1
|
Blasey N, Rehrmann D, Riebisch AK, Mühlen S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 12:1065561. [PMID: 36704108 PMCID: PMC9872159 DOI: 10.3389/fcimb.2022.1065561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.
Collapse
|
2
|
Rohaun SK, Imlay JA. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biol 2022; 57:102495. [PMID: 36240621 PMCID: PMC9576991 DOI: 10.1016/j.redox.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Radical S-adenosylmethionine enzymes (RSEs) drive diverse biological processes by catalyzing chemically difficult reactions. Each of these enzymes uses a solvent-exposed [4Fe-4S] cluster to coordinate and cleave its SAM co-reactant. This cluster is destroyed during oxic handling, forcing investigators to work with these enzymes under anoxic conditions. Analogous substrate-binding [4Fe-4S] clusters in dehydratases are similarly sensitive to oxygen in vitro; they are also extremely vulnerable to reactive oxygen species (ROS) in vitro and in vivo. These observations suggested that ROS might similarly poison RSEs. This conjecture received apparent support by the observation that when E. coli experiences hydrogen peroxide stress, it induces a cluster-free isozyme of the RSE HemN. In the present study, surprisingly, the purified RSEs viperin and HemN proved quite resistant to peroxide and superoxide in vitro. Furthermore, pathways that require RSEs remained active inside E. coli cells that were acutely stressed by hydrogen peroxide and superoxide. Viperin, but not HemN, was gradually poisoned by molecular oxygen in vitro, forming an apparent [3Fe-4S]+ form that was readily reactivated. The modest rate of damage, and the known ability of cells to repair [3Fe-4S]+ clusters, suggest why these RSEs remain functional inside fully aerated organisms. In contrast, copper(I) damaged HemN and viperin in vitro as readily as it did fumarase, a known target of copper toxicity inside E. coli. Excess intracellular copper also impaired RSE-dependent biosynthetic processes. These data indicate that RSEs may be targets of copper stress but not of reactive oxygen species.
Collapse
Affiliation(s)
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Focarelli F, Giachino A, Waldron KJ. Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLoS Pathog 2022; 18:e1010617. [PMID: 35862345 PMCID: PMC9302775 DOI: 10.1371/journal.ppat.1010617] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper is an essential micronutrient for most organisms that is required as a cofactor for crucial copper-dependent enzymes encoded by both prokaryotes and eukaryotes. Evidence accumulated over several decades has shown that copper plays important roles in the function of the mammalian immune system. Copper accumulates at sites of infection, including the gastrointestinal and respiratory tracts and in blood and urine, and its antibacterial toxicity is directly leveraged by phagocytic cells to kill pathogens. Copper-deficient animals are more susceptible to infection, whereas those fed copper-rich diets are more resistant. As a result, copper resistance genes are important virulence factors for bacterial pathogens, enabling them to detoxify the copper insult while maintaining copper supply to their essential cuproenzymes. Here, we describe the accumulated evidence for the varied roles of copper in the mammalian response to infections, demonstrating that this metal has numerous direct and indirect effects on immune function. We further illustrate the multifaceted response of pathogenic bacteria to the elevated copper concentrations that they experience when invading the host, describing both conserved and species-specific adaptations to copper toxicity. Together, these observations demonstrate the roles of copper at the host–pathogen interface and illustrate why bacterial copper detoxification systems can be viable targets for the future development of novel antibiotic drug development programs. Copper is required by both animals and bacteria in small quantities as a micronutrient. During infection, the mammalian immune system increases the local concentration of copper, which gives rise to copper toxicity in the pathogen. In turn, bacterial pathogens possess specialized systems to resist this copper toxicity. Copper also plays important, indirect roles in the function of the immune system. In this review, we explain the diverse roles of copper in the human body with a focus on its functions within the immune system. We also describe how bacterial pathogens respond to the copper toxicity that they experience within the host during infection, illustrating both conserved copper homeostasis and detoxification systems in bacteria and species-specific adaptations that have been shown to be important to pathogenicity. The key role of copper at the host–pathogen interface and the essential requirement for pathogenic bacteria to resist copper toxicity makes the protein components that confer resistance on pathogens potential targets for future development of novel antibiotic drugs.
Collapse
Affiliation(s)
- Francesca Focarelli
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrea Giachino
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin John Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Xu T, Li W, Zhang R, Guo S, Yu B, Cong H, Shen Y. Synthesis of poly-tetrahydropyrimidine antibacterial polymers and research of their basic properties. Biomater Sci 2022; 10:1026-1040. [PMID: 35024701 DOI: 10.1039/d1bm01465j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Modern medicine has increasingly higher requirements for antibacterial materials. To overcome this challenge, we use alkynyl monomers, amino monomers, formaldehyde, and acetic acid as raw materials to synthesize a series of poly-tetrahydropyrimidine (P-THP) polymers through multicomponent polymerizations (MCPs). P-THP polymers can effectively inhibit the growth of Gram-positive bacteria (Staphylococcus aureus, S. aureus) and Gram-negative bacteria (Escherichia. coli, E. coli), and can prevent bacteria from developing drug resistance within at least 16 generations. Besides, we prepared P-THP antibacterial coatings and explored their antibacterial properties. In vitro antibacterial experiments showed that P-THP coatings can prevent the formation of bacterial biofilms, and the coatings have a lasting killing effect on E. coli and S. aureus. The mouse wound infection experiments proved that P-THP polymers can significantly accelerate skin tissue regeneration and wound healing. Moreover, the P-THP textile obtained by electrospinning also has antibacterial properties and has great application prospects in the field of N95 masks. Generally speaking, P-THP polymers have considerable application potential in the field of treating bacterial infections and promoting wound healing.
Collapse
Affiliation(s)
- Taimin Xu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Wenlong Li
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Rong Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Shuaibing Guo
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
5
|
Wang Z, Zhao X, Wang Y, Sun C, Sun M, Gao X, Jia F, Shan C, Yang G, Wang J, Huang H, Shi C, Yang W, Qian A, Wang C, Jiang Y. In Vivo Production of HN Protein Increases the Protection Rates of a Minicircle DNA Vaccine against Genotype VII Newcastle Disease Virus. Vaccines (Basel) 2021; 9:vaccines9070723. [PMID: 34358140 PMCID: PMC8310180 DOI: 10.3390/vaccines9070723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/09/2023] Open
Abstract
The Cre-recombinase mediated in vivo minicircle DNA vaccine platform (CRIM) provided a novel option to replace a traditional DNA vaccine. To further improve the immune response of our CRIM vaccine, we designed a dual promoter expression plasmid named pYL87 which could synthesize short HN protein under a prokaryotic in vivo promoter PpagC and full length HN protein of genotype VII Newcastle disease virus (NDV) under the previous eukaryotic CMV promoter at the same time. Making use of the self-lysed Salmonella strain as a delivery vesicle, chickens immunized with the pYL87 construction showed an increased serum haemagglutination inhibition antibody response, as well as an increased cell proliferation level and cellular IL-4 and IL-18 cytokines, compared with the previous CRIM vector pYL47. After the virus challenge, the pYL87 vector could provide 80% protection compared to 50% protection against genotype VII NDV in pYL47 immunized chickens, indicating a promising dual promoter strategy used in vaccine design.
Collapse
|
6
|
Kan A, Gelfat I, Emani S, Praveschotinunt P, Joshi NS. Plasmid Vectors for in Vivo Selection-Free Use with the Probiotic E. coli Nissle 1917. ACS Synth Biol 2021; 10:94-106. [PMID: 33301298 PMCID: PMC7813132 DOI: 10.1021/acssynbio.0c00466] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Escherichia
coli Nissle 1917 (EcN) is a probiotic
bacterium, commonly employed to treat certain gastrointestinal disorders.
It is fast emerging as an important target for the development of
therapeutic engineered bacteria, benefiting from the wealth of knowledge
of E. coli biology and ease of manipulation.
Bacterial synthetic biology projects commonly utilize engineered plasmid
vectors, which are simple to engineer and can reliably achieve high
levels of protein expression. However, plasmids typically require
antibiotics for maintenance, and the administration of an antibiotic
is often incompatible with in vivo experimentation
or treatment. EcN natively contains plasmids pMUT1 and pMUT2, which
have no known function but are stable within the bacteria. Here, we
describe the development of the pMUT plasmids into a robust platform
for engineering EcN for in vivo experimentation,
alongside a CRISPR-Cas9 system to remove the native plasmids. We systematically
engineered both pMUT plasmids to contain selection markers, fluorescent
markers, temperature sensitive expression, and curli secretion systems
to export a customizable functional material into the extracellular
space. We then demonstrate that the engineered plasmids were maintained
in bacteria as the engineered bacteria pass through the mouse GI tract
without selection, and that the secretion system remains functional,
exporting functionalized curli proteins into the gut. Our plasmid
system presents a platform for the rapid development of therapeutic
EcN bacteria.
Collapse
Affiliation(s)
- Anton Kan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Ilia Gelfat
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sivaram Emani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Harvard College, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Neel S. Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Rodríguez-Hernández E, Quintas-Granados LI, Flores-Villalva S, Cantó-Alarcón JG, Milián-Suazo F. Application of antigenic biomarkers for Mycobacterium tuberculosis. J Zhejiang Univ Sci B 2020; 21:856-870. [PMID: 33150770 PMCID: PMC7670104 DOI: 10.1631/jzus.b2000325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/19/2020] [Indexed: 01/12/2023]
Abstract
The study and characterization of biomolecules involved in the interaction between mycobacteria and their hosts are crucial to determine their roles in the invasion process and provide basic knowledge about the biology and pathogenesis of disease. Promising new biomarkers for diagnosis and immunotherapy have emerged recently. Mycobacterium is an ancient pathogen that has developed complex strategies for its persistence in the host and environment, likely based on the complexity of the network of interactions between the molecules involved in infection. Several biomarkers have received recent attention in the process of developing rapid and reliable detection techniques for tuberculosis. Among the most widely investigated antigens are CFP-10 (10-kDa culture filtrate protein), ESAT-6 (6-kDa early secretory antigenic target), Ag85A, Ag85B, CFP-7, and PPE18. Some of these antigens have been proposed as biomarkers to assess the key elements of the response to infection of both the pathogen and host. The design of novel and accurate diagnostic methods is essential for the control of tuberculosis worldwide. Presently, the diagnostic methods are based on the identification of molecules in the humoral response in infected individuals. Therefore, these tests depend on the capacity of the host to develop an immune response, which usually is heterogeneous. In the last 20 years, special attention has been given to the design of multiantigenic diagnostic methods to improve the levels of sensitivity and specificity. In this review, we summarize the state of the art in the study and use of mycobacterium biomolecules with the potential to support novel tuberculosis control strategies.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Laura Itzel Quintas-Granados
- Universidad Mexiquense del Bicentenario, Unidad de Estudios Superiores de Tultitlán, Avenida Ex-Hacienda de Portales s/n, Villa Esmeralda, Tultitlán Estado de México, 54910, Tultitlán, México
| | - Susana Flores-Villalva
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Jorge Germinal Cantó-Alarcón
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| | - Feliciano Milián-Suazo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| |
Collapse
|
8
|
The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages. Nat Commun 2019; 10:3326. [PMID: 31346161 PMCID: PMC6658541 DOI: 10.1038/s41467-019-11318-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
The MgtC virulence protein from the intracellular pathogen Salmonella enterica is required for its intramacrophage survival and virulence in mice and this requirement of MgtC is conserved in several intracellular pathogens including Mycobacterium tuberculosis. Despite its critical role in survival within macrophages, only a few molecular targets of the MgtC protein have been identified. Here, we report that MgtC targets PhoR histidine kinase and activates phosphate transport independently of the available phosphate concentration. A single amino acid substitution in PhoR prevents its binding to MgtC, thus abrogating MgtC-mediated phosphate transport. Surprisingly, the removal of MgtC’s effect on the ability to transport phosphate renders Salmonella hypervirulent and decreases a non-replicating population inside macrophages, indicating that MgtC-mediated phosphate transport is required for normal Salmonella pathogenesis. This provides an example of a virulence protein directly activating a pathogen’s phosphate transport inside host. The virulence factor MgtC is essential for intracellular macrophage survival of Salmonella enterica. Here, the authors show that MgtC targets the PhoB/PhoR regulatory system leading to phosphate uptake inside macrophages and that both phoR mutation and phoB deletion renders Salmonella hypervirulent in mice.
