1
|
Dhinoja S, Qaryoute AA, Deebani A, De Maria A, Jagadeeswaran P. CRISPR/Cas9 mediated generation of zebrafish f9a mutant as a model for hemophilia B. Blood Coagul Fibrinolysis 2025; 36:90-98. [PMID: 40127118 PMCID: PMC11970983 DOI: 10.1097/mbc.0000000000001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/23/2025] [Indexed: 03/26/2025]
Abstract
AIM This study aimed to develop a zebrafish model for hemophilia B by creating a f9a knockout, as f9a has previously demonstrated functional similarity to human Factor IX. METHODS Using CRISPR/Cas9 technology, two gRNAs targeting exon 8 of the f9a gene, were injected along with Cas9 protein into single-cell zebrafish wild-type embryos. DNA was harvested from the tail tips of the resulting adult zebrafish and screened for mutations using PCR. The founder mutant was crossed with wild-type fish to confirm heritability and subsequently reared to homozygosity. Homozygous mutants were analyzed through quantitative RT-PCR and Western blot to assess f9a RNA and F9a protein levels, respectively. Functional assays like kinetic partial thromboplastin time (kPTT), bleeding assay in adult mutants, and venous laser injury on mutant larvae were performed to assess the hemostatic role. RESULTS Around 61 adults from the CRISPR/Cas9 knockouts were screened, which resulted in a mutant line with a 72 bp deletion in the exon 8 encoding catalytic domain. Quantitative RT-PCR and Western Blot analysis showed reduced levels of f9a RNA and F9a protein in the homozygous mutants compared to wild-type siblings. At five dpf, f9a homozygous mutant larvae demonstrated prolonged venous occlusion times in a laser injury assay. Additionally, plasma from the mutants displayed delayed fibrin formation in kPTT assays and exhibited increased bleeding after mechanical injury. CONCLUSION This study created a zebrafish f9a knockout model that mimics the bleeding phenotype observed in hemophilia B patients, which will be valuable for evaluating novel therapeutic approaches for hemophilia B.
Collapse
Affiliation(s)
- Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | | | | | | | | |
Collapse
|
2
|
Levy-Mendelovich S, Avishai E, Samelson-Jones BJ, Dardik R, Brutman-Barazani T, Nisgav Y, Livnat T, Kenet G. A Novel Murine Model Enabling rAAV8-PC Gene Therapy for Severe Protein C Deficiency. Int J Mol Sci 2024; 25:10336. [PMID: 39408666 PMCID: PMC11477312 DOI: 10.3390/ijms251910336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Severe protein C deficiency (SPCD) is a rare inherited thrombotic disease associated with high morbidity and mortality. In the current study, we established a viable murine model of SPCD, enabling preclinical gene therapy studies. By creating SPCD mice with severe hemophilia A (PROC-/-/F8-), the multi-month survival of SPCD mice enabled the exploration of recombinant adeno-associated viral vector-PC (rAAV8-PC) gene therapy (GT). rAAV8- PC (1012 vg/kg of AAV8-PC) was injected via the tail vein into 6-8-week-old PROC-/-/F8- mice. Their plasma PC antigen levels (median of 714 ng/mL, range 166-2488 ng/mL) and activity (303.5 ± 59%) significantly increased to the normal range after GT compared to untreated control animals. PC's presence in the liver after GT was also confirmed by immunofluorescence staining. Our translational research results provide the first proof of concept that an infusion of rAAV8-PC increases PC antigen and activity in mice and may contribute to future GT in SPCD. Further basic research of SPCD mice with prolonged survival due to the rebalancing of this disorder using severe hemophilia A may provide essential data regarding PC's contribution to specific tissues' development, local PC generation, and its regulation in inflammatory conditions.
Collapse
Affiliation(s)
- Sarina Levy-Mendelovich
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Einat Avishai
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rima Dardik
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tami Brutman-Barazani
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Nisgav
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tami Livnat
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Kenet
- National Hemophilia Center, Thrombosis & Hemostasis Institute, Sheba Medical Center, Ramat Gan 52621, Israel; (E.A.); (R.D.); (T.B.-B.); (Y.N.); (T.L.); (G.K.)
- Amalia Biron Research Institute of Thrombosis & Hemostasis, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Lisjak M, Iaconcig A, Guarnaccia C, Vicidomini A, Moretti L, Collaud F, Ronzitti G, Zentilin L, Muro AF. Lethality rescue and long-term amelioration of a citrullinemia type I mouse model by neonatal gene-targeting combined to SaCRISPR-Cas9. Mol Ther Methods Clin Dev 2023; 31:101103. [PMID: 37744006 PMCID: PMC10514469 DOI: 10.1016/j.omtm.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Citrullinemia type I is a rare autosomal-recessive disorder caused by deficiency of argininosuccinate synthetase (ASS1). The clinical presentation includes the acute neonatal form, characterized by ammonia and citrulline accumulation in blood, which may lead to encephalopathy, coma, and death, and the milder late-onset form. Current treatments are unsatisfactory, and the only curative treatment is liver transplantation. We permanently modified the hepatocyte genome in lethal citrullinemia mice (Ass1fold/fold) by inserting the ASS1 cDNA into the albumin locus through the delivery of two AAV8 vectors carrying the donor DNA and the CRISPR-Cas9 platform. The neonatal treatment completely rescued mortality ensuring survival up to 5 months of age, with plasma citrulline levels significantly decreased, while plasma ammonia levels remained unchanged. In contrast, neonatal treatment with a liver-directed non-integrative AAV8-AAT-hASS1 vector failed to improve disease parameters. To model late-onset citrullinemia, we dosed postnatal day (P) 30 juvenile animals using the integrative approach, resulting in lifespan improvement and a minor reduction in disease markers. Conversely, treatment with the non-integrative vector completely rescued mortality, reducing plasma ammonia and citrulline to wild-type values. In summary, the integrative approach in neonates is effective, although further improvements are required to fully correct the phenotype. Non-integrative gene therapy application to juvenile mice ensures a stable and very efficient therapeutic effect.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Antonio Vicidomini
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Laura Moretti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Fanny Collaud
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Giuseppe Ronzitti
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
4
|
Nathwani AC. Gene therapy for hemophilia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:569-578. [PMID: 36485127 PMCID: PMC9821304 DOI: 10.1182/hematology.2022000388] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cloning of the factor VIII (FVIII) and factor IX (FIX) genes in the 1980s has led to a succession of clinical advances starting with the advent of molecular diagnostic for hemophilia, followed by the development of recombinant clotting factor replacement therapy. Now gene therapy beckons on the back of decades of research that has brought us to the final stages of the approval of 2 products in Europe and United States, thus heralding a new era in the treatment of the hemophilias. Valoctocogene roxaparvovec, the first gene therapy for treatment of hemophilia A, has been granted conditional marketing authorization in Europe. Another approach (etranacogene dezaparvovec, AMT-061) for hemophilia B is also under review by regulators. There are several other gene therapy approaches in earlier stages of development. These approaches entail a one-off infusion of a genetically modified adeno-associated virus (AAV) engineered to deliver either the FVIII or FIX gene to the liver, leading to the continuous endogenous synthesis and secretion of the missing coagulation factor into the circulation by the hepatocytes, thus preventing or reducing bleeding episodes. Ongoing observations show sustained clinical benefit of gene therapy for >5 years following a single administration of an AAV vector without long-lasting or late toxicities. An asymptomatic, self-limiting, immune-mediated rise in alanine aminotransferase is commonly observed within the first 12 months after gene transfer that has the potential to eliminate the transduced hepatocytes in the absence of treatment with immunosuppressive agents such as corticosteroids. The current state of this exciting and rapidly evolving field, as well as the challenges that need to be overcome for the widespread adaptation of this new treatment paradigm, is the subject of this review.
