1
|
Chen F, Saqib M, Terrillion CE, Miranda C, Sarver DC, Scafidi J, Wong GW. Role of CTRP14/C1QL1 in motor coordination and learning across the lifespan. Physiol Behav 2025; 291:114799. [PMID: 39761721 PMCID: PMC11788040 DOI: 10.1016/j.physbeh.2025.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells. While this deficit impairs oculomotor learning in adult mice, the impact of CTRP14 deficiency on motor function throughout adulthood has not been examined. Here, we conduct behavioral tests on a constitutive Ctrp14 knockout (KO) mouse model to determine whether CTRP14 is required for motor learning and function in mice across the lifespan. We show that CTRP14 deficiency does not affect grip strength, nor sprint and endurance running, in young and old mice of either sex. We performed accelerated rotarod tests on mice at 6, 12, and 18 months old to assess motor coordination and learning. No significant differences were observed between WT and Ctrp14-KO mice of either sex across the lifespan. Lastly, we performed complex running wheel tests to detect latent motor deficits and found that aged Ctrp14-KO mice have intact motor skills. Despite some limitations of the study, our data suggest that CTRP14 is dispensable for gross motor skills, coordination, and learning throughout adulthood based on the specific tests performed.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe Miranda
- Loyola University Maryland, Baltimore, MD 21205, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Scafidi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Michael V. Johnston Center for Developmental Neuroscience, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Lai ESK, Uesaka N, Miyazaki T, Hashimoto K, Watanabe M, Kano M. Reduced GABAergic inhibition and impaired synapse elimination by neuroligin-2 deletion from Purkinje cells of the developing cerebellum. Front Neural Circuits 2025; 19:1530141. [PMID: 40160866 PMCID: PMC11949940 DOI: 10.3389/fncir.2025.1530141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed around birth. This process is known as synapse elimination and requires a proper balance of excitation and inhibition. Neuroligin-2 (NL2) is a postsynaptic cell adhesion molecule required for the formation, maintenance, and function of inhibitory synapses. However, how NL2 regulates synapse elimination during postnatal development is largely unknown. Here we report that the deletion of NL2 from Purkinje cells (PCs) in the cerebellum impairs the developmental elimination of redundant climbing fiber (CF) to PC synapses. In global NL2-knockout (KO) mice, GABAergic inhibition to PCs was attenuated and CF synapse elimination was impaired after postnatal day 10 (P10). These phenotypes were restored by the expression of NL2 into PCs of NL2-KO mice. Moreover, microRNA-mediated knockdown of NL2 specifically from PCs during development caused attenuated inhibition and impaired CF synapse elimination. In PCs innervated by "strong" and "weak" CFs, calcium transients elicited by "weak" CFs were enhanced in NL2-deficient PCs, suggesting that excess calcium signaling permits the survival of redundant "weak" CF synapses. We conclude that NL2 is crucial for maintaining inhibitory synaptic function and properly eliminating redundant CF synapses during postnatal development.
Collapse
Affiliation(s)
- Esther Suk King Lai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
3
|
Roy Choudhury N, Hilber P, Cendelin J. Lurcher Mouse as a Model of Cerebellar Syndromes. CEREBELLUM (LONDON, ENGLAND) 2025; 24:54. [PMID: 40016581 PMCID: PMC11868327 DOI: 10.1007/s12311-025-01810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Cerebellar extinction lesions can manifest themselves with cerebellar motor and cerebellar cognitive affective syndromes. For investigation of the functions of the cerebellum and the pathogenesis of cerebellar diseases, particularly hereditary neurodegenerative cerebellar ataxias, various cerebellar mutant mice are used. The Lurcher mouse is a model of selective olivocerebellar degeneration with early onset and rapid progress. These mice show both motor deficits as well as cognitive and behavioral changes i.e., pathological phenotype in the functional domains affected in cerebellar patients. Therefore, Lurcher mice might be considered as a tool to investigate the mechanisms of functional impairments caused by cerebellar degenerative diseases. There are, however, limitations due to the particular features of the neurodegenerative process and a lack of possibilities to examine some processes in mice. The main advantage of Lurcher mice would be the expected absence of significant neuropathologies outside the olivocerebellar system that modify the complex behavioral phenotype in less selective models. However, detailed examinations and further thorough validation of the model are needed to verify this assumption.
Collapse
Affiliation(s)
- Nilpawan Roy Choudhury
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pascal Hilber
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245 NeuroGlio Team, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, 76000, France
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, Plzen, 323 00, Czech Republic.
| |
Collapse
|
4
|
Kakizawa S. Assessment of retention and attenuation of motor-learning memory by repeated rotor-rod analyses. Sci Rep 2024; 14:31003. [PMID: 39730861 DOI: 10.1038/s41598-024-82108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Retention of acquired learning memory is essential for reasonable behavior and crisis avoidance of individuals. Therefore, establishment of a system suitable for analysis of the retention/attenuation of acquired memory is desired. In the present study, mice were conducted on the repeated rotor-rod test, consisting of two series of experiments (Series 1 and 2) of 10 trials each. When rotating speed was 9 rpm, retention time on the rod was gradually increased and reached the maximum value within 10 trials in Series 1. When Series 2 was performed 1 or 3 days after Series 1, retention time of trials 1-3 in Series 2 was not significantly different from that of trials 8-10 in Series 1. On the other hand, retention time of trials 1-3 in Series 2 was significantly declined from that of trials 8-10 in Series 1 when Series 2 was conducted day 7, and returned to the initial level, the same level with trials 1-3 in Series 1, when Series 2 was conducted on days 14 or 30. These results indicate that acquired motor-learning memory is retained for 3 days at least, began to decline by day 7 and returned to the initial level by day 14. In older mice of 10-11 months old, there was a delay in the acquisition of motor learning in Day 0, whereas the retention was not impaired in Day 7. The repeated rotor-rod analyses may useful for research on factors affecting retention/attenuation and acquisition of motor-learning memory and proceed our understanding of motor-learning memory.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Nakayama H, Miyazaki T, Abe M, Yamazaki M, Kawamura Y, Choo M, Konno K, Kawata S, Uesaka N, Hashimoto K, Miyata M, Sakimura K, Watanabe M, Kano M. Direct and indirect pathways for heterosynaptic interaction underlying developmental synapse elimination in the mouse cerebellum. Commun Biol 2024; 7:806. [PMID: 38961250 PMCID: PMC11222442 DOI: 10.1038/s42003-024-06447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.
Collapse
Affiliation(s)
- Hisako Nakayama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshinobu Kawamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Kawata
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan.
| |
Collapse
|
6
|
Hammill AM, Boscolo E. Capillary malformations. J Clin Invest 2024; 134:e172842. [PMID: 38618955 PMCID: PMC11014659 DOI: 10.1172/jci172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss. In 2013, a groundbreaking study revealed causative activating somatic mutations in the gene (GNAQ) encoding guanine nucleotide-binding protein Q subunit α (Gαq) in CM and SWS patient tissues. In this Review, we discuss the disease phenotype, the causative GNAQ mutations, and their cellular origin. We also present the endothelial Gαq-related signaling pathways, the current animal models to study CM and its complications, and future options for therapeutic treatment. Further work remains to fully elucidate the cellular and molecular mechanisms underlying the formation and maintenance of the abnormal vessels.
Collapse
Affiliation(s)
- Adrienne M. Hammill
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Izquierdo-Villalba I, Mirra S, Manso Y, Parcerisas A, Rubio J, Del Valle J, Gil-Bea FJ, Ulloa F, Herrero-Lorenzo M, Verdaguer E, Benincá C, Castro-Torres RD, Rebollo E, Marfany G, Auladell C, Navarro X, Enríquez JA, López de Munain A, Soriano E, Aragay AM. A mammalian-specific Alex3/Gα q protein complex regulates mitochondrial trafficking, dendritic complexity, and neuronal survival. Sci Signal 2024; 17:eabq1007. [PMID: 38320000 DOI: 10.1126/scisignal.abq1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.
