1
|
Argall AD, Sucharski-Argall HC, Comisford LG, Jurs SJ, Seminetta JT, Wallace MJ, Crawford CA, Takenaka SS, Han M, El Refaey M, Hund TJ, Mohler PJ, Koenig SN. Novel Identification of Ankyrin-R in Cardiac Fibroblasts and a Potential Role in Heart Failure. Int J Mol Sci 2024; 25:8403. [PMID: 39125973 PMCID: PMC11313496 DOI: 10.3390/ijms25158403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Altered ankyrin-R (AnkR; encoded by ANK1) expression is associated with diastolic function, left ventricular remodeling, and heart failure with preserved ejection fraction (HFpEF). First identified in erythrocytes, the role of AnkR in other tissues, particularly the heart, is less studied. Here, we identified the expression of both canonical and small isoforms of AnkR in the mouse myocardium. We demonstrate that cardiac myocytes primarily express small AnkR (sAnkR), whereas cardiac fibroblasts predominantly express canonical AnkR. As canonical AnkR expression in cardiac fibroblasts is unstudied, we focused on expression and localization in these cells. AnkR is expressed in both the perinuclear and cytoplasmic regions of fibroblasts with considerable overlap with the trans-Golgi network protein 38, TGN38, suggesting a potential role in trafficking. To study the role of AnkR in fibroblasts, we generated mice lacking AnkR in activated fibroblasts (Ank1-ifKO mice). Notably, Ank1-ifKO mice fibroblasts displayed reduced collagen compaction, supportive of a novel role of AnkR in normal fibroblast function. At the whole animal level, in response to a heart failure model, Ank1-ifKO mice displayed an increase in fibrosis and T-wave inversion compared with littermate controls, while preserving cardiac ejection fraction. Collagen type I fibers were decreased in the Ank1-ifKO mice, suggesting a novel function of AnkR in the maturation of collagen fibers. In summary, our findings illustrate the novel expression of AnkR in cardiac fibroblasts and a potential role in cardiac function in response to stress.
Collapse
Affiliation(s)
- Aaron D. Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Holly C. Sucharski-Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Luke G. Comisford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sallie J. Jurs
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Jack T. Seminetta
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Casey A. Crawford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sarah S. Takenaka
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Mei Han
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sara N. Koenig
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Hodeify R, Kreydiyyeh S, Zaid LMJ. Identified and potential internalization signals involved in trafficking and regulation of Na +/K + ATPase activity. Mol Cell Biochem 2024; 479:1583-1598. [PMID: 37634170 PMCID: PMC11254989 DOI: 10.1007/s11010-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The sodium-potassium pump (NKA) or Na+/K+ ATPase consumes around 30-40% of the total energy expenditure of the animal cell on the generation of the sodium and potassium electrochemical gradients that regulate various electrolyte and nutrient transport processes. The vital role of this protein entails proper spatial and temporal regulation of its activity through modulatory mechanisms involving its expression, localization, enzymatic activity, and protein-protein interactions. The residence of the NKA at the plasma membrane is compulsory for its action as an antiporter. Despite the huge body of literature reporting on its trafficking between the cell membrane and intracellular compartments, the mechanisms controlling the trafficking process are by far the least understood. Among the molecular determinants of the plasma membrane proteins trafficking are intrinsic sequence-based endocytic motifs. In this review, we (i) summarize previous reports linking the regulation of Na+/K+ ATPase trafficking and/or plasma membrane residence to its activity, with particular emphasis on the endocytic signals in the Na+/K+ ATPase alpha-subunit, (ii) map additional potential internalization signals within Na+/K+ ATPase catalytic alpha-subunit, based on canonical and noncanonical endocytic motifs reported in the literature, (iii) pinpoint known and potential phosphorylation sites associated with NKA trafficking, (iv) highlight our recent studies on Na+/K+ ATPase trafficking and PGE2-mediated Na+/K+ ATPase modulation in intestine, liver, and kidney cells.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Leen Mohammad Jamal Zaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
3
|
Li D. Role of Spectrin in Endocytosis. Cells 2022; 11:cells11152459. [PMID: 35954302 PMCID: PMC9368487 DOI: 10.3390/cells11152459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal spectrin is found in (non)erythroid cells. Eukaryotic endocytosis takes place for internalizing cargos from extracellular milieu. The role of spectrin in endocytosis still remains poorly understood. Here, I summarize current knowledge of spectrin function, spectrin-based cytoskeleton and endocytosis of erythrocytes, and highlight how spectrin contributes to endocytosis and working models in different types of cells. From an evolutionary viewpoint, I discuss spectrin and endocytosis in a range of organisms, particularly in plants and yeast where spectrin is absent. Together, the role of spectrin in endocytosis is related to its post-translational modification, movement/rearrangement, elimination (by proteases) and meshwork fencing.
Collapse
Affiliation(s)
- Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Kryvenko V, Vagin O, Dada LA, Sznajder JI, Vadász I. Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease. J Membr Biol 2021; 254:447-457. [PMID: 34114062 PMCID: PMC8192048 DOI: 10.1007/s00232-021-00184-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Klinikstrasse 33, 35392, Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - István Vadász
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Klinikstrasse 33, 35392, Giessen, Germany. .,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
5
|
Morrow JS, Stankewich MC. The Spread of Spectrin in Ataxia and Neurodegenerative Disease. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:131-139. [PMID: 34528024 PMCID: PMC8439443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Experimental and hereditary defects in the ubiquitous scaffolding proteins of the spectrin gene family cause an array of neuropathologies. Most recognized are ataxias caused by missense, deletions, or truncations in the SPTBN2 gene that encodes beta III spectrin. Such mutations disrupt the organization of post-synaptic receptors, their active transport through the secretory pathway, and the organization and dynamics of the actin-based neuronal skeleton. Similar mutations in SPTAN1 that encodes alpha II spectrin cause severe and usually lethal neurodevelopmental defects including one form of early infantile epileptic encephalopathy type 5 (West syndrome). Defects in these and other spectrins are implicated in degenerative and psychiatric conditions. In recent published work, we describe in mice a novel variant of alpha II spectrin that results in a progressive ataxia with widespread neurodegenerative change. The action of this variant is distinct, in that rather than disrupting a constitutive ligand-binding function of spectrin, the mutation alters its response to calcium and calmodulin-regulated signaling pathways including its response to calpain activation. As such, it represents a novel spectrinopathy that targets a key regulatory pathway where calcium and tyrosine kinase signals converge. Here we briefly discuss the various roles of spectrin in neuronal processes and calcium activated regulatory inputs that control its participation in neuronal growth, organization, and remodeling. We hypothesize that damage to the neuronal spectrin scaffold may be a common final pathway in many neurodegenerative disorders. Targeting the pathways that regulate spectrin function may thus offer novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Jon S. Morrow
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA,Molecular & Cellular Developmental Biology, Yale University, New Haven, CT 06520, USA,Correspondence should be addressed to Jon S. Morrow; , Michael Stankewich;
| | - Michael C. Stankewich
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA,Correspondence should be addressed to Jon S. Morrow; , Michael Stankewich;
| |
Collapse
|
6
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
7
|
Bajur AT, Iyer KV, Knust E. Cytocortex-dependent dynamics of Drosophila Crumbs controls junctional stability and tension during germ band retraction. J Cell Sci 2019; 132:jcs.228338. [PMID: 31300472 DOI: 10.1242/jcs.228338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
