta replicase is an RNA-dependent RNA polymerase responsible for replicating the RNA genome of coliphage Qbeta and plays a key role in the life cycle of the Qbeta phage. Although the RNA replication reaction using this enzyme has long been studied, a kinetic model that can describe the entire RNA amplification process has yet to be determined. In this study, we propose a kinetic model that is able to account for the entire RNA amplification process. The key to our proposed kinetic model is the consideration of nonproductive binding (i.e. binding of an enzyme to the RNA where the enzyme cannot initiate the reaction). By considering nonproductive binding and the notable enzyme inactivation we observed, the previous observations that remained unresolved could also be explained. Moreover, based on the kinetic model and the experimental results, we determined rate and equilibrium constants using template RNAs of various lengths. The proposed model and the obtained constants provide important information both for understanding the basis of Qbeta phage amplification and the applications using Qbeta replicase.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Contrary to their host cells, many viruses contain RNA as genetic material and hence encode an RNA-dependent RNA polymerase to replicate their genomes. This review discusses the present status of our knowledge on the structure of these enzymes and the mechanisms of RNA replication. The simplest viruses encode only the catalytic subunit of the replication complex, but other viruses also contribute a variable number of ancillary factors. These and other factors provided by the host cell play roles in the specificity and affinity of template recognition and the assembly of the replication complex. Usually, these host factors are involved in protein synthesis or RNA modification in the host cell, but they play roles in remodeling RNA-RNA, RNA-protein, and protein-protein interactions during virus RNA replication. Furthermore, viruses take advantage of and modify previous cell structural elements, frequently membrane vesicles, for the formation of RNA replication complexes.
Collapse
Affiliation(s)
- Juan Ortín
- Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain.
| | | |
Collapse
|
25
|
Abstract
Over the last five years Sm-like (Lsm) proteins have emerged as important players in many aspects of RNA metabolism, including splicing, nuclear RNA processing and messenger RNA decay. However, their precise function in these pathways remains somewhat obscure. In contrast, the role of the bacterial Lsm protein Hfq, which bears striking similarities in both structure and function to Lsm proteins, is much better characterized. In this perspective, we have highlighted several functions that Hfq shares with Lsm proteins and put forward hypotheses based on parallels between the two that might further the understanding of Lsm function.
Collapse
Affiliation(s)
- Carol J Wilusz
- Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
26
|
Abstract
Genome-wide analysis of temporal gene expression profiles in Escherichia coli following exposure to cadmium revealed a shift to anaerobic metabolism and induction of several stress response systems. Disruption in the transcription of genes encoding ribosomal proteins and zinc-binding proteins may partially explain the molecular mechanisms of cadmium toxicity.
Collapse
Affiliation(s)
- Anyou Wang
- Department of Environmental Sciences, University of Caliifornia, Riverside, CA 92521, USA
| | | |
Collapse
|
27
|
Folichon M, Allemand F, Régnier P, Hajnsdorf E. Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J 2005; 272:454-63. [PMID: 15654883 DOI: 10.1111/j.1742-4658.2004.04485.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial Lsm protein, host factor I (Hfq), is an RNA chaperone involved in many types of RNA transactions such as replication and stability, control of small RNA activity and polyadenylation. In this latter case, Hfq stimulates poly(A) synthesis and binds poly(A) tails that it protects from exonucleolytic degradation. We show here, that there is a correlation between Hfq binding to the 3' end of an RNA molecule and its ability to stimulate RNA elongation catalyzed by poly(A)polymerase I. In contrast, formation of the Hfq-RNA complex inhibits elongation of the RNA by polynucleotide phosphorylase. We demonstrate also that Hfq binding is not affected by the phosphorylation status of the RNA molecule and occurs equally well at terminal or internal stretches of poly(A).
Collapse
Affiliation(s)
- Marc Folichon
- UPR CNRS 9073, conventionnée avec l'Université Paris 7 - Denis Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
28
|
Lease RA, Woodson SA. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 2005; 344:1211-23. [PMID: 15561140 DOI: 10.1016/j.jmb.2004.10.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/22/2004] [Accepted: 10/06/2004] [Indexed: 11/15/2022]
Abstract
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.