Collapse
Affiliation(s)
- Amit C. Nathwani
- Department of Haematology, UCL Cancer Institute, London, UK
- Katharine Dormandy Haemophilia and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Singh PK, Chen Z, Horn K, Norris EH. Blocking domain 6 of high molecular weight kininogen to understand intrinsic clotting mechanisms. Res Pract Thromb Haemost 2022; 6:e12815. [PMID: 36254255 PMCID: PMC9561425 DOI: 10.1002/rth2.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022] Open
Abstract
Background The contact system is initiated by factor (F) XII activation and the assembly of high molecular weight kininogen (HK) with either FXI or prekallikrein (PK) on a negatively charged surface. Overactivation of this system contributes to thrombosis and inflammation in numerous diseases. To develop effective therapeutics for contact system disorders, a detailed understanding of this pathway is needed. Methods We performed coagulation assays in normal human plasma and various factor-deficient plasmas. To evaluate how HK-mediated PK and FXI activation contributes to coagulation, we used an anti-HK antibody to block access to domain 6 of HK, the region required for efficient activation of PK and FXI. Results FXI's binding to HK and its subsequent activation by activated FXII contributes to coagulation. We found that the 3E8 anti-HK antibody can inhibit the binding of FXI or PK to HK, delaying clot formation in human plasma. Our data show that in the absence of FXI, however, PK can substitute for FXI in this process. Addition of activated FXI (FXIa) or activated PK (PKa) abolished the inhibitory effect of 3E8. Moreover, the requirement of HK in intrinsic coagulation can be largely bypassed by adding FXIa. Like FXIa, exogenous PKa shortened the clotting time in HK-deficient plasma, which was not due to feedback activation of FXII. Conclusions This study improves our understanding of HK-mediated coagulation and provides an explanation for the absence of bleeding in HK-deficient individuals. 3E8 specifically prevented HK-mediated FXI activation; therefore, it could be used to prevent contact activation-mediated thrombosis without altering hemostasis.
Collapse
Affiliation(s)
- Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Zu‐Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Katharina Horn
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
6
|
Lisjak M, De Caneva A, Marais T, Barbon E, Biferi MG, Porro F, Barzel A, Zentilin L, Kay MA, Mingozzi F, Muro AF. Promoterless Gene Targeting Approach Combined to CRISPR/Cas9 Efficiently Corrects Hemophilia B Phenotype in Neonatal Mice. Front Genome Ed 2022; 4:785698. [PMID: 35359664 PMCID: PMC8962648 DOI: 10.3389/fgeed.2022.785698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Thibaut Marais
- Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Université, Paris, France
| | - Elena Barbon
- Genethon, Evry, France
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Maria Grazia Biferi
- Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Université, Paris, France
| | - Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Adi Barzel
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, United States
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie - Paris 6, INSERM U974, Paris, France
- Spark Therapeutics, Philadelphia, PA, United States
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
7
|
Afosah DK, Ofori E, Mottamal M, Al-Horani RA. Factor IX(a) inhibitors: an updated patent review (2003-present). Expert Opin Ther Pat 2022; 32:381-400. [PMID: 34991418 DOI: 10.1080/13543776.2022.2026926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients. Research findings in animals and humans indicate that it is possible to target factor IX(a) (FIX(a)) to achieve anticoagulation with a limited risk of bleeding. AREAS COVERED A review of patents literature has retrieved >35 patents on the development of molecules targeting FIX(a) since 2003. Small molecules, antibodies, and aptamers have been developed to target FIX(a) to potentially promote effective and safer anticoagulation. Most of these agents are in the pre-clinical development phase and few have been tested in clinical trials. EXPERT OPINION FIX(a) system is being considered to develop new anticoagulants with fewer bleeding complications. Our survey indicates that the number of FIX(a)-targeting agents is mediocre. The agents under development are diverse. Although additional development is essential, moving one or more of these agents to the clinic will facilitate achieving better clinical outcomes.
Collapse
Affiliation(s)
- Daniel K Afosah
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA, USA
| | - Edward Ofori
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, USA
| | - Madhusoodanan Mottamal
- Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Gene therapy for hemophilia B using CB 2679d-GT: a novel factor IX variant with higher potency than factor IX Padua. Blood 2021; 137:2902-2906. [PMID: 33735915 DOI: 10.1182/blood.2020006005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Sustained expression of therapeutic factor IX (FIX) levels has been achieved after adeno-associated viral (AAV) vector-based gene therapy in patients with hemophilia B. Nevertheless, patients are still at risk of vector dose-limiting toxicity, particularly liver inflammation, justifying the need for more efficient vectors and a lower dosing regimen. A novel increased potency FIX (designated as CB 2679d-GT), containing 3 amino acid substitutions (R318Y, R338E, T343R), significantly outperformed the R338L-Padua variant after gene therapy. CB 2679d-GT demonstrated a statistically significant approximately threefold improvement in clotting activity when compared with R338L-Padua after AAV-based gene therapy in hemophilic mice. Moreover, CB 2679d-GT gene therapy showed significantly reduced bleeding time (approximately fivefold to eightfold) and total blood loss volume (approximately fourfold) compared with mice treated with the R338L-Padua, thus achieving more rapid and robust hemostatic correction. FIX expression was sustained for at least 20 weeks with both CB 2679d-GT and R338L-Padua whereas immunogenicity was not significantly increased. This is a novel gene therapy study demonstrating the superiority of CB 2679d-GT, highlighting its potential to obtain higher FIX activity levels and superior hemostatic efficacy following AAV-directed gene therapy in hemophilia B patients than what is currently achievable with the R338L-Padua variant.
Collapse
|
9
|
Milani M, Annoni A, Moalli F, Liu T, Cesana D, Calabria A, Bartolaccini S, Biffi M, Russo F, Visigalli I, Raimondi A, Patarroyo-White S, Drager D, Cristofori P, Ayuso E, Montini E, Peters R, Iannacone M, Cantore A, Naldini L. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci Transl Med 2020; 11:11/493/eaav7325. [PMID: 31118293 DOI: 10.1126/scitranslmed.aav7325] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Liver-directed gene therapy for the coagulation disorder hemophilia showed safe and effective results in clinical trials using adeno-associated viral vectors to replace a functional coagulation factor, although some unmet needs remain. Lentiviral vectors (LVs) may address some of these hurdles because of their potential for stable expression and the low prevalence of preexisting viral immunity in humans. However, systemic LV administration to hemophilic dogs was associated to mild acute toxicity and low efficacy at the administered doses. Here, exploiting intravital microscopy and LV surface engineering, we report a major role of the human phagocytosis inhibitor CD47, incorporated into LV cell membrane, in protecting LVs from uptake by professional phagocytes and innate immune sensing, thus favoring biodistribution to hepatocytes after systemic administration. By enforcing high CD47 surface content, we generated phagocytosis-shielded LVs which, upon intravenous administration to nonhuman primates, showed selective liver and spleen targeting and enhanced hepatocyte gene transfer compared to parental LV, reaching supraphysiological activity of human coagulation factor IX, the protein encoded by the transgene, without signs of toxicity or clonal expansion of transduced cells.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | - Patrizia Cristofori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,GlaxoSmithKline R&D UK, Ware SG12 0DP, UK
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, CHU de Nantes, 44093 Nantes, France
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
10
|
Mohammed BM, Monroe DM, Gailani D. Mouse models of hemostasis. Platelets 2020; 31:417-422. [PMID: 31992118 PMCID: PMC7244364 DOI: 10.1080/09537104.2020.1719056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/02/2023]
Abstract
Hemostasis is the normal process that produces a blood clot at a site of vascular injury. Mice are widely used to study hemostasis and abnormalities of blood coagulation because their hemostatic system is similar in most respects to that of humans, and their genomes can be easily manipulated to create models of inherited human coagulation disorders. Two of the most widely used techniques for assessing hemostasis in mice are the tail bleeding time (TBT) and saphenous vein bleeding (SVB) models. Here we discuss the use of these methods in the evaluation of hemostasis, and the advantages and limits of using mice as surrogates for studying hemostasis in humans.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Dougald M. Monroe
- UNC Blood Research Center and Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
Therapeutic potential of spheroids of stem cells from human exfoliated deciduous teeth for chronic liver fibrosis and hemophilia A. Pediatr Surg Int 2019; 35:1379-1388. [PMID: 31552493 DOI: 10.1007/s00383-019-04564-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Mesenchymal stem cell (MSC)-based cell therapies have emerged as a promising treatment option for various diseases. Due to the superior survival and higher differentiation efficiency, three-dimensional spheroid culture systems have been an important topic of MSC research. Stem cells from human exfoliated deciduous teeth (SHED) have been considered an ideal source of MSCs for regenerative medicine. Thus, in the present study, we introduce our newly developed method for fabricating SHED-based micro-hepatic tissues, and demonstrate the therapeutic effects of SHED-based micro-hepatic tissues in mouse disease models. METHODS SHED-converted hepatocyte-like cells (SHED-HLCs) were used for fabricating spherical micro-hepatic tissues. The SHED-HLC-based spheroids were then transplanted both into the liver of mice with CCl4-induced chronic liver fibrosis and the kidney of factor VIII (F8)-knock-out mice. At 4 weeks after transplantation, the therapeutic efficacy was investigated. RESULTS Intrahepatic transplantation of SHED-HLC-spheroids improved the liver dysfunction in association with anti-fibrosis effects in CCl4-treated mice. Transplanted SHED-converted cells were successfully engrafted in the recipient liver. Meanwhile, renal capsular transplantation of the SHED-HLC-spheroids significantly extended the bleeding time in F8-knock-out mice. CONCLUSIONS These findings suggest that SHED-HLC-based micro-hepatic tissues might be a promising source for treating pediatric refractory diseases, including chronic liver fibrosis and hemophilia A.
Collapse
|
12
|
Ramaswamy S, Tonnu N, Menon T, Lewis BM, Green KT, Wampler D, Monahan PE, Verma IM. Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX. Cell Rep 2019; 23:1565-1580. [PMID: 29719266 PMCID: PMC5987250 DOI: 10.1016/j.celrep.2018.03.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/27/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023] Open
Abstract
Hemophilia B is an ideal target for gene- and cell-based therapies because of its monogenic nature and broad therapeutic index. Here, we demonstrate the use of cell therapy as a potential long-term cure for hemophilia B in our FIX-deficient mouse model. We show that transplanted, cryopreserved, cadaveric human hepatocytes remain functional for more than a year and secrete FIX at therapeutic levels. Hepatocytes from different sources (companies and donors) perform comparably in curing the bleeding defect. We also generated induced pluripotent stem cells (iPSCs) from two hemophilia B patients and corrected the disease-causing mutations in them by two different approaches (mutation specific and universal). These corrected iPSCs were differentiated into hepatocyte- like cells (HLCs) and transplanted into hemophilic mice. We demonstrate these iPSC-HLCs to be viable and functional in mouse models for 9–12 months. This study aims to establish the use of cells from autologous and heterologous sources to treat hemophilia B.
Collapse
Affiliation(s)
- Suvasini Ramaswamy
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nina Tonnu
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tushar Menon
- Vertex Pharmaceuticals, 11010 Torreyana Road, San Diego, CA 92121, USA
| | - Benjamin M Lewis
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin T Green
- Department of Cellular and Molecular Biology, San Diego State University, Campanile Drive, San Diego, CA 92182, USA
| | - Derek Wampler
- Thermo Fisher Scientific, Inc., 5791 Van Allen Way, Carlsbad, CA 92008, USA
| | - Paul E Monahan
- Shire Therapeutics, 22 Grenville Street, St. Helier, Jersey JE4 8PX, UK
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Spronck EA, Liu YP, Lubelski J, Ehlert E, Gielen S, Montenegro-Miranda P, de Haan M, Nijmeijer B, Ferreira V, Petry H, van Deventer SJ. Enhanced Factor IX Activity following Administration of AAV5-R338L "Padua" Factor IX versus AAV5 WT Human Factor IX in NHPs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:221-231. [PMID: 31709273 PMCID: PMC6834974 DOI: 10.1016/j.omtm.2019.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 10/29/2022]
Abstract
Gene therapy for severe hemophilia B is advancing and offers sustained disease amelioration with a single treatment. We have reported the efficacy and safety of AMT-060, an investigational gene therapy comprising an adeno-associated virus serotype 5 capsid encapsidating the codon-optimized wild-type human factor IX (WT hFIX) gene with a liver-specific promoter, in patients with severe hemophilia B. Treatment with 2 × 1013 gc/kg AMT-060 showed sustained and durable FIX activity of 3%-13% and a substantial reduction in spontaneous bleeds without T cell-mediated hepatoxicity. To achieve higher FIX activity, we modified AMT-060 to encode the R338L "Padua" FIX variant that has increased specific activity (AMT-061). We report the safety and increased FIX activity of AMT-061 in non-human primates. Animals (n = 3/group) received intravenous AMT-060 (5 × 1012 gc/kg), AMT-061 (ranging from 5 × 1011 to 9 × 1013 gc/kg), or vehicle. Human FIX protein expression, FIX activity, and coagulation markers including D-dimer and thrombin-antithrombin complexes were measured. At equal doses, AMT-060 and AMT-061 resulted in similar human FIX protein expression, but FIX activity was 6.5-fold enhanced using AMT-061. Both vectors show similar safety and transduction profiles. Thus, AMT-061 holds great promise as a more potent FIX replacement gene therapy with a favorable safety profile.
Collapse
Affiliation(s)
- Elisabeth A Spronck
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Ying Poi Liu
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Jacek Lubelski
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Erich Ehlert
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Sander Gielen
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | | | - Martin de Haan
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Bart Nijmeijer
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Valerie Ferreira
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Harald Petry
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands
| | - Sander J van Deventer
- uniQure biopharma B.V., Paasheuvelweg 25A, 1105 BP Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
14
|
CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood 2019; 133:2745-2752. [DOI: 10.1182/blood.2019000790] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 02/05/2023] Open
Abstract
Abstract
Many genetic diseases, including hemophilia, require long-term therapeutic effects. Despite the initial success of liver-directed adeno-associated virus (AAV) gene therapy for hemophilia in clinical trials, long-term sustained therapeutic effects have yet to be seen. One explanation for the gradual decline of efficacy over time is that the nonintegrating AAV vector genome could be lost during cell division during hepatocyte turnover, albeit at a slow pace in adults. Readministering the same vector is challenging as a result of the AAV-neutralizing antibodies elicited by the initial treatment. Here, we investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated homology-directed gene targeting for sustained treatment of hemophilia B. We developed a donor vector containing a promoterless partial human factor IX (FIX) complementary DNA carrying the hyperactive FIX Padua mutation. A single injection of dual AAV vectors in newborn and adult FIX-knockout (FIX-KO) mice led to stable expression of FIX at or above the normal levels for 8 months. Eight weeks after the vector treatment, we subjected a subgroup of newborn and adult treated FIX-KO mice to a two-thirds partial hepatectomy; all of these animals survived the procedure without any complications or interventions. FIX levels persisted at similar levels for 24 weeks after partial hepatectomy, indicating stable genomic targeting. Our results lend support for the use of a CRISPR/Cas9 approach to achieve lifelong expression of therapeutic proteins.
Collapse
|
15
|
Milani M, Annoni A, Bartolaccini S, Biffi M, Russo F, Di Tomaso T, Raimondi A, Lengler J, Holmes MC, Scheiflinger F, Lombardo A, Cantore A, Naldini L. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol Med 2018; 9:1558-1573. [PMID: 28835507 PMCID: PMC5666310 DOI: 10.15252/emmm.201708148] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lentiviral vectors (LV) are powerful and versatile vehicles for gene therapy. However, their complex biological composition challenges large-scale manufacturing and raises concerns for in vivo applications, because particle components and contaminants may trigger immune responses. Here, we show that producer cell-derived polymorphic class-I major histocompatibility complexes (MHC-I) are incorporated into the LV surface and trigger allogeneic T-cell responses. By disrupting the beta-2 microglobulin gene in producer cells, we obtained MHC-free LV with substantially reduced immunogenicity. We introduce this targeted editing into a novel stable LV packaging cell line, carrying single-copy inducible vector components, which can be reproducibly converted into high-yield LV producers upon site-specific integration of the LV genome of interest. These LV efficiently transfer genes into relevant targets and are more resistant to complement-mediated inactivation, because of reduced content of the vesicular stomatitis virus envelope glycoprotein G compared to vectors produced by transient transfection. Altogether, these advances support scalable manufacturing of alloantigen-free LV with higher purity and increased complement resistance that are better suited for in vivo gene therapy.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziano Di Tomaso
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Grover SP, Mackman N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:709-725. [PMID: 29437578 DOI: 10.1161/atvbaha.117.309846] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
Tissue factor (TF) is the high-affinity receptor and cofactor for factor (F)VII/VIIa. The TF-FVIIa complex is the primary initiator of blood coagulation and plays an essential role in hemostasis. TF is expressed on perivascular cells and epithelial cells at organ and body surfaces where it forms a hemostatic barrier. TF also provides additional hemostatic protection to vital organs, such as the brain, lung, and heart. Under pathological conditions, TF can trigger both arterial and venous thrombosis. For instance, atherosclerotic plaques contain high levels of TF on macrophage foam cells and microvesicles that drives thrombus formation after plaque rupture. In sepsis, inducible TF expression on monocytes leads to disseminated intravascular coagulation. In cancer patients, tumors release TF-positive microvesicles into the circulation that may contribute to venous thrombosis. TF also has nonhemostatic roles. For instance, TF-dependent activation of the coagulation cascade generates coagulation proteases, such as FVIIa, FXa, and thrombin, which induce signaling in a variety of cells by cleavage of protease-activated receptors. This review will focus on the roles of TF in protective hemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Steven P Grover
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill.