Collapse
|
9
|
Zeidler S, Müller V. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol 2019; 21:2212-2230. [PMID: 30773801 DOI: 10.1111/1462-2920.14565] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
Multidrug resistant (MDR) pathogens are one of the most pressing challenges of contemporary health care. Acinetobacter baumannii takes a predominant position, emphasized in 2017 by the World Health Organization. The increasing emergence of MDR strains strengthens the demand for new antimicrobials. Possible targets for such compounds might be proteins involved in resistance against low water activity environments, since A. baumannii is known for its pronounced resistance against desiccation stress. Despite the importance of desiccation resistance for persistence of this pathogen in hospitals, comparable studies and precise data on this topic are rare and the mechanisms involved are largely unknown. This review aims to give an overview of the studies performed so far and the current knowledge on genes and proteins important for desiccation survival. 'Osmotic stress' is not identical to 'desiccation stress', but the two share the response of bacteria to low water activities. Osmotic stress resistance is in general studied much better, and in recent years it turned out that accumulation of compatible solutes in A. baumannii comprises some special features such as the bifunctional enzyme MtlD synthesizing the unusual solute mannitol. Furthermore, the regulatory pathways, as understood today, will be discussed.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Alshalchi S, Hayer SS, An R, Munoz-Aguayo J, Flores-Figueroa C, Nguyen R, Lauer D, Olsen K, Alvarez J, Boxrud D, Cardona C, Vidovic S. The Possible Influence of Non-synonymous Point Mutations within the FimA Adhesin of Non-typhoidal Salmonella (NTS) Isolates in the Process of Host Adaptation. Front Microbiol 2017; 8:2030. [PMID: 29089942 PMCID: PMC5651078 DOI: 10.3389/fmicb.2017.02030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) remains a global pathogen that affects a wide range of animal species. We analyzed a large number of NTS isolates of different host origins, including Salmonella Heidelberg (n = 80, avian), S. Dublin (50, bovine), S. Typhimurium var 5- (n = 40, porcine), S. 4,5,12,:i:- (n = 40, porcine), S. Cerro (n = 16, bovine), and S. Montevideo (n = 14, bovine), using virulence profiling of the bcfC, mgtC, ssaC, invE, pefA, stn, sopB, and siiE virulence-associated genes, a biofilm production assay, pulsed field gel electrophoresis, and the full-length sequencing of the fimA (adhesin) and iroN (receptor) genes. We determined a key amino acid substitution, A169 (i.e., threonine changed to alanine at position 169), in the FimA protein that changed ligand affinity of FimA toward N-acetyl-D-glucosamine. This finding clearly indicates the important role of non-synonymous single nucleotide polymorphism (nsSNPs) in adhesin functionality that may impact the host tropism of NTS. This nsSNP was found in S. Heidelberg and S. Cerro isolates. Although this was not the case for the IroN receptor, the phylogeny of this receptor and different host origins of NTS isolates were positively correlated, suggesting existence of specific host immune selective pressures on this unique receptor in S. enterica. We found that pefA, a gene encoding major fimbrial subunit, was the most-segregative virulence factor. It was associated with S. Heidelberg, S. Typhimurium var 5- and S. 4,5,12,:i:- but not with the rest of NTS strains. Further, we observed a significantly higher frequency of non-biofilm producers among NTS strains that do not carry pefA (42.5%) compared to S. Heidelberg (2.5%) and S. Typhimurium var 5- (7.5%) and S. 4,5,12,:i:- (0%). This study provides new insights into the host adaptation of avian and mammalian NTS isolates that are based on the bacterial antigens FimA and IroN as well as the interrelationships between host adaptation, overall genetic relatedness, and virulence potential in these NTS isolates.
Collapse
Affiliation(s)
- Sahar Alshalchi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Shivdeep S Hayer
- Department of Population Medicine, University of Minnesota, Minnesota, MN, United States
| | - Ran An
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Jeannette Munoz-Aguayo
- Mid-Central Research and Outreach Center, University of Minnesota, Minnesota, MN, United States
| | | | - Ryan Nguyen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Dale Lauer
- Minnesota Poultry Testing Laboratory, University of Minnesota, Minnesota, MN, United States
| | - Karen Olsen
- Veterinary Diagnostic Laboratory, University of Minnesota, Minnesota, MN, United States
| | - Julio Alvarez
- Department of Population Medicine, University of Minnesota, Minnesota, MN, United States
| | - David Boxrud
- Public Health Laboratory, Minnesota Department of Health, Minnesota, MN, United States
| | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| | - Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, MN, United States
| |
Collapse
|
11
|
Senior NJ, Sasidharan K, Saint RJ, Scott AE, Sarkar-Tyson M, Ireland PM, Bullifent HL, Rong Yang Z, Moore K, Oyston PCF, Atkins TP, Atkins HS, Soyer OS, Titball RW. An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions. BMC Microbiol 2017; 17:163. [PMID: 28732479 PMCID: PMC5521123 DOI: 10.1186/s12866-017-1073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023] Open
Abstract
Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1073-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicola J Senior
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Kalesh Sasidharan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard J Saint
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Andrew E Scott
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Mitali Sarkar-Tyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK.,Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, 6009, Australia
| | - Philip M Ireland
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen L Bullifent
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Z Rong Yang
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Karen Moore
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Petra C F Oyston
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Timothy P Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen S Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.
| |
Collapse
|
12
|
Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiol Spectr 2017; 4. [PMID: 27227312 DOI: 10.1128/microbiolspec.vmbf-0007-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.
Collapse
|
13
|
Abstract
Antimicrobial peptides (APs) are ubiquitous in nature and are thought to kill micro-organisms by affecting membrane integrity. These positively charged peptides interact with negative charges in the LPS of Gram-negative bacteria. A common mechanism of resistance to AP killing is LPS modification. These modifications include fatty acid additions, phosphoethanolamine (PEtN) addition to the core and lipid A regions, 4-amino-4-deoxy-L-arabinose (Ara4N) addition to the core and lipid A regions, acetylation of the O-antigen, and possibly hydroxylation of fatty acids. In Salmonella typhimurium, LPS modifications are induced within host tissues by the two-component regulatory systems PhoPQ and PmrAB. PmrAB activation results in AP resistance by Ara4N addition to lipid A through the activation of at least 8 genes, 7 of which are transcribed as an operon. Loss of this operon and, therefore, Ara4N LPS modification, affects S. typhimurium virulence when administered orally. Transposon mutagenesis of Proteus mirabilis also suggests that LPS modifications affect AP resistance and virulence phenotypes. Therefore, LPS modification in Gram-negative bacteria plays a significant role during infection in resistance to host antimicrobial factors, avoidance of immune system recognition, and maintenance of virulence phenotypes.