Collapse
Affiliation(s)
| | - Serena Mirra
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yasmina Manso
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic, Central University of Catalonia (UVic-UCC); and Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| | - Javier Rubio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francisco J Gil-Bea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Marina Herrero-Lorenzo
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Cristiane Benincá
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rubén D Castro-Torres
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Elena Rebollo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José A Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-CIBERFES), Madrid 28031, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
- Neurology Department, Donostia University Hospital, San Sebastián 20014, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Anna M Aragay
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
8
|
WATANABE T, KANO M. Molecular and cellular mechanisms of developmental synapse elimination in the cerebellum: Involvement of autism spectrum disorder-related genes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:508-523. [PMID: 39522973 PMCID: PMC11635086 DOI: 10.2183/pjab.100.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Neural circuits are initially created with excessive synapse formation until around birth and undergo massive reorganization until they mature. During postnatal development, necessary synapses strengthen and remain, whereas unnecessary ones are weakened and eventually eliminated. These events, collectively called "synapse elimination" or "synapse pruning", are thought to be fundamental for creating functionally mature neural circuits in adult animals. In the cerebellum of neonatal rodents, Purkinje cells (PCs) receive synaptic inputs from multiple climbing fibers (CFs). Then, inputs from a single CF are strengthened and those from the other CFs are eliminated, and most PCs become innervated by single CFs by the end of the third postnatal week. These events are regarded as a representative model of synapse elimination. This review examines the molecular and cellular mechanisms of CF synapse elimination in the developing cerebellum and argues how autism spectrum disorder (ASD)-related genes are involved in CF synapse development. We introduce recent studies to update our knowledge, incorporate new data into the known scheme, and discuss the remaining issues and future directions.
Collapse
Affiliation(s)
- Takaki WATANABE
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| | - Masanobu KANO
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
9
|
Wetzel-Strong SE, Galeffi F, Benavides C, Patrucco M, Bullock JL, Gallione CJ, Lee HK, Marchuk DA. Developmental expression of the Sturge-Weber syndrome-associated genetic mutation in Gnaq: a formal test of Happle's paradominant inheritance hypothesis. Genetics 2023; 224:iyad077. [PMID: 37098137 PMCID: PMC10894004 DOI: 10.1093/genetics/iyad077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Francesca Galeffi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mary Patrucco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bullock
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Kim M, Jun S, Park H, Tanaka-Yamamoto K, Yamamoto Y. Regulation of cerebellar network development by granule cells and their molecules. Front Mol Neurosci 2023; 16:1236015. [PMID: 37520428 PMCID: PMC10375027 DOI: 10.3389/fnmol.2023.1236015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The well-organized cerebellar structures and neuronal networks are likely crucial for their functions in motor coordination, motor learning, cognition, and emotion. Such cerebellar structures and neuronal networks are formed during developmental periods through orchestrated mechanisms, which include not only cell-autonomous programs but also interactions between the same or different types of neurons. Cerebellar granule cells (GCs) are the most numerous neurons in the brain and are generated through intensive cell division of GC precursors (GCPs) during postnatal developmental periods. While GCs go through their own developmental processes of proliferation, differentiation, migration, and maturation, they also play a crucial role in cerebellar development. One of the best-characterized contributions is the enlargement and foliation of the cerebellum through massive proliferation of GCPs. In addition to this contribution, studies have shown that immature GCs and GCPs regulate multiple factors in the developing cerebellum, such as the development of other types of cerebellar neurons or the establishment of afferent innervations. These studies have often found impairments of cerebellar development in animals lacking expression of certain molecules in GCs, suggesting that the regulations are mediated by molecules that are secreted from or present in GCs. Given the growing recognition of GCs as regulators of cerebellar development, this review will summarize our current understanding of cerebellar development regulated by GCs and molecules in GCs, based on accumulated studies and recent findings, and will discuss their potential further contributions.
Collapse
Affiliation(s)
- Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
11
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
12
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
13
|
Nadel G, Yao Z, Wainstein E, Cohen I, Ben-Ami I, Schajnovitz A, Maik-Rachline G, Naor Z, Horwitz BA, Seger R. GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch. Cell Commun Signal 2022; 20:5. [PMID: 34998390 PMCID: PMC8742922 DOI: 10.1186/s12964-021-00805-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inactivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH. METHODS Here we used kinase activity assays of PI3K and followed phosphorylation state of proteins using specific antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by TUNEL assay and PARP1 cleavage. RESULTS We identified the mechanism that allows the unique stimulated inactivation of AKT and show that the main regulator of this process is the phosphatase PP2A, operating with the non-canonical regulatory subunit IGBP1. In resting cells, an IGBP1-PP2Ac dimer binds to PI3K, dephosphorylates the inhibitory pSer608-p85 of PI3K and thus maintains its high basal activity. Upon GqPCR activation, the PP2Ac-IGBP1 dimer detaches from PI3K and thus allows the inhibitory dephosphorylation. At this stage, the free PP2Ac together with IGBP1 and PP2Aa binds to AKT, causing its dephosphorylation and inactivation. CONCLUSION Our results show a stimulated shift of PP2Ac from PI3K to AKT termed "PP2A switch" that represses the PI3K/AKT pathway, providing a unique mechanism of GPCR-stimulated dephosphorylation. Video Abstract.
Collapse
Affiliation(s)
- Guy Nadel
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Izel Cohen
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Ido Ben-Ami
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.,IVF and Fertility Unit, Department of OB/GYN, Shaare Zedek Medical Center and The Hebrew University Medical School, Jerusalem, Israel
| | - Amir Schajnovitz
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin A Horwitz
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.,Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Departments of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
15
|
Haase J, Jones AKC, Mc Veigh CJ, Brown E, Clarke G, Ahnert-Hilger G. Sex and brain region-specific regulation of serotonin transporter activity in synaptosomes in guanine nucleotide-binding protein G(q) alpha knockout mice. J Neurochem 2021; 159:156-171. [PMID: 34309872 DOI: 10.1111/jnc.15482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The regulation of the serotonin transporter (SERT) by guanine nucleotide-binding protein alpha (Gα) q was investigated using Gαq knockout mice. In the absence of Gαq, SERT-mediated uptake of 5-hydroxytryptamine (5HT) was enhanced in midbrain and frontal cortex synaptosomes, but only in female mice. The mechanisms underlying this sexual dimorphism were investigated using quantitative western blot analysis revealing brain region-specific differences. In the frontal cortex, SERT protein expression was decreased in male knockout mice, seemingly explaining the sex-dependent variation in SERT activity. The differential expression of Gαi1 in female mice contributes to the sex differences in the midbrain. In fact, Gαi1 levels inversely correlate with 5HT uptake rates across both sexes and genotypes. Likely due to differential SERT regulation as well as sex differences in the expression of tryptophan hydroxylase 2, Gαq knockout mice also displayed sex- and genotype-dependent alterations in total 5HT tissue levels as determined by high-performance liquid chromatography. Gαq inhibitors, YM-254890 and BIM-46187, differentially affected SERT activity in both, synaptosomes and cultured cells. YM-254890 treatment mimicked the effect of Gαq knockout in the frontal cortex. BIM-46187, which promotes the nucleotide-free form of Gα proteins, substantially inhibited 5HT uptake, prompting us to hypothesise that Gαq interacts with SERT similarly as with G-protein-coupled receptors and inhibits SERT activity by modulating transport-associated conformational changes. Taken together, our findings reveal a novel mechanism of SERT regulation and impact our understanding of sex differences in diseases associated with dysregulation of serotonin transmission, such as depression and anxiety.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aimée K C Jones
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Conor J Mc Veigh
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eric Brown
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland and Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin and Max-Planck-Institute for Biophysical Chemistry Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology 2021; 194:108629. [PMID: 34089728 DOI: 10.1016/j.neuropharm.2021.108629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses. To understand how mGluR1 contributes to cerebellar functions, it is important to consider not only the operational properties of this receptor, but also its spatial organization and the molecular interactions that enable its proper functioning. In this review, we highlight how mGluR1 and its related signaling molecules are organized into tightly coupled microdomains to fulfill physiological functions. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunction in ataxias of human patients and mouse models.