| |
Collapse
|
17
|
Ely LK, Lolicato M, David T, Lowe K, Kim YC, Samuel D, Bessette P, Garcia JL, Mikita T, Minor DL, Coughlin SR. Structural Basis for Activity and Specificity of an Anticoagulant Anti-FXIa Monoclonal Antibody and a Reversal Agent. Structure 2018; 26:187-198.e4. [PMID: 29336885 DOI: 10.1016/j.str.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/23/2017] [Accepted: 12/13/2017] [Indexed: 11/18/2022]
Abstract
Coagulation factor XIa is a candidate target for anticoagulants that better separate antithrombotic efficacy from bleeding risk. We report a co-crystal structure of the FXIa protease domain with DEF, a human monoclonal antibody that blocks FXIa function and prevents thrombosis in animal models without detectable increased bleeding. The light chain of DEF occludes the FXIa S1 subsite and active site, while the heavy chain provides electrostatic interactions with the surface of FXIa. The structure accounts for the specificity of DEF for FXIa over its zymogen and related proteases, its active-site-dependent binding, and its ability to inhibit substrate cleavage. The inactive FXIa protease domain used to obtain the DEF-FXIa crystal structure reversed anticoagulant activity of DEF in plasma and in vivo and the activity of a small-molecule FXIa active-site inhibitor in vitro. DEF and this reversal agent for FXIa active-site inhibitors may help support clinical development of FXIa-targeting anticoagulants.
Collapse
Affiliation(s)
- Lauren K Ely
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tovo David
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kate Lowe
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yun Cheol Kim
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Dharmaraj Samuel
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Paul Bessette
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Jorge L Garcia
- PMI PreClinical, 1031 Bing Street, San Carlos, CA 94070, USA
| | - Thomas Mikita
- Centers for Therapeutic Innovation, San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
David T, Kim YC, Ely LK, Rondon I, Gao H, O'Brien P, Bolt MW, Coyle AJ, Garcia JL, Flounders EA, Mikita T, Coughlin SR. Factor XIa-specific IgG and a reversal agent to probe factor XI function in thrombosis and hemostasis. Sci Transl Med 2017; 8:353ra112. [PMID: 27559095 DOI: 10.1126/scitranslmed.aaf4331] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/11/2016] [Indexed: 11/02/2022]
Abstract
Thrombosis is a major cause of morbidity and mortality. Current antithrombotic drugs are not ideal in that they must balance prevention of thrombosis against bleeding risk. Inhibition of coagulation factor XI (FXI) may offer an improvement over existing antithrombotic strategies by preventing some forms of thrombosis with lower bleeding risk. To permit exploration of this hypothesis in humans, we generated and characterized a series of human immunoglobulin Gs (IgGs) that blocked FXIa active-site function but did not bind FXI zymogen or other coagulation proteases. The most potent of these IgGs, C24 and DEF, inhibited clotting in whole human blood and prevented FeCl3-induced carotid artery occlusion in FXI-deficient mice reconstituted with human FXI and in thread-induced venous thrombosis in rabbits at clinically relevant doses. At doses substantially higher than those required for inhibition of intravascular thrombus formation in these models, DEF did not increase cuticle bleeding in rabbits or cause spontaneous bleeding in macaques over a 2-week study. Anticipating the desirability of a reversal agent, we also generated a human IgG that rapidly reversed DEF activity ex vivo in human plasma and in vivo in rabbits. Thus, an active site-directed FXIa-specific antibody can block thrombosis in animal models and, together with the reversal agent, may facilitate exploration of the roles of FXIa in human disease.
Collapse
Affiliation(s)
- Tovo David
- Cardiovascular Research Institute, University of California, San Francisco, Room SC452P, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3122, USA
| | - Yun Cheol Kim
- Centers for Therapeutic Innovation San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Lauren K Ely
- Centers for Therapeutic Innovation San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Isaac Rondon
- Centers for Therapeutic Innovation San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA
| | - Huilan Gao
- Centers for Therapeutic Innovation Boston, Pfizer Inc., 18th Floor, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Peter O'Brien
- Pharmacokinetics, Dynamics, and Metabolism Biotherapeutics and Translational Research, Pfizer Inc., 10724 Science Center Drive, San Diego, CA 92121, USA
| | - Michael W Bolt
- Drug Safety Research and Development, Pfizer Inc., 1 Burtt Road, Andover, MA 01810, USA
| | - Anthony J Coyle
- Centers for Therapeutic Innovation Boston, Pfizer Inc., 18th Floor, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jorge L Garcia
- PMI Preclinical, 1031 Bing Street, San Carlos, CA 94070, USA
| | | | - Thomas Mikita
- Centers for Therapeutic Innovation San Francisco, Pfizer Inc., 1700 Owens Street, San Francisco, CA 94158, USA.
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, Room SC452P, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3122, USA.
| |
Collapse
|
19
|
George LA. Hemophilia gene therapy comes of age. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:587-594. [PMID: 29222308 PMCID: PMC6142599 DOI: 10.1182/asheducation-2017.1.587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first "cure" in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)-mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.
Collapse
Affiliation(s)
- Lindsey A George
- Division of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Abstract
Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first "cure" in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)-mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.
Collapse
|
21
|
van Montfoort M, Meijers J. Anticoagulation beyond direct thrombin and factor Xa inhibitors: indications for targeting the intrinsic pathway? Thromb Haemost 2017; 110:223-32. [DOI: 10.1160/th12-11-0803] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/07/2013] [Indexed: 11/05/2022]
Abstract
SummaryAntithrombotic drugs like vitamin K antagonists and heparin have been the gold standard for the treatment and prevention of thromboembolic disease for many years. Unfortunately, there are several disadvantages of these antithrombotic drugs: they are accompanied by serious bleeding problems, it is necessary to monitor the therapeutic window, and there are various interactions with food and other drugs. This has led to the development of new oral anticoagulants, specifically inhibiting either thrombin or factor Xa. In terms of effectiveness, these drugs are comparable to the currently available anticoagulants; however, they are still associated with issues such as bleeding, reversal of the drug and complicated laboratory monitoring. Vitamin K antagonists, heparin, direct thrombin and factor Xa inhibitors have in common that they target key proteins of the haemostatic system. In an attempt to overcome these difficulties we investigated whether the intrinsic coagulation factors (VIII, IX, XI, XII, prekallikrein and high-molecular-weight kininogen) are superior targets for anticoagulation. We analysed epidemiological data concerning thrombosis and bleeding in patients deficient in one of the intrinsic pathway proteins. Furthermore, we discuss several thrombotic models in intrinsic coagulation factor-deficient animals. The combined results suggest that intrinsic coagulation factors could be suitable targets for anticoagulant drugs.
Collapse
|
22
|
Nathwani AC, Davidoff AM, Tuddenham EGD. Advances in Gene Therapy for Hemophilia. Hum Gene Ther 2017; 28:1004-1012. [DOI: 10.1089/hum.2017.167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Amit C. Nathwani
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London, United Kingdom
- NHS Blood and Transplant, Watford, United Kingdom
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Edward G. D. Tuddenham
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Abstract
The best currently available treatments for hemophilia A and B (factor VIII or factor IX deficiency, respectively) require frequent intravenous infusion of highly expensive proteins that have short half-lives. Factor levels follow a saw-tooth pattern that is seldom in the normal range and falls so low that breakthrough bleeding occurs. Most hemophiliacs worldwide do not have access to even this level of care. In stark contrast, gene therapy holds out the hope of a cure by inducing continuous endogenous expression of factor VIII or factor IX following transfer of a functional gene to replace the hemophilic patient's own defective gene.
Collapse
Affiliation(s)
- Amit C Nathwani
- Department of Academic Haematology, UCL Cancer Institute, Katharine Dormandy Haemophilia and Thrombosis Centre, Rowland Hill Street, London NW3 2PF, United Kingdom; National Health Service Blood and Transplant, Oak House, Reeds Crescent, Watford, Hertfordshire, WD24 4QN, United Kingdom.