Collapse
Affiliation(s)
- John S. Gunn
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA,
| |
Collapse
|
14
|
Rees CA, Smolinska A, Hill JE. The volatile metabolome of
Klebsiella pneumoniae
in human blood. J Breath Res 2016; 10:027101. [DOI: 10.1088/1752-7155/10/2/027101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Abstract
Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host.
Collapse
Affiliation(s)
- Erik Ladomersky
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
16
|
de Moraes MH, Teplitski M. Fast and efficient three-step target-specific curing of a virulence plasmid in Salmonella enterica. AMB Express 2015; 5:139. [PMID: 26272479 PMCID: PMC4536245 DOI: 10.1186/s13568-015-0139-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
Virulence plasmids borne by serovars of Salmonella enterica carry genes involved in its pathogenicity, as well as other functions. Characterization of phenotypes associated with virulence plasmids requires a system for efficiently curing strains of their virulence plasmids. Here, we developed a 3-step protocol for targeted curing of virulence plasmids. The protocol involves insertion of an I-SecI restriction site linked to an antibiotic resistance gene into the target plasmid using λ-Red mutagenesis, followed by the transformation with a temperature-sensitive auxiliary plasmid which carries I-SecI nuclease expressed from a tetracycline-inducible promoter. Finally, the auxiliary plasmid is removed by incubation at 42 °C and the plasmid-less strains are verified on antibiotic-containing media. This method is fast and very efficient: over 90 % of recovered colonies lacked their virulence plasmid.
Collapse
|
17
|
Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen. Appl Environ Microbiol 2015; 82:328-39. [PMID: 26497459 DOI: 10.1128/aem.02870-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB.
Collapse
|
18
|
Geng S, Liu Z, Lin Z, Barrow P, Pan Z, Li Q, Jiao X. Identification of in vivo-induced genes during infection of chickens with Salmonella enterica serovar Enteritidis. Res Vet Sci 2015; 100:1-7. [PMID: 25843894 DOI: 10.1016/j.rvsc.2015.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/28/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Chickens are an important source of food worldwide and are often infected with food-poisoning serovars of Salmonella enterica, frequently Salmonella Enteritidis (SE), without exhibiting clinical signs of disease. Ivi (in vivo induced) genes identified using in vivo-induced antigen technology (IVIAT) are expressed only during bacterial infection and have the potential value of identifying epidemic strains and antigens which can form the basis for sub-unit vaccine development. We applied IVIAT to SE strain 50041 and identified 42 ivi genes. Eight representative ivi genes were further confirmed by qRT-PCR as being expressed only in vivo within 48 h of infection compared with that of in vitro-cultured. Although our results indicated that the identified ivi genes are expressed only in vivo, further research is needed to elucidate the exact roles of these genes during infection and pathogenesis.
Collapse
Affiliation(s)
- Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhicheng Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
19
|
Cao H, Butler K, Hossain M, Lewis JD. Variation in the fitness effects of mutations with population density and size in Escherichia coli. PLoS One 2014; 9:e105369. [PMID: 25121498 PMCID: PMC4133409 DOI: 10.1371/journal.pone.0105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022] Open
Abstract
The fitness effects of mutations are context specific and depend on both external (e.g., environment) and internal (e.g., cellular stress, genetic background) factors. The influence of population size and density on fitness effects are unknown, despite the central role population size plays in the supply and fixation of mutations. We addressed this issue by comparing the fitness of 92 Keio strains (Escherichia coli K12 single gene knockouts) at comparatively high (1.2×10(7) CFUs/mL) and low (2.5×10(2) CFUs/mL) densities, which also differed in population size (high: 1.2×10(8); low: 1.25×10(3)). Twenty-eight gene deletions (30%) exhibited a fitness difference, ranging from 5 to 174% (median: 35%), between the high and low densities. Our analyses suggest this variation among gene deletions in fitness responses reflected in part both gene orientation and function, of the gene properties we examined (genomic position, length, orientation, and function). Although we could not determine the relative effects of population density and size, our results suggest fitness effects of mutations vary with these two factors, and this variation is gene-specific. Besides being a mechanism for density-dependent selection (r-K selection), the dependence of fitness effects on population density and size has implications for any population that varies in size over time, including populations undergoing evolutionary rescue, species invasions into novel habitats, and cancer progression and metastasis. Further, combined with recent advances in understanding the roles of other context-specific factors in the fitness effects of mutations, our results will help address theoretical and applied biological questions more realistically.
Collapse
Affiliation(s)
- Huansheng Cao
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - Kevin Butler
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - Mithi Hossain
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - James D. Lewis
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| |
Collapse
|
20
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
21
|
Tao Q, Xiao J, Wang Y, Fang K, Li N, Hu M, Zhou Y, Zhao J. Identification of genes expressed during Toxoplasma gondii infection by in vivo-induced antigen technology (IVIAT) with positive porcine sera. J Parasitol 2014; 100:470-9. [PMID: 24646180 DOI: 10.1645/13-240.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Infection of pigs with Toxoplasma gondii is a common source of human toxoplasmosis and causes serious economic losses. In vivo-induced antigen technology (IVIAT) is an effective immunological technique to identify the antigens that a pathogen specifically expressed during infection. To discover the genes that are important in T. gondii infection of pigs, we employed IVIAT using sera from infected pigs. Fourteen antigens were identified including microneme protein 11 (MIC11), dense granule protein 5 (GRA5), 18 kDa cyclophilin (C-18), serine proteinase inhibitor (PI), calmodulin (CaM), leucine-rich repeat protein ( LRRP), D-3-phosphoglycerate dehydrogenase (D3PD), elongation factor 1-gamma (EF1), and 6 hypothetical proteins. The increased transcription levels of 5 (MIC11, GRA5, C-18, PI, and CaM) of the 14 molecules identified by IVIAT were confirmed by real-time PCR. The full length or partial proteins encoded by these 5 genes were expressed in Escherichia coli , and their immunogenicity was confirmed by Western blot analysis with positive porcine sera. Further functional studies were conducted with CaM. Suppression of CaM expression by RNA interference decreased T. gondii tachyzoites cell attachment, invasion, and egress but did not influence their replication. The proteins identified in this study are predicted to be involved in cell invasion, ion-protein binding, protein folding, biosynthesis, and metabolism. The results of the functional analysis support the hypothesis that CaM contributes to parasite pathogenesis during infection. These results may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against toxoplasmosis in pigs.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The human body is populated by an extremely diverse group of microbes that live in a symbiotic relationship with their host. Among these, intestinal commensals are the most abundant, induce homeostatic mucosal immune responses, and fulfill physiologic functions that benefit the host. In some cases, gut symbionts, including Escherichia coli, may contribute to the pathogenesis of chronic intestinal inflammation by causing dysregulated immune activation in genetically susceptible hosts. Although immune responses to bacterial products are well-characterized, the impact of intestinal inflammation on the function of commensal luminal microbes is only beginning to be elucidated. We recently reported that chronic intestinal inflammation induces commensal E. coli to upregulate stress response genes that paradoxically limit their growth in vivo. Herein, we discuss our findings in the context of host-microbial interactions in health and disease and a developing paradigm that may distinguish pathogens from commensals.