Collapse
Affiliation(s)
- Richard A Lease
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2865, USA
| | | |
Collapse
|
29
|
Zhang G, Zhang J, Simon AE. Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. J Virol 2004; 78:7619-33. [PMID: 15220437 PMCID: PMC434078 DOI: 10.1128/jvi.78.14.7619-7633.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3'-terminal bases. Deletion of satC 3'-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3' end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3'-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3' terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3' end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3'-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD 20742, USA
| | | | | |
Collapse
|
30
|
Folichon M, Arluison V, Pellegrini O, Huntzinger E, Régnier P, Hajnsdorf E. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res 2004; 31:7302-10. [PMID: 14654705 PMCID: PMC291859 DOI: 10.1093/nar/gkg915] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hfq protein, which shares sequence and structural homology with the Sm and Lsm proteins, binds to various RNAs, primarily recognizing AU-rich single-stranded regions. In this paper, we study the ability of the Escherichia coli Hfq protein to bind to a polyadenylated fragment of rpsO mRNA. Hfq exhibits a high specificity for a 100-nucleotide RNA harboring 18 3'-terminal A-residues. Structural analysis of the adenylated RNA-Hfq complex and gel shift assays revealed the presence of two Hfq binding sites. Hfq binds primarily to the poly(A) tail, and to a lesser extent a U-rich sequence in a single-stranded region located between two hairpin structures. The oligo(A) tail and the interhelical region are sensitive to 3'-5' exoribonucleases and RNase E hydrolysis, respectively, in vivo. In vitro assays demonstrate that Hfq protects poly(A) tails from exonucleolytic degradation by both PNPase and RNase II. In addition, RNase E processing, which occurred close to the U-rich sequence, is impaired by the presence of Hfq. These data suggest that Hfq modulates the sensitivity of RNA to ribonucleases in the cell.
Collapse
Affiliation(s)
- Marc Folichon
- UPR CNRS No. 9073, Conventionnée avec l'Université Paris 7-Denis Diderot, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Bacher JM, Bull JJ, Ellington AD. Evolution of phage with chemically ambiguous proteomes. BMC Evol Biol 2003; 3:24. [PMID: 14667253 PMCID: PMC317279 DOI: 10.1186/1471-2148-3-24] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 12/10/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The widespread introduction of amino acid substitutions into organismal proteomes has occurred during natural evolution, but has been difficult to achieve by directed evolution. The adaptation of the translation apparatus represents one barrier, but the multiple mutations that may be required throughout a proteome in order to accommodate an alternative amino acid or analogue is an even more daunting problem. The evolution of a small bacteriophage proteome to accommodate an unnatural amino acid analogue can provide insights into the number and type of substitutions that individual proteins will require to retain functionality. RESULTS The bacteriophage Qbeta initially grows poorly in the presence of the amino acid analogue 6-fluorotryptophan. After 25 serial passages, the fitness of the phage on the analogue was substantially increased; there was no loss of fitness when the evolved phage were passaged in the presence of tryptophan. Seven mutations were fixed throughout the phage in two independent lines of descent. None of the mutations changed a tryptophan residue. CONCLUSIONS A relatively small number of mutations allowed an unnatural amino acid to be functionally incorporated into a highly interdependent set of proteins. These results support the 'ambiguous intermediate' hypothesis for the emergence of divergent genetic codes, in which the adoption of a new genetic code is preceded by the evolution of proteins that can simultaneously accommodate more than one amino acid at a given codon. It may now be possible to direct the evolution of organisms with novel genetic codes using methods that promote ambiguous intermediates.
Collapse
Affiliation(s)
- Jamie M Bacher
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA 78712
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - James J Bull
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA 78712
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA 78712
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA 78712
| |
Collapse
|
32
|
Karring H, Mathu SGJ, van Duin J, Clark BFC, Kraal B, Knudsen CR. Qbeta-phage resistance by deletion of the coiled-coil motif in elongation factor Ts. J Biol Chem 2003; 279:1878-84. [PMID: 14583631 DOI: 10.1074/jbc.m306605200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor Ts (EF-Ts) is the guanine-nucleotide exchange factor of elongation factor Tu (EF-Tu), which promotes the binding of aminoacyl-tRNA to the mRNA-programmed ribosome in prokaryotes. The EF-Tu.EF-Ts complex, one of the EF-Tu complexes during protein synthesis, is also a component of RNA-dependent RNA polymerases like the polymerase from coliphage Qbeta. The present study shows that the Escherichia coli mutant GRd.tsf lacking the coiled-coil motif of EF-Ts is completely resistant to phage Qbeta and that Qbeta-polymerase complex formation is not observed. GRd.tsf is the first E. coli mutant ever described that is unable to form a Qbeta-polymerase complex while still maintaining an almost normal growth behavior. The phage resistance correlates with an observed instability of the mutant EF-Tu.EF-Ts complex in the presence of guanine nucleotides. Thus, the mutant EF-Tu.EF-Ts is the first EF-Tu.EF-Ts complex ever described that is completely inactive in the Qbeta-polymerase complex despite its almost full activity in protein synthesis. We propose that the role of EF-Ts in the Qbeta-polymerase complex is to control and trap EF-Tu in a stable conformation with affinity for RNA templates while unable to bind aminoacyl-tRNA.