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place Memphis, TN 38105-3678, USA
| | - Edward G D Tuddenham
- Department of Academic Haematology, UCL Cancer Institute, Katharine Dormandy Haemophilia and Thrombosis Centre, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
24
|
Suwanmanee T, Ferris MT, Hu P, Gui T, Montgomery SA, Pardo-Manuel de Villena F, Kafri T. Toward Personalized Gene Therapy: Characterizing the Host Genetic Control of Lentiviral-Vector-Mediated Hepatic Gene Delivery. Mol Ther Methods Clin Dev 2017; 5:83-92. [PMID: 28480308 PMCID: PMC5415322 DOI: 10.1016/j.omtm.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
Abstract
The success of lentiviral vectors in curing fatal genetic and acquired diseases has opened a new era in human gene therapy. However, variability in the efficacy and safety of this therapeutic approach has been reported in human patients. Consequently, lentiviral-vector-based gene therapy is limited to incurable human diseases, with little understanding of the underlying causes of adverse effects and poor efficacy. To assess the role that host genetic variation has on efficacy of gene therapy, we characterized lentiviral-vector gene therapy within a set of 12 collaborative cross mouse strains. Lentiviral vectors carrying the firefly luciferase cDNA under the control of a liver-specific promoter were administered to female mice, with total-body and hepatic luciferase expression periodically monitored through 41 weeks post-vector administration. Vector copy number per diploid genome in mouse liver and spleen was determined at the end of this study. We identified major strain-specific contributions to overall success of transduction, vector biodistribution, maximum luciferase expression, and the kinetics of luciferase expression throughout the study. Our results highlight the importance of genetic variation on gene-therapeutic efficacy; provide new models with which to more rigorously assess gene therapy approaches; and suggest that redesigning preclinical studies of gene-therapy methodologies might be appropriate.
Collapse
Affiliation(s)
- Thipparat Suwanmanee
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tong Gui
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie A. Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Vink CA, Counsell JR, Perocheau DP, Karda R, Buckley SMK, Brugman MH, Galla M, Schambach A, McKay TR, Waddington SN, Howe SJ. Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy. Mol Ther 2017; 25:1790-1804. [PMID: 28550974 PMCID: PMC5542766 DOI: 10.1016/j.ymthe.2017.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.
Collapse
Affiliation(s)
- Conrad A Vink
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - John R Counsell
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Tristan R McKay
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester M15 6BH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg 2000, South Africa
| | - Steven J Howe
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
26
|
Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc Natl Acad Sci U S A 2017; 114:E1941-E1950. [PMID: 28202722 DOI: 10.1073/pnas.1619653114] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4-6 h) that remains stable for up to 4-6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA-LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable.
Collapse
|
27
|
Abstract
Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.
Collapse
Affiliation(s)
- Ching-Tzu Yen
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ni Fan
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan ; Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Chou
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan ; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Anderson CD, Moisyadi S, Avelar A, Walton CB, Shohet RV. Ultrasound-targeted hepatic delivery of factor IX in hemophiliac mice. Gene Ther 2016; 23:510-9. [PMID: 26960037 PMCID: PMC4891223 DOI: 10.1038/gt.2016.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/16/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) was used to direct the delivery of plasmid and transposase-based vectors encoding human factor IX (hFIX) to the livers of hemophilia B (FIX−/−) mice. The DNA vectors were incorporated into cationic lipid microbubbles, injected intravenously, and transfected into hepatocytes by acoustic cavitation of the bubbles as they transited the liver. Ultrasound parameters were identified that produced transfection of hepatocytes in vivo without substantial damage or bleeding in the livers of the FIX-deficient mice. These mice were treated with a conventional expression plasmid, or one containing a piggyBac transposon construct, and hFIX levels in the plasma and liver were evaluated at multiple time points after UTMD. We detected hFIX in the plasma by western blotting from mice treated with either plasmid during the 12 days after UTMD, and in the hepatocytes of treated livers by immunofluorescence. Reductions in clotting time and improvements in the percentage of FIX activity were observed for both plasmids, conventional (4.15±1.98%), and transposon based (2.70±.75%), 4 to 5 days after UTMD compared with untreated FIX (−/−) control mice (0.92±0.78%) (P=0.001 and P=0.012, respectively). Reduced clotting times persisted for both plasmids 12 days after treatment (reflecting percentage FIX activity of 3.12±1.56%, P=0.02 and 3.08±0.10%, P=0.001, respectively). Clotting times from an additional set of mice treated with pmGENIE3-hFIX were evaluated for long-term effects and demonstrated a persistent reduction in average clotting time 160 days after a single treatment. These data suggest that UTMD could be a minimally invasive, nonviral approach to enhance hepatic FIX expression in patients with hemophilia.
Collapse
Affiliation(s)
- C D Anderson
- Department of Cellular and Molecular Biology, John A. Burns School of Medicine, Honolulu, HI, USA
| | - S Moisyadi
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, Honolulu, HI, USA
| | - A Avelar
- Department of Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - C B Walton
- Department of Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - R V Shohet
- Department of Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
29
|
Ankrom W, Wood HB, Xu J, Geissler W, Bateman T, Chatterjee MS, Feng KI, Metzger JM, Strapps WR, Tadin-Strapps M, Seiffert D, Andre P. Preclinical and translational evaluation of coagulation factor IXa as a novel therapeutic target. Pharmacol Res Perspect 2016; 4:e00207. [PMID: 26977298 PMCID: PMC4777260 DOI: 10.1002/prp2.207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 02/05/2023] Open
Abstract
The benefits of novel oral anticoagulants are hampered by bleeding. Since coagulation factor IX (fIX) lies upstream of fX in the coagulation cascade, and intermediate levels have been associated with reduced incidence of thrombotic events, we evaluated the viability of fIXa as an antithrombotic target. We applied translational pharmacokinetics/pharmacodynamics (PK/PD) principles to predict the therapeutic window (TW) associated with a selective small molecule inhibitor (SMi) of fIXa, compound 1 (CPD1, rat fIXa inhibition constant (Ki, 21 nmol/L) relative to clinically relevant exposures of apixaban (rat fXa Ki 4.3 nmol/L). Concentrations encompassing the minimal clinical plasma concentration (C min) of the 5 mg twice daily (BID) dose of apixaban were tested in rat arteriovenous shunt (AVS/thrombosis) and cuticle bleeding time (CBT) models. An I max and a linear model were used to fit clot weight (CW) and CBT. The following differences in biology were observed: (1) antithrombotic activity and bleeding increased in parallel for apixaban, but to a lesser extent for CPD1 and (2) antithrombotic activity occurred at high (>99%) enzyme occupancy (EO) for fXa or moderate (>65% EO) for fIXa. translational PK/PD analysis indicated that noninferiority was observed for concentrations of CPD1 that provided between 86% and 96% EO and that superior TW existed between 86% and 90% EO. These findings were confirmed in a study comparing short interfering (si)RNA-mediated knockdown (KD) modulation of fIX and fX mRNA. In summary, using principles of translational biology to relate preclinical markers of efficacy and safety to clinical doses of apixaban, we found that modulation of fIXa can be superior to apixaban.
Collapse
Affiliation(s)
| | - Harold B Wood
- Discovery Chemistry Merck & Co., Inc. Rahway New Jersey
| | - Jiayi Xu
- Discovery Chemistry Merck & Co., Inc. Rahway New Jersey
| | - Wayne Geissler
- In Vitro Pharmacology Merck & Co., Inc. Kenilworth New Jersey
| | - Tom Bateman
- PPDM Merck & Co., Inc. Kenilworth New Jersey
| | | | - Kung-I Feng
- Discovery Pharmaceutical Sciences Merck & Co., Inc. Rahway New Jersey
| | | | | | | | | | - Patrick Andre
- Cardiometabolic Disease Merck & Co., Inc. Kenilworth New Jersey
| |
Collapse
|
30
|
Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD, Sanvito F, Sergi LS, Gallina P, Benedicenti F, Bellinger D, Raymer R, Merricks E, Bellintani F, Martin S, Doglioni C, D'Angelo A, VandenDriessche T, Chuah MK, Schmidt M, Nichols T, Montini E, Naldini L. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med 2016; 7:277ra28. [PMID: 25739762 DOI: 10.1126/scitranslmed.aaa1405] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated the efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We showed that gene therapy using lentiviral vectors targeting the expression of a canine factor IX transgene in hepatocytes was well tolerated and provided a stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we showed that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be potentially useful for the treatment of hemophilia.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy. Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Ranzani
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy. Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cynthia C Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy. Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Department of Oncology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucia Sergi Sergi
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierangela Gallina
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dwight Bellinger
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robin Raymer
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Merricks
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Claudio Doglioni
- Pathology Unit, Department of Oncology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium. Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium. Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Timothy Nichols
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy. Vita-Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
31
|
Sim DS, Kauser K. In Vivo Target Validation Using Biological Molecules in Drug Development. Handb Exp Pharmacol 2016; 232:59-70. [PMID: 26552401 DOI: 10.1007/164_2015_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Drug development is a resource-intensive process requiring significant financial and time investment. Preclinical target validation studies and in vivo testing of the therapeutic molecules in clinically relevant disease models can accelerate and significantly de-risk later stage clinical development. In this chapter, we will focus on (1) in vivo animal models and (2) pharmacological tools for target validation.