Collapse
|
17
|
Tellios V, Maksoud MJE, Xiang YY, Lu WY. Nitric Oxide Critically Regulates Purkinje Neuron Dendritic Development Through a Metabotropic Glutamate Receptor Type 1-Mediated Mechanism. THE CEREBELLUM 2021; 19:510-526. [PMID: 32270464 DOI: 10.1007/s12311-020-01125-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO), specifically derived from neuronal nitric oxide synthase (nNOS), is a well-established regulator of synaptic transmission in Purkinje neurons (PNs), governing fundamental processes such as motor learning and coordination. Previous phenotypic analyses showed similar cerebellar structures between neuronal nitric oxide null (nNOS-/-) and wild-type (WT) adult male mice, despite prominent ataxic behavior within nNOS-/- mice. However, a study has yet to characterize PN molecular structure and their excitatory inputs during development in nNOS-/- mice. This study is the first to explore morphological abnormalities within the cerebellum of nNOS-/- mice, using immunohistochemistry and immunoblotting. This study sought to examine PN dendritic morphology and the expression of metabotropic glutamate receptor type 1 (mGluR1), vesicular glutamate transporter type 1 and 2 (vGluT1 and vGluT2), stromal interaction molecule 1 (STIM1), and calpain-1 within PNs of WT and nNOS-/- mice at postnatal day 7 (PD7), 2 weeks (2W), and 7 weeks (7W) of age. Results showed a decrease in PN dendritic branching at PD7 in nNOS-/- cerebella, while aberrant dendritic spine formation was noted in adult ages. Total protein expression of mGluR1 was decreased in nNOS-/- cerebella across development, while vGluT2, STIM1, and calpain-1 were significantly increased. Ex vivo treatment of WT slices with NOS inhibitor L-NAME increased calpain-1 expression, whereas treating nNOS-/- cerebellar slices with NO donor NOC-18 decreased calpain-1. Moreover, mGluR1 agonist DHPG increased calpain-1 in WT, but not in nNOS-/- slices. Together, these results indicate a novel role for nNOS/NO signaling in PN development, particularly by regulating an mGluR1-initiated calcium signaling mechanism.
Collapse
Affiliation(s)
- Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.,Robarts Research Institute, London, N6A 5B7, Canada
| | - Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.,Robarts Research Institute, London, N6A 5B7, Canada
| | | | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada. .,Robarts Research Institute, London, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, The University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
18
|
Purkinje Neurons with Loss of STIM1 Exhibit Age-Dependent Changes in Gene Expression and Synaptic Components. J Neurosci 2021; 41:3777-3798. [PMID: 33737457 DOI: 10.1523/jneurosci.2401-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The stromal interaction molecule 1 (STIM1) is an ER-Ca2+ sensor and an essential component of ER-Ca2+ store operated Ca2+ entry. Loss of STIM1 affects metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic transmission, neuronal Ca2+ homeostasis, and intrinsic plasticity in Purkinje neurons (PNs). Long-term changes of intracellular Ca2+ signaling in PNs led to neurodegenerative conditions, as evident in individuals with mutations of the ER-Ca2+ channel, the inositol 1,4,5-triphosphate receptor. Here, we asked whether changes in such intrinsic neuronal properties, because of loss of STIM1, have an age-dependent impact on PNs. Consequently, we analyzed mRNA expression profiles and cerebellar morphology in PN-specific STIM1 KO mice (STIM1PKO ) of both sexes across ages. Our study identified a requirement for STIM1-mediated Ca2+ signaling in maintaining the expression of genes belonging to key biological networks of synaptic function and neurite development among others. Gene expression changes correlated with altered patterns of dendritic morphology and greater innervation of PN dendrites by climbing fibers, in aging STIM1PKO mice. Together, our data identify STIM1 as an important regulator of Ca2+ homeostasis and neuronal excitability in turn required for maintaining the optimal transcriptional profile of PNs with age. Our findings are significant in the context of understanding how dysregulated calcium signals impact cellular mechanisms in multiple neurodegenerative disorders.SIGNIFICANCE STATEMENT In Purkinje neurons (PNs), the stromal interaction molecule 1 (STIM1) is required for mGluR1-dependent synaptic transmission, refilling of ER Ca2+ stores, regulation of spike frequency, and cerebellar memory consolidation. Here, we provide evidence for a novel role of STIM1 in maintaining the gene expression profile and optimal synaptic connectivity of PNs. Expression of genes related to neurite development and synaptic organization networks is altered in PNs with persistent loss of STIM1. In agreement with these findings the dendritic morphology of PNs and climbing fiber innervations on PNs also undergo significant changes with age. These findings identify a new role for dysregulated intracellular calcium signaling in neurodegenerative disorders and provide novel therapeutic insights.
Collapse
|
19
|
Hozumi Y, Nakano T, Goto K. Cellular expression and subcellular localization of diacylglycerol kinase γ in rat brain. Biomed Res 2021; 42:33-42. [PMID: 33563877 DOI: 10.2220/biomedres.42.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gq protein-coupled receptors lead to activation of phospholipase C, which triggers phosphoinositide signaling. Diacylglycerol (DG) is one of the phosphoinositide metabolites and serves as a second messenger. Diacylglycerol kinase (DGK) phosphorylates DG to produce another second messenger phosphatidic acid. Of the DGK family, DGKγ is predominantly expressed in the brain at the mRNA level. Recent studies have shown the expression of DGKγ in vascular endothelial cells and adrenal medullary cells at the protein level, although its detailed cellular expression pattern and subcellular localization in the brain remain to be determined. In the present study, we addressed this point using specific DGKγ antibody. DGKγ was expressed in both projection neurons and interneurons in the cerebral cortex, hippocampal formation, and cerebellum. In cerebellar Purkinje cells, DGKγ was distributed to the soma and dendrites. Fractionation study revealed that DGKγ was enriched in the internal membranes containing the endoplasmic reticulum and Golgi complex. In immunoelectron microscopy, DGKγ was localized throughout the smooth endoplasmic reticulum system. These findings suggest that DGKγ shows unique cellular expression pattern in the brain and distinct subcellular localization different from other DGK isozymes.
Collapse
Affiliation(s)
- Yasukazu Hozumi
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine.,Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| |
Collapse
|
20
|
Wu QW, Kapfhammer JP. Modulation of Increased mGluR1 Signaling by RGS8 Protects Purkinje Cells From Dendritic Reduction and Could Be a Common Mechanism in Diverse Forms of Spinocerebellar Ataxia. Front Cell Dev Biol 2021; 8:569889. [PMID: 33553137 PMCID: PMC7858651 DOI: 10.3389/fcell.2020.569889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary neurodegenerative diseases which are caused by diverse genetic mutations in a variety of different genes. We have identified RGS8, a regulator of G-protein signaling, as one of the genes which are dysregulated in different mouse models of SCA (e.g., SCA1, SCA2, SCA7, and SCA14). In the moment, little is known about the role of RGS8 for pathogenesis of spinocerebellar ataxia. We have studied the expression of RGS8 in the cerebellum in more detail and show that it is specifically expressed in mouse cerebellar Purkinje cells. In a mouse model of SCA14 with increased PKCγ activity, RGS8 expression was also increased. RGS8 overexpression could partially counteract the negative effects of DHPG-induced mGluR1 signaling for the expansion of Purkinje cell dendrites. Our results suggest that the increased expression of RGS8 is an important mediator of mGluR1 pathway dysregulation in Purkinje cells. These findings provide new insights in the role of RGS8 and mGluR1 signaling in Purkinje cells and for the pathology of SCAs.
Collapse
Affiliation(s)
- Qin-Wei Wu
- Institute of Anatomy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef P Kapfhammer
- Institute of Anatomy, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Zhang X. Direct Gα q Gating Is the Sole Mechanism for TRPM8 Inhibition Caused by Bradykinin Receptor Activation. Cell Rep 2020; 27:3672-3683.e4. [PMID: 31216483 PMCID: PMC6595177 DOI: 10.1016/j.celrep.2019.05.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/03/2019] [Accepted: 05/21/2019] [Indexed: 11/29/2022] Open
Abstract
Activation of Gαq-coupled receptors by inflammatory mediators inhibits cold-sensing TRPM8 channels, aggravating pain and inflammation. Both Gαq and the downstream hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2) inhibit TRPM8. Here, I demonstrate that direct Gαq gating is essential for both the basal cold sensitivity of TRPM8 and TRPM8 inhibition elicited by bradykinin in sensory neurons. The action of Gαq depends on binding to three arginine residues in the N terminus of TRPM8. Neutralization of these residues markedly increased sensitivity of the channel to agonist and membrane voltage and completely abolished TRPM8 inhibition by both Gαq and bradykinin while sparing the channel sensitivity to PIP2. Interestingly, the bradykinin receptor B2R also binds to TRPM8, rendering TRPM8 insensitive to PIP2 depletion. Furthermore, TRPM8-Gαq binding impaired Gαq coupling and signaling to PLCβ-PIP2. The crosstalk in the TRPM8-Gαq-B2R complex thus determines Gαq gating rather than PIP2 as a sole means of TRPM8 inhibition by bradykinin.