Collapse
Affiliation(s)
- Henrik Karring
- Department of Molecular Biology, Gustav Wieds Vej 10c, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
33
|
Le Derout J, Folichon M, Briani F, Dehò G, Régnier P, Hajnsdorf E. Hfq affects the length and the frequency of short oligo(A) tails at the 3' end of Escherichia coli rpsO mRNAs. Nucleic Acids Res 2003; 31:4017-23. [PMID: 12853618 PMCID: PMC165971 DOI: 10.1093/nar/gkg456] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Polyadenylation plays an important role in RNA degradation in bacterial cells. In Escherichia coli, exoribonucleases, mostly RNase II and polynucleotide phosphorylase, antagonize the synthesis of poly(A) tails by poly(A) polymerase I (PAP I). In accordance with earlier observations showing that only a small fraction of bacterial RNA is polyadenylated, we demonstrate here that approximately 10% of rpsO mRNA harbors short oligo(A) tails ranging from one to five A residues in wild-type cells. We also compared the length, frequency and distribution of poly(A) tails at the 3'-end of rpsO transcripts in vivo in the presence and absence of Hfq, a host factor that in vitro stimulates the activity of PAP I, and found that Hfq affects all three parameters. In the hfq(+) strain the average length of oligo(A) tails and frequency of polyadenylated transcripts was higher than in the hfq(-) strain and a smaller proportion of tails was found at the 3' end of transcripts terminated at the Rho- independent terminator. Our data led us to the conclusion that Hfq is involved in the recognition of 3' RNA extremities by PAP I.
Collapse
Affiliation(s)
- Jacques Le Derout
- UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Brescia CC, Mikulecky PJ, Feig AL, Sledjeski DD. Identification of the Hfq-binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure. RNA (NEW YORK, N.Y.) 2003; 9:33-43. [PMID: 12554874 PMCID: PMC1370368 DOI: 10.1261/rna.2570803] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 09/25/2002] [Indexed: 05/18/2023]
Abstract
DsrA RNA regulates the translation of two global regulatory proteins in Escherichia coli. DsrA activates the translation of RpoS while repressing the translation of H-NS. The RNA-binding protein Hfq is necessary for DsrA to function in vivo. Although Hfq binds to DsrA in vitro, the role of Hfq in DsrA-mediated regulation is not known. One hypothesis was that Hfq acts as an RNA chaperone by unfolding DsrA, thereby facilitating interactions with target RNAs. To test this hypothesis, we have examined the structure of DsrA bound to Hfq in vitro. Comparison of free DsrA to DsrA bound to Hfq by RNase footprinting, circular dichroism, and thermal melt profiles shows that Hfq does not alter DsrA secondary structures, but might affect its tertiary conformation. We identify the site on DsrA where Hfq binds, which is a structural element in the middle of DsrA. In addition, we show that although long poly(U) RNAs compete with DsrA for binding to Hfq, a short poly(U) stretch present in DsrA is not necessary for Hfq binding. Finally, unlike other RNAs, DsrA binding to Hfq is not competed with by poly(A) RNA. In fact, DsrA:poly(A):Hfq may form a stable ternary complex, raising the possibility that Hfq has multiple RNA-binding sites.