Collapse
Affiliation(s)
- Derek S Sim
- Bayer HealthCare, 455 Mission Bay Blvd. South, Suite 493, San Francisco, CA, 94158, USA.
| | - Katalin Kauser
- Bayer HealthCare, 455 Mission Bay Blvd. South, Suite 493, San Francisco, CA, 94158, USA
| |
Collapse
|
32
|
Lozier JN, Kloos MT, Merricks EP, Lemoine N, Whitford MH, Raymer RA, Bellinger DA, Nichols TC. Severe Hemophilia A in a Male Old English Sheep Dog with a C→T Transition that Created a Premature Stop Codon in Factor VIII. Comp Med 2016; 66:405-411. [PMID: 27780008 PMCID: PMC5073066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 02/28/2016] [Indexed: 06/06/2023]
Abstract
Animals with hemophilia are models for gene therapy, factor replacement, and inhibitor development in humans. We have actively sought dogs with severe hemophilia A that have novel factor VIII mutations unlike the previously described factor VIII intron 22 inversion. A male Old English Sheepdog with recurrent soft-tissue hemorrhage and hemarthrosis was diagnosed with severe hemophilia A (factor VIII activity less than 1% of normal). We purified genomic DNA from this dog and ruled out the common intron 22 inversion; we then sequenced all 26 exons. Comparing the results with the normal canine factor VIII sequence revealed a C→T transition in exon 12 of the factor VIII gene that created a premature stop codon at amino acid 577 in the A2 domain of the protein. In addition, 2 previously described polymorphisms that do not cause hemophilia were present at amino acids 909 and 1184. The hemophilia mutation creates a new TaqI site that facilitates rapid genotyping of affected offspring by PCR and restriction endonuclease analyses. This mutation is analogous to the previously described human factor VIII mutation at Arg583, which likewise is a CpG dinucleotide transition causing a premature stop codon in exon 12. Thus far, despite extensive treatment with factor VIII, this dog has not developed neutralizing antibodies ('inhibitors') to the protein. This novel mutation in a dog gives rise to severe hemophilia A analogous to a mutation seen in humans. This model will be useful for studies of the treatment of hemophilia.
Collapse
Affiliation(s)
- Jay N Lozier
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Mark T Kloos
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaly Lemoine
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret H Whitford
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robin A Raymer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dwight A Bellinger
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
33
|
Li B, Luo X, Deng B, Wang J, McComb DW, Shi Y, Gaensler KML, Tan X, Dunn AL, Kerlin BA, Dong Y. An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. NANO LETTERS 2015; 15:8099-107. [PMID: 26529392 PMCID: PMC4869688 DOI: 10.1021/acs.nanolett.5b03528] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Systemic delivery of mRNA-based therapeutics remains a challenging issue for preclinical and clinical studies. Here, we describe new lipid-like nanoparticles (TT-LLNs) developed through an orthogonal array design, which demonstrates improved delivery efficiency of mRNA encoding luciferase in vitro by over 350-fold with significantly reduced experimental workload. One optimized TT3 LLN, termed O-TT3 LLNs, was able to restore the human factor IX (hFIX) level to normal physiological values in FIX-knockout mice. Consequently, these mRNA based nanomaterials merit further development for therapeutic applications.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiao Luo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43212, United States
| | - Junfeng Wang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43212, United States
| | - Yimin Shi
- Department of Medicine, University of California-San Francisco, San Francisco, California 94143, United States
| | - Karin M. L. Gaensler
- Department of Medicine, University of California-San Francisco, San Francisco, California 94143, United States
| | - Xu Tan
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Amy L. Dunn
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43205, United States
| | - Bryce A. Kerlin
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43205, United States
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Author:
| |
Collapse
|
34
|
George LA, Fogarty PF. Gene therapy for hemophilia: past, present and future. Semin Hematol 2015; 53:46-54. [PMID: 26805907 DOI: 10.1053/j.seminhematol.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Revised: 11/05/2004] [Accepted: 12/01/2005] [Indexed: 01/16/2023]
Abstract
After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia.
Collapse
Affiliation(s)
- Lindsey A George
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Patrick F Fogarty
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Penn Comprehensive Hemophilia and Thrombosis Program, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Lheriteau E, Davidoff AM, Nathwani AC. Haemophilia gene therapy: Progress and challenges. Blood Rev 2015; 29:321-8. [DOI: 10.1016/j.blre.2015.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
36
|
Metzger JM, Tadin-Strapps M, Thankappan A, Strapps WR, DiPietro M, Leander K, Zhang Z, Shin MK, Levorse J, Desai K, Xu Y, Lai K, Wu W, Chen Z, Cai TQ, Jochnowitz N, Bentley R, Hoos L, Zhou Y, Sepp-Lorenzino L, Seiffert D, Andre P. Titrating haemophilia B phenotypes using siRNA strategy: evidence that antithrombotic activity is separated from bleeding liability. Thromb Haemost 2015; 113:1300-11. [PMID: 25790442 DOI: 10.1160/th14-06-0505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022]
Abstract
Haemophilia A and B are characterised by a life-long bleeding predisposition, and several lines of evidence suggest that risks of atherothrombotic events may also be reduced. Establishing a direct correlation between coagulation factor levels, thrombotic risks and bleeding propensity has long been hampered by an inability to selectively and specifically inhibit coagulation factor levels. Here, the exquisite selectivity of gene silencing combined with a gene knockout (KO) approach was used to define the relative contribution of factor IX (fIX) to thrombosis and primary haemostasis in the rat. Using a lipid nanoparticle (LNP) formulation, we successfully delivered fIX siRNAs to the liver by intravenous administration. The knockdown (KD) of target gene mRNA was achieved rapidly (within 24 hour post-siRNA dosing), sustained (maintained for at least 7 days post dosing) and not associated with changes in mRNA expression levels of other coagulation factors. We found that intermediate levels of liver fIX mRNA silencing (60-95 %) translating into a 50-99 % reduction of plasma fIX activity provided protection from thrombosis without prolonging the cuticle bleeding time. Over 99 % inhibition of fIX activity was required to observe increase in bleeding, a phenotype confirmed in fIX KO rats. These data provide substantial evidence of a participation of fIX in the mechanisms regulating thrombosis prior to those regulating primary haemostasis, therefore highlighting the potential of fIX as a therapeutic target. In addition, hepatic mRNA silencing using LNP-encapsulated siRNAs may represent a promising novel approach for the chronic treatment and prevention of coagulation-dependent thrombotic disorders in humans.
Collapse
Affiliation(s)
| | - Marija Tadin-Strapps
- Marija Tadin-Strapps, Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., 33 Avenue E Louis Pasteur, Boston, MA 02115, USA, Tel.:+1 617 992 2339, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Patrick Andre
- Patrick Andre, Cardiometabolic Disease, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ 07033, USA, Tel.:+1 908 740 7329, E-mail:
| |
Collapse
|
37
|
Chuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, Nair N, Willems J, Evens H, Rincon MY, Matrai J, Di Matteo M, Samara-Kuko E, Yan B, Acosta-Sanchez A, Meliani A, Cherel G, Blouin V, Christophe O, Moullier P, Mingozzi F, VandenDriessche T. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther 2014; 22:1605-13. [PMID: 24954473 PMCID: PMC4435486 DOI: 10.1038/mt.2014.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
The robustness and safety of liver-directed gene therapy can be substantially
improved by enhancing expression of the therapeutic transgene in the liver. To
achieve this, we developed a new approach of rational in silico vector
design. This approach relies on a genome-wide bio-informatics strategy to
identify cis-acting regulatory modules (CRMs) containing
evolutionary conserved clusters of transcription factor binding site motifs that
determine high tissue-specific gene expression. Incorporation of these
CRMs into adeno-associated viral (AAV) and non-viral vectors
enhanced gene expression in mice liver 10 to 100-fold, depending on the promoter
used. Furthermore, these CRMs resulted in robust and sustained
liver-specific expression of coagulation factor IX (FIX), validating their
immediate therapeutic and translational relevance. Subsequent translational
studies indicated that therapeutic FIX expression levels could be attained
reaching 20–35% of normal levels after AAV-based liver-directed gene
therapy in cynomolgus macaques. This study underscores the potential of rational
vector design using computational approaches to improve their robustness and
therefore allows for the use of lower and thus safer vector doses for gene
therapy, while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Marinee K Chuah
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Inge Petrus
- Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Pieter De Bleser
- Department for Molecular Biomedical Research (DMBR), VIB - Ghent University, Ghent, Belgium
| | - Caroline Le Guiner
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Gwladys Gernoux
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Oumeya Adjali
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Jessica Willems
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Hanneke Evens
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Melvin Y Rincon
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Janka Matrai
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Vesalius Research Center, VIB, Leuven, Belgium [3] University of Leuven, Leuven, Belgium
| | - Mario Di Matteo
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Bing Yan
- 1] Vesalius Research Center, VIB, Leuven, Belgium [2] University of Leuven, Leuven, Belgium
| | - Abel Acosta-Sanchez
- 1] Vesalius Research Center, VIB, Leuven, Belgium [2] University of Leuven, Leuven, Belgium
| | - Amine Meliani
- 1] Genethon, Evry, France [2] University Pierre and Marie Curie, Paris, France
| | - Ghislaine Cherel
- 1] INSERM, U770, Le Kremlin Bicêtre, France [2] Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Véronique Blouin
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Olivier Christophe
- 1] INSERM, U770, Le Kremlin Bicêtre, France [2] Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Philippe Moullier
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Federico Mingozzi
- 1] Genethon, Evry, France [2] University Pierre and Marie Curie, Paris, France
| | - Thierry VandenDriessche
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Abstract
Animal models of hemophilia and related diseases are important for the development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease (VWD) have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and VWD pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform preclinical assessments of standard protein replacement therapies, as well as novel gene transfer technology. The differences both between species and in underlying causative mutations must be considered in choosing the best animal for a specific scientific study.