Collapse
Affiliation(s)
- Xuming Zhang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
22
|
Refinement of Cerebellar Network Organization by Extracellular Signaling During Development. Neuroscience 2020; 462:44-55. [PMID: 32502568 DOI: 10.1016/j.neuroscience.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
The cerebellum forms regular neural network structures consisting of a few major types of neurons, such as Purkinje cells, granule cells, and molecular layer interneurons, and receives two major inputs from climbing fibers and mossy fibers. Its regular structures consist of three well-defined layers, with each type of neuron designated to a specific location and forming specific synaptic connections. During the first few weeks of postnatal development in rodents, the cerebellum goes through dynamic changes via proliferation, migration, differentiation, synaptogenesis, and maturation, to create such a network structure. The development of this organized network structure presumably relies on the communication between developing elements in the network, including not only individual neurons, but also their dendrites, axons, and synapses. Therefore, it is reasonable that extracellular signaling via synaptic transmission, secreted molecules, and cell adhesion molecules, plays important roles in cerebellar network development. Although it is not yet clear as to how overall cerebellar development is orchestrated, there is indeed accumulating lines of evidence that extracellular signaling acts toward the development of individual elements in the cerebellar networks. In this article, we introduce what we have learned from many studies regarding the extracellular signaling required for cerebellar network development, including our recent study suggesting the importance of unbiased synaptic inputs from parallel fibers.
Collapse
|
23
|
Rai Y, Watanabe T, Matsuyama K, Sakimura K, Uesaka N, Kano M. Phospholipase C β3 is Required for Climbing Fiber Synapse Elimination in Aldolase C-positive Compartments of the Developing Mouse Cerebellum. Neuroscience 2020; 462:36-43. [PMID: 32360594 DOI: 10.1016/j.neuroscience.2020.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
In the cerebellum of neonatal mice, multiple climbing fibers (CFs) form excitatory synapses on each Purkinje cell (PC). Only one CF is strengthened in each PC from postnatal day 3 (P3) to P7, whereas the other weaker CFs are eliminated progressively from ∼P7 to ∼P11 (early phase of CF elimination) and from ∼P12 to ∼P17 (late phase of CF elimination). Type 1 metabotropic glutamate receptor (mGluR1) triggers a canonical pathway in PCs for the late phase of CF elimination. Among downstream signaling molecules of mGluR1, phospholipase C β3 (PLCβ3) and β4 (PLCβ4) are expressed complementarily in PCs of aldolase C (Aldoc)-positive (+) and Aldoc-negative (-) cerebellar compartments, respectively. PLCβ4 is reported to mediate the late phase of CF elimination in the anterior half of the cerebellar vermis which corresponds to the Aldoc (-) region. However, roles of PLCβ3 and Aldoc in CF synapse elimination are unknown. Here, we investigated CF innervation of PCs in Aldoc-tdTomato knock-in mice that underwent lentivirus-mediated knockdown (KD) of PLCβ3 in PCs during postnatal development. By recording CF-mediated excitatory postsynaptic currents from PCs and immunostaining CF synaptic terminals, we found that significantly higher percentage of PCs with PLCβ3-KD remained multiply innervated by CFs in Aldoc (+) compartments after P12, which was accompanied by impaired elimination of somatic CF synapses and reduced dendritic CF translocation. In contrast, deletion of Aldoc had no effect on CF synapse elimination. These results suggest that PLCβ3 is required for the late phase of CF elimination in Aldoc (+) PCs.
Collapse
Affiliation(s)
- Yurie Rai
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Matsuyama
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Naofumi Uesaka
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
DGKγ Knock-Out Mice Show Impairments in Cerebellar Motor Coordination, LTD, and the Dendritic Development of Purkinje Cells through the Activation of PKCγ. eNeuro 2020; 7:ENEURO.0319-19.2020. [PMID: 32033984 PMCID: PMC7057140 DOI: 10.1523/eneuro.0319-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/02/2022] Open
Abstract
Diacylglycerol kinase γ (DGKγ) regulates protein kinase C (PKC) activity by converting DG to phosphatidic acid (PA). DGKγ directly interacts with PKCγ and is phosphorylated by PKCγ, resulting in the upregulation of lipid kinase activity. PKC dysfunction impairs motor coordination, indicating that the regulation of PKC activity is important for motor coordination. DGKγ and PKC are abundantly expressed in cerebellar Purkinje cells. However, the physiological role of DGKγ has not been elucidated. Therefore, we developed DGKγ knock-out (KO) mice and tested their cerebellar motor coordination. In DGKγ KO mice, cerebellar motor coordination and long-term depression (LTD) were impaired, and the dendrites of Purkinje cells from DGKγ KO mice were significantly retracted. Interestingly, treatment with the cPKC inhibitor Gö6976 (Gö) rescued the dendritic retraction of primary cultured Purkinje cells from DGKγ KO mice. In contrast, treatment with the PKC activator 12-o-tetradecanoylphorbol 13-acetate (TPA) reduced morphologic alterations in the dendrites of Purkinje cells from wild-type (WT) mice. In addition, we confirmed the upregulation of PKCγ activity in the cerebellum of DGKγ KO mice and rescued impaired LTD in DGKγ KO mice with a PKCγ-specific inhibitor. Furthermore, impairment of motor coordination observed in DGKγ KO mice was rescued in tm1c mice with DGKγ reexpression induced by the FLP-flippase recognition target (FRT) recombination system. These results indicate that DGKγ is involved in cerebellar LTD and the dendritic development of Purkinje cells through the regulation of PKCγ activity, and thus contributes to cerebellar motor coordination.
Collapse
|
25
|
Ma Z, Liu J. Retinoid X receptor modulates olfactory attraction through Gα signaling in the migratory locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103265. [PMID: 31704156 DOI: 10.1016/j.ibmb.2019.103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Animals communicate with each other in aggregating for survival and adaptation. Solitary locusts show an olfactory transition from repulsion to attraction in aggregation. However, the molecular mechanism underlying this transition is less well known. In this study, we explored differentially expressed transcripts (DETs) during locust aggregation and identified that a functional class of general metabolism encompassed the largest number of DETs among all analyzed gene classes. Within this functional class of general metabolism, oxidoreductase mediates synthesis of retinoic acid (RA) from vitamin A and other metabolites derived from carbohydrates. The expression levels of retinaldehyde hydroxylase 1 (raldh1) and retinoid X receptor (rxr), which are two crucial genes for RA synthesis and signaling, were upregulated during 4 h of crowding. Knockdown of raldh1 and rxr by RNA interference (RNAi) in the brains resulted in the loss of olfactory attraction. Moreover, inhibition of RXR by RNAi resulted in downregulated expression of Gna14, a member of the Gα subfamily that transduces signals in G protein-coupled receptor (GPCR) pathways. Abrogating RXR signaling and Gna14 by RNAi knockdown inhibited the function of dopamine receptor 1 (DopR1) and octopamine receptor α1 (OctαR1) in modulating olfactory attraction. RXR signaling is essential for DopR1 and OctαR1 to mediate olfactory attraction. This study showed that RXR signaling mediates attraction by Gα signaling and confirmed a novel link between nuclear receptor RXR and the membrane receptor GPCRs in modulating olfactory attraction.
Collapse
Affiliation(s)
- Zongyuan Ma
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jipeng Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
26
|
Park H, Kim T, Kim J, Yamamoto Y, Tanaka-Yamamoto K. Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization. Cell Rep 2019; 28:2939-2954.e5. [DOI: 10.1016/j.celrep.2019.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/10/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022] Open
|
27
|
Abstract
Functional neural circuits of mature animals are shaped during postnatal development by eliminating early-formed redundant synapses and strengthening of necessary connections. In the nervous system of newborn animals, redundant synapses are only transient features of the circuit. During subsequent postnatal development, some synapses are strengthened whereas other redundant connections are weakened and eventually eliminated. In this review, we introduce recent studies on the mechanisms of developmental remodeling of climbing fiber-to-Purkinje cell synapses in the cerebellum and synapses from the retina to neurons in the dorsal lateral geniculate nucleus of the visual thalamus (retinogeniculate synapses). These are the two representative models of developmental synapse remodeling in the brain and they share basic principles, including dependency on neural activity. However, recent studies have disclosed that, in several respects, the two models use different molecules and strategies to establish mature synaptic connectivity. We describe similarities and differences between the two models and discuss remaining issues to be tackled in the future in order to understand the general schemes of developmental synapse remodeling.
Collapse
Affiliation(s)
- Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
28
|
Cha HL, Choi JM, Oh HH, Bashyal N, Kim SS, Birnbaumer L, Suh-Kim H. Deletion of the α subunit of the heterotrimeric Go protein impairs cerebellar cortical development in mice. Mol Brain 2019; 12:57. [PMID: 31221179 PMCID: PMC6585000 DOI: 10.1186/s13041-019-0477-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 02/02/2023] Open
Abstract
Go is a member of the pertussis toxin-sensitive Gi/o family. Despite its abundance in the central nervous system, the precise role of Go remains largely unknown compared to other G proteins. In the present study, we explored the functions of Go in the developing cerebellar cortex by deleting its gene, Gnao. We performed a histological analysis with cerebellar sections of adult mice by cresyl violet- and immunostaining. Global deletion of Gnao induced cerebellar hypoplasia, reduced arborization of Purkinje cell dendrites, and atrophied Purkinje cell dendritic spines and the terminal boutons of climbing fibers from the inferior olivary nucleus. These results indicate that Go-mediated signaling pathway regulates maturation of presynaptic parallel fibers from granule cells and climbing fibers during the cerebellar cortical development.
Collapse
Affiliation(s)
- Hye Lim Cha
- Departments of Anatomy, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
| | - Jung-Mi Choi
- Departments of Anatomy, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
| | - Huy-Hyen Oh
- Departments of Anatomy, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
| | - Narayan Bashyal
- Departments of Anatomy, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
- Departments of Biomedical Sciences, The Graduate School, Ajou University School of Medicine, World cup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
| | - Sung-Soo Kim
- Departments of Anatomy, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, 27709 NC USA
- Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1300, Edificio San Jose Piso 3, C1107AAZ Buenos Aires, Argentina
| | - Haeyoung Suh-Kim
- Departments of Anatomy, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
- Departments of Biomedical Sciences, The Graduate School, Ajou University School of Medicine, World cup-ro 164, Yeongtong-gu, Suwon, 16499 South Korea
| |
Collapse
|
29
|
Navot S, Kosloff M. Structural design principles that underlie the multi-specific interactions of Gα q with dissimilar partners. Sci Rep 2019; 9:6898. [PMID: 31053791 PMCID: PMC6499889 DOI: 10.1038/s41598-019-43395-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gαq is a ubiquitous molecular switch that activates the effectors phospholipase-C-β3 (PLC-β3) and Rho guanine-nucleotide exchange factors. Gαq is inactivated by regulators of G protein signaling proteins, as well as by PLC-β3. Gαq further interacts with G protein-coupled receptor kinase 2 (GRK2), although the functional role of this interaction is debated. While X-ray structures of Gαq bound to representatives of these partners have revealed details of their interactions, the mechanistic basis for differential Gαq interactions with multiple partners (i.e., Gαq multi-specificity) has not been elucidated at the individual residue resolution. Here, we map the structural determinants of Gαq multi-specificity using structure-based energy calculations. We delineate regions that specifically interact with GTPase Activating Proteins (GAPs) and residues that exclusively contribute to effector interactions, showing that only the Gαq “Switch II” region interacts with all partners. Our analysis further suggests that Gαq-GRK2 interactions are consistent with GRK2 functioning as an effector, rather than a GAP. Our multi-specificity analysis pinpoints Gαq residues that uniquely contribute to interactions with particular partners, enabling precise manipulation of these cascades. As such, we dissect the molecular basis of Gαq function as a central signaling hub, which can be used to target Gαq-mediated signaling in therapeutic interventions.
Collapse
Affiliation(s)
- Shir Navot
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
30
|
Qian H, Wang M, Wang Y, Ying W, Zhang J, Huan Y, He Y, Liu Y, Shi G. Role of Galphaq in pathogenesis of psoriasis, a new mechanism about the immune regulation in psoriasis. Int Immunopharmacol 2019; 68:185-192. [DOI: 10.1016/j.intimp.2018.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/01/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
|
31
|
He Y, Yuan X, Li Y, Zhong C, Liu Y, Qian H, Xuan J, Duan L, Shi G. Loss of Gαq impairs regulatory B-cell function. Arthritis Res Ther 2018; 20:186. [PMID: 30143054 PMCID: PMC6109260 DOI: 10.1186/s13075-018-1682-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Background Recent studies have shown a crucial role of Gαq in immune regulation, but how Gαq modulates regulatory B-cell (Breg) function is still unclear. We address this here. Methods CD19+IL-10+ Bregs of wild-type (WT) and Gnaq−/− mice were analyzed by flow cytometry after stimulation by lipopolysaccharide. The WT and Gnaq−/− Bregs were isolated and cocultured with WT CD4+CD25− T cells in the presence of T-activator, and the proliferation of T cells and differentiation of regulatory T cells (Tregs) were analyzed by flow cytometry. We used inhibitors of PI3 kinase (PI3K), extracellular regulated protein kinases 1/2 (Erk1/2), and p38 mitogen-activated protein kinase (p38 MAPK) to detect the pathways involved in the regulation of Gαq on Breg differentiation, which were confirmed by western blot analysis. Furthermore, the expression level of Gαq was assessed by quantitative real-time PCR in peripheral blood mononuclear cells (PBMCs) from healthy controls and rheumatoid arthritis patients. The frequency of CD19+CD24hiCD38hi B cells in PBMCs was detected by flow cytometry, and the association of the Gαq mRNA expression level and the frequency of CD19+CD24hiCD38hi B cells was analyzed by Spearman test. Results The differentiation of CD19+IL-10+ Bregs was inhibited in the Gnaq−/− mice. In addition, Gαq depletion showed an impaired suppressive function of Bregs on T-cell proliferation, which might be due to the decreased Treg expansion. Mechanically, our data demonstrated that the PI3K, Erk1/2, and p38 MAPK signaling pathways were required for regulation of Gαq on Bregs, and blockage of these signaling pathways impaired Breg differentiation. Consistent with our previous studies, we also found a decreased frequency of CD19+CD24hiCD38hi Bregs in rheumatoid arthritis patients. As expected, a significantly positive correlation was investigated between CD19+CD24hiCD38hi Bregs with Gαq mRNA expression. Conclusions Our results indicate that Gαq plays a critical role in the differentiation and immunosuppression of Bregs, and it may provide a new therapeutic target for autoimmune diseases. Electronic supplementary material The online version of this article (10.1186/s13075-018-1682-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoqing Yuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Ningbo City Medical Treatment Center Lihuili Hospital, No. 57 Xingning Road, Ningbo, 315000, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chunlian Zhong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
32
|
Wang Y, Han J, Chen X, Zeng X, Wang Y, Dong J, Chen J. Maternal iodine supplementation improves motor coordination in offspring by modulating the mGluR1 signaling pathway in mild iodine deficiency-induced hypothyroxinemia rats. J Nutr Biochem 2018; 58:80-89. [DOI: 10.1016/j.jnutbio.2018.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 02/02/2023]
|
33
|
Kano M, Watanabe T, Uesaka N, Watanabe M. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. THE CEREBELLUM 2018; 17:722-734. [DOI: 10.1007/s12311-018-0964-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Bailly Y, Rabacchi S, Sherrard RM, Rodeau JL, Demais V, Lohof AM, Mariani J. Elimination of all redundant climbing fiber synapses requires granule cells in the postnatal cerebellum. Sci Rep 2018; 8:10017. [PMID: 29968809 PMCID: PMC6030189 DOI: 10.1038/s41598-018-28398-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/21/2018] [Indexed: 11/20/2022] Open
Abstract
Different afferent synapse populations interact to control the specificity of connections during neuronal circuit maturation. The elimination of all but one climbing-fiber onto each Purkinje cell during the development of the cerebellar cortex is a particularly well studied example of synaptic refinement. The suppression of granule cell precursors by X irradiation during postnatal days 4 to 7 prevents this synaptic refinement, indicating a critical role for granule cells. Several studies of cerebellar development have suggested that synapse elimination has a first phase which is granule cell-independent and a second phase which is granule cell-dependent. In this study, we show that sufficiently-strong irradiation restricted to postnatal days 5 or 6 completely abolishes climbing fiber synaptic refinement, leaving the olivo-cerebellar circuit in its immature configuration in the adult, with up to 5 climbing fibers innervating the Purkinje cell in some cases. This implies that the putative early phase of climbing fiber synapse elimination can be blocked by irradiation-induced granule cell loss if this loss is sufficiently large, and thus indicates that the entire process of climbing fiber synapse elimination requires the presence of an adequate number of granule cells. The specific critical period for this effect appears to be directly related to the timing of Purkinje cell and granule cell development in different cerebellar lobules, indicating a close, spatiotemporal synchrony between granule-cell development and olivo-cerebellar synaptic maturation.
Collapse
Affiliation(s)
- Yannick Bailly
- Intracellular Membrane Trafficking in the Nervous and Neuroendocrine System, INCI, CNRS UPR3212, Universite de Strasbourg, Strasbourg, France.
| | - Sylvia Rabacchi
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France
- BiogenIdec, Inc., Cambridge, Massachusetts, 02140, USA
| | - Rachel M Sherrard
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France
- APHP, DHU FAST, Institut de la longévité, 94205, Ivry-Sur-Seine, France
| | - Jean-Luc Rodeau
- Nociceptive Signalling in the Spinal Cord, CNRS UPR3212, Universite de Strasbourg, Strasbourg, France
| | - Valérie Demais
- Intracellular Membrane Trafficking in the Nervous and Neuroendocrine System, INCI, CNRS UPR3212, Universite de Strasbourg, Strasbourg, France
- Plateforme d'Imagerie In vitro, CNRS UPS 3156 Universite de Strasbourg, Strasbourg, France
| | - Ann M Lohof
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France
| | - Jean Mariani
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France.
- APHP, DHU FAST, Institut de la longévité, 94205, Ivry-Sur-Seine, France.
| |
Collapse
|
35
|
Ca 2+ signaling and spinocerebellar ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1733-1744. [PMID: 29777722 DOI: 10.1016/j.bbamcr.2018.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neural disorder, which is caused by degenerative changes in the cerebellum. SCA is primarily characterized by gait ataxia, and additional clinical features include nystagmus, dysarthria, tremors and cerebellar atrophy. Forty-four hereditary SCAs have been identified to date, along with >35 SCA-associated genes. Despite the great diversity and distinct functionalities of the SCA-related genes, accumulating evidence supports the occurrence of a common pathophysiological event among several hereditary SCAs. Altered calcium (Ca2+) homeostasis in the Purkinje cells (PCs) of the cerebellum has been proposed as a possible pathological SCA trigger. In support of this, signaling events that are initiated from or lead to aberrant Ca2+ release from the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), which is highly expressed in cerebellar PCs, seem to be closely associated with the pathogenesis of several SCA types. In this review, we summarize the current research on pathological hereditary SCA events, which involve altered Ca2+ homeostasis in PCs, through IP3R1 signaling.
Collapse
|
36
|
Lieberman OJ, McGuirt AF, Tang G, Sulzer D. Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol Dis 2018; 122:49-63. [PMID: 29709573 DOI: 10.1016/j.nbd.2018.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
The dendritic protrusions known as spines represent the primary postsynaptic location for excitatory synapses. Dendritic spines are critical for many synaptic functions, and their formation, modification, and turnover are thought to be important for mechanisms of learning and memory. At many excitatory synapses, dendritic spines form during the early postnatal period, and while many spines are likely being formed and removed throughout life, the net number are often gradually "pruned" during adolescence to reach a stable level in the adult. In neurodevelopmental disorders, spine pruning is disrupted, emphasizing the importance of understanding its governing processes. Autophagy, a process through which cytosolic components and organelles are degraded, has recently been shown to control spine pruning in the mouse cortex, but the mechanisms through which autophagy acts remain obscure. Here, we draw on three widely studied prototypical synaptic pruning events to focus on two governing principles of spine pruning: 1) activity-dependent synaptic competition and 2) non-neuronal contributions. We briefly review what is known about autophagy in the central nervous system and its regulation by metabolic kinases. We propose a model in which autophagy in both neurons and non-neuronal cells contributes to spine pruning, and how other processes that regulate spine pruning could intersect with autophagy. We further outline future research directions to address outstanding questions on the role of autophagy in synaptic pruning.
Collapse
Affiliation(s)
- Ori J Lieberman
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Avery F McGuirt
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States; Department of Neurology, Columbia University Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, United States; Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, United States.
| |
Collapse
|
37
|
Hoxha E, Balbo I, Miniaci MC, Tempia F. Purkinje Cell Signaling Deficits in Animal Models of Ataxia. Front Synaptic Neurosci 2018; 10:6. [PMID: 29760657 PMCID: PMC5937225 DOI: 10.3389/fnsyn.2018.00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
Purkinje cell (PC) dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1) reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF)-PC synapse, mutations of glutamate delta-2 (GluD2) or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD) and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1) receptors is necessary to avoid ataxia. Failure of climbing fiber (CF) maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming synaptic signals or the way they are processed by the repertoire of ionic channels responsible for intrinsic membrane properties. Although the PC is a final common pathway of ataxia, the link between specific firing alterations and neurologic symptoms has not yet been systematically studied and the alterations of the cerebellar contribution to motor signals are still unknown.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
38
|
Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, Refinement, and Serotonergic Modulation of Cerebellar Cortical Circuits in Normal Development and in Murine Models of Autism. Neural Plast 2017; 2017:6595740. [PMID: 28894610 PMCID: PMC5574313 DOI: 10.1155/2017/6595740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
| | | | - Bibiana Scelfo
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
- National Institute of Neuroscience (INN), Torino, Italy
| | | | | |
Collapse
|
39
|
Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 2017; 8:195. [PMID: 28775326 PMCID: PMC5543168 DOI: 10.1038/s41467-017-00260-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Elimination of early-formed redundant synapses during postnatal development is essential for functional neural circuit formation. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs). A single CF is strengthened whereas the other CFs are eliminated in each PC dependent on postsynaptic activity in PC, but the underlying mechanisms are largely unknown. Here, we report that brain-derived neurotrophic factor (BDNF) from PC facilitates CF synapse elimination. By PC-specific deletion of BDNF combined with knockdown of BDNF receptors in CF, we show that BDNF acts retrogradely on TrkB in CFs, and facilitates elimination of CF synapses from PC somata during the third postnatal week. We also show that BDNF shares signaling pathway with metabotropic glutamate receptor 1, a key molecule that triggers a canonical pathway for CF synapse elimination. These results indicate that unlike other synapses, BDNF mediates punishment signal for synapse elimination in the developing cerebellum. During development, synapses are selectively strengthened or eliminated by activity-dependent competition. Here, the authors show that BDNF-TrkB retrograde signaling is a “punishment” signal that leads to elimination of climbing fiber-onto-Purkinje cell synapses in the developing cerebellum.
Collapse
Affiliation(s)
- Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Miyazaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Meiko Kawamura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Jianling Zhang
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
40
|
Nitta K, Matsuzaki Y, Konno A, Hirai H. Minimal Purkinje Cell-Specific PCP2/L7 Promoter Virally Available for Rodents and Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:159-170. [PMID: 28828391 PMCID: PMC5552061 DOI: 10.1016/j.omtm.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 01/10/2023]
Abstract
Cell-type-specific promoters in combination with viral vectors and gene-editing technology permit efficient gene manipulation in specific cell populations. Cerebellar Purkinje cells play a pivotal role in cerebellar functions. Although the Purkinje cell-specific L7 promoter is widely used for the generation of transgenic mice, it remains unsuitable for viral vectors because of its large size (3 kb) and exceedingly weak promoter activity. Here, we found that the 0.8-kb region (named here as L7-6) upstream of the transcription initiation codon in the first exon was alone sufficient as a Purkinje cell-specific promoter, presenting a far stronger promoter activity over the original 3-kb L7 promoter with a sustained significant specificity to Purkinje cells. Intravenous injection of adeno-associated virus vectors that are highly permeable to the blood-brain barrier confirmed the Purkinje cell specificity of the L7-6 in the CNS. The features of the L7-6 were also preserved in the marmoset, a non-human primate. The high sequence homology of the L7-6 among mouse, marmoset, and human suggests the preservation of the promoter strength and Purkinje cell specificity features also in humans. These findings suggest that L7-6 will facilitate the cerebellar research targeting the pathophysiology and gene therapy of cerebellar disorders.
Collapse
Affiliation(s)
- Keisuke Nitta
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
41
|
Wang Q, Yue WWS, Jiang Z, Xue T, Kang SH, Bergles DE, Mikoshiba K, Offermanns S, Yau KW. Synergistic Signaling by Light and Acetylcholine in Mouse Iris Sphincter Muscle. Curr Biol 2017; 27:1791-1800.e5. [PMID: 28578927 PMCID: PMC8577559 DOI: 10.1016/j.cub.2017.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 01/29/2023]
Abstract
The mammalian pupillary light reflex (PLR) involves a bilateral brain circuit whereby afferent light signals in the optic nerve ultimately drive iris-sphincter-muscle contraction via excitatory cholinergic parasympathetic innervation [1, 2]. Additionally, the PLR in nocturnal and crepuscular sub-primate mammals has a "local" component in the isolated sphincter muscle [3-5], as in amphibians, fish, and bird [6-10]. In mouse, this local PLR requires the pigment melanopsin [5], originally found in intrinsically photosensitive retinal ganglion cells (ipRGCs) [11-19]. However, melanopsin's presence and effector pathway locally in the iris remain uncertain. The sphincter muscle itself may express melanopsin [5], or its cholinergic parasympathetic innervation may be modulated by suggested intraocular axonal collaterals of ipRGCs traveling to the eye's ciliary body or even to the iris [20-22]. Here, we show that the muscarinic receptor antagonist, atropine, eliminated the effect of acetylcholine (ACh), but not of light, on isolated mouse sphincter muscle. Conversely, selective genetic deletion of melanopsin in smooth muscle mostly removed the light-induced, but not the ACh-triggered, increase in isolated sphincter muscle's tension and largely suppressed the local PLR in vivo. Thus, sphincter muscle cells are bona fide, albeit unconventional, photoreceptors. We found melanopsin expression in a small subset of mouse iris sphincter muscle cells, with the light-induced contractile signal apparently spreading through gap junctions into neighboring muscle cells. Light and ACh share a common signaling pathway in sphincter muscle. In summary, our experiments have provided details of a photosignaling process in the eye occurring entirely outside the retina.
Collapse
Affiliation(s)
- Qian Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Wendy Wing Sze Yue
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian Xue
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PRC
| | - Shin H Kang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Meera P, Pulst S, Otis T. A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2. eLife 2017; 6. [PMID: 28518055 PMCID: PMC5444899 DOI: 10.7554/elife.26377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Metabotropic glutamate receptor 1 (mGluR1) function in Purkinje neurons (PNs) is essential for cerebellar development and for motor learning and altered mGluR1 signaling causes ataxia. Downstream of mGluR1, dysregulation of calcium homeostasis has been hypothesized as a key pathological event in genetic forms of ataxia but the underlying mechanisms remain unclear. We find in a spinocerebellar ataxia type 2 (SCA2) mouse model that calcium homeostasis in PNs is disturbed across a broad range of physiological conditions. At parallel fiber synapses, mGluR1-mediated excitatory postsynaptic currents (EPSCs) and associated calcium transients are increased and prolonged in SCA2 PNs. In SCA2 PNs, enhanced mGluR1 function is prevented by buffering [Ca2+] at normal resting levels while in wildtype PNs mGluR1 EPSCs are enhanced by elevated [Ca2+]. These findings demonstrate a deleterious positive feedback loop involving elevated intracellular calcium and enhanced mGluR1 function, a mechanism likely to contribute to PN dysfunction and loss in SCA2. DOI:http://dx.doi.org/10.7554/eLife.26377.001
Collapse
Affiliation(s)
- Pratap Meera
- Department of Neurobiology, Geffen School of Medicine, University of California, Los Angeles, United States
| | - Stefan Pulst
- Department of Neurology, University of Utah, Salt Lake, United States
| | - Thomas Otis
- Department of Neurobiology, Geffen School of Medicine, University of California, Los Angeles, United States.,Neuroscience, Ophthalmology, and Rare Diseases, Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| |
Collapse
|
43
|
Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó A, Cilleros V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front Mol Neurosci 2017; 10:132. [PMID: 28559796 PMCID: PMC5432534 DOI: 10.3389/fnmol.2017.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.
Collapse
Affiliation(s)
- Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Manel M Santafé
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
44
|
Kano M, Watanabe T. Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease. F1000Res 2017; 6:416. [PMID: 28435670 PMCID: PMC5381626 DOI: 10.12688/f1000research.10485.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 01/28/2023] Open
Abstract
The cerebellum is a brain structure involved in coordination, control, and learning of movements, as well as certain aspects of cognitive function. Purkinje cells are the sole output neurons from the cerebellar cortex and therefore play crucial roles in the overall function of the cerebellum. The type-1 metabotropic glutamate receptor (mGluR1) is a key “hub” molecule that is critically involved in the regulation of synaptic wiring, excitability, synaptic response, and synaptic plasticity of Purkinje cells. In this review, we aim to highlight how mGluR1 controls these events in Purkinje cells. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunctions in several clinically relevant mouse models of human ataxias.
Collapse
Affiliation(s)
- Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
Hisatsune C, Mikoshiba K. IP 3 receptor mutations and brain diseases in human and rodents. J Neurochem 2017; 141:790-807. [PMID: 28211945 DOI: 10.1111/jnc.13991] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/03/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is a huge Ca2+ channel that is localized at the endoplasmic reticulum. The IP3 R releases Ca2+ from the endoplasmic reticulum upon binding to IP3 , which is produced by various extracellular stimuli through phospholipase C activation. All vertebrate organisms have three subtypes of IP3 R genes, which have distinct properties of IP3 -binding and Ca2+ sensitivity, and are differently regulated by phosphorylation and by their associated proteins. Each cell type expresses the three subtypes of IP3 R in a distinct proportion, which is important for creating and maintaining spatially and temporally appropriate intracellular Ca2+ level patterns for the regulation of specific physiological phenomena. Of the three types of IP3 Rs, the type 1 receptor (IP3 R1) is dominantly expressed in the brain and is important for brain function. Recent emerging evidence suggests that abnormal Ca2+ signals from the IP3 R1 are closely associated with human brain pathology. In this review, we focus on the recent advances in our knowledge of the regulation of IP3 R1 and its functional implication in human brain diseases, as revealed by IP3 R mutation studies and analysis of human disease-associated genes. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| |
Collapse
|
46
|
Doçi CL, Mikelis CM, Callejas-Valera JL, Hansen KK, Molinolo AA, Inoue A, Offermanns S, Gutkind JS. Epidermal loss of Gαq confers a migratory and differentiation defect in keratinocytes. PLoS One 2017; 12:e0173692. [PMID: 28301547 PMCID: PMC5354386 DOI: 10.1371/journal.pone.0173692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/24/2017] [Indexed: 12/04/2022] Open
Abstract
G-protein coupled receptors (GPCRs), which activate heterotrimeric G proteins, are an essential class of transmembrane receptors that are responsible for a myriad of signaling events in normal and pathologic conditions. Two members of the G protein family, Gαq and Gα11, activate one of the main GPCR pathways and function as oncogenes by integrating mitogen-stimulated signaling cascades that are active under malignant conditions. Recently, it has been shown that targeted deletion of Gα11 and Gαq from endothelial cells impairs the Rho-mediated formation of focal adherens junctions, suggesting that Gα11/q signaling may also play a significant role in cytoskeletal-mediated cellular responses in epithelial cells. Indeed, combined deletion of Gα11 and Gαq confers a significant migratory defect in keratinocytes that delays cutaneous wound healing in an in vivo setting. This delay can be attributed to a defect during the reepithelialization phase due to significantly attenuated migratory capacity of Gαq-null keratinocytes under combined Gα11 deficiency. In fact, cells lacking Gα11/q demonstrate a severely reduced ability to respond to mitogenic and migratory signals in the microenvironment, leading to inappropriate and premature terminal differentiation. These results suggest that Gα11/q signaling pathways may be critical for integrating mitogenic signals and cytoskeletal function to achieve normal physiological responses. Emergence of a malignant phenotype may therefore arise from both under- and overexpression of Gα11/q signaling, implicating its upstream regulation as a potential therapeutic target in a host of pathologic conditions.
Collapse
Affiliation(s)
- Colleen L. Doçi
- College of Arts and Sciences, Marian University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Constantinos M. Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Juan Luis Callejas-Valera
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karina K. Hansen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alfredo A. Molinolo
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
47
|
John AE, Wilson MR, Habgood A, Porte J, Tatler AL, Stavrou A, Miele G, Jolly L, Knox AJ, Takata M, Offermanns S, Jenkins RG. Loss of epithelial Gq and G11 signaling inhibits TGFβ production but promotes IL-33-mediated macrophage polarization and emphysema. Sci Signal 2016; 9:ra104. [PMID: 27811142 DOI: 10.1126/scisignal.aad5568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heterotrimeric guanine nucleotide-binding protein (G protein) signaling links hundreds of G protein-coupled receptors with four G protein signaling pathways. Two of these, one mediated by Gq and G11 (Gq/11) and the other by G12 and G13 (G12/13), are implicated in the force-dependent activation of transforming growth factor-β (TGFβ) in lung epithelial cells. Reduced TGFβ activation in alveolar cells leads to emphysema, whereas enhanced TGFβ activation promotes acute lung injury and idiopathic pulmonary fibrosis. Therefore, precise control of alveolar TGFβ activation is essential for alveolar homeostasis. We investigated the involvement of the Gq/11 and G12/13 pathways in epithelial cells in generating active TGFβ and regulating alveolar inflammation. Mice deficient in both Gαq and Gα11 developed inflammation that was primarily caused by alternatively activated (M2-polarized) macrophages, enhanced matrix metalloproteinase 12 (MMP12) production, and age-related alveolar airspace enlargement consistent with emphysema. Mice with impaired Gq/11 signaling had reduced stretch-mediated generation of TGFβ by epithelial cells and enhanced macrophage MMP12 synthesis but were protected from the effects of ventilator-induced lung injury. Furthermore, synthesis of the cytokine interleukin-33 (IL-33) was increased in these alveolar epithelial cells, resulting in the M2-type polarization of alveolar macrophages independently of the effect on TGFβ. Our results suggest that alveolar Gq/11 signaling maintains alveolar homeostasis and likely independently increases TGFβ activation in response to the mechanical stress of the epithelium and decreases epithelial IL-33 synthesis. Together, these findings suggest that disruption of Gq/11 signaling promotes inflammatory emphysema but protects against mechanically induced lung injury.
Collapse
Affiliation(s)
- Alison E John
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K.
| | - Michael R Wilson
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London, U.K
| | - Anthony Habgood
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| | - Joanne Porte
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| | - Amanda L Tatler
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| | - Anastasios Stavrou
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| | | | - Lisa Jolly
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| | - Masao Takata
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London, U.K
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - R Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, U.K
| |
Collapse
|
48
|
Jayabal S, Ljungberg L, Watt AJ. Transient cerebellar alterations during development prior to obvious motor phenotype in a mouse model of spinocerebellar ataxia type 6. J Physiol 2016; 595:949-966. [PMID: 27531396 DOI: 10.1113/jp273184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Spinocerebellar ataxia type 6 (SCA6) is a midlife-onset neurodegenerative disease caused by a CACNA1A mutation; CACNA1A is also implicated in cerebellar development. We have previously shown that when disease symptoms are present in midlife in SCA684Q/84Q mice, cerebellar Purkinje cells spike with reduced rate and precision. In contrast, we find that during postnatal development (P10-13), SCA684Q/84Q Purkinje cells spike with elevated rate and precision. Although surplus climbing fibres are linked to ataxia in other mouse models, we found surplus climbing fibre inputs on developing (P10-13) SCA684Q/84Q Purkinje cells when motor deficits were not detected. Developmental alterations were transient and were no longer observed in weanling (P21-24) SCA684Q/84Q Purkinje cells. Our results suggest that changes in the developing cerebellar circuit can occur without detectable motor abnormalities, and that changes in cerebellar development may not necessarily persist into adulthood. ABSTRACT Although some neurodegenerative diseases are caused by mutations in genes that are known to regulate neuronal development, surprisingly, patients may not present disease symptoms until adulthood. Spinocerebellar ataxia type 6 (SCA6) is one such midlife-onset disorder in which the mutated gene, CACNA1A, is implicated in cerebellar development. We wondered whether changes were observed in the developing cerebellum in SCA6 prior to the detection of motor deficits. To address this question, we used a transgenic mouse with a hyper-expanded triplet repeat (SCA684Q/84Q ) that displays late-onset motor deficits at 7 months, and measured cerebellar Purkinje cell synaptic and intrinsic properties during postnatal development. We found that firing rate and precision were enhanced during postnatal development in P10-13 SCA684Q/84Q Purkinje cells, and observed surplus multiple climbing fibre innervation without changes in inhibitory input or dendritic structure during development. Although excess multiple climbing fibre innervation has been associated with ataxic symptoms in several adult transgenic mice, we observed no detectable changes in cerebellar-related motor behaviour in developing SCA684Q/84Q mice. Interestingly, we found that developmental alterations were transient, as both Purkinje cell firing properties and climbing fibre innervation from weanling-aged (P21-24) SCA684Q/84Q mice were indistinguishable from litter-matched control mice. Our results demonstrate that significant alterations in neuronal circuit development may be observed without any detectable behavioural read-out, and that early changes in brain development may not necessarily persist into adulthood in midlife-onset diseases.
Collapse
Affiliation(s)
- Sriram Jayabal
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, H3G 0B1, Canada
| | - Lovisa Ljungberg
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada
| |
Collapse
|
49
|
Piochon C, Kano M, Hansel C. LTD-like molecular pathways in developmental synaptic pruning. Nat Neurosci 2016; 19:1299-310. [PMID: 27669991 PMCID: PMC5070480 DOI: 10.1038/nn.4389] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
In long-term depression (LTD) at synapses in the adult brain, synaptic strength is reduced in an experience-dependent manner. LTD thus provides a cellular mechanism for information storage in some forms of learning. A similar activity-dependent reduction in synaptic strength also occurs in the developing brain and there provides an essential step in synaptic pruning and the postnatal development of neural circuits. Here we review evidence suggesting that LTD and synaptic pruning share components of their underlying molecular machinery and may thus represent two developmental stages of the same type of synaptic modulation that serve different, but related, functions in neural circuit plasticity. We also assess the relationship between LTD and synaptic pruning in the context of recent findings of LTD dysregulation in several mouse models of autism spectrum disorder (ASD) and discuss whether LTD deficits can indicate impaired pruning processes that are required for proper brain development.
Collapse
Affiliation(s)
- Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
- Department of Physiology, Northwestern University, Chicago, Illinois, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, Erickson RP, Canterini S, Fiorenza MT. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun 2016; 4:94. [PMID: 27586038 PMCID: PMC5009663 DOI: 10.1186/s40478-016-0370-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1−/− mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1nmf164 for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1nmf164/ Npc1nmf164 pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1nmf164 homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs. These findings indicate that in Npc1nmf164 homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.
Collapse
|