Collapse
Affiliation(s)
- Sandrine Tchaptchet
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
23
|
Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 2012; 8:e1002966. [PMID: 23093937 PMCID: PMC3475680 DOI: 10.1371/journal.ppat.1002966] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023] Open
Abstract
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. Salmonella infections cause extensive morbidity and mortality worldwide. A vaccine that prevents systemic Salmonella infections is urgently needed but suitable antigens remain largely unknown. In this study we identified several antigen candidates that mediated protective immunity to Salmonella in a mouse typhoid fever model. Interestingly, all these antigens were associated with the Salmonella surface. This suggested that similar antigen properties might be relevant for CD4 T cell dependent immunity to intracellular pathogens like Salmonella, as for antibody-dependent immunity to extracellular pathogens. Detailed analysis revealed that Salmonella surface antigens were not generally more immunogenic compared to internal antigens. However, internal antigens were inaccessible for CD4 T cell recognition of a substantial number of infected host cells that contained exclusively live intact Salmonella. Together, these results might pave the way for development of an efficacious Salmonella vaccine, and provide a basis to facilitate antigen identification for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Somedutta Barat
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yvonne Willer
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
| | - Konstantin Rizos
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne K. Schemmer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dennis Kirchhoff
- Immunomodulation Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Singh A, Hodgson N, Yan M, Joo J, Gu L, Sang H, Gregory-Bryson E, Wood WG, Ni Y, Smith K, Jackson SH, Coleman WG. Screening Helicobacter pylori genes induced during infection of mouse stomachs. World J Gastroenterol 2012; 18:4323-34. [PMID: 22969195 PMCID: PMC3436047 DOI: 10.3748/wjg.v18.i32.4323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of in vivo environment on gene expression in Helicobacter pylori (H. pylori) as it relates to its survival in the host.
METHODS: In vivo expression technology (IVET) systems are used to identify microbial virulence genes. We modified the IVET-transcriptional fusion vector, pIVET8, which uses antibiotic resistance as the basis for selection of candidate genes in host tissues to develop two unique IVET-promoter-screening vectors, pIVET11 and pIVET12. Our novel IVET systems were developed by the fusion of random Sau3A DNA fragments of H. pylori and a tandem-reporter system of chloramphenicol acetyltransferase and beta-galactosidase. Additionally, each vector contains a kanamycin resistance gene. We used a mouse macrophage cell line, RAW 264.7 and mice, as selective media to identify specific genes that H. pylori expresses in vivo. Gene expression studies were conducted by infecting RAW 264.7 cells with H. pylori. This was followed by real time polymerase chain reaction (PCR) analysis to determine the relative expression levels of in vivo induced genes.
RESULTS: In this study, we have identified 31 in vivo induced (ivi) genes in the initial screens. These 31 genes belong to several functional gene families, including several well-known virulence factors that are expressed by the bacterium in infected mouse stomachs. Virulence factors, vacA and cagA, were found in this screen and are known to play important roles in H. pylori infection, colonization and pathogenesis. Their detection validates the efficacy of these screening systems. Some of the identified ivi genes have already been implicated to play an important role in the pathogenesis of H. pylori and other bacterial pathogens such as Escherichia coli and Vibrio cholerae. Transcription profiles of all ivi genes were confirmed by real time PCR analysis of H. pylori RNA isolated from H. pylori infected RAW 264.7 macrophages. We compared the expression profile of H. pylori and RAW 264.7 coculture with that of H. pylori only. Some genes such as cagA, vacA, lpxC, murI, tlpC, trxB, sodB, tnpB, pgi, rbfA and infB showed a 2-20 fold upregulation. Statistically significant upregulation was obtained for all the above mentioned genes (P < 0.05). tlpC, cagA, vacA, sodB, rbfA, infB, tnpB, lpxC and murI were also significantly upregulated (P < 0.01). These data suggest a strong correlation between results obtained in vitro in the macrophage cell line and in the intact animal.
CONCLUSION: The positive identification of these genes demonstrates that our IVET systems are powerful tools for studying H. pylori gene expression in the host environment.