Collapse
|
39
|
Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood 2014; 123:3195-9. [PMID: 24637359 DOI: 10.1182/blood-2013-10-534032] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The development of the next-generation gene therapy vectors for hemophilia requires using lower and thus potentially safer vector doses and augmenting their therapeutic efficacy. We have identified hepatocyte-specific transcriptional cis-regulatory modules (CRMs) by using a computational strategy that increased factor IX (FIX) levels 11- to 15-fold. Vector efficacy could be enhanced by combining these hepatocyte-specific CRMs with a synthetic codon-optimized hyperfunctional FIX-R338L Padua transgene. This Padua mutation boosted FIX activity up to sevenfold, with no apparent increase in thrombotic risk. We then validated this combination approach using self-complementary adenoassociated virus serotype 9 (scAAV9) vectors in hemophilia B mice. This resulted in sustained supraphysiologic FIX activity (400%), correction of the bleeding diathesis at clinically relevant, low vector doses (5 × 10(10) vector genomes [vg]/kg) that are considered safe in patients undergoing gene therapy. Moreover, immune tolerance could be induced that precluded induction of inhibitory antibodies to FIX upon immunization with recombinant FIX protein.
Collapse
|
40
|
Azuma K, Tsukui T, Ikeda K, Shiba S, Nakagawa K, Okano T, Urano T, Horie-Inoue K, Ouchi Y, Ikawa M, Inoue S. Liver-specific γ-glutamyl carboxylase-deficient mice display bleeding diathesis and short life span. PLoS One 2014; 9:e88643. [PMID: 24520408 PMCID: PMC3919827 DOI: 10.1371/journal.pone.0088643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that plays important roles in blood coagulation and bone metabolism. One of its functions is as a co-factor for γ-glutamyl carboxylase (Ggcx). Conventional knockout of Ggcx causes death shortly after birth in homozygous mice. We created Ggcx-floxed mice by inserting loxP sequences at the sites flanking exon 6 of Ggcx. By mating these mice with albumin-Cre mice, we generated Ggcx-deficient mice specifically in hepatocytes (GgcxΔliver/Δliver mice). In contrast to conventional Ggcx knockout mice, GgcxΔliver/Δliver mice had very low activity of Ggcx in the liver and survived several weeks after birth. Furthermore, compared with heterozygous mice (Ggcx+/Δliver), GgcxΔliver/Δliver mice had shorter life spans. GgcxΔliver/Δliver mice displayed bleeding diathesis, which was accompanied by decreased activity of coagulation factors II and IX. Ggcx-floxed mice can prove useful in examining Ggcx functions in vivo.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tohru Tsukui
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Sachiko Shiba
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Tomohiko Urano
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yasuyoshi Ouchi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Annoni A, Cantore A, Della Valle P, Goudy K, Akbarpour M, Russo F, Bartolaccini S, D'Angelo A, Roncarolo MG, Naldini L. Liver gene therapy by lentiviral vectors reverses anti-factor IX pre-existing immunity in haemophilic mice. EMBO Mol Med 2013; 5:1684-97. [PMID: 24106222 PMCID: PMC3840485 DOI: 10.1002/emmm.201302857] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/18/2013] [Accepted: 08/08/2013] [Indexed: 01/24/2023] Open
Abstract
A major complication of factor replacement therapy for haemophilia is the development of anti-factor neutralizing antibodies (inhibitors). Here we show that liver gene therapy by lentiviral vectors (LVs) expressing factor IX (FIX) strongly reduces pre-existing anti-FIX antibodies and eradicates FIX inhibitors in haemophilia B mice. Concomitantly, plasma FIX levels and clotting activity rose to 50–100% of normal. The treatment was effective in 75% of treated mice. FIX-specific plasma cells (PCs) and memory B cells were reduced, likely because of memory B-cell depletion in response to constant exposure to high doses of FIX. Regulatory T cells displaying FIX-specific suppressive capacity were induced in gene therapy treated mice and controlled FIX-specific T helper cells. Gene therapy proved safer than a regimen mimicking immune tolerance induction (ITI) by repeated high-dose FIX protein administration, which induced severe anaphylactoid reactions in inhibitors-positive haemophilia B mice. Liver gene therapy can thus reverse pre-existing immunity, induce active tolerance to FIX and establish sustained FIX activity at therapeutic levels. These data position gene therapy as an attractive treatment option for inhibitors-positive haemophilic patients.
Collapse
Affiliation(s)
- Andrea Annoni
- TIGET, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shi Y, Falahati R, Zhang J, Flebbe-Rehwaldt L, Gaensler KML. Role of antigen-specific regulatory CD4+CD25+ T cells in tolerance induction after neonatal IP administration of AAV-hF.IX. Gene Ther 2013; 20:987-96. [PMID: 23759700 PMCID: PMC3795474 DOI: 10.1038/gt.2013.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 01/07/2013] [Accepted: 02/08/2013] [Indexed: 01/10/2023]
Abstract
Neonatal AAV8-mediated Factor IX (F.IX) gene delivery was applied as a model for exploring mechanisms of tolerance induction during immune ontogeny. Intraperitoneal delivery of AAV8/ Factor IX (hF.IX) during weeks 1–4 of life, over a 20-fold dose range, directed stable hF.IX expression, correction of coagulopathy in F.IX-null hemophilia B mice, and induction of tolerance to hF.IX; however, only primary injection at 1–2 days of life enabled increasing AAV8-mediated hF.IX expression after re-administration, due to the absence of anti-viral capsid antibodies. Adoptive splenocyte transfer from tolerized mice demonstrated induction of CD4+CD25+ T regulatory (Treg) populations that specifically suppressed anti-hF.IX antibody responses, but not responses to third party antigen. Induction of hF.IX antibodies was only observed in tolerized mice after in vivo CD4+CD25+ cell depletion and hF.IX challenge. Thus, primary injection of AAV during a critical period in the first week of life does not elicit antiviral responses, enabling re-administration of AAV and augmentation of hF.IX levels. Expansion of hF.IX-specific CD4+CD25+ Tregs has a major role in tolerance induction early in immune ontogeny. Neonatal gene transfer provides a useful approach for defining the ontogeny of immune responses and may suggest approaches for inducing tolerance in the context of genetic therapies.
Collapse
Affiliation(s)
- Y Shi
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
43
|
Markusic DM, Herzog RW. Liver-Directed Adeno-Associated Viral Gene Therapy for Hemophilia. ACTA ACUST UNITED AC 2013; 1:1-9. [PMID: 23565343 DOI: 10.4172/2157-7412.s1-009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemophilia A and B are monogenic bleeding disorders resulting from loss of functional coagulation factors VIII or IX, respectively. Prophylactic treatment requires frequent intravenous injections of exogenous factor VIII (F.VIII) or factor IX (F.IX), due to the short half-life of both factors. Hemophilia patients are at risk of developing neutralizing antibodies to F.VIII (~25-30%) or F.IX (~2-4%), which require the use of expensive bypass agents and immune tolerance induction protocols. Viral vector mediated liver gene transfer of F.VIII or F.IX offers an alternative treatment for hemophilia with easily defined clinical endpoints and no need for strict regulation of coagulation factor expression, as both proteins circulate as inactive zymogens. Adeno-associated viral (AAV) vectors are derived from a non-pathogenic human virus that efficiently transduce non-dividing cells, such as hepatocytes, and provide stable transgene expression. In vivo liver gene transfer of AAV-F.VIII and -F.IX vectors has restored hemostasis in murine and canine hemophilia models long-term, and has also been shown to induce immune tolerance. Consequently, two Phase I/II clinical trials have been conducted, based on hepatic AAV-FIX gene transfer to patients with severe hemophilia B. The first trial, utilizing serotype 2, demonstrated transient correction, which was limited by a cellular immune response against the viral capsid. However, sustained therapeutic expression has been achieved in a second trial, using AAV8 for expression of a codon-optimized F.IX transgene. Translation of F.VIII gene transfer studies into the clinic may require additional optimization of gene transfer and vector to effectively express the larger cDNA of F.VIII.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
44
|
Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood 2012; 120:4517-20. [PMID: 23043073 DOI: 10.1182/blood-2012-05-432591] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene therapy may provide a cure for hemophilia and overcome the limitations of protein replacement therapy. Increasing the potency of gene transfer vectors may allow improvement of their therapeutic index, as lower doses can be administered to achieve therapeutic benefit, reducing toxicity of in vivo administration. Here we generated codon-usage optimized and hyperfunctional factor IX (FIX) transgenes carrying an R338L amino acid substitution (FIX Padua), previously associated with clotting hyperactivity and thrombophilia. We delivered these transgenes to hemophilia B mice by hepatocyte-targeted integration-competent and -defective lentiviral vectors. The hyperfunctional FIX transgenes increased FIX activity reconstituted in the plasma without detectable adverse effects, allowing correction of the disease phenotype at lower vector doses and resulting in improved hemostasis in vivo. The combined effect of codon optimization with the hyperactivating FIX-R338L mutation resulted in a robust 15-fold gain in potency and therefore provides a promising strategy to improve the efficacy, feasibility, and safety of hemophilia gene therapy.
Collapse
|
45
|
Mingozzi F, Chen Y, Murphy SL, Edmonson SC, Tai A, Price SD, Metzger ME, Zhou S, Wright JF, Donahue RE, Dunbar CE, High KA. Pharmacological modulation of humoral immunity in a nonhuman primate model of AAV gene transfer for hemophilia B. Mol Ther 2012; 20:1410-6. [PMID: 22565846 PMCID: PMC3392987 DOI: 10.1038/mt.2012.84] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Liver gene transfer for hemophilia B has shown very promising results in recent clinical studies. A potential complication of gene-based treatments for hemophilia and other inherited disorders, however, is the development of neutralizing antibodies (NAb) against the therapeutic transgene. The risk of developing NAb to the coagulation factor IX (F.IX) transgene product following adeno-associated virus (AAV)-mediated hepatic gene transfer for hemophilia is small but not absent, as formation of inhibitory antibodies to F.IX is observed in experimental animals following liver gene transfer. Thus, strategies to modulate antitransgene NAb responses are needed. Here, we used the anti-B cell monoclonal antibody rituximab (rtx) in combination with cyclosporine A (CsA) to eradicate anti-human F.IX NAb in rhesus macaques previously injected intravenously with AAV8 vectors expressing human F.IX. A short course of immunosuppression (IS) resulted in eradication of anti-F.IX NAb with restoration of plasma F.IX transgene product detection. In one animal, following IS anti-AAV6 antibodies also dropped below detection, allowing for successful AAV vector readministration and resulting in high levels (60% or normal) of F.IX transgene product in plasma. Though the number of animals is small, this study supports for the safety and efficacy of B cell-targeting therapies to eradicate NAb developed following AAV-mediated gene transfer.
Collapse
Affiliation(s)
- Federico Mingozzi
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:151-209. [PMID: 22137432 PMCID: PMC3713797 DOI: 10.1016/b978-0-12-394596-9.00006-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in preclinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for long-term follow-up as well as for studies that require larger blood volumes.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Timothy C. Nichols
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Elizabeth Merricks
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Dwight A. Bellinger
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Paul E. Monahan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27516
| |
Collapse
|
47
|
Wang L, Louboutin JP, Bell P, Greig J, Li Y, Wu D, Wilson JM. Muscle-directed gene therapy for hemophilia B with more efficient and less immunogenic AAV vectors. J Thromb Haemost 2011; 9:2009-19. [PMID: 21883883 PMCID: PMC3393098 DOI: 10.1111/j.1538-7836.2011.04491.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adeno-associated viral vector (AAV)-mediated and muscle-directed gene therapy is a safe and non-invasive approach to treatment of hemophilia B and other genetic diseases. However, low efficiency of transduction, inhibitor formation and high prevalence of pre-existing immunity to the AAV capsid in humans remain as main challenges for AAV2-based vectors using this strategy. Vectors packaged with AAV7, 8 and 9 serotypes have improved gene transfer efficiencies and may provide potential alternatives to overcome these problems. OBJECTIVE To compare the long-term expression of canine factor IX (cFIX) levels and anti-cFIX antibody responses following intramuscular injection of vectors packaged with AAV1, 2, 5, 7, 8 and 9 capsid in immunocompetent hemophilia B mice. RESULTS Highest expression was detected in mice injected with AAV2/8 vector (28% of normal), followed by AAV2/9 (15%) and AAV2/7 (10%). cFIX expression by AAV2/1 only ranged from 0 to 5% of normal levels. High incidences of anti-cFIX inhibitor (IgG) were detected in mice injected with AAV2 and 2/5 vectors, followed by AAV2/1. None of the mice treated with AAV2/7, 2/8 and 2/9 developed inhibitors or capsid T cells. CONCLUSIONS AAV7, 8 and 9 are more efficient and safer vectors for muscle-directed gene therapy with high levels of transgene expression and absence of inhibitor formation. The absence of antibody response to transgene by AAV7, 8 and 9 is independent of vector dose but may be due to the fact that these three serotypes are associated with high level distribution to, and transduction of, hepatocytes following i.m. injection.
Collapse
Affiliation(s)
- Lili Wang
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Pierre Louboutin
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny Greig
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Li
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Di Wu
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M. Wilson
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12:341-55. [PMID: 21499295 DOI: 10.1038/nrg2988] [Citation(s) in RCA: 692] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.
Collapse
Affiliation(s)
- Federico Mingozzi
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5th Floor CTRB, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
49
|
Saito H, Matsushita T, Kojima T. Historical perspective and future direction of coagulation research. J Thromb Haemost 2011; 9 Suppl 1:352-63. [PMID: 21781272 DOI: 10.1111/j.1538-7836.2011.04362.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Over the past 100 years, remarkable advances have been made in our understanding of the mechanisms of blood coagulation. Starting with the early clinical observations of rare patients with hereditary clotting disorders, our knowledge has increased in keeping pace with the introduction of new technologies: from simple laboratory tests to protein chemistry, to DNA technology, and to gene targeting technology. Advances in basic research have been successfully translated into improved methods for the diagnosis of bleeding disorders as well as thrombosis, and the development of recombinant clotting factors for replacement therapy in patients with haemophilia. New promising anticoagulants have also been developed for the treatment of thrombotic disorders. Based on the unique nature of blood coagulation research the close interactions and collaborations between basic scientists and clinicians have played a major role in these developments. It is anticipated that blood coagulation research will continue to play a leading role in promoting better care of the patients with bleeding disorders or thromboembolism.
Collapse
Affiliation(s)
- H Saito
- Nagoya Medical Center, Nagoya, Japan.
| | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Cure, or improvement of disease phenotype, has been a long-term goal in the treatment of haemophilia. An obvious strategy for achieving this goal is the use of gene therapy. OBJECTIVES This paper summarises prior and current clinical trials of gene therapy for haemophilia A and B, and briefly describes additional strategies in pre-clinical development. RESULTS AND CONCLUSIONS Approximately 50 human subjects with severe haemophilia A or B have been enrolled in seven different trials of gene therapy. These have used plasmids, retroviral, adenoviral, and AAV vectors, directed to autologous fibroblasts, skeletal muscle, liver, and other target cell types accessed by intravenous injection of vector. Four separate trials have used AAV vectors, three of these targeting liver. Data from animal models suggest that several different gene replacement strategies may eventually yield long-term expression of factor at therapeutic levels, and that in situ correction of gene defects in hepatocytes may eventually be a therapeutic option.
Collapse
Affiliation(s)
- K A High
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|