During morphogenesis, epithelia undergo dynamic rearrangements, which requires continuous remodelling of junctions and cell shape, but at the same time mechanisms preserving cell polarity and tissue integrity. Apico-basal polarity is key for the localisation of the machinery that enables cell shape changes. The evolutionarily conserved Drosophila Crumbs protein is critical for maintaining apico-basal polarity and epithelial integrity. How Crumbs is maintained in a dynamically developing embryo remains largely unknown. Here, we applied quantitative fluorescence techniques to show that, during germ band retraction, Crumbs dynamics correlates with the morphogenetic activity of the epithelium. Genetic and pharmacological perturbations revealed that the mobile pool of Crumbs is fine-tuned by the actomyosin cortex in a stage-dependent manner. Stabilisation of Crumbs at the plasma membrane depends on a proper link to the actomyosin cortex via an intact FERM-domain-binding site in its intracellular domain, loss of which leads to increased junctional tension and higher DE-cadherin (also known as Shotgun) turnover, resulting in impaired junctional rearrangements. These data define Crumbs as a mediator between polarity and junctional regulation to orchestrate epithelial remodelling in response to changes in actomyosin activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anna T Bajur
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - K Venkatesan Iyer
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
8
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
9
|
αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell Tissue Res 2018; 374:165-175. [PMID: 29725768 PMCID: PMC6132645 DOI: 10.1007/s00441-018-2842-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Mechanosensing of fibroblasts plays a key role in the development of fibrosis. So far, no effective treatments are available to treat this devastating disorder. Spectrins regulate cell morphology and are potential mechanosensors in a variety of non-erythroid cells, but little is known about the role of spectrins in fibroblasts. We investigate whether αII- and βII-spectrin are required for the phenotypic properties of adult human dermal (myo)fibroblasts. Knockdown of αII- or βII-spectrin in fibroblasts did not affect cell adhesion, cell size and YAP nuclear/cytosolic localization. We further investigated whether αII- and βII-spectrin play a role in the phenotypical switch from fibroblasts to myofibroblasts under the influence of the pro-fibrotic cytokine TGFβ1. Knockdown of spectrins did not affect myofibroblast formation, nor did we observe changes in the organization of αSMA stress fibers. Focal adhesion assembly was unaffected by spectrin deficiency, as was collagen type I mRNA expression and protein deposition. Wound closure was unaffected as well, showing that important functional properties of myofibroblasts are unchanged without αII- or βII-spectrin. In fact, fibroblasts stimulated with TGFβ1 demonstrated significantly lower endogenous mRNA levels of αII- and βII-spectrin. Taken together, despite the diverse roles of spectrins in a variety of other cells, αII- and βII-spectrin do not regulate cell adhesion, cell size and YAP localization in human dermal fibroblasts and are not required for the dermal myofibroblast phenotypical switch.
Collapse
|
10
|
Hund TJ, Unudurthi SD, Greer-Short A, Patel N, Nassal D. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther 2018; 16:59-65. [PMID: 29257730 PMCID: PMC6064643 DOI: 10.1080/14779072.2018.1418664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.
Collapse
Affiliation(s)
- Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
| | - Sathya D. Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| |
Collapse
|
11
|
Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells. Pflugers Arch 2017; 469:1401-1412. [DOI: 10.1007/s00424-017-1999-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
|
12
|
Malinouski M, Hasan NM, Zhang Y, Seravalli J, Lin J, Avanesov A, Lutsenko S, Gladyshev VN. Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat Commun 2015; 5:3301. [PMID: 24522796 PMCID: PMC5578452 DOI: 10.1038/ncomms4301] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/23/2014] [Indexed: 11/09/2022] Open
Abstract
Trace elements are essential for human metabolism and dysregulation of their homoeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and post-translational modifications; and the iron levels are influenced by iron import and expression of the iron/haeme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated data set opens new directions for studies of human trace element metabolism.
Collapse
Affiliation(s)
- Mikalai Malinouski
- 1] Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Yan Zhang
- 1] Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Javier Seravalli
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Jie Lin
- 1] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Andrei Avanesov
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Vadim N Gladyshev
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Farr GA, Hull M, Stoops EH, Bateson R, Caplan MJ. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Mol Biol Cell 2015; 26:4401-11. [PMID: 26424804 PMCID: PMC4666135 DOI: 10.1091/mbc.e14-09-1385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/24/2015] [Indexed: 11/14/2022] Open
Abstract
The trafficking of newly synthesized Na,K-ATPase and E-cadherin is observed in polarized epithelial cells. E-cadherin’s exit from the Golgi complex is not susceptible to 19°C temperature block. Furthermore, these proteins exit the Golgi and are delivered to the basolateral cell surface in separate vascular carriers. Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael Hull
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Emily H Stoops
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Rosalie Bateson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026 )
| |
Collapse
|
14
|
Exon organization and novel alternative splicing of Ank3 in mouse heart. PLoS One 2015; 10:e0128177. [PMID: 26024478 PMCID: PMC4449188 DOI: 10.1371/journal.pone.0128177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/24/2015] [Indexed: 12/02/2022] Open
Abstract
Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%), while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack β-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.
Collapse
|
15
|
Valenzuela JI, Jaureguiberry-Bravo M, Salas DA, Ramírez OA, Cornejo VH, Lu HE, Blanpied TA, Couve A. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors. J Cell Sci 2014; 127:3382-95. [PMID: 24895402 DOI: 10.1242/jcs.151092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles.
Collapse
Affiliation(s)
- José I Valenzuela
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Matías Jaureguiberry-Bravo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Daniela A Salas
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Omar A Ramírez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Program of Anatomy and Development, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Víctor H Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Hsiangmin E Lu
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| |
Collapse
|
16
|
Zhang R, Zhang C, Zhao Q, Li D. Spectrin: structure, function and disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1076-85. [PMID: 24302288 DOI: 10.1007/s11427-013-4575-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Spectrin is a large, cytoskeletal, and heterodimeric protein composed of modular structure of α and β subunits, it typically contains 106 contiguous amino acid sequence motifs called "spectrin repeats". Spectrin is crucial for maintaining the stability and structure of the cell membrane and the shape of a cell. Moreover, it contributes to diverse cell functions such as cell adhesion, cell spreading, and the cell cycle. Mutations of spectrin lead to various human diseases such as hereditary hemolytic anemia, type 5 spinocerebellar ataxia, cancer, as well as others. This review focuses on recent advances in determining the structure and function of spectrin as well as its role in disease.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | | | | | | |
Collapse
|
17
|
Egea G, Serra-Peinado C, Salcedo-Sicilia L, Gutiérrez-Martínez E. Actin acting at the Golgi. Histochem Cell Biol 2013; 140:347-60. [PMID: 23807268 DOI: 10.1007/s00418-013-1115-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 01/08/2023]
Abstract
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/Casanova, 143, 08036, Barcelona, Spain.
| | | | | | | |
Collapse
|
18
|
Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:620-34. [PMID: 23673272 DOI: 10.1016/j.bbamem.2013.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
This review focuses on structure and functions of spectrin as a major component of the membrane skeleton. Recent advances on spectrin function as an interface for signal transduction mediation and a number of data concerning interaction of spectrin with membrane channels, adhesion molecules, receptors and transporters draw a picture of multifaceted protein. Here, we attempted to show the current depiction of multitask role of spectrin in cell physiology. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Beata Machnicka
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | | | | | | | | - Elżbieta Heger
- University of Zielona Góra, Faculty of Biological Sciences, Poland
| | | |
Collapse
|
19
|
Salcedo-Sicilia L, Granell S, Jovic M, Sicart A, Mato E, Johannes L, Balla T, Egea G. βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem 2012; 288:2157-66. [PMID: 23233669 DOI: 10.1074/jbc.m112.406462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A spectrin-based cytoskeleton is associated with endomembranes, including the Golgi complex and cytoplasmic vesicles, but its role remains poorly understood. Using new generated antibodies to specific peptide sequences of the human βIII spectrin, we here show its distribution in the Golgi complex, where it is enriched in the trans-Golgi and trans-Golgi network. The use of a drug-inducible enzymatic assay that depletes the Golgi-associated pool of PI4P as well as the expression of PH domains of Golgi proteins that specifically recognize this phosphoinositide both displaced βIII spectrin from the Golgi. However, the interference with actin dynamics using actin toxins did not affect the localization of βIII spectrin to Golgi membranes. Depletion of βIII spectrin using siRNA technology and the microinjection of anti-βIII spectrin antibodies into the cytoplasm lead to the fragmentation of the Golgi. At ultrastructural level, Golgi fragments showed swollen distal Golgi cisternae and vesicular structures. Using a variety of protein transport assays, we show that the endoplasmic reticulum-to-Golgi and post-Golgi protein transports were impaired in βIII spectrin-depleted cells. However, the internalization of the Shiga toxin subunit B to the endoplasmic reticulum was unaffected. We state that βIII spectrin constitutes a major skeletal component of distal Golgi compartments, where it is necessary to maintain its structural integrity and secretory activity, and unlike actin, PI4P appears to be highly relevant for the association of βIII spectrin the Golgi complex.
Collapse
Affiliation(s)
- Laia Salcedo-Sicilia
- Department de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Leussis MP, Madison JM, Petryshen TL. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:18. [PMID: 23025490 PMCID: PMC3492013 DOI: 10.1186/2045-5380-2-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.
Collapse
Affiliation(s)
- Melanie P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
21
|
Fuller W, Tulloch LB, Shattock MJ, Calaghan SC, Howie J, Wypijewski KJ. Regulation of the cardiac sodium pump. Cell Mol Life Sci 2012; 70:1357-80. [PMID: 22955490 PMCID: PMC3607738 DOI: 10.1007/s00018-012-1134-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/27/2012] [Accepted: 08/13/2012] [Indexed: 01/24/2023]
Abstract
In cardiac muscle, the sarcolemmal sodium/potassium ATPase is the principal quantitative means of active transport at the myocyte cell surface, and its activity is essential for maintaining the trans-sarcolemmal sodium gradient that drives ion exchange and transport processes that are critical for cardiac function. The 72-residue phosphoprotein phospholemman regulates the sodium pump in the heart: unphosphorylated phospholemman inhibits the pump, and phospholemman phosphorylation increases pump activity. Phospholemman is subject to a remarkable plethora of post-translational modifications for such a small protein: the combination of three phosphorylation sites, two palmitoylation sites, and one glutathionylation site means that phospholemman integrates multiple signaling events to control the cardiac sodium pump. Since misregulation of cytosolic sodium contributes to contractile and metabolic dysfunction during cardiac failure, a complete understanding of the mechanisms that control the cardiac sodium pump is vital. This review explores our current understanding of these mechanisms.
Collapse
Affiliation(s)
- W Fuller
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine Dentistry and Nursing, University of Dundee, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF, Lecomte MC. Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 2011; 69:191-201. [PMID: 21877118 PMCID: PMC3249148 DOI: 10.1007/s00018-011-0804-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/12/2023]
Abstract
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.
Collapse
Affiliation(s)
- B Machnicka
- University of Zielona Góra, Zielona Góra, Poland
| | | | | | | | | |
Collapse
|
23
|
Targeted deletion of betaIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes. Proc Natl Acad Sci U S A 2010; 107:6022-7. [PMID: 20231455 DOI: 10.1073/pnas.1001522107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The spectrin membrane skeleton controls the disposition of selected membrane channels, receptors, and transporters. In the brain betaIII spectrin binds directly to the excitatory amino acid transporter (EAAT4), the glutamate receptor delta, and other proteins. Mutations in betaIII spectrin link strongly to human spinocerebellar ataxia type 5 (SCA5), correlating with alterations in EAAT4. We have explored the mechanistic basis of this phenotype by targeted gene disruption of Spnb3. Mice lacking intact betaIII spectrin develop normally. By 6 months they display a mild nonprogressive ataxia. By 1 year most Spnb3(-/-) animals develop a myoclonic seizure disorder with significant reductions of EAAT4, EAAT1, GluRdelta, IP3R, and NCAM140. Other synaptic proteins are normal. The cerebellum displays increased dark Purkinje cells (PC), a thin molecular layer, fewer synapses, a loss of dendritic spines, and a 2-fold expansion of the PC dendrite diameter. Membrane and expanded Golgi profiles fill the PC dendrite and soma, and both regions accumulate EAAT4. Correlating with the seizure disorder are enhanced hippocampal levels of neuropeptide Y and EAAT3 and increased calpain proteolysis of alphaII spectrin. It appears that betaIII spectrin disruption impairs synaptogenesis by disturbing the intracellular pathways selectively regulating protein trafficking to the synapse. The mislocalization of these proteins secondarily disrupts glutamate transport dynamics, leading to seizures, neuronal damage, and compensatory changes in EAAT3 and neuropeptide Y.
Collapse
|
24
|
Liu J, Xie ZJ. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1237-45. [PMID: 20144708 DOI: 10.1016/j.bbadis.2010.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 12/12/2022]
Abstract
The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The plant-derived CTS such as digoxin are valuable drugs for the management of cardiac diseases, whereas ouabain and marinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have demonstrated that the endogenous CTS are important regulators of renal Na(+) excretion and blood pressure. The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like effect of CTS on intracellular protein kinases and Ca(2+) signaling. Significantly, these CTS-provoked signaling events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and basolateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an important role in regulation of tubular Na(+) excretion under physiological conditions; conversely, a defect at either the receptor level (Na/K-ATPase) or receptor-effector coupling would reduce the ability of renal proximal tubular cells to excrete Na(+), thus culminating/resulting in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | | |
Collapse
|
25
|
Kang Q, Wang T, Zhang H, Mohandas N, An X. A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J Cell Sci 2009; 122:1091-9. [PMID: 19299464 DOI: 10.1242/jcs.039644] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The archetypal membrane skeleton is that of the erythrocyte, consisting predominantly of spectrin, actin, ankyrin R and protein 4.1R. The presence in the Golgi of a membrane skeleton with a similar structure has been inferred, based on the identification of Golgi-associated spectrin and ankyrin. It has long been assumed that a Golgi-specific protein 4.1 must also exist, but it has not previously been found. We demonstrate here that a hitherto unknown form of protein 4.1, a 200 kDa 4.1B, is associated with the Golgi of Madin-Darby canine kidney (MDCK) and human bronchial epithelial (HBE) cells. This 4.1B variant behaves like a Golgi marker after treatment with Brefeldin A and during mitosis. Depletion of the protein in HBE cells by siRNA resulted in disruption of the Golgi structure and failure of Na(+)/K(+)-ATPase, ZO-1 and ZO-2 to migrate to the membrane. Thus, this newly identified Golgi-specific protein 4.1 appears to have an essential role in maintaining the structure of the Golgi and in assembly of a subset of membrane proteins.
Collapse
Affiliation(s)
- Qiaozhen Kang
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
26
|
Stabach PR, Devarajan P, Stankewich MC, Bannykh S, Morrow JS. Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Am J Physiol Cell Physiol 2008; 295:C1202-14. [PMID: 18768923 DOI: 10.1152/ajpcell.00273.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Defects in ankyrin underlie many hereditary disorders involving the mislocalization of membrane proteins. Such phenotypes are usually attributed to ankyrin's role in stabilizing a plasma membrane scaffold, but this assumption may not be accurate. We found in Madin-Darby canine kidney cells and in other cultured cells that the 25-residue ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase facilitates the entry of alpha(1),beta(1)-Na(+)-K(+)-ATPase into the secretory pathway and that replacement of the cytoplasmic domain of vesicular stomatitis virus G protein (VSV-G) with this ankyrin-binding sequence bestows ankyrin dependency on the endoplasmic reticulum (ER) to Golgi trafficking of VSV-G. Expression of the ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase alone as a soluble cytosolic peptide acts in trans to selectively block ER to Golgi transport of both wild-type alpha(1)-Na(+)-K(+)-ATPase and a VSV-G fusion protein that includes the ankyrin-binding sequence, whereas the trafficking of other proteins remains unaffected. Similar phenotypes are also generated by small hairpin RNA-mediated knockdown of ankyrin R or the depletion of ankyrin in semipermeabilized cells. These data indicate that the adapter protein ankyrin acts not only at the plasma membrane but also early in the secretory pathway to facilitate the intracellular trafficking of alpha(1)-Na(+)-K(+)-ATPase and presumably other selected proteins. This novel ankyrin-dependent assembly pathway suggests a mechanism whereby hereditary disorders of ankyrin may be manifested as diseases of membrane protein ER retention or mislocalization.
Collapse
Affiliation(s)
- Paul R Stabach
- Dept. of Pathology, Yale Univ., 310 Cedar St., New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
27
|
Vagin O, Turdikulova S, Tokhtaeva E. Polarized membrane distribution of potassium-dependent ion pumps in epithelial cells: different roles of the N-glycans of their beta subunits. Cell Biochem Biophys 2007; 47:376-91. [PMID: 17652782 DOI: 10.1007/s12013-007-0033-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
The Na,K-ATPases and the H,K-ATPases are two potassium-dependent homologous heterodimeric P2-type pumps that catalyze active transport of Na+ in exchange for K+ (Na,K-ATPase) or H+ in exchange for K+ (H,K-ATPase). The ubiquitous Na,K-ATPase maintains intracellular ion balance and membrane potential. The gastric H,K-ATPase is responsible for acid secretion by the parietal cell of the stomach. Both pumps consist of a catalytic alpha-subunit and a glycosylated beta-subunit that is obligatory for normal pump maturation and trafficking. Individual N-glycans linked to the beta-subunits of the Na,K-ATPase and H,K-ATPase are important for stable membrane integration of their respective alpha subunits, folding, stability, subunit assembly, and enzymatic activity of the pumps. They are also essential for the quality control of unassembled beta-subunits that results in either the exit of the subunits from the ER or their ER retention and subsequent degradation. Overall, the importance of N-glycans for the maturation and quality control of the H,K-ATPase is greater than that of the Na,K-ATPase. The roles of individual N-glycans of the beta-subunits in the post-ER trafficking, membrane targeting and plasma membrane retention of the Na,K-ATPase and H,K-ATPase are different. The Na,K-ATPase beta1-subunit is the major beta-subunit isoform in cells with lateral location of the pump. All three N-glycans of the Na,K-ATPase beta1-subunit are important for the lateral membrane retention of the pump due to glycan-mediated interaction between the beta1-subunits of the two neighboring cells in the cell monolayer and cytosolic linkage of the alpha-subunit to the cytoskeleton. This intercellular beta1-beta1 interaction is also important for formation of cell-cell contacts. In contrast, the N-glycans unique to the Na,K-ATPase beta2-subunit,which has up to eight N-glycosylation sites, contain apical sorting information. This is consistent with the apical location of the Na,K-ATPase in normal and malignant epithelial cells with high abundance of the beta2-subunit. Similarly, all seven N-glycans of the gastric H,K-ATPase beta-subunit determine apical sorting of this subunit.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine, UCLA and Veterans Administration Greater Los Angeles Health Care System, VAGLAHS/West LA, Building 113, Room 324, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
28
|
Odell AF, Van Helden DF, Scott JL. The spectrin cytoskeleton influences the surface expression and activation of human transient receptor potential channel 4 channels. J Biol Chem 2007; 283:4395-407. [PMID: 18048348 DOI: 10.1074/jbc.m709729200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite over a decade of research, only recently have the mechanisms governing transient receptor potential channel (TRPC) channel function begun to emerge, with an essential role for accessory proteins in this process. We previously identified a tyrosine phosphorylation event as critical in the plasma membrane translocation and activation of hTRPC4 channels following epidermal growth factor (EGF) receptor activation. To further characterize the signaling events underlying this process, a yeast-two hybrid screen was performed on the C terminus of hTRPC4. The intracellular C-terminal region from proline 686 to leucine 977 was used to screen a human brain cDNA library. Two members of the spectrin family, alphaII- and betaV-spectrin, were identified as binding partners. The interaction of hTRPC4 with alphaII-spectrin and betaV-spectrin was confirmed by glutathione S-transferase pulldown and co-immunoprecipitation experiments. Deletion analysis identified amino acids 730-758 of hTRPC4 as critical for the interaction with this region located within a coiled-coil domain, juxtaposing the Ca(2+)/calmodulin- and IP(3)R-binding region (CIRB domain). This region is deleted in the proposed deltahTRPC4 splice variant form, which failed to undergo both EGF-induced membrane insertion and activation, providing a genetic mechanism for regulating channel activity. We also demonstrate that the exocytotic insertion and activation of hTRPC4 following EGF application is accompanied by dissociation from alphaII-spectrin. Furthermore, depletion of alphaII-spectrin by small interference RNA reduces the basal surface expression of alphahTRPC4 and prevents the enhanced membrane insertion in response to EGF application. Importantly, depletion of alphaII-spectrin did not affect the expression of the delta variant. Taken together, these results demonstrate that a direct interaction between hTRPC4 and the spectrin cytoskeleton is involved in the regulation of hTRPC4 surface expression and activation.
Collapse
Affiliation(s)
- Adam F Odell
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Level 5, MSB, University Drive, New South Wales 2308, Australia.
| | | | | |
Collapse
|
29
|
Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 2007; 293:C509-36. [PMID: 17494630 DOI: 10.1152/ajpcell.00098.2007] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiotonic steroids (CTS), long used to treat heart failure, are endogenously produced in mammals. Among them are the hydrophilic cardenolide ouabain and the more hydrophobic cardenolide digoxin, as well as the bufadienolides marinobufagenin and telecinobufagin. The physiological effects of endogenous ouabain on blood pressure and cardiac activity are consistent with the "Na(+)-lag" hypothesis. This hypothesis assumes that, in cardiac and arterial myocytes, a CTS-induced local increase of Na(+) concentration due to inhibition of Na(+)/K(+)-ATPase leads to an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) via a backward-running Na(+)/Ca(2+) exchanger. The increase in [Ca(2+)](i) then activates muscle contraction. The Na(+)-lag hypothesis may best explain short-term and inotropic actions of CTS. Yet all data on the CTS-induced alteration of gene expression are consistent with another hypothesis, based on the Na(+)/K(+)-ATPase "signalosome," that describes the interaction of cardiac glycosides with the Na(+) pump as machinery activating various signaling pathways via intramembrane and cytosolic protein-protein interactions. These pathways, which may be activated simultaneously or selectively, elevate [Ca(2+)](i), activate Src and the ERK1/2 kinase pathways, and activate phosphoinositide 3-kinase and protein kinase B (Akt), NF-kappaB, and reactive oxygen species. A recent development indicates that new pharmaceuticals with antihypertensive and anticancer activities may be found among CTS and their derivatives: the antihypertensive rostafuroxin suppresses Na(+) resorption and the Src-epidermal growth factor receptor-ERK pathway in kidney tubule cells. It may be the parent compound of a new principle of antihypertensive therapy. Bufalin and oleandrin or the cardenolide analog UNBS-1450 block tumor cell proliferation and induce apoptosis at low concentrations in tumors with constitutive activation of NF-kappaB.
Collapse
Affiliation(s)
- Wilhelm Schoner
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Frankfurter Str 100, Giessen, Germany.
| | | |
Collapse
|
30
|
Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 2007; 119:2173-83. [PMID: 16723730 DOI: 10.1242/jcs.03019] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein traffic moving from the endoplasmic reticulum (ER) to the Golgi complex in mammalian cells passes through the tubulovesicular membrane clusters of the ER-Golgi intermediate compartment (ERGIC), the marker of which is the lectin ERGIC-53. The dynamic nature and functional role of the ERGIC have been debated for quite some time. In the most popular current view, the ERGIC clusters are mobile transport complexes that deliver secretory cargo from ER-exit sites to the Golgi. Recent live-cell imaging data revealing the formation of anterograde carriers from stationary ERGIC-53-positive membranes, however, suggest a stable compartment model in which ER-derived cargo is first shuttled from ER-exit sites to stationary ERGIC clusters in a COPII-dependent step and subsequently to the Golgi in a second vesicular transport step. This model can better accommodate previous morphological and functional data on ER-to-Golgi traffic. Such a stationary ERGIC would be a major site of anterograde and retrograde sorting that is controlled by coat proteins, Rab and Arf GTPases, as well as tethering complexes, SNAREs and cytoskeletal networks. The ERGIC also contributes to the concentration, folding, and quality control of newly synthesized proteins.
Collapse
|
31
|
Blumental-Perry A, Haney CJ, Weixel KM, Watkins SC, Weisz OA, Aridor M. Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev Cell 2007; 11:671-82. [PMID: 17084359 DOI: 10.1016/j.devcel.2006.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 06/25/2006] [Accepted: 09/04/2006] [Indexed: 11/15/2022]
Abstract
The mechanisms that regulate endoplasmic reticulum (ER) exit-site (ERES) assembly and COPII-mediated ER export are currently unknown. We analyzed the role of phosphatidylinositols (PtdIns) in regulating ER export. Utilizing pleckstrin homology domains and a PtdIns phosphatase to specifically sequester or reduce phosphorylated PtdIns levels, we found that PtdIns 4-phosphate (PtsIns4P) is required to promote COPII-mediated ER export. Biochemical and morphological in vitro analysis revealed dynamic and localized PtsIns4P formation at ERES. PtdIns4P was utilized to support Sar1-induced proliferation and constriction of ERES membranes. PtdIns4P also assisted in Sar1-induced COPII nucleation at ERES. Therefore, localized dynamic remodeling of PtdIns marks ERES membranes to regulate COPII-mediated ER export.
Collapse
Affiliation(s)
- Anna Blumental-Perry
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recently, betaIII spectrins have been recognized as ataxia disease genes, with the identification by Ikeda and co-workers of pathogenic mutations in the SPTBN2 gene in three large (and mapped) SCA5 families of American and European origin.((1)) With their discovery, the large "Lincoln" family has been traced back to the underlying genetic defect for the slowly progressive cerebellar ataxia. In addition, the involvement of this component of the cytoskeleton directs attention towards the possible role of organelle stability during neurodegeneration. The findings suggest that the mechanical properties of neurons and their dynamics may be as important as altered Ca(2+) homeostasis, transcriptional dysregulation, and impaired protein degradation in neurodegeneration conditions.
Collapse
Affiliation(s)
- Peter Bauer
- Department of Medical Genetics, University of Tübingen, Germany
| | | | | |
Collapse
|
33
|
Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS. Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. J Biol Chem 2006; 281:34333-40. [PMID: 16945920 DOI: 10.1074/jbc.m604613200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AlphaII-spectrin is a major cortical cytoskeletal protein contributing to membrane organization and integrity. The Ca2+-activated binding of calmodulin to an unstructured insert in the 11th repeat unit of alphaII-spectrin enhances the susceptibility of spectrin to calpain cleavage but abolishes its sensitivity to several caspases and to at least one bacterially derived pathologic protease. Other regulatory inputs including phosphorylation by c-Src also modulate the proteolytic susceptibility of alphaII-spectrin. These pathways, acting through spectrin, appear to control membrane plasticity and integrity in several cell types. To provide a structural basis for understanding these crucial biological events, we have solved the crystal structure of a complex between bovine calmodulin and the calmodulin-binding domain of human alphaII-spectrin (Protein Data Bank ID code 2FOT). The structure revealed that the entire calmodulin-spectrin-binding interface is hydrophobic in nature. The spectrin domain is also unique in folding into an amphiphilic helix once positioned within the calmodulin-binding groove. The structure of this complex provides insight into the mechanisms by which calmodulin, calpain, caspase, and tyrosine phosphorylation act on spectrin to regulate essential cellular processes.
Collapse
Affiliation(s)
- Miljan Simonovic
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
34
|
Stankewich MC, Stabach PR, Morrow JS. Human Sec31B: a family of new mammalian orthologues of yeast Sec31p that associate with the COPII coat. J Cell Sci 2006; 119:958-69. [PMID: 16495487 DOI: 10.1242/jcs.02751] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have cloned human brain and testis Sec31B protein (also known as secretory pathway component Sec31B-1 or SEC31-like 2; GenBank accession number AF274863). Sec31B is an orthologue of Saccharomyces cerevisiae Sec31p, a component of the COPII vesicle coat that mediates vesicular traffic from the endoplasmic reticulum. Sec31B is widely expressed and enriched in cerebellum and testis. Its predicted sequence of 1180 residues (expected molecular mass 128,711 Da) shares 47.3% and 18.8% similarity to human Sec31A (also known as Sec31; GenBank accession number AF139184) and yeast Sec31p, respectively. The gene encoding Sec31B is located on chromosome 10q24 and contains 29 exons. PCR analysis of exon utilization reveals massive alternative mRNA splicing of Sec31B, with just 16 exons being constitutively utilized in all transcripts. The presence of a stop codon in exon 13 generates two families of Sec31B gene products (each displaying additional patterns of mRNA splicing): a group of full-length proteins (hereafter referred to as Sec31B-F) and also a group of truncated proteins (hereafter referred to as Sec31B-T), distinguished by their utilization of exon 13. Sec31B-F closely resembles Sec31p and Sec31A, with canonical WD repeats in an N-terminal domain that binds Sec13 and a proline-rich C-terminal region that presumably binds Sec23/24. The Sec31B-T group (molecular mass 52,983 Da) contains a preserved WD-repeat domain but lacks the C-terminal proline-rich region. When expressed as a fusion protein with eYFP in cultured cells, Sec31B-F associates with the endoplasmic reticulum and with vesicular-tubular clusters, displays restricted intracellular movement characteristic of COPII vesicle dynamics, co-distributes on organelles with Sec13, Sec31A and Sec23 (markers of the COPII coat), and concentrates with ts045-VSV-G-CFP (VSV-G) when examined early in the secretory pathway or after temperature or nocodazole inhibition. The role of the truncated form Sec31B-T appears to be distinct from that of Sec31B-F and remains unknown. We conclude that Sec31B-F contributes to the diversity of the mammalian COPII coat, and speculate that the Sec31 cage, like Sec24, might be built with isoforms tuned to specific types of cargo or to other specialized functions.
Collapse
|
35
|
Vagin O, Turdikulova S, Sachs G. Recombinant addition of N-glycosylation sites to the basolateral Na,K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. J Biol Chem 2005; 280:43159-67. [PMID: 16230337 DOI: 10.1074/jbc.m508262200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In most polarized cells, the Na,K-ATPase is localized on the basolateral plasma membrane. However, an unusual location of the Na,K-ATPase was detected in polarized HGT-1 cells (a human gastric adenocarcinoma cell line). The Na,K-ATPase alpha1 subunit was detected along with the beta2 subunit predominantly on the apical membrane, whereas the Na,K-ATPase beta1 subunit was not found in HGT-1 cells. However, when expressed in the same cell line, a yellow fluorescent protein-linked Na,K-ATPase beta1 subunit was localized exclusively to the basolateral surface and resulted in partial redistribution of the endogenous alpha1 subunit to the basolateral membrane. The human beta2 subunit has eight N-glycosylation sites, whereas the beta1 isoform has only three. Accordingly, up to five additional N-glycosylation sites homologous to the ones present in the beta2 subunit were successively introduced in the beta1 subunit by site-directed mutagenesis. The mutated beta1 subunits were detected on both apical and basolateral membranes. The fraction of a mutant beta1 subunit present on the apical membrane increased in proportion to the number of glycosylation sites inserted and reached 80% of the total surface amount for the beta1 mutant with five additional sites. Clustered distribution and co-localization with caveolin-1 was detected by confocal microscopy for the endogenous beta2 subunit and the beta1 mutant with additional glycosylation sites but not for the wild type beta1 subunit. Hence, the N-glycans linked to the beta2 subunit of the Na,K-ATPase contain apical sorting information, and the high abundance of the beta2 subunit isoform, which is rich in N-glycans, along with the absence of the beta1 subunit, is responsible for the unusual apical location of the Na,K-ATPase in HGT-1 cells.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine at UCLA, Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
36
|
Beck KA. Spectrins and the Golgi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:374-82. [PMID: 15921768 DOI: 10.1016/j.bbamcr.2005.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/24/2005] [Accepted: 04/13/2005] [Indexed: 01/23/2023]
Abstract
Several isoforms of spectrin membrane skeleton proteins have been localized to the Golgi complex. Golgi-specific membrane skeleton proteins associate with the Golgi as a detergent-resistant cytoskeletal structure that likely undergoes a dynamic assembly process that accommodates Golgi membrane dynamics. This review discusses the potential roles for this molecule in Golgi functions. In particular, it will focus on a recently identified distant cousin to conventional erythroid spectrin variously named Syne-1, Nesprin, myne, Enaptin, MSP-300, and Ank-1. Syne-1 has the novel ability to bind to both the Golgi and the nuclear envelope, a property that raises several intriguing and novel insights into Golgi structure and function. These include (1) the facilitation of interactions between Golgi and transitional ER sites on the nuclear envelope of muscle cells, and (2) an ability to impart localized specificity to the secretory pathway within large multinucleate syncytia such as skeletal muscle fibers.
Collapse
Affiliation(s)
- Kenneth A Beck
- Department of Cell Biology and Human Anatomy, 3416 Tupper Hall, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Short B, Haas A, Barr FA. Golgins and GTPases, giving identity and structure to the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:383-95. [PMID: 15979508 DOI: 10.1016/j.bbamcr.2005.02.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 12/22/2022]
Abstract
In this review we will focus on the recent advances in how coiled-coil proteins of the golgin family give identity and structure to the Golgi apparatus in animal cells. A number of recent studies reveal a common theme for the targeting of golgins containing the ARL-binding GRIP domain, and the related ARF-binding GRAB domain. Similarly, other golgins such as the vesicle tethering factor p115 and Bicaudal-D are targeted by the Rab GTPases, Rab1 and Rab6, respectively. Together golgins and their regulatory GTPases form a complex network, commonly known as the Golgi matrix, which organizes Golgi membranes and regulates membrane trafficking.
Collapse
Affiliation(s)
- Benjamin Short
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | | | | |
Collapse
|
38
|
Liu Y, Yerushalmi GM, Grigera PR, Parsons JT. Mislocalization or Reduced Expression of Arf GTPase-activating Protein ASAP1 Inhibits Cell Spreading and Migration by Influencing Arf1 GTPase Cycling. J Biol Chem 2005; 280:8884-92. [PMID: 15632162 DOI: 10.1074/jbc.m412200200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor (Arf) family of small GTP-binding proteins plays a central role in membrane trafficking and cytoskeletal remodeling. ASAP1 (Arf-GAP containing SH3, ankyrin repeats, and PH domain) is a phospholipid-dependent Arf GTPase-activating protein (Arf-GAP) that binds to protein-tyrosine kinases Src and focal adhesion kinase. Using affinity chromatography and mass spectrometry (MS), we identified the adaptor protein CD2-associated protein (CD2AP) as a candidate binding partner of ASAP1. Both co-immunoprecipitation and GST pull-down experiments confirmed that CD2AP stably interacts with ASAP1 through its N-terminal SH3 domains. Using a mislocalization strategy, we show that sequestration of endogenous ASAP1 to mitochondria with a CD2AP SH3-mito fusion protein (the three N-terminal SH3 domains of CD2AP fused to Listeria monocytogenes ActA mitochondria-targeting sequence) inhibited REF52 cell spreading and migration in response to fibronectin stimulation. Using an alternative strategy we show that suppressing ASAP1 expression with small interfering RNA duplexes also significantly retarded cell spreading and inhibited cell migration. Furthermore, abrogation of ASAP1 function using either small interfering RNAs or mislocalization approaches caused an increase of GTP loading on Arf1 and loss of paxillin from adhesions. These results taken together with our previous observations that overexpression of ASAP1 inhibits cell spreading and alters paxillin localization to adhesions (Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V., and Parsons, J. T. (2002) Mol. Biol. Cell. 13, 2147-2156) suggest that the recruitment of certain adhesion components such as paxillin requires dynamic GTP/GDP turnover of Arf1 GTPase.
Collapse
Affiliation(s)
- Yunhao Liu
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
39
|
Bialkowska K, Saido TC, Fox JEB. SH3 domain of spectrin participates in the activation of Rac in specialized calpain-induced integrin signaling complexes. J Cell Sci 2005; 118:381-95. [PMID: 15632109 DOI: 10.1242/jcs.01625] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, we used cultured cells spreading on beta3 integrin substrates to examine the possibility that spectrin is involved in signal transduction. Spectrin clustered with specialized calpain-induced beta3 integrin signaling complexes that mediate the initial attachment of cells and initiate Rac activation and lamellipodia extension. It was absent from focal complexes and focal adhesions, the integrin complexes that mediate adhesion in lamellipodia and fully spread cells. Spectrin contains a Src homology (SH3) domain of unknown function. Cells overexpressing this domain adhered and calpain-induced integrin signaling complexes formed. However, Rac activation, lamellipodia extension and cell spreading were inhibited. Spreading was restored by overexpression of constitutively active Rac. These studies point to a previously unrecognized role for spectrin and its SH3 domain in initiating Rac activation in the specialized integrin clusters that initiate cell adhesion and spreading. Thus, spectrin may have a pivotal role in initiating integrin-induced physiological and pathological events such as development, proliferation, cell survival, wound healing, metastasis and atherosclerosis.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
40
|
Gough LL, Beck KA. The spectrin family member Syne-1 functions in retrograde transport from Golgi to ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:29-36. [PMID: 15276322 DOI: 10.1016/j.bbamcr.2004.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 04/14/2004] [Accepted: 04/14/2004] [Indexed: 11/20/2022]
Abstract
To address the function of the Golgi- and nuclear envelope-localized spectrin family member synaptic nuclear envelope protein-1 (Syne-1), we expressed two separate recombinant fragments derived from the central portion of the molecule. Both of these fragments were predicted to act as dominant negative inhibitors of Syne-1 function at the Golgi. One of the fragments was previously shown to bind the Golgi complex. The other fragment was found to form microtubule-associated puncta that sequester endogenous Syne-1. Expression of either fragment resulted in a cell type-specific alteration in the structure of the Golgi complex, which appeared to collapse into a compact juxtanuclear structure in some cell types but not others. These fragments were expressed in cultured cells and their effects on Golgi function were examined. Expression of both dominant negative Syne-1 fragments blocked recycling of the endoplasmic reticulum (ER) resident protein disulfide isomerase (PDI), which accumulated in the Golgi complex. In addition, we found that fragment expression altered the distribution of the KDEL receptor and the COP-I coat protein beta-COP, two proteins known to be involved in regulating the retrograde pathway. We conclude that these results indicate a role for Syne-1 in facilitating retrograde vesicular trafficking from the Golgi to the ER.
Collapse
Affiliation(s)
- Lisa Lucio Gough
- Department of Cell Biology and Human Anatomy, School of Medicine, 3416 Tupper Hall, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Holappa K, Muñoz MT, Egea G, Kellokumpu S. The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells. FEBS Lett 2004; 564:97-103. [PMID: 15094048 DOI: 10.1016/s0014-5793(04)00315-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 02/18/2004] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
The structural integrity of the Golgi apparatus is known to be dependent on multiple factors, including the organizational status of microtubules, actin and the ankyrin/spectrin-based Golgi membrane skeleton, as well as vesicular trafficking and pH homeostasis. In this respect, our recently identified Golgi-associated anion exchanger, AE2, may also be of importance, since it potentially acts as a Golgi pH regulator and as a novel membrane anchor for the spectrin-based Golgi membrane skeleton. Here, we show that inhibition (>75%) of AE2 expression by antisense oligonucleotides in COS-7 cells results in the fragmentation of the juxtanuclear Golgi apparatus and in structural disorganization of the Golgi stacks, the cisternae becoming generally shorter, distorted, vesiculated and/or swollen. These structural changes occurred without apparent dissociation of the Golgi membrane skeletal protein Ankyrin(195), but were accompanied by the disappearance of the well-focused microtubule-organizing center (MTOC), suggesting the involvement of microtubule reorganization. Similar changes in Golgi structure and assembly of the MTOC were also observed upon transient overexpression of the EGFP-AE2 fusion protein. These data implicate a clear structural role for the AE2 protein in the Golgi and in its cytological positioning around the MTOC.
Collapse
Affiliation(s)
- Katja Holappa
- Department of Biochemistry, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | | | | | | |
Collapse
|
42
|
Aspengren S, Wallin M. A Role for Spectrin in Dynactin-dependent Melanosome Transport in Xenopus laevis Melanophores. ACTA ACUST UNITED AC 2004; 17:295-301. [PMID: 15140076 DOI: 10.1111/j.1600-0749.2004.00150.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bi-directional movement of pigment granules in frog melanophores involves the microtubule-based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin II and myosin V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150(glued) and Arp1/centractin, co-localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co-immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.
Collapse
Affiliation(s)
- Sara Aspengren
- Department of Zoology, Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | |
Collapse
|
43
|
Kizhatil K, Bennett V. Lateral Membrane Biogenesis in Human Bronchial Epithelial Cells Requires 190-kDa Ankyrin-G. J Biol Chem 2004; 279:16706-14. [PMID: 14757759 DOI: 10.1074/jbc.m314296200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrin-G polypeptides are required for restriction of voltage-gated sodium channels, L1 cell adhesion molecules, and beta IV spectrin to axon initial segments and are believed to couple the Na/K-ATPase to the spectrin-actin network at the lateral membrane in epithelial cells. We report here that depletion of 190-kDa ankyrin-G in human bronchial epithelial cells by small interfering RNA results in nearly complete loss of lateral plasma membrane in interphase cells, and also blocks de novo lateral membrane biogenesis following mitosis. Loss of the lateral membrane domain is accompanied by an expansion of apical and basal plasma membranes and preservation of apical-basal polarity. Expression of rat 190-kDa ankyrin-G, which is resistant to human small interfering RNA, prevents loss of the lateral membrane following depletion of human 190-kDa ankyrin-G. Human 220-kDa ankyrin-B, a closely related ankyrin isoform, is incapable of preserving the lateral membrane following 190-kDa ankyrin-G depletion. Moreover, analysis of rat 190-kDa ankyrin G/ankyrin B chimeras shows that all three domains of 190-kDa ankyrin-G are required for preservation of the lateral membrane. These results demonstrate that 190-kDa ankyrin-G plays a pleiotropic role in assembly of lateral membranes of bronchial epithelial cells.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neuroscience, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
44
|
Abstract
In order to carry out their physiological functions, ion transport proteins must be targeted to the appropriate domains of cell membranes. Regulation of ion transport activity frequently involves the tightly controlled delivery of intracellular populations of transport proteins to the plasma membrane or the endocytic retrieval of transport proteins from the cell surface. Transport proteins carry signals embedded within their structures that specify their subcellular distributions and endow them with the capacity to participate in regulated membrane trafficking processes. Recently, a great deal has been learned about the biochemical nature of these signals, as well as about the cellular machinery that interprets them and acts upon their messages.
Collapse
Affiliation(s)
- Theodore R Muth
- Department of Biology, CUNY Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11231, USA.
| | | |
Collapse
|
45
|
Jackson TA, Koterwas DM, Morgan MA, Bradford AP. Fibroblast growth factors regulate prolactin transcription via an atypical Rac-dependent signaling pathway. Mol Endocrinol 2003; 17:1921-30. [PMID: 12843210 DOI: 10.1210/me.2003-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factors (FGFs) play a critical role in pituitary development and in pituitary tumor formation and progression. We have previously characterized FGF signal transduction and regulation of the tissue-specific rat prolactin (rPRL) promoter in GH4 pituitary cells. FGF induction of rPRL transcription is independent of Ras, but mediated by a protein kinase C-delta (PKCdelta)-dependent activation of MAPK (ERK). Here we demonstrate a functional role for the Rho family monomeric G protein, Rac1, in FGF regulation of PRL gene expression via an atypical signaling pathway. Expression of dominant negative Rac, but not RhoA or Cdc42, selectively inhibited FGF-induced rPRL promoter activity. Moreover, expression of dominant negative Rac also attenuated FGF-2 and FGF-4 stimulation of MAPK (ERK). However, in contrast to other Rac-dependent signaling pathways, FGF activation of rPRL promoter activity was independent of the c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase/Akt cascades. FGFs failed to activate JNK1 or JNK2, and expression of dominant negative JNK or Akt constructs did not block FGF-induced PRL transcription. Consistent with the role of PKCdelta in FGF regulation of PRL gene expression, activation of the rPRL promoter was blocked by an inhibitor of phospholipase Cgamma (PLCgamma) activity. FGF treatment also induced rapid tyrosine phosphorylation of PLCgamma in a Rac-dependent manner. These results suggest that FGF-2 and FGF-4 activate PRL gene expression via a novel Rac1, PLCgamma, PKCdelta, and ERK cascade, independent of phosphoinositol-3-kinase and JNK.
Collapse
Affiliation(s)
- Twila A Jackson
- Section of Basic Reproductive Science, Department of Obstetrics & Gynecology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
46
|
Head JA, Jiang D, Li M, Zorn LJ, Schaefer EM, Parsons JT, Weed SA. Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell 2003; 14:3216-29. [PMID: 12925758 PMCID: PMC181562 DOI: 10.1091/mbc.e02-11-0753] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.
Collapse
Affiliation(s)
- Julie A Head
- Department of Craniofacial Biology and Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Holappa K, Kellokumpu S. Targeting of the AE2 anion exchanger to the Golgi apparatus is cell type-dependent and correlates with the expression of Ank(195), a Golgi membrane skeletal protein. FEBS Lett 2003; 546:257-64. [PMID: 12832051 DOI: 10.1016/s0014-5793(03)00597-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sodium-independent anion exchangers (AE1-4) show remarkable variability in their tissue-specific expression and subcellular localization. Currently, isoform-specific targeting mechanisms are considered to be responsible for this variable localization. Here, we report that targeting can also be cell type-specific. We show that the full-length AE2 protein and its green fluorescent protein- or DsRed-tagged variants localize predominantly either to the Golgi apparatus in COS-7 cells, or to the plasma membrane in HeLa cells. This alternative targeting did not seem to result from either translational or post-translational differences, but rather from differential expression of at least one of the Golgi membrane skeletal proteins, ankyrin(195) (Ank(195)), between the two cell types. Comparative studies with several different cell lines revealed that the Golgi localization of the AE2 protein correlated strictly with the expression of Ank(195) in the cells. The two Golgi-associated proteins also co-localized well and similarly resisted detergent extraction in the cold, whereas the plasma membrane-localized AE2 in Ank(195)-deficient cells was mostly detergent-soluble. Collectively, our results suggest that Ank(195) expression is a key determinant for the variable and cell type-dependent localization of the AE2 protein in the Golgi apparatus in mammalian cells.
Collapse
Affiliation(s)
- Katja Holappa
- University of Oulu, Department of Biochemistry, PO Box 3000, FIN-90014 Oulu, Finland
| | | |
Collapse
|
48
|
Abstract
We have previously identified a Golgi-localized spectrin isoform by using an antibody to the beta-subunit of erythrocyte spectrin. In this study, we show that a screen of a lambdagt11 expression library resulted in the isolation of an approximately 5-kb partial cDNA from a Madin-Darby bovine kidney (MDBK) cell line, which encoded a polypeptide of 1697 amino acids with low, but detectable, sequence homology to spectrin (37%). A blast search revealed that this clone overlaps with the 5' end of a recently identified spectrin family member Syne-1B/Nesprin-1beta, an alternately transcribed gene with muscle-specific forms that bind acetylcholine receptor and associate with the nuclear envelope. By comparing the sequence of the MDBK clone with sequence data from the human genome database, we have determined that this cDNA represents a central portion of a very large gene ( approximately 500 kb), encoding an approximately 25-kb transcript that we refer to as Syne-1. Syne-1 encodes a large polypeptide (8406 amino acids) with multiple spectrin repeats and a region at its amino terminus with high homology to the actin binding domains of conventional spectrins. Golgi localization for this spectrin-like protein was demonstrated by expression of epitope-tagged fragments in MDBK and COS cells, identifying two distinct Golgi binding sites, and by immunofluorescence microscopy by using several different antibody preparations. One of the Golgi binding domains on Syne-1 acts as a dominant negative inhibitor that alters the structure of the Golgi complex, which collapses into a condensed structure near the centrosome in transfected epithelial cells. We conclude that the Syne-1 gene is expressed in a variety of forms that are multifunctional and are capable of functioning at both the Golgi and the nuclear envelope, perhaps linking the two organelles during muscle differentiation.
Collapse
Affiliation(s)
- Lisa Lucio Gough
- Department of Cell Biology and Human Anatomy, University of California, Davis, 95616, USA
| | | | | | | | | |
Collapse
|
49
|
Leshchyns'ka I, Sytnyk V, Morrow JS, Schachner M. Neural cell adhesion molecule (NCAM) association with PKCbeta2 via betaI spectrin is implicated in NCAM-mediated neurite outgrowth. J Cell Biol 2003; 161:625-39. [PMID: 12743109 PMCID: PMC2172933 DOI: 10.1083/jcb.200303020] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In hippocampal neurons and transfected CHO cells, neural cell adhesion molecule (NCAM) 120, NCAM140, and NCAM180 form Triton X-100-insoluble complexes with betaI spectrin. Heteromeric spectrin (alphaIbetaI) binds to the intracellular domain of NCAM180, and isolated spectrin subunits bind to both NCAM180 and NCAM140, as does the betaI spectrin fragment encompassing second and third spectrin repeats (betaI2-3). In NCAM120-transfected cells, betaI spectrin is detectable predominantly in lipid rafts. Treatment of cells with methyl-beta-cyclodextrin disrupts the NCAM120-spectrin complex, implicating lipid rafts as a platform linking NCAM120 and spectrin. NCAM140/NCAM180-betaI spectrin complexes do not depend on raft integrity and are located both in rafts and raft-free membrane domains. PKCbeta2 forms detergent-insoluble complexes with NCAM140/NCAM180 and spectrin. Activation of NCAM enhances the formation of NCAM140/NCAM180-spectrin-PKCbeta2 complexes and results in their redistribution to lipid rafts. The complex is disrupted by the expression of dominant-negative betaI2-3, which impairs binding of spectrin to NCAM, implicating spectrin as the bridge between PKCbeta2 and NCAM140 or NCAM180. Redistribution of PKCbeta2 to NCAM-spectrin complexes is also blocked by a specific fibroblast growth factor receptor inhibitor. Furthermore, transfection with betaI2-3 inhibits NCAM-induced neurite outgrowth, showing that formation of the NCAM-spectrin-PKCbeta2 complex is necessary for NCAM-mediated neurite outgrowth.
Collapse
|
50
|
Abstract
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, I(SOC). Indeed, I(SOC) is a relatively small inward Ca2+ current that exhibits an approximate +40mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of I(SOC), although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of I(SOC) requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4-protein 4.1 physical linkage regulates I(SOC) activation following Ca2+ store depletion.
Collapse
Affiliation(s)
- Donna L Cioffi
- Department of Pharmacology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | |
Collapse
|