Collapse
|
25
|
Feng Y, Liu J, Li YG, Cao FL, Johnston RN, Zhou J, Liu GR, Liu SL. Inheritance of the Salmonella virulence plasmids: Mostly vertical and rarely horizontal. INFECTION GENETICS AND EVOLUTION 2012; 12:1058-63. [DOI: 10.1016/j.meegid.2012.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022]
|
26
|
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012; 1:243-58. [PMID: 23170225 PMCID: PMC3496970 DOI: 10.1002/mbo3.28] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/27/2023] Open
Abstract
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
Collapse
Affiliation(s)
- P Velge
- INRA, UMR1282 Infectiologie et Santé Publique F-37380, Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique F-37000, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee EJ, Groisman EA. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 2012; 486:271-5. [PMID: 22699622 DOI: 10.1038/nature11090] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/26/2012] [Indexed: 11/09/2022]
Abstract
The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Howard Hughes Medical Institute, Yale School of Medicine, Section of Microbial Pathogenesis, New Haven, Connecticut 06536-0812, USA
| | | |
Collapse
|
28
|
IFNγ expression by an attenuated strain of Salmonella enterica serovar Typhimurium improves vaccine efficacy in susceptible TLR4-defective C3H/HeJ mice. Med Microbiol Immunol 2012; 202:49-61. [PMID: 22684724 DOI: 10.1007/s00430-012-0248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/25/2012] [Indexed: 10/27/2022]
Abstract
C3H/HeJ mice carry a mutated allele of TLR4 gene (TLR4 ( d )) and thus are hyporesponsive to the lethal effects of lipopolysaccharide (LPS). Characteristically, however, the mice are also hypersusceptible to infections, particularly by Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) and are known to be difficult to vaccinate against virulent exposure. This is observed despite the expression of wild-type allele of Nramp1 gene, another important determinant of Salmonella susceptibility. In contrast, C3H/HeN mice (TLR4 ( n ) Nramp1 ( n )) express a functional TLR4 protein and are resistant to infection, even by virulent strains of S. typhimurium. In the present study, we describe the immune system-enhancing properties of an attenuated strain of S. typhimurium engineered to express murine IFN-γ. This strain (designated GIDIFN) was able to modulate immune responses following systemic inoculation by upregulating the production of inflammatory mediators (IL-6 and IL-12) and anti-bacterial effector molecules (nitric oxide; NO). Consequently, this led to a more effective control of bacterial proliferation in systemic target organs in both C3H/HeJ and C3H/HeN mice. Although evidence for the enhancement in immune responses could be observed as early as few hours post-inoculation, sustained improvements required 2-3 days to manifest. Vaccination of C3H/HeJ mice with GIDIFN strain, even at low doses, conferred a significantly higher degree of protection against challenge with virulent Salmonella in susceptible C3H/HeJ mice. Our data demonstrate that IFNγ-expressing Salmonella are immunogenic and confer excellent protection against virulent challenge in susceptible C3H/HeJ mice; in addition they may be used as an effective mucosal delivery vectors against virulent infection and for boosting immune responses in immunodeficient hosts.
Collapse
|
29
|
Abstract
The trace element copper is indispensable for all aerobic life forms. Its ability to cycle between two oxidation states, Cu(1+) and Cu(2+), has been harnessed by a wide array of metalloenzymes that catalyze electron transfer reactions. The metabolic needs for copper are sustained by a complex series of transporters and carrier proteins that regulate its intracellular accumulation and distribution in both pathogenic microbes and their animal hosts. However, copper is also potentially toxic due in part to its ability to generate reactive oxygen species. Recent studies suggest that the macrophage phagosome accumulates copper during bacterial infection, which may constitute an important mechanism of killing. Bacterial countermeasures include the up-regulation of copper export and detoxification genes during infection, which studies suggest are important determinants of virulence. In this minireview, we summarize recent developments that suggest an emerging role for copper as an unexpected component in determining the outcome of host-pathogen interactions.
Collapse
Affiliation(s)
- Victoria Hodgkinson
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
30
|
Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C. Salmonella spp. survival strategies within the host gastrointestinal tract. MICROBIOLOGY-SGM 2011; 157:3268-3281. [PMID: 22016569 DOI: 10.1099/mic.0.050351-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.
Collapse
Affiliation(s)
- Avelino Álvarez-Ordóñez
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Winy Messens
- Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Mercedes López
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Ana Bernardo
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Viala JPM, Méresse S, Pocachard B, Guilhon AA, Aussel L, Barras F. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS One 2011; 6:e22397. [PMID: 21799843 PMCID: PMC3143133 DOI: 10.1371/journal.pone.0022397] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/21/2011] [Indexed: 01/16/2023] Open
Abstract
During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.
Collapse
Affiliation(s)
- Julie P M Viala
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS (UPR-CNRS 9043), Marseille, France.
| | | | | | | | | | | |
Collapse
|
33
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
34
|
Gomez JE, Clatworthy A, Hung DT. Probing bacterial pathogenesis with genetics, genomics, and chemical biology: past, present, and future approaches. Crit Rev Biochem Mol Biol 2011; 46:41-66. [PMID: 21250782 DOI: 10.3109/10409238.2010.538663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classical genetic approaches for studying bacterial pathogenesis have provided a solid foundation for our current understanding of microbial physiology and the interactions between pathogen and host. During the past decade however, advances in several arenas have expanded the ways in which the biology of pathogens can be studied. This review discussed the impact of these advances on bacterial genetics, including the application of genomics and chemical biology to the study of pathogenesis.
Collapse
Affiliation(s)
- James E Gomez
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | |
Collapse
|
35
|
Abstract
Both the essentiality and toxicity of transition metals are exploited as part of mammalian immune defenses against bacterial infection. Salmonella serovars continue to cause serious medical and veterinary problems worldwide and detecting deficiency and excess of different metal ions (such as copper, iron, zinc, manganese, nickel, and cobalt) is fundamental to their virulence. This involves multiple DNA-binding metal-responsive transcription factors that discriminate between elements and trigger expression of genes that mediate appropriate responses to metal fluxes. This review focuses on the metal stresses encountered by Salmonella during infection and the roles of the different metal-sensing regulatory proteins and their target genes in adapting to these changing metal levels. Current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal binding sites are described. In addition, the principles governing the ability of the different sensors to detect specific metals within a cell to control cytosolic metal levels are also discussed. These proteins represent potential targets for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Deenah Osman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
36
|
Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect Immun 2010; 79:937-49. [PMID: 21134969 DOI: 10.1128/iai.00445-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Induction of strong immune responses against a vectored antigen in hosts immunized with live attenuated Salmonella vaccines is related in part to the amount of antigen delivered and the overall fitness of the Salmonella vector in relation to its ability to stimulate the host immune system. Constitutive high-level antigen synthesis causes a metabolic burden to the vaccine vector strain that can reduce the vaccine strain's ability to interact with host lymphoid tissues, resulting in a compromised immune response. A solution to this problem is the use of systems that regulate antigen gene expression, permitting high levels of antigen synthesis only after the vaccine strain has reached its target tissues. In vivo-inducible promoters (IVIPs) are often used to accomplish this. We recently developed an alternative strategy, a regulated delayed antigen synthesis (RDAS) system, in which the LacI-repressible P(trc) promoter controls antigen gene expression by adding arabinose. In this paper, we compared the RDAS system with two commonly used IVIPs, P(ssaG) and P(pagC). Three nearly identical plasmids, differing only in the promoter used to direct transcription of the pneumococcal pspA gene, P(trc), P(ssaG), or P(pagC), were constructed and introduced into isogenic Salmonella vaccine strains with or without arabinose-inducible LacI synthesis. Mice immunized with the RDAS strain developed slightly higher titers of mucosal and serum anti-PspA antibodies than P(pagC)-immunized mice, while titers in mice immunized with the P(ssaG) strain were 100-fold lower. Both the RDAS and P(pagC) strains conferred similar levels of protection against Streptococcus pneumoniae challenge, significantly greater than those for the P(ssaG) strain or controls. Thus, RDAS provides another choice for inclusion in the live vaccine design to increase immunogenicity.
Collapse
|
37
|
Rosselin M, Abed N, Virlogeux-Payant I, Bottreau E, Sizaret PY, Velge P, Wiedemann A. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types. MICROBIOLOGY-SGM 2010; 157:839-847. [PMID: 21109565 DOI: 10.1099/mic.0.044941-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.
Collapse
Affiliation(s)
- Manon Rosselin
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Nadia Abed
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Isabelle Virlogeux-Payant
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Elisabeth Bottreau
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Pierre-Yves Sizaret
- Département des Microscopies Plate-Forme RIO, INSERM ERI19, Université François Rabelais, Tours, France.,IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France
| | - Philippe Velge
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Agnès Wiedemann
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| |
Collapse
|
38
|
Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, Robinson NJ, Cavet JS. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 2010; 285:25259-68. [PMID: 20534583 PMCID: PMC2919089 DOI: 10.1074/jbc.m110.145953] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/07/2010] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica sv. typhimurium (S. enterica sv. Typhimurium) has two metal-transporting P(1)-type ATPases whose actions largely overlap with respect to growth in elevated copper. Mutants lacking both ATPases over-accumulate copper relative to wild-type or either single mutant. Such duplication of ATPases is unusual in bacterial copper tolerance. Both ATPases are under the control of MerR family metal-responsive transcriptional activators. Analyses of periplasmic copper complexes identified copper-CueP as one of the predominant metal pools. Expression of cueP was recently shown to be controlled by the same metal-responsive activator as one of the P(1)-type ATPase genes (copA), and copper-CueP is a further atypical feature of copper homeostasis in S. enterica sv. Typhimurium. Elevated copper is detected by a reporter construct driven by the promoter of copA in wild-type S. enterica sv. Typhimurium during infection of macrophages. Double mutants missing both ATPases also show reduced survival inside cultured macrophages. It is hypothesized that elevated copper within macrophages may have selected for specialized copper-resistance systems in pathogenic microorganism such as S. enterica sv. Typhimurium.
Collapse
Affiliation(s)
- Deenah Osman
- From Life Sciences, Michael Smith Building, University of Manchester, M13 9PT, United Kingdom
| | - Kevin J. Waldron
- Cell and Molecular Biosciences, Medical School, University of Newcastle, NE2 4HH, United Kingdom, and
| | - Harriet Denton
- From Life Sciences, Michael Smith Building, University of Manchester, M13 9PT, United Kingdom
| | - Clare M. Taylor
- From Life Sciences, Michael Smith Building, University of Manchester, M13 9PT, United Kingdom
| | - Andrew J. Grant
- Veterinary Medicine, University of Cambridge, CB3 0ES, United Kingdom
| | - Pietro Mastroeni
- Veterinary Medicine, University of Cambridge, CB3 0ES, United Kingdom
| | - Nigel J. Robinson
- Cell and Molecular Biosciences, Medical School, University of Newcastle, NE2 4HH, United Kingdom, and
| | - Jennifer S. Cavet
- From Life Sciences, Michael Smith Building, University of Manchester, M13 9PT, United Kingdom
| |
Collapse
|
39
|
Guerrero-Ferreira RC, Nishiguchi MK. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:514-523. [PMID: 20680094 PMCID: PMC2911791 DOI: 10.1111/j.1758-2229.2009.00077.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Luminescent bacteria (gamma-Proteobacteria: Vibrionaceae) are found in complex bilobed light organs of both sepiolid and loliginid squids (Mollusca: Cephalopoda). Despite the existence of multiple strain colonization between Vibrio bacteria and loliginid squids, specificity at the genus level still exists and may influence interactions between symbiotic and free-living stages of the symbiont. The environmentally transmitted behaviour of Vibrio symbionts bestows a certain degree of recognition that exists prior and subsequent to the colonization process. Therefore, we identified bacterial genes required for successful colonization of loliginid light organs by examining transcripts solely expressed in either the light organ or free-living stages. Selective capture of transcribed sequences (SCOTS) was used to differentiate genes expressed by the same bacterium when thriving in two different environments (i.e. loliginid light organs and seawater). Genes specific for squid light organs included vulnibactin synthetase, outer membrane protein W and dihydroxy dehydratase, which have been associated with the maintenance of bacterial host associations in other systems. In contrast, genes that were solely expressed in the free-living condition consisted of transcripts recognized as important factors for bacterial survival in the environment. These transcripts included genes for methyl accepting chemotaxis proteins, arginine decarboxylase and chitinase. These results provide valuable information regarding mechanisms determining specificity, establishment, and maintenance of bacteria-squid associations.
Collapse
|
40
|
Kim JR, Cha MH, Oh DR, Oh WK, Rhee JH, Kim YR. Resveratrol modulates RTX toxin-induced cytotoxicity through interference in adhesion and toxin production. Eur J Pharmacol 2010; 642:163-8. [PMID: 20553907 DOI: 10.1016/j.ejphar.2010.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 11/17/2022]
Abstract
Host-parasite contact is a prerequisite for the acute cytotoxicity of Vibrio vulnificus, which is mediated primarily by RtxA1, a repeat in toxin (RTX) toxin. We found that resveratrol (at 10 or 30 microM), a natural polyphenol, protected HeLa cells from V. vulnificus cytotoxicity. To further characterize the underlying mechanism, the effect of resveratrol was investigated at the level of the host-microbe interactions. We studied the effects of resveratrol on adhesion, motility, cytotoxicity, and RtxA1 toxin expression of V. vulnificus. In addition, the effect of resveratrol on mouse mortality caused by V. vulnificus was investigated. Resveratrol inhibited V. vulnificus motility and the microbe adhesion to host cells, critical virulence traits for many bacteria. Resveratrol also down-regulated the expression of RtxA1 toxin at the transcriptional level and thereby protected the host cells from becoming rounded and damaged. In addition, resveratrol (20mg/kg) protected CD-1 mice from V. vulnificus infection. Taken together, these results suggest that resveratrol, a modulator of host-microbe interactions, has potential for development as a new paradigm drug to treat infectious diseases.
Collapse
Affiliation(s)
- Jong Ro Kim
- Department of Oriental Medicine Materials, Dongshin University, 252 Daeho-dong, Naju, Jeonnam, 520-714, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Identification of a Novel Virulence-Related Gene in Streptococcus suis Type 2 Strains. Curr Microbiol 2010; 61:494-9. [DOI: 10.1007/s00284-010-9643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/30/2010] [Indexed: 02/03/2023]
|
42
|
Hu Y, Cong Y, Li S, Rao X, Wang G, Hu F. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection. ACTA ACUST UNITED AC 2009; 52:942-8. [PMID: 19911130 DOI: 10.1007/s11427-009-0127-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
During infectious disease episodes, pathogens express distinct subsets of virulence factors which allow them to adapt to different environments. Hence, genes that are expressed or upregulated in vivo are implicated in pathogenesis. We used in vivo induced antigen technology (IVIAT) to identify antigens which are expressed during infection with Salmonella enterica serovar Typhi. We identified 7 in vivo induced (IVI) antigens, which included BcfD (a fimbrial structural subunit), GrxC (a glutaredoxin 3), SapB (an ABC-type transport system), T3663 (an ABC-type uncharacterized transport system), T3816 (a putative rhodanese-related sulfurtransferase), T1497 (a probable TonB-dependent receptor) and T3689 (unknown function). Of the 7 identified antigens, 5 antigens had no cross-immunoreactivity in adsorbed control sera from healthy subjects. These 5 included BcfD, GrxC, SapB, T3663 and T3689. Antigens identified in this study are potential targets for drug and vaccine development and may be utilized as diagnostic agents.
Collapse
Affiliation(s)
- Yong Hu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
43
|
Lambert MA, Smith SGJ. The PagN protein mediates invasion via interaction with proteoglycan. FEMS Microbiol Lett 2009; 297:209-16. [PMID: 19552707 DOI: 10.1111/j.1574-6968.2009.01666.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Heparan sulphate proteoglycans are major components of the mammalian cell membrane. Here we show that PagN of Salmonella enterica serovar Typhimurium utilizes heparinated proteoglycan to successfully invade mammalian cells. Mutants defective in the production of the outer membrane protein PagN displayed similar levels of invasiveness of glycosylation-deficient pgsA-745 cells in comparison with wild-type Salmonella. Furthermore, pgsA-745 cells were invaded c. 400-fold less efficiently than CHO-K1 cells by Escherichia coli expressing PagN. PagN is likely to interact with heparinated proteoglycan as heparin could inhibit PagN-mediated invasion in a dose-dependent manner. Finally, we show, by deletion analysis, that all four extracellular loops of PagN are crucial for invasion of mammalian cells.
Collapse
|
44
|
Calus D, Maes D, Meyns T, Pasmans F, Haesebrouck F. In vivovirulence ofMycoplasma hyopneumoniaeisolates does not correlate within vitroadhesion assessed by a microtitre plate adherence assay. J Appl Microbiol 2009; 106:1951-6. [DOI: 10.1111/j.1365-2672.2009.04172.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Affiliation(s)
- Deenah Osman
- Life Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
46
|
Andrews-Polymenis HL, Santiviago CA, McClelland M. Novel genetic tools for studying food-borne Salmonella. Curr Opin Biotechnol 2009; 20:149-57. [PMID: 19285855 PMCID: PMC2762399 DOI: 10.1016/j.copbio.2009.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.
Collapse
Affiliation(s)
- Helene L. Andrews-Polymenis
- Texas A&M University System Health Science Center, College of Medicine, 407 Joe H. Reynolds Medical Building, College Station, TX 77843-1114,
| | - Carlos A Santiviago
- Programa de Microbiologia y Micologia, Instituto de Ciencias Biome´dicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego CA 92121,
| |
Collapse
|
47
|
The cad locus of Enterobacteriaceae: More than just lysine decarboxylation. Anaerobe 2009; 15:1-6. [DOI: 10.1016/j.anaerobe.2008.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/27/2008] [Accepted: 05/08/2008] [Indexed: 11/19/2022]
|
48
|
Sonck KAJ, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De Keersmaecker SCJ. The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics 2009; 9:565-79. [DOI: 10.1002/pmic.200700476] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Generation of branched-chain fatty acids through lipoate-dependent metabolism facilitates intracellular growth of Listeria monocytogenes. J Bacteriol 2009; 191:2187-96. [PMID: 19181817 DOI: 10.1128/jb.01179-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gram-positive bacterial pathogen Listeria monocytogenes has evolved mechanisms to rapidly replicate in the host cytosol, implying efficient utilization of host-derived nutrients. However, the contribution of host nutrient scavenging versus that of bacterial biosynthesis toward rapid intracellular growth remains unclear. Nutrients that contribute to growth of L. monocytogenes include branched-chain fatty acids (BCFAs), amino acids, and other metabolic intermediates generated from acyl-coenzyme A, which is synthesized using lipoylated metabolic enzyme complexes. To characterize which biosynthetic pathways support replication of L. monocytogenes inside the host cytosol, we impaired lipoate-dependent metabolism by disrupting two lipoate ligase genes that are responsible for bacterial protein lipoylation. Interrupting lipoate-dependent metabolism modestly impaired replication in rich broth medium but strongly inhibited growth in defined medium and host cells and impaired the generation of BCFAs. Addition of short BCFAs and amino acids restored growth of the A1A2-deficient (A1A2-) mutant in minimal medium, implying that lipoate-dependent metabolism generates amino acids and BCFAs. BCFAs alone rescued intracellular growth and spread in L2 fibroblasts of the A1A2- mutant. Lipoate-dependent metabolism was also required in vivo, as a wild-type strain robustly outcompeted the lipoylation-deficient mutant in a murine model of listeriosis. The results of this study suggest that lipoate-dependent metabolism contributes to both amino acid and BCFA biosynthesis and that BCFA biosynthesis is preferentially required for intracellular growth of L. monocytogenes.
Collapse
|
50
|
The PhoQ/PhoP Regulatory Network of Salmonella enterica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:7-21. [DOI: 10.1007/978-0-387-78885-2_2] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|