1
|
Moiseeva ED, Bazhulina NP, Gursky YG, Grokhovsky SL, Surovaya AN, Gursky GV. Targeting Holliday junctions by origin DNA-binding protein of herpes simplex virus type 1. J Biomol Struct Dyn 2016; 35:704-723. [PMID: 26987269 DOI: 10.1080/07391102.2016.1161561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present paper, the interactions of the origin binding protein (OBP) of herpes simplex virus type 1 (HSV1) with synthetic four-way Holliday junctions (HJs) were studied using electrophoresis mobility shift assay and the FRET method and compared with the interactions of the protein with duplex and single-stranded DNAs. It has been found that OBP exhibits a strong preference for binding to four-way and three-way DNA junctions and possesses much lower affinities to duplex and single-stranded DNAs. The protein forms three types of complexes with HJs. It forms complexes I and II which are reminiscent of the tetramer and octamer complexes with four-way junction of HJ-specific protein RuvA of Escherichia coli. The binding approaches saturation level when two OBP dimers are bound per junction. In the presence of Mg2+ ions (≥2 mM) OBP also interacts with HJ in the stacked arm form (complex III). In the presence of 5 mM ATP and 10 mM Mg2+ ions OBP catalyzes processing of the HJ in which one of the annealed oligonucleotides has a 3'-terminal tail containing 20 unpaired thymine residues. The observed preference of OBP for binding to the four-way DNA junctions provides a basis for suggestion that OBP induces large DNA structural changes upon binding to Box I and Box II sites in OriS. These changes involve the bending and partial melting of the DNA at A+T-rich spacer and also include the formation of HJ containing Box I and Box II inverted repeats and flanking DNA sequences.
Collapse
Affiliation(s)
- E D Moiseeva
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - N P Bazhulina
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - Y G Gursky
- b Russian Cardiology Research-and-Production Complex , 3ya Cherepkovskaya ul. 15a, 121552 Moscow , Russia
| | - S L Grokhovsky
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - A N Surovaya
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| | - G V Gursky
- a Engelhardt Institute of Molecular Biology , Russian Academy of Sciences , ul. Vavilova 32, 119991 Moscow , Russia
| |
Collapse
|
2
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Bazhulina NP, Surovaya AN, Gursky YG, Andronova VL, Moiseeva ED, Nikitin CACM, Golovkin MV, Galegov GА, Grokhovsky SL, Gursky GV. Complex of the herpes simplex virus type 1 origin binding protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. J Biomol Struct Dyn 2013; 32:1456-73. [PMID: 23879454 PMCID: PMC4066892 DOI: 10.1080/07391102.2013.820110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80 bp). The protein also binds to a single-stranded DNA (OriS*) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3'-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5'- and 3'- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending and partial melting) of OriS duplexes and stimulates HJ formation in the absence of ATP. The antiviral activity of bis-netropsins is coupled with their ability to inhibit the fluctuation opening of АТ base pairs in the А + Т cluster and their capacity to stabilize the structure of the АТ-rich hairpin in the single-stranded oligonucleotide corresponding to the upper chain in the minimal duplex OriS. The antiviral activities of bis-netropsins in cell culture and their therapeutic effects on HSV1-infected laboratory animals have been studied.
Collapse
Affiliation(s)
- N P Bazhulina
- a V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , ul. Vavilova 32, 119991 , Moscow , Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bazhulina NP, Surovaya AN, Gursky YG, Andronova VL, Arkhipova VS, Golovkin MV, Nikitin AM, Galegov GA, Grokhovsky SL, Gursky GV. Inhibition of herpes simplex virus helicase UL9 by netropsin derivatives and antiviral activities of bis-netropsins. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Initiation of Epstein-Barr virus lytic replication requires transcription and the formation of a stable RNA-DNA hybrid molecule at OriLyt. J Virol 2010; 85:2837-50. [PMID: 21191028 DOI: 10.1128/jvi.02175-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genetic elements of herpesvirus origins of lytic replication have been characterized in detail; however, much remains to be elucidated concerning their functional role in replication initiation. In the case of the Epstein-Barr virus (EBV), we have found that in addition to the two well-defined critical elements required for lytic replication (the upstream and downstream essential elements, UEE and DEE), the origin of lytic replication (OriLyt) also requires the presence of a GC-rich RNA in cis. The BHLF1 transcript is similar to the essential K5 transcript identified at the Kaposi's sarcoma-associated herpesvirus OriLyt. We have found that truncation of the BHLF1 transcript or deletion of the TATA box, but not the putative ATG initiation codon, reduce OriLyt function to background levels. By using an antibody specific for RNA-DNA hybrid molecules, we found the BHLF1 RNA stably annealed to its DNA template during the early steps of lytic reactivation. Furthermore, expression of human RNase H1, which degrades RNA in RNA-DNA hybrids, drastically reduces OriLyt-dependent DNA replication as well as recruitment of the viral single-stranded DNA binding protein BALF2 to OriLyt. These studies suggest that a GC-rich OriLyt transcript is an important component of gammaherpesvirus lytic origins and is required for initial strand separation and loading of core replication proteins.
Collapse
|
6
|
Surovaya AN, Grokhovsky SL, Gursky YG, Andronova VL, Arkhipova VS, Bazhulina NP, Galegov GA, Gursky GV. Complex of the herpes simplex virus initiator protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Evidence for DNA hairpin recognition by Zta at the Epstein-Barr virus origin of lytic replication. J Virol 2010; 84:7073-82. [PMID: 20444899 DOI: 10.1128/jvi.02666-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.