Collapse
Affiliation(s)
- Cristin C Brescia
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo 43614, USA
| | | | | | | |
Collapse
|
35
|
Fata CL, Sawicki SG, Sawicki DL. Alphavirus minus-strand RNA synthesis: identification of a role for Arg183 of the nsP4 polymerase. J Virol 2002; 76:8632-40. [PMID: 12163582 PMCID: PMC136981 DOI: 10.1128/jvi.76.17.8632-8640.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A partially conserved region spanning amino acids 142 to 191 of the Sindbis virus (SIN) nsP4 core polymerase is implicated in host restriction, elongation, and promoter recognition. We extended the analysis of this region by substituting Ser, Ala, or Lys for a highly conserved Arg183 residue immediately preceding its absolutely conserved Ser184-Ala-Val-Pro-Ser188 sequence. In chicken cells, the nsP4 Arg183 mutants had a nonconditionally lethal, temperature-sensitive (ts) growth phenotype caused by a ts defect in minus-strand synthesis whose extent varied with the particular amino acid substituted (Ser>Ala>Lys). Plus-strand synthesis by nsP4 Arg183 mutant polymerases was unaffected when corrected for minus-strand numbers, although 26S mRNA synthesis was enhanced at the elevated temperature compared to wild type. The ts defect was not due to a failure to form or accumulate nsP4 at 40 degrees C. In contrast to their growth in chicken cells, the nsP4 Arg183 mutants replicated equally poorly, if at all, in mosquito cells. We conclude that Arg183 within the Pro180-Asn-Ile-Arg-Ser184 sequence of the SIN nsP4 polymerase contributes to the efficient initiation of minus strands or the formation of its replicase and that a host factor(s) participates in this event.
Collapse
Affiliation(s)
- Cori L Fata
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
36
|
Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002; 66:373-95, table of contents. [PMID: 12208995 PMCID: PMC120795 DOI: 10.1128/mmbr.66.3.373-395.2002] [Citation(s) in RCA: 705] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The sigma(S) (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little sigma(S), exposure to many different stress conditions results in rapid and strong sigma(S) induction. Consequently, transcription of numerous sigma(S)-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular sigma(S) level is achieved by rpoS transcriptional and translational control as well as by regulated sigma(S) proteolysis, with various stress conditions differentially affecting these levels of sigma(S) control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of sigma(S), which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of sigma(S) regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For sigma(S) proteolysis, the response regulator RssB is essential. RssB is a specific direct sigma(S) recognition factor, whose affinity for sigma(S) is modulated by phosphorylation of its receiver domain. RssB delivers sigma(S) to the ClpXP protease, where sigma(S) is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.
Collapse
Affiliation(s)
- Regine Hengge-Aronis
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
37
|
Arluison V, Derreumaux P, Allemand F, Folichon M, Hajnsdorf E, Régnier P. Structural Modelling of the Sm-like Protein Hfq from Escherichia coli. J Mol Biol 2002; 320:705-12. [PMID: 12095248 DOI: 10.1016/s0022-2836(02)00548-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Hfq polypeptide of Escherichia coli is a nucleic acid-binding protein involved in the expression of many proteins. Derivation of its three-dimensional structure is important for our understanding of its role in gene regulation at the molecular level. In this study, we combined computational and biophysical analysis to derive a possible structure for Hfq. As a first step towards determining the structure, we searched for possible sequence-structure compatibility, using secondary structure prediction and protein domain and fold-recognition methods available on the WEB. One fold, essentially beta sheet in character, the Sm motif of small nuclear ribonucleoproteins, even though it initially fell well below the confidence thresholds, was proposed and further validated by a series of biophysical and biochemical studies. The Hfq hexamer structure was modelled on the human Sm D3B structure using optimised sequence alignments and molecular mechanics methods. This structure accounts for the physico-chemical properties of Hfq and highlights amino acid residues that could interact with RNA.
Collapse
Affiliation(s)
- Véronique Arluison
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, 13 rue P. et M. Curie, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 2002; 21:3546-56. [PMID: 12093755 PMCID: PMC126077 DOI: 10.1093/emboj/cdf322] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In prokaryotes, Hfq regulates translation by modulating the structure of numerous RNA molecules by binding preferentially to A/U-rich sequences. To elucidate the mechanisms of target recognition and translation regulation by Hfq, we determined the crystal structures of the Staphylococcus aureus Hfq and an Hfq-RNA complex to 1.55 and 2.71 A resolution, respectively. The structures reveal that Hfq possesses the Sm-fold previously observed only in eukaryotes and archaea. However, unlike these heptameric Sm proteins, Hfq forms a homo-hexameric ring. The Hfq-RNA structure reveals that the single-stranded hepta-oligoribonucleotide binds in a circular conformation around a central basic cleft, whereby Tyr42 residues from adjacent subunits stack with six of the bases, and Gln8, outside the Sm motif, provides key protein-base contacts. Such binding suggests a mechanism for Hfq function.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Carrier Proteins/ultrastructure
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Gene Expression Regulation, Bacterial
- Host Factor 1 Protein
- Integration Host Factors
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- Recombinant Fusion Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Staphylococcus aureus/chemistry
- Substrate Specificity
Collapse
Affiliation(s)
| | | | - Thorleif Møller
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201-3098, USA and
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark Corresponding author e-mail:
| | - Poul Valentin-Hansen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201-3098, USA and
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark Corresponding author e-mail:
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201-3098, USA and
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark Corresponding author e-mail:
| |
Collapse
|
39
|
Sonnleitner E, Moll I, Bläsi U. Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2002; 148:883-891. [PMID: 11882724 DOI: 10.1099/00221287-148-3-883] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 102 aa Hfq protein of Escherichia coli (Hfq(Ec)) was first described as a host factor required for phage Qbeta replication. More recently, Hfq was shown to affect the stability of several E. coli mRNAs, including ompA mRNA, where it interferes with ribosome binding, which in turn results in rapid degradation of the transcript. In contrast, Hfq is also required for efficient translation of the E. coli and Salmonella typhimurium rpoS gene, encoding the stationary sigma factor. In this study, the authors have isolated and characterized the Hfq homologue of Pseudomonas aeruginosa (Hfq(Pa)), which consists of only 82 aa. The 68 N-terminal amino acids of Hfq(Pa) show 92% identity with Hfq(Ec). Hfq(Pa) was shown to functionally replace Hfq(Ec) in terms of its requirement for phage Qbeta replication and for rpoS expression. In addition, Hfq(Pa) exerted the same negative effect on E. coli ompA mRNA expression. As judged by proteome analysis, the expression of either the plasmid-borne hfq(Pa) or the hfq(Ec) gene in an E. coli Hfq(-) RpoS(-) strain revealed no gross difference in the protein profile. Both Hfq(Ec) and Hfq(Pa) affected the synthesis of approximately 26 RpoS-independent E. coli gene products. These studies showed that the functional domain of Hfq resides within its N-terminal domain. The observation that a C-terminally truncated Hfq(Ec) lacking the last 27 aa [Hfq(Ec(75))] can also functionally replace the full-length E. coli protein lends further support to this notion.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Institute of Microbiology and Genetics, Vienna Biocentre, Dr Bohrgasse 9, 1030 Vienna, Austria1
| | - Isabella Moll
- Institute of Microbiology and Genetics, Vienna Biocentre, Dr Bohrgasse 9, 1030 Vienna, Austria1
| | - Udo Bläsi
- Institute of Microbiology and Genetics, Vienna Biocentre, Dr Bohrgasse 9, 1030 Vienna, Austria1
| |
Collapse
|
40
|
Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002; 9:11-22. [PMID: 11804582 DOI: 10.1016/s1097-2765(01)00437-3] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli host factor I, Hfq, binds to many small regulatory RNAs and is required for OxyS RNA repression of fhlA and rpoS mRNA translation. Here we report that Hfq is a bacterial homolog of the Sm and Sm-like proteins integral to RNA processing and mRNA degradation complexes in eukaryotic cells. Hfq exhibits the hallmark features of Sm and Sm-like proteins: the Sm1 sequence motif, a multisubunit ring structure (in this case a homomeric hexamer), and preferential binding to polyU. We also show that Hfq increases the OxyS RNA interaction with its target messages and propose that the enhancement of RNA-RNA pairing may be a general function of Hfq, Sm, and Sm-like proteins.
Collapse
Affiliation(s)
- Aixia Zhang
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
DsrA is an 85-nucleotide, untranslated RNA that has multiple regulatory activities at 30 degrees C. These activities include the translational regulation of RpoS and H-NS, global transcriptional regulators in Escherichia coli. Hfq is an E. coli protein necessary for the in vitro and in vivo replication of the RNA phage Qbeta. Hfq also plays a role in the degradation of numerous RNA transcripts. Here we show that an hfq mutant strain is defective for DsrA-mediated regulation of both rpoS and hns. The defect in rpoS expression can be partially overcome by overexpression of DsrA. Hfq does not regulate the transcription of DsrA, and DsrA does not alter the accumulation of Hfq. However, in an hfq mutant, chromosome-expressed DsrA was unstable (half-life of 1 min) and truncated at the 3' end. When expressed from a multicopy plasmid, DsrA was stable in both wild-type and hfq mutant strains, but it had only partial activity in the hfq mutant strain. Purified Hfq binds DsrA in vitro. These results suggest that Hfq acts as a protein cofactor for the regulatory activities of DsrA by either altering the structure of DsrA or forming an active RNA-protein complex.
Collapse
Affiliation(s)
- D D Sledjeski
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
42
|
Wu B, Vanti WB, White KA. An RNA domain within the 5' untranslated region of the tomato bushy stunt virus genome modulates viral RNA replication. J Mol Biol 2001; 305:741-56. [PMID: 11162089 DOI: 10.1006/jmbi.2000.4298] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The terminal half of the 5' untranslated region (UTR) in the (+)-strand RNA genome of tomato bushy stunt virus was analyzed for possible roles in viral RNA replication. Computer-aided thermodynamic analysis of secondary structure, phylogenetic comparisons for base-pair covariation, and chemical and enzymatic solution structure probing were used to analyze the 78 nucleotide long 5'-terminal sequence. The results indicate that this sequence adopts a branched secondary structure containing a three-helix junction core. The T-shaped domain (TSD) formed by this terminal sequence is closed by a prominent ten base-pair long helix, termed stem 1 (S1). Deletion of either the 5' or 3' segment forming S1 (coordinates 1-10 or 69-78, respectively) in a model subviral RNA replicon, i.e. a prototypical defective interfering (DI) RNA, reduced in vivo accumulation levels of this molecule approximately 20-fold. Compensatory-type mutational analysis of S1 within this replicon revealed a strong correlation between formation of the predicted S1 structure and efficient DI RNA accumulation. RNA decay studies in vivo did not reveal any notable changes in the physical stabilities of DI RNAs containing disrupted S1s, thus implicating RNA replication as the affected process. Further investigation revealed that destabilization of S1 in the (+)-strand was significantly more detrimental to DI RNA accumulation than (-)-strand destabilization, therefore S1-mediated activity likely functions primarily via the (+)-strand. The essential role of S1 in DI RNA accumulation prompted us to examine the 5'-proximal secondary structure of a previously identified mutant DI RNA, RNA B, that lacks the 5' UTR but is still capable of low levels of replication. Mutational analysis of a predicted S1-like element present within a cryptic 5'-terminal TSD confirmed the importance of the former in RNA B accumulation. Collectively, these data support a fundamental role for the TSD, and in particular its S1 subelement, in tombusvirus RNA replication.
Collapse
Affiliation(s)
- B Wu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | | | | |
Collapse
|
43
|
Abstract
DsrA is an 87 nucleotide Escherichia coli RNA with extraordinary regulatory properties. The profound impact of its actions stems from DsrA regulating translation of two global transcription regulators, H-NS and RpoS (sigmas), by sequence-specific RNA-RNA interactions. H-NS is a major nucleoid-structuring and global repressor protein, and RpoS is the stationary phase and stress response sigma factor of RNA polymerase. DsrA changes its conformation to bind to these two different mRNA targets and thereby inhibits H-NS translation, while stimulating that of RpoS in a mechanistically distinct fashion. DsrA apparently binds both the start and the stop codons of hns mRNA and sharply decreases the mRNA half-life. DsrA also binds sequences in the 5'-untranslated leader region of rpoS mRNA, enhancing rpoS mRNA stability and RpoS translation. A cohort of genes, governed by H-NS repression and RpoS activation, are thus regulated. Low temperatures increase the levels of DsrA, with differential effects on H-NS and RpoS. Additionally, the RNA chaperone protein Hfq is involved with DsrA regulation, as well as with other small RNAs that also act on RpoS to co-ordinate stress responses. We address the possible functions of this genetic regulatory mechanism, as well as the advantages of using small RNAs as global regulators to orchestrate gene expression.
Collapse
Affiliation(s)
- R A Lease
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201-2002, USA.
| | | |
Collapse
|
44
|
Azam TA, Hiraga S, Ishihama A. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 2000; 5:613-26. [PMID: 10947847 DOI: 10.1046/j.1365-2443.2000.00350.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The genome DNA of Escherichia coli is folded into the nucleosome-like structure, often called a nucleoid, by the binding of several DNA-binding proteins. We previously determined the specificity and affinity of DNA-binding for 12 species of the E. coli DNA-binding protein, and their intracellular concentrations at various growth phases. The intracellular localization of these proteins in E. coli could be predicted from these data, but no attempt has been made thus far to directly observe the intracellular distribution of the DNA-binding proteins. RESULTS The intracellular localization in Escherichia coli of 10 species of the nucleoid-associated protein, three components of the transcripton apparatus, and three components of the translation machinery was investigated by indirect immuno-fluorescence microscopy. The DNA-binding proteins could be classified into two groups. The group-I proteins, including the major nucleoid-structural proteins, H-NS, HU, IHF, StpA and Dps, are distributed uniformly within the entire nucleoid. In contrast, the group-II proteins, which are presumed to possess regulatory activities of DNA functions accumulate at specific loci within the nucleoid, forming 2 (SeqA), 3-4 (CbpA and CbpB) and 6-10 (Fis and IciA) immuno-stained dots. Each immuno-stained dot may represent either the association of a hundred to one thousand molecules of each DNA-binding protein at a specific locus of the genome DNA or the assembly of protein-associated DNA segments from different domains of the folded genome. Both the RNA polymerase core enzyme and the sigma70 subunit are mainly associated with the nucleoid, but the anti-sigma70 factor (Rsd) appears to be accumulated at the boundary between the nucleoid and the cytosol in the stationary-phase cells. Here we show that the majority of Hfq is present in cytoplasm together with ribosomal proteins L7/L12 and RMF. CONCLUSION The DNA-binding proteins of E. coli could be classified into two groups. One group proteins was distributed uniformly within the nucleoid, but the other group of proteins showed an irregular distribution, forming immuno-stained spots or clumps.
Collapse
Affiliation(s)
- T A Azam
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
45
|
Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000; 14:1109-18. [PMID: 10809669 PMCID: PMC316587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The adaptation of mRNA stability to environmental changes is a means of cells to adjust the level of gene expression. The Escherichia coli ompA mRNA has served as one of the paradigms for regulated mRNA decay in prokaryotes. The stability of the transcript is known to be correlated inversely with the bacterial growth rate. Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division. Recently, host factor I (Hfq/HF1) was shown to be involved in the regulation of ompA mRNA stability under slow growth conditions. Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5'-UTR protect the transcript from RNase E cleavage in vitro. However, the 30S protection was found to be abrogated in the presence of Hfq. Toeprinting and in vitro translation assays revealed that translation of ompA is repressed in the presence of Hfq. These in vitro studies are corroborated by in vivo expression studies demonstrating that the reduced synthesis rate of OmpA effected by Hfq results in functional inactivation of the ompA mRNA. The data are discussed in terms of a model wherein Hfq regulates the stability of ompA mRNA by competing with 30S ribosomes for binding to the ompA 5'-UTR.
Collapse
Affiliation(s)
- O Vytvytska
- Institute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
46
|
Yoshinari S, Nagy PD, Simon AE, Dreher TW. CCA initiation boxes without unique promoter elements support in vitro transcription by three viral RNA-dependent RNA polymerases. RNA (NEW YORK, N.Y.) 2000; 6:698-707. [PMID: 10836791 PMCID: PMC1369950 DOI: 10.1017/s1355838200992410] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It has previously been observed that the only specific requirement for transcriptional initiation on viral RNA in vitro by the RNA-dependent RNA polymerase (RdRp) of turnip yellow mosaic virus is the CCA at the 3' end of the genome. We now compare the abilities of this RdRp, turnip crinkle virus RdRp, and Qbeta replicase, an enzyme capable of supporting the complete viral replication cycle in vitro, to transcribe RNA templates containing multiple CCA boxes but lacking specific viral sequences. Each enzyme is able to initiate transcription from several CCA boxes within these RNAs, and no special reaction conditions are required for these activities. The transcriptional yields produced from templates comprised of multiple CCA or CCCA repeats relative to templates derived from native viral RNA sequences vary between 2:1 and 0.1:1 for the different RdRps. Control of initiation by such redundant sequences presents a challenge to the specificity of viral transcription and replication. We identify 3'-preferential initiation and sensitivity to structural presentation as two specificity mechanisms that can limit initiation among potential CCA initiation sites. These two specificity mechanisms are used to different degrees by the three RdRps. The finding that three viral RdRps representing two of the three supergroups within the positive-strand RNA viral RdRp phylogeny support substantial transcription in the absence of unique promoters suggests that this phenomenon may be common among positive-strand viruses. A framework is presented arguing that replication of viral RNA in the absence of unique promoter elements is feasible.
Collapse
Affiliation(s)
- S Yoshinari
- Department of Microbiology, Oregon State University, Corvallis 97331, USA
| | | | | | | |
Collapse
|
47
|
Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1109] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The adaptation of mRNA stability to environmental changes is a means of cells to adjust the level of gene expression. The Escherichia coli ompA mRNA has served as one of the paradigms for regulated mRNA decay in prokaryotes. The stability of the transcript is known to be correlated inversely with the bacterial growth rate. Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division. Recently, host factor I (Hfq/HF1) was shown to be involved in the regulation of ompA mRNA stability under slow growth conditions. Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5′-UTR protect the transcript from RNase E cleavage in vitro. However, the 30S protection was found to be abrogated in the presence of Hfq. Toeprinting and in vitro translation assays revealed that translation of ompA is repressed in the presence of Hfq. These in vitro studies are corroborated by in vivo expression studies demonstrating that the reduced synthesis rate of OmpA effected by Hfq results in functional inactivation of the ompA mRNA. The data are discussed in terms of a model wherein Hfq regulates the stability of ompA mRNA by competing with 30S ribosomes for binding to the ompA 5′-UTR.
Collapse
|
48
|
Nogueira T, Springer M. Post-transcriptional control by global regulators of gene expression in bacteria. Curr Opin Microbiol 2000; 3:154-8. [PMID: 10744991 DOI: 10.1016/s1369-5274(00)00068-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several authentic or potential global regulators have recently been shown to act at the post-transcriptional level. This is the case for Hfq (HF-1), which is involved in the regulation of an increasing number of genes in Escherichia coli, and CsrA (RsmA) responsible for controlling the expression of genes for extracellular enzymes and secondary metabolism in Gram-negative bacteria. The cold-shock proteins of the CspA family are able to destabilise mRNA secondary structures at low temperature and, therefore, also seem to act post-transcriptionally. These findings illustrate a more general aspect of post-transcriptional control which, in the past, was generally restricted to regulators acting at a single target. The expression of several global transcriptional regulators, such as the stationary phase and heat-shock sigma factors and H-NS, have also recently been shown to be themselves under post-transcriptional control. These examples underline the importance of this type of control in bacterial gene regulation.
Collapse
Affiliation(s)
- T Nogueira
- Institut de Biologie Physico-chimique, Paris, 75005, France
| | | |
Collapse
|
49
|
Schuppli D, Georgijevic J, Weber H. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase. J Mol Biol 2000; 295:149-54. [PMID: 10623514 DOI: 10.1006/jmbi.1999.3373] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that Escherichia coli cells deficient in Hfq protein (i.e. the Qbeta "host factor") support bacteriophage Qbeta replication inefficiently, but that the phage evolves rapidly in the mutant host to become essentially host factor independent. An identical set of four point mutations was identified as being responsible for the adapted phenotype in each of three independent adaptation experiments. Here we report the effects of the single mutations and of some of their combinations on host factor dependence of phage multiplication in vivo and of phage RNA replication by Qbeta replicase in vitro. We find that each single substitution produces only small effects, but that in combination the four mutations synergistically account for most of the observed adaptation of the evolved phages. Surprisingly, a reanalysis of the 3'-terminal sequence of the adapted phages resulted in the discovery of a fifth mutation in all three independently evolved phage populations, namely, a C to U residue transition at nucleotide 4214. This mutation had been missed previously because of its location only three nucleotides from the 3'-end. It appears to contribute little to the Hfq independence but may enhance RNA stability by re-establishing the possibility of forming a long-range base-pairing interaction involving the immediate 3'-terminal sequence.
Collapse
Affiliation(s)
- D Schuppli
- Universit]at Z]urich, Z]urich, 8057, Switzerland
| | | | | |
Collapse
|
50
|
Abstract
A puzzling aspect of replication of bacteriophage Qbeta RNA has always been that replicase binds at an internal segment, the M-site, some 1450 nt away from the 3' end. Here, we report on the existence of a long-range pseudoknot, base-pairing eight nt in the loop of the 3' terminal hairpin to a single-stranded interdomain sequence located about 1200 nt upstream, close to the internal replicase binding site. Introduction of a single mismatch into this pseudoknot is sufficient to abolish replication, but the inhibition is fully reversed by a second-site substitution that restores the pairing. The pseudoknot is part of an elaborate structure that seems to hold the 3' end in a fixed position vis a vis the replicase binding site. Our results imply that the shape of the RNA confers the functonality. We discuss the possible relevance of our findings for replication of other viral RNAs.
Collapse
Affiliation(s)
- J Klovins
- Department of Biochemistry Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, 2300 RA, The Netherlands
| | | |
Collapse
|