Collapse
|
8
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
9
|
Manolaridis I, Mumtsidu E, Konarev P, Makhov AM, Fullerton SW, Sinz A, Kalkhof S, McGeehan JE, Cary PD, Griffith JD, Svergun D, Kneale GG, Tucker PA. Structural and biophysical characterization of the proteins interacting with the herpes simplex virus 1 origin of replication. J Biol Chem 2009; 284:16343-16353. [PMID: 19329432 DOI: 10.1074/jbc.m806134200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C terminus of the herpes simplex virus type 1 origin-binding protein, UL9ct, interacts directly with the viral single-stranded DNA-binding protein ICP8. We show that a 60-amino acid C-terminal deletion mutant of ICP8 (ICP8DeltaC) also binds very strongly to UL9ct. Using small angle x-ray scattering, the low resolution solution structures of UL9ct alone, in complex with ICP8DeltaC, and in complex with a 15-mer double-stranded DNA containing Box I of the origin of replication are described. Size exclusion chromatography, analytical ultracentrifugation, and electrophoretic mobility shift assays, backed up by isothermal titration calorimetry measurements, are used to show that the stoichiometry of the UL9ct-dsDNA15-mer complex is 2:1 at micromolar protein concentrations. The reaction occurs in two steps with initial binding of UL9ct to DNA (Kd approximately 6 nM) followed by a second binding event (Kd approximately 0.8 nM). It is also shown that the stoichiometry of the ternary UL9ct-ICP8DeltaC-dsDNA15-mer complex is 2:1:1, at the concentrations used in the different assays. Electron microscopy indicates that the complex assembled on the extended origin, oriS, rather than Box I alone, is much larger. The results are consistent with a simple model whereby a conformational switch of the UL9 DNA-binding domain upon binding to Box I allows the recruitment of a UL9-ICP8 complex by interaction between the UL9 DNA-binding domains.
Collapse
Affiliation(s)
- Ioannis Manolaridis
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Eleni Mumtsidu
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Peter Konarev
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Stephen W Fullerton
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Stefan Kalkhof
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - John E McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Peter D Cary
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Dmitri Svergun
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Geoff G Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Paul A Tucker
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany.
| |
Collapse
|
10
|
Makhov AM, Sen A, Yu X, Simon MN, Griffith JD, Egelman EH. The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing. J Mol Biol 2008; 386:273-9. [PMID: 19138689 DOI: 10.1016/j.jmb.2008.12.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
Abstract
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is approximately 250 A, with approximately 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing approximately 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.
Collapse
Affiliation(s)
- Alexander M Makhov
- Lineberger Comprehensive Cancer Center, Department Microbiology and Immunology, University of North Carolina at Chapel Hill, 27517, USA
| | | | | | | | | | | |
Collapse
|
11
|
Slanina H, Weger S, Stow ND, Kuhrs A, Heilbronn R. Role of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication. J Virol 2007; 80:5241-50. [PMID: 16699004 PMCID: PMC1472166 DOI: 10.1128/jvi.02718-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.
Collapse
Affiliation(s)
- Heiko Slanina
- Institut für Virologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, 12203 Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Cheng G, Zhong J, Chung J, Chisari FV. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Sci U S A 2007; 104:9035-40. [PMID: 17517627 PMCID: PMC1885623 DOI: 10.1073/pnas.0703285104] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Indexed: 01/05/2023] Open
Abstract
Virus infection triggers IFN immune defenses in infected cells in part through viral nucleic acid interactions, but the pathways by which dsDNA and DNA viruses trigger innate defenses are only partially understood. Here we present evidence that both retinoic acid-induced gene I (RIG-I) and mitochondrial antiviral signaling protein (MAVS) are required for dsDNA-induced IFN-beta promoter activation in a human hepatoma cell line (Huh-7), and that activation is efficiently blocked by the hepatitis C virus NS3/4A protease, which is known to block dsRNA signaling by cleaving MAVS. These findings suggest that dsDNA and dsRNA share a common pathway to trigger the innate antiviral defense response in human cells, although dsDNA appears to trigger that pathway upstream of the dsRNA-interacting protein RIG-I.
Collapse
Affiliation(s)
- Guofeng Cheng
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jin Zhong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Josan Chung
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Francis V. Chisari
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
13
|
Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ. The cellular localization pattern of Varicella-Zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 2006; 80:1497-512. [PMID: 16415026 PMCID: PMC1346923 DOI: 10.1128/jvi.80.3.1497-1512.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 29 (ORF29) encodes a single-stranded DNA binding protein. During lytic infection, ORF29p is localized primarily to infected-cell nuclei, whereas during latency it appears in the cytoplasm of infected neurons. Following reactivation, ORF29p accumulates in the nucleus. In this report, we analyze the cellular localization patterns of ORF29p during VZV infection and during autonomous expression. Our results demonstrate that ORF29p is excluded from the nucleus in a cell-type-specific manner and that its cellular localization pattern may be altered by subsequent expression of VZV ORF61p or herpes simplex virus type 1 ICP0. In these cases, ORF61p and ICP0 induce nuclear accumulation of ORF29p in cell lines where it normally remains cytoplasmic. One cellular system utilized by ICP0 to influence protein abundance is the proteasome degradation pathway. Inhibition of the 26S proteasome, but not heat shock treatment, resulted in accumulation of ORF29p in the nucleus, similar to the effect of ICP0 expression. Immunofluorescence microscopy and pulse-chase experiments reveal that stabilization of ORF29p correlates with its nuclear accumulation and is dependent on a functional nuclear localization signal. ORF29p nuclear translocation in cultured enteric neurons and cells derived from an astrocytoma is reversible, as the protein's distribution and stability revert to the previous states when the proteasomal activity is restored. Thus, stabilization of ORF29p leads to its nuclear accumulation. Although proteasome inhibition induces ORF29p nuclear accumulation, this is not sufficient to reactivate latent VZV or target the immediate-early protein ORF62p to the nucleus in cultured guinea pig enteric neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enteric Nervous System/metabolism
- Enteric Nervous System/virology
- Exons
- Guinea Pigs
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/metabolism
- Herpesvirus 3, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Open Reading Frames
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Subcellular Fractions/metabolism
- Subcellular Fractions/virology
- Tissue Culture Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies, and Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
14
|
Eoff RL, Raney KD. Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase. Nat Struct Mol Biol 2006; 13:242-9. [PMID: 16474403 DOI: 10.1038/nsmb1055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/14/2005] [Indexed: 11/09/2022]
Abstract
Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot 516, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
15
|
Makhov AM, Taylor DW, Griffith JD. Two-dimensional crystallization of herpes simplex virus type 1 single-stranded DNA-binding protein, ICP8, on a lipid monolayer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:101-8. [PMID: 15450179 DOI: 10.1016/j.bbapap.2004.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 06/14/2004] [Accepted: 06/17/2004] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 single-stranded DNA-binding protein (ICP8) has been crystallized on a positively charged lipid monolayer. The crystals belong to the planar group p2 with a=39 nm, b=23.2 nm and gamma=87.2 degrees. The projected map of ICP8 crystals calculated at a resolution of 3.9 nm shows four ICP8 monomers per unit cell with the crystals formed by a parallel arrangement of 16.2 nm helical ICP8 filaments. This novel filamentous form has not been reported before. The ICP8 monomers show different appearances in projection, suggesting that they may adopt different orientations, probably reflecting the strong intermolecular and lipid-filament interactions in the crystal. When the 23 nm diameter filaments formed by ICP8 in solution at low temperature in the presence of magnesium were generated and then layered on the phospholipid monolayer, highly ordered arrays of an 8.5 nm filament with a shallow 31.2 nm pitch were observed and reconstruction revealed a double-helical structure.
Collapse
Affiliation(s)
- Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Campus Box 7295, Chapel Hill, NC 27599-7295, USA.
| | | | | |
Collapse
|
16
|
Eom CY, Heo WD, Craske ML, Meyer T, Lehman IR. The neural F-box protein NFB42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection. Proc Natl Acad Sci U S A 2004; 101:4036-40. [PMID: 15010529 PMCID: PMC384691 DOI: 10.1073/pnas.0400738101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neural F-box 42-kDa protein (NFB42) is a component of the SCF(NFB42) E3 ubiquitin ligase that is expressed in all major areas of the brain; it is not detected in nonneuronal tissues. We previously identified NFB42 as a binding partner for the herpes simplex virus 1 (HSV-1) UL9 protein, the viral replication-initiator, and showed that coexpression of NFB42 and UL9 in human embryonic kidney (293T) cells led to a significant decrease in the level of UL9 protein. We have now found that HSV-1 infection promotes the shuttling of NFB42 between the cytosol and the nucleus in both 293T cells and primary hippocampal neurons, permitting NFB42 to bind to the phosphorylated UL9 protein, which is localized in the nucleus. This interaction mediates the export of the UL9 protein from the nucleus to the cytosol, leading to its ubiquitination and degradation via the 26S proteasome. Because the intranuclear localization of the UL9 protein, along with other viral and cellular factors, is an essential step in viral DNA replication, degradation of the UL9 protein in neurons by means of nuclear export through its specific interaction with NFB42 may prevent active replication and promote neuronal latency of HSV-1.
Collapse
Affiliation(s)
- Chi-Yong Eom
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | | | |
Collapse
|
17
|
Ma Y, Wang T, Villemain JL, Giedroc DP, Morrical SW. Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J Biol Chem 2004; 279:19035-45. [PMID: 14871889 DOI: 10.1074/jbc.m311738200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
18
|
Stracker TH, Cassell GD, Ward P, Loo YM, van Breukelen B, Carrington-Lawrence SD, Hamatake RK, van der Vliet PC, Weller SK, Melendy T, Weitzman MD. The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication. J Virol 2004; 78:441-53. [PMID: 14671124 PMCID: PMC303412 DOI: 10.1128/jvi.78.1.441-453.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions.
Collapse
Affiliation(s)
- Travis H Stracker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Trego KS, Parris DS. Functional interaction between the herpes simplex virus type 1 polymerase processivity factor and origin-binding proteins: enhancement of UL9 helicase activity. J Virol 2004; 77:12646-59. [PMID: 14610187 PMCID: PMC262563 DOI: 10.1128/jvi.77.23.12646-12659.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The origin (ori)-binding protein of herpes simplex virus type 1 (HSV-1), encoded by the UL9 open reading frame, has been shown to physically interact with a number of cellular and viral proteins, including three HSV-1 proteins (ICP8, UL42, and UL8) essential for ori-dependent DNA replication. In this report, it is demonstrated for the first time that the DNA polymerase processivity factor, UL42 protein, provides accessory function to the UL9 protein by enhancing the 3'-to-5' helicase activity of UL9 on partially duplex nonspecific DNA substrates. UL42 fails to enhance the unwinding activity of a noncognate helicase, suggesting that enhancement of unwinding requires the physical interaction between UL42 and UL9. UL42 increases the steady-state rate for unwinding a 23/38-mer by UL9, but only at limiting UL9 concentrations, consistent with a role in increasing the affinity of UL9 for DNA. Optimum enhancement of unwinding was observed at UL42/UL9 molecular ratios of 4:1, although enhancement was reduced when high UL42/DNA ratios were present. Under the assay conditions employed, UL42 did not alter the rate constant for dissociation of UL9 from the DNA substrate. UL42 also did not significantly reduce the lag period which was observed following the addition of UL9 to DNA, regardless of whether UL42 was added to DNA prior to or at the same time as UL9. Moreover, addition of UL42 to ongoing unwinding reactions increased the steady-state rate for unwinding, but only after a 10- to 15-min lag period. Thus, the increased affinity of UL9 for DNA most likely is the result of an increase in the rate constant for binding of UL9 to DNA, and it explains why helicase enhancement is observed only at subsaturating concentrations of UL9 with respect to DNA. In contrast, ICP8 enhances unwinding at both saturating and subsaturating UL9 concentrations and reduces or eliminates the lag period. The different means by which ICP8 and UL42 enhance the ability of UL9 to unwind DNA suggest that these two members of the presumed functional replisome may act synergistically on UL9 to effect initiation of HSV-1 DNA replication in vivo.
Collapse
Affiliation(s)
- Kelly S Trego
- Department of Molecular Genetics, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Heilbronn R, Engstler M, Weger S, Krahn A, Schetter C, Boshart M. ssDNA-dependent colocalization of adeno-associated virus Rep and herpes simplex virus ICP8 in nuclear replication domains. Nucleic Acids Res 2003; 31:6206-13. [PMID: 14576307 PMCID: PMC275469 DOI: 10.1093/nar/gkg827] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2003] [Revised: 09/11/2003] [Accepted: 09/11/2003] [Indexed: 11/14/2022] Open
Abstract
The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D colocalization analysis we show that upon coinfection of AAV and HSV the AAV replication protein Rep and ICP8 co-reside in HSV replication domains. In contrast, Rep expressed by a recombinant HSV, in the absence of AAV DNA, displayed a nuclear distribution pattern distinct from that of ICP8. Colocal ization of Rep and ICP8 was restored by the reintroduction of single-stranded AAV vector genomes. In vitro, ICP8 displayed direct binding to Rep78. Single-stranded recombinant AAV DNA strongly stimulated this interaction, whereas double-stranded DNA was ineffective. Our findings suggest that ICP8 by its strong ssDNA-binding activity exploits the unique single-strandedness of the AAV genome to form a tripartite complex with Rep78 and AAV ssDNA. This novel mechanism for recruiting components of a functional replication complex directs AAV to subnuclear HSV replication compartments where the HSV replication complex can replicate the AAV genome.
Collapse
Affiliation(s)
- Regine Heilbronn
- Institut für Infektionsmedizin, Abt. Virologie, Charité Campus Benjamin Franklin, Freie Universität Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Eom CY, Lehman IR. Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 2003; 100:9803-7. [PMID: 12904574 PMCID: PMC187846 DOI: 10.1073/pnas.1733876100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-proteasome pathway plays a critical role in the degradation of short-lived and regulatory proteins in a variety of cellular processes. The F-box proteins are part of the ubiquitin-ligase complexes, which mediate ubiquitination and proteasome-dependent degradation of phosphorylated proteins. We previously identified NFB42, an F-box protein that is highly enriched in the nervous system, as a binding partner for the herpes simplex virus 1 UL9 protein, the viral replication-initiator protein, in a yeast two-hybrid screen. In the present work, we find that coexpression of NFB42 and UL9 genes in 293T cells leads to a significant decrease in the level of UL9 protein. Treatment with the 26S-proteasome inhibitor MG132 restores the UL9 protein to normal levels. We have observed also that the UL9 protein is polyubiquitinated in vivo and that the interaction between NFB42 and the UL9 protein is dependent upon phosphorylation of the UL9 protein. These results suggest that the interaction of the UL9 protein with NFB42 results in its polyubiquitination and subsequent degradation by the 26S proteasome. They suggest further a mechanism by which latency of herpes simplex virus 1 can be established in neuronal cells.
Collapse
Affiliation(s)
- Chi-Yong Eom
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
22
|
Jiang Y, Pacek M, Helinski DR, Konieczny I, Toukdarian A. A multifunctional plasmid-encoded replication initiation protein both recruits and positions an active helicase at the replication origin. Proc Natl Acad Sci U S A 2003; 100:8692-7. [PMID: 12835421 PMCID: PMC166374 DOI: 10.1073/pnas.1532393100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DnaA replication initiation protein has been shown to be essential for DNA strand opening at the AT-rich region of the replication origin of the Escherichia coli chromosome as well as serving to recruit and position the DnaB replicative helicase at this open region. Homologues of the dnaA gene of E. coli have been found in most bacterial species, and the DnaA protein has been shown to be required for the initiation of replication of both chromosomal and plasmid DNA. For several plasmid elements it has been found that a plasmid-encoded initiation protein is required along with the DnaA protein to bring about opening of the AT-rich region at the replication origin. The broad host range plasmid RK2 encodes two forms of its replication initiation protein (TrfA-33 and TrfA-44) that differ by an additional 98 aa at the N terminus of the larger (TrfA-44) form. Both forms initiate replication of RK2 in E. coli in vitro by a DnaA-dependent mechanism. However, as shown in this study, TrfA-44 specifically interacts with the DnaB replicative helicase of Pseudomonas putida and Pseudomonas aeruginosa and initiates the formation of a prepriming open complex in the absence of DnaA protein. Thus, the TrfA-44 initiation protein has the multifunctional properties of recruiting and positioning an active form of the DnaB helicase at the RK2 replication origin by a DnaA-independent process. This unique property for a replication initiation protein undoubtedly plays an important role in extending the host range of the RK2 antibiotic resistance plasmid.
Collapse
Affiliation(s)
- Yong Jiang
- Division of Biological Sciences and Center for Molecular Genetics, University of California at San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | | | |
Collapse
|
23
|
Taylor TJ, McNamee EE, Day C, Knipe DM. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology 2003; 309:232-47. [PMID: 12758171 DOI: 10.1016/s0042-6822(03)00107-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Taylor TJ, Knipe DM. C-terminal region of herpes simplex virus ICP8 protein needed for intranuclear localization. Virology 2003; 309:219-31. [PMID: 12758170 DOI: 10.1016/s0042-6822(03)00108-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The herpes simplex virus single-stranded DNA-binding protein, ICP8, localizes initially to structures in the nucleus called prereplicative sites. As replication proceeds, these sites mature into large globular structures called replication compartments. The details of what signals or proteins are involved in the redistribution of viral and cellular proteins within the nucleus between prereplicative sites and replication compartments are poorly understood; however, we showed previously that the dominant-negative d105 ICP8 does not localize to prereplicative sites and prevents the localization of other viral proteins to prereplicative sites (J. Virol. 74 (2000) 10122). Within the residues deleted in d105 (1083 to 1168), we identified a region between amino acid residues 1080 and 1135 that was predicted by computer models to contain two alpha-helices, one with considerable amphipathic nature. We used site-specific and random mutagenesis techniques to identify residues or structures within this region that are required for proper ICP8 localization within the nucleus. Proline substitutions in the predicted helix generated ICP8 molecules that did not localize to prereplicative sites and acted as dominant-negative inhibitors. Other substitutions that altered the charged residues in the predicted alpha-helix to alanine or leucine residues had little or no effect on ICP8 intranuclear localization. The predicted alpha-helix was dispensable for the interaction of ICP8 with the U(L)9 origin-binding protein. We propose that this C-terminal alpha-helix is required for localization of ICP8 to prereplicative sites by binding viral or cellular factors that target or retain ICP8 at specific intranuclear sites.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Makhov AM, Lee SSK, Lehman IR, Griffith JD. Origin-specific unwinding of herpes simplex virus 1 DNA by the viral UL9 and ICP8 proteins: visualization of a specific preunwinding complex. Proc Natl Acad Sci U S A 2003; 100:898-903. [PMID: 12552114 PMCID: PMC298698 DOI: 10.1073/pnas.0237171100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 contains three origins of replication; two copies of oriS and one of a similar sequence, oriL. Here, the combined action of multiple factors known or thought to influence the opening of oriS are examined. These include the viral origin-binding protein, UL9, and single-strand binding protein ICP8, host cell topoisomerase I, and superhelicity of the DNA template. By using electron microscopy, it was observed that when ICP8 and UL9 proteins were added together to oriS-containing supertwisted DNA, a discrete preunwinding complex was formed at oriS on 40% of the molecules, which was shown by double immunolabeling electron microscopy to contain both proteins. This complex was relatively stable to extreme dilution. Addition of ATP led to the efficient unwinding of approximately 50% of the DNA templates. Unwinding proceeded until the acquisition of a high level of positive supertwists in the remaining duplex DNA inhibited further unwinding. Addition of topoisomerase I allowed further unwinding, opening >1 kb of DNA around oriS.
Collapse
Affiliation(s)
- Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
26
|
DNA helicases, motors that move along nucleic acids: Lessons from the SF1 helicase superfamily. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-6047(04)80008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
27
|
Boehmer PE, Villani G. Herpes simplex virus type-1: a model for genome transactions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:139-71. [PMID: 14604012 DOI: 10.1016/s0079-6603(03)75005-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In many respects, HSV-1 is the prototypic herpes virus. However, HSV-1 also serves as an excellent model system to study genome transactions, including DNA replication, homologous recombination, and the interaction of DNA replication enzymes with DNA damage. Like eukaryotic chromosomes, the HSV-1 genome contains multiple origins of replication. Replication of the HSV-1 genome is mediated by the concerted action of several virus-encoded proteins that are thought to assemble into a multiprotein complex. Several host-encoded factors have also been implicated in viral DNA replication. Furthermore, replication of the HSV-1 genome is known to be closely associated with homologous recombination that, like in many cellular organisms, may function in recombinational repair. Finally, recent data have shed some light on the interaction of essential HSV-1 replication proteins, specifically its DNA polymerase and DNA helicases, with damaged DNA.
Collapse
Affiliation(s)
- Paul E Boehmer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
28
|
Eom CY, Lehman IR. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc Natl Acad Sci U S A 2002; 99:1894-8. [PMID: 11854491 PMCID: PMC122290 DOI: 10.1073/pnas.042689499] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified cellular proteins that interact with the herpes simplex virus type 1 (HSV-1) origin-binding protein (UL9 protein) by screening a HeLa cell complementary DNA library by using the yeast two-hybrid system. Approximately 7 x 10(5) colonies were screened. Five of the 48 positive clones contained cDNAs that encoded the p150(Glued) component of the dynactin complex, three contained cDNAs for the neural F Box 42-kDa protein (NFB42), which is highly enriched in neural tissue, and three contained hTid-1, a human homologue of the bacterial DnaJ protein. We have focused in this report on the interaction of the viral UL9 protein with the cellular hTid-1. In vitro immunoprecipitation experiments confirmed that hTid-1 interacts with the UL9 protein. Electrophoretic mobility-shift assays indicated that the hTid-1 enhances the binding of UL9 protein to an HSV-1 origin, ori(s), and facilitates formation of the multimer from the dimeric UL9 protein. hTid-1 had no effect on the DNA-dependent ATPase or helicase activities associated with the UL9 protein. These findings implicate hTid-1 in HSV-1 DNA replication, and suggest that this cellular protein may provide a chaperone function analogous to the DnaJ protein in Escherichia coli DNA replication.
Collapse
Affiliation(s)
- Chi-Yong Eom
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
29
|
Tanguy Le Gac N, Boehmer PE. Activation of the herpes simplex virus type-1 origin-binding protein (UL9) by heat shock proteins. J Biol Chem 2002; 277:5660-6. [PMID: 11711536 DOI: 10.1074/jbc.m108316200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins participate in the initiation of DNA replication of different organisms by facilitating the assembly of initiation complexes. We have examined the effects of human heat shock proteins (Hsp40 and Hsp70) on the interaction of the herpes simplex virus type-1 initiator protein (UL9) with oriS, one of the viral origins of replication. Hsp40 and Hsp70 act substoichiometrically to increase the affinity of UL9 for oriS. The major contributor to this effect is Hsp40. Heat shock proteins also stimulate the ATPase activity of UL9 with oriS and increase opening of the origin. In contrast, heat shock proteins have no effect on the origin-independent activities of UL9 suggesting that their role is not merely in refolding denatured protein. These observations are consistent with a role for heat shock proteins in activating UL9 to efficiently initiate viral origin-dependent DNA replication. The action of heat shock proteins in this capacity is analogous to their role in activating the initiator proteins of other organisms.
Collapse
Affiliation(s)
- Nicolas Tanguy Le Gac
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | |
Collapse
|
30
|
Dudas KC, Scouten SK, Ruyechan WT. Conformational change in the herpes simplex single-strand binding protein induced by DNA. Biochem Biophys Res Commun 2001; 288:184-90. [PMID: 11594771 DOI: 10.1006/bbrc.2001.5766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease digestion of the herpes simplex virus type 1 major single-strand DNA binding protein ICP8 showed that the cleavage patterns observed in the presence and absence of single-stranded DNA oligonucleotides are substantially different with protection of cleavage sites between amino acids 293 and 806 observed in the presence of oligonucleotide. Experiments using ICP8 modified with fluorescein-5-maleimide (FM) showed that the fluorescence signal exhibited increased susceptibility to antibody quenching and a significant decrease in polarization of the FM fluorescence was observed in the presence compared to the absence of oligonucleotide. Taken together, these results indicate that ICP8 undergoes a conformational change upon binding to single-stranded DNA.
Collapse
Affiliation(s)
- K C Dudas
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
31
|
He X, Lehman IR. An initial ATP-independent step in the unwinding of a herpes simplex virus type I origin of replication by a complex of the viral origin-binding protein and single-strand DNA-binding protein. Proc Natl Acad Sci U S A 2001; 98:3024-8. [PMID: 11248025 PMCID: PMC30600 DOI: 10.1073/pnas.061028298] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a spectrophotometric assay that measures the hyperchromicity that accompanies the unwinding of a DNA duplex, we have identified an ATP-independent step in the unwinding of a herpes simplex virus type 1 (HSV-1) origin of replication, Ori(s), by a complex of the HSV-1 origin binding protein (UL9 protein) and the HSV-1 single-strand DNA binding protein (ICP8). The sequence unwound is the 18-bp A + T-rich segment that links the two high-affinity UL9 protein binding sites, boxes I and II of Ori(s). P1 nuclease sensitivity of Ori(s) and single-strand DNA-dependent ATPase measurements of the UL9 protein indicate that, at 37 degrees C, the A + T-rich segment is sufficiently single stranded to permit the binding of ICP8. Binding of the UL9 protein to boxes I and II then results in the formation of the UL9 protein-ICP8 complex, that can, in the absence of ATP, promote unwinding of the A + T-rich segment. On addition of ATP, the helicase activity of the UL9 protein-ICP8 complex can unwind boxes I and II, permitting access of the replication machinery to the Ori(s) sequences.
Collapse
Affiliation(s)
- X He
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
32
|
Arana ME, Haq B, Tanguy Le Gac N, Boehmer PE. Modulation of the herpes simplex virus type-1 UL9 DNA helicase by its cognate single-strand DNA-binding protein, ICP8. J Biol Chem 2001; 276:6840-5. [PMID: 11112774 DOI: 10.1074/jbc.m007219200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of stimulation of a DNA helicase by its cognate single-strand DNA-binding protein was examined using herpes simplex virus type-1 UL9 DNA helicase and ICP8. UL9 and ICP8 are two essential components of the viral replisome that associate into a complex to unwind the origins of replication. The helicase and DNA-stimulated ATPase activities of UL9 are greatly elevated as a consequence of this association. Given that ICP8 acts as a single-strand DNA-binding protein, the simplest model that can account for its stimulatory effect predicts that it tethers UL9 to the DNA template, thereby increasing its processivity. In contrast to the prediction, data presented here show that the stimulatory activity of ICP8 does not depend on its single-strand DNA binding activity. Our data support an alternative hypothesis in which ICP8 modulates the activity of UL9. Accordingly, the data show that the ICP8-binding site of UL9 constitutes an inhibitory region that maintains the helicase in an inefficient ground state. ICP8 acts as a positive regulator by neutralizing this region. ICP8 does not affect substrate binding, ATP hydrolysis, or the efficiency of translocation/DNA unwinding. Rather, we propose that ICP8 increases the efficiency with which substrate binding and ATP hydrolysis are coupled to translocation/DNA unwinding.
Collapse
Affiliation(s)
- M E Arana
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | | | |
Collapse
|
33
|
Marintcheva B, Weller SK. Residues within the conserved helicase motifs of UL9, the origin-binding protein of herpes simplex virus-1, are essential for helicase activity but not for dimerization or origin binding activity. J Biol Chem 2001; 276:6605-15. [PMID: 11062243 DOI: 10.1074/jbc.m007743200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UL9, an essential gene for herpes simplex virus type 1 (HSV-1) DNA replication, exhibits helicase and origin DNA binding activities. It has been hypothesized that UL9 binds and unwinds the HSV-1 origin of replication, creating a replication bubble and promoting the assembly of the viral replication machinery; however, direct confirmation of this hypothesis has not been possible. Based on the presence of conserved helicase motifs, UL9 has been classified as a superfamily II helicase. Mutations in conserved residues of the helicase motifs I-VI of UL9 have been isolated, and most of them fail to complement a UL9 null virus in vivo (Martinez R., Shao L., and Weller S. (1992) J. Virol. 66, 6735-6746). In addition, mutants in motifs I, II, and VI were found to be transdominant (Malik, A. K., and Weller, S. K. (1996) J. Virol. 70, 7859-7866). Here we present the characterization of the biochemical properties of the UL9 helicase motif mutants. We report that mutations in motifs I-IV and VI affect the ATPase activity, and all but the motif III mutation completely abolish the helicase activity. In addition, mutations in these motifs do not interfere with UL9 dimerization or the ability of UL9 to bind the HSV-1 origin of replication. Based on the similarity of the helicase motif sequences between UL9 and UvrB, another superfamily II member with helicase-like activity, we were able to map the UL9 mutations on the structure of the UvrB protein and provide an explanation for the observed phenotypes. Our results indicate that the helicase function of UL9 is indispensable for viral replication, supporting the hypothesis that UL9 is essential for unwinding the HSV-1 origin of replication in vivo. Furthermore, the data presented provide insights into the mechanism of transdominance of the UL9 helicase motif mutants.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
34
|
Mapelli M, Mühleisen M, Persico G, van Der Zandt H, Tucker PA. The 60-residue C-terminal region of the single-stranded DNA binding protein of herpes simplex virus type 1 is required for cooperative DNA binding. J Virol 2000; 74:8812-22. [PMID: 10982323 PMCID: PMC102075 DOI: 10.1128/jvi.74.19.8812-8822.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 06/30/2000] [Indexed: 01/16/2023] Open
Abstract
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.
Collapse
Affiliation(s)
- M Mapelli
- Structural Biology Programme, European Molecular Biology Laboratory, D69012 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Baker RO, Murata LB, Dodson MS, Hall JD. Purification and characterization of OF-1, a host factor implicated in herpes simplex replication. J Biol Chem 2000; 275:30050-7. [PMID: 10878004 DOI: 10.1074/jbc.m002154200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human cellular factor (OF-1) has been previously implicated in replication of herpes simplex virus, type 1. This protein binds to three conserved regions (Boxes I, II, and III) in the viral replication origin and appears to be required for viral DNA synthesis (Dabrowski, C. C., Carmillo, P. J., and Schaffer, P. A. (1994) Mol. Cell. Biol. 14, 2545-2555). In the present study, we have partially purified and characterized OF-1 from human cells. This protein appears to consist of a tetramer composed of two heterodimers with subunits of 73 and 90 kDa. The smaller subunit contains the DNA binding activity. We have investigated the binding specificity of OF-1 using a mobility shift analysis. These studies reveal that binding is specific for both duplex and single-stranded Box I sequences and that the strongest preference is for the bottom strand of Box I. We present evidence suggesting that the binding of OF-1 to Box I DNA is enhanced in the presence of the herpes simplex-encoded UL9 protein, which also binds to Box I in oriS and is required for viral replication. Implications of these findings for the initiation step in viral replication are discussed.
Collapse
Affiliation(s)
- R O Baker
- Departments of Molecular and Cellular Biology and of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
36
|
He X, Lehman IR. Unwinding of a herpes simplex virus type 1 origin of replication (Ori(S)) by a complex of the viral origin binding protein and the single-stranded DNA binding protein. J Virol 2000; 74:5726-8. [PMID: 10823882 PMCID: PMC112062 DOI: 10.1128/jvi.74.12.5726-5728.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A herpes simplex virus type 1 (HSV-1) Ori(S) analogue in which the A+T sequence linking the box I and II elements was replaced by two single-stranded oligo(dT)s is unwound by the UL9 protein-ICP8 complex. Unwinding of wild-type Ori(S) by the UL9 protein-ICP8 complex was also observed under conditions which destabilize the A+T sequence. These experiments support a model for the unwinding of Ori(S) in which destabilization of the A+T sequence can generate a single-stranded DNA binding site for ICP8, which then associates with the UL9 protein bound to boxes I and II to promote the bidirectional unwinding of Ori(S).
Collapse
Affiliation(s)
- X He
- Department of Biochemistry, Stanford University, Stanford, California 94305-5037, USA
| | | |
Collapse
|
37
|
Sampson DA, Arana ME, Boehmer PE. Cysteine 111 affects coupling of single-stranded DNA binding to ATP hydrolysis in the herpes simplex virus type-1 origin-binding protein. J Biol Chem 2000; 275:2931-7. [PMID: 10644762 DOI: 10.1074/jbc.275.4.2931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.
Collapse
Affiliation(s)
- D A Sampson
- Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | |
Collapse
|
38
|
Murata LB, Dodson MS. The herpes simplex virus type 1 origin-binding protein. sequence-specific activation of adenosine triphosphatase activity by a double-stranded DNA containing box I. J Biol Chem 1999; 274:37079-86. [PMID: 10601266 DOI: 10.1074/jbc.274.52.37079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin-dependent replication of the herpes simplex virus type 1 genome requires the virally encoded origin-binding protein, UL9. UL9 binds specifically to the herpes simplex virus type 1 replication origin at two high affinity binding sites on the DNA, Boxes I and II. UL9 also has ATP-dependent DNA helicase and DNA-stimulated ATPase activities that are used to unwind the origin DNA. Origin-specific binding is mediated by the C-terminal domain (C-domain) of the enzyme. ATPase and helicase activities are mediated by the N-terminal domain (N-domain). Previous studies have shown that single-stranded DNA is a good coeffector for ATPase activity. We have analyzed several DNAs for their ability to stimulate the ATPase activity of UL9 and of a truncated UL9 protein (UL9/N) consisting only of the N-domain. We report here that duplex Box I DNA specifically and potently stimulates the ATPase activity of UL9 but not of UL9/N. We also find that removal of the C-domain significantly increases the ATPase activity of UL9. We have incorporated these results into a model for initiation in which the C-domain of UL9 serves to regulate the enzymatic activity of the N-domain.
Collapse
Affiliation(s)
- L B Murata
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721-0088, USA
| | | |
Collapse
|
39
|
Fang L, Davey MJ, O'Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol Cell 1999; 4:541-53. [PMID: 10549286 DOI: 10.1016/s1097-2765(00)80205-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.
Collapse
Affiliation(s)
- L Fang
- Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- I R Lehman
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| | | |
Collapse
|
41
|
Lee SS, Lehman IR. The interaction of herpes simplex type 1 virus origin-binding protein (UL9 protein) with Box I, the high affinity element of the viral origin of DNA replication. J Biol Chem 1999; 274:18613-7. [PMID: 10373472 DOI: 10.1074/jbc.274.26.18613] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex type 1 (HSV-1) origin binding protein, the UL9 protein, exists in solution as a homodimer of 94-kDa monomers. It binds to Box I, the high affinity element of the HSV-1 origin, Oris, as a dimer. The UL9 protein also binds the HSV-1 single strand DNA-binding protein, ICP8. Photocross-linking studies have shown that although the UL9 protein binds Box I as a dimer, only one of the two monomers contacts Box I. It is this form of the UL9 homodimer that upon interaction with ICP8, promotes the unwinding of Box I coupled to the hydrolysis of ATP to ADP and Pi. Photocross-linking studies have also shown that the amount of UL9 protein that interacts with Box I is reduced by its interaction with ICP8. Antibody directed against the C-terminal ten amino acids of the UL9 protein inhibits its Box I unwinding activity, consistent with the requirement for interaction of the C terminus of the UL9 protein with ICP8. Inhibition by the antibody is enhanced when the UL9 protein is first bound to Box I, suggesting that the C terminus of the UL9 protein undergoes a conformational change upon binding Box I.
Collapse
Affiliation(s)
- S S Lee
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305-5307, USA
| | | |
Collapse
|
42
|
Simonsson S, Samuelsson T, Elias P. The herpes simplex virus type 1 origin binding protein. Specific recognition of phosphates and methyl groups defines the interacting surface for a monomeric DNA binding domain in the major groove of DNA. J Biol Chem 1998; 273:24633-9. [PMID: 9733759 DOI: 10.1074/jbc.273.38.24633] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UL9 gene of herpes simplex virus type 1 (HSV-1) encodes an origin binding protein (OBP). It is an ATP-dependent DNA helicase and a sequence-specific DNA-binding protein. The latter function is carried out by the C-terminal domain of OBP (DeltaOBP). We have now performed a quantitative analysis of the interaction between DeltaOBP and its recognition sequence, GTTCGCAC, in oriS. Initially optimal conditions for binding were carefully determined. We observed that complexes with different electrophoretic mobilities were formed. A cross-linking experiment demonstrated that nonspecific complexes containing 2 or more protein monomers per DNA molecule were formed at high protein concentrations. The specific complex formed at low concentrations of DeltaOBP had an electrophoretic mobility corresponding to a 1:1 complex. We then demonstrated that the methyl groups of thymine in the major groove were essential for high affinity binding. Changes in the minor groove had considerably smaller effects. Ethylation interference experiments indicated that specific contacts were made between OBP and three phosphates in the recognition sequence. Finally, these observations were used to present a model of the surface of DNA that interacts with DeltaOBP in a sequence-specific manner.
Collapse
Affiliation(s)
- S Simonsson
- Department of Medical Biochemistry, Göteborg University, Box 440, S. E. 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
43
|
Lee C, Seo YS. Isolation and characterization of a processive DNA helicase from the fission yeast Schizosaccharomyces pombe that translocates in a 5'-to-3' direction. Biochem J 1998; 334 ( Pt 2):377-86. [PMID: 9716495 PMCID: PMC1219699 DOI: 10.1042/bj3340377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report here the isolation and characterization of a novel DNA helicase from extracts of the fission yeast Schizosaccharomyces pombe. The enzyme, called DNA helicase II, also contains an intrinsic DNA-dependent ATPase activity. Both the helicase and ATPase activities co-purified with a 63 kDa polypeptide on an SDS/polyacrylamide gel. The protein has a sedimentation coefficient of 4.8 S and a Stokes radius of 36 A (3.6 nm); from these data the native molecular mass was calculated to be 65 kDa. The enzyme translocates in a 5'-to-3' direction with respect to the substrate strand to which it is bound. Unwinding reactions carried out in the presence of increasing enzyme showed a sigmoidal curve, suggesting either co-operative interactions between monomers or multimerization of DNA helicase II in the presence of single-stranded DNA and/or ATP. This enzyme favoured adenosine nucleotides (ATP and dATP) as its energy source, but utilized to limited extents GTP, CTP, dGTP and dCTP. Non-hydrolysable ATP analogues did not support helicase activity. Kinetic analyses showed that the unwinding reaction was rapid, being complete after 50-100 s of incubation. Addition of unlabelled substrates to the helicase reaction after preincubation of the enzyme with substrate did not significantly diminish unwinding. The ATPase activity of DNA helicase II increased proportionally with increasing lengths of single-stranded DNA cofactor. In the presence of circular DNA, ATP hydrolysis continued to increase up to the longest time tested (3 h), whereas it ceased to increase after 5-10 min in the presence of shorter oligonucleotides. The initial rate of ATP hydrolysis during the first 5 min of incubation time was not affected by DNA species used. These data indicate that the enzyme does not dissociate from the single-stranded DNA once it is bound and is therefore highly processive.
Collapse
Affiliation(s)
- C Lee
- Nucleic Acid Biochemistry Laboratory, Basic Research Center, Samsung Biomedical Research Institute, 50 Ilwon-Dong, Kangnam-Ku, Seoul, 135-230, Korea
| | | |
Collapse
|
44
|
Tanguy Le Gac N, Villani G, Boehmer PE. Herpes simplex virus type-1 single-strand DNA-binding protein (ICP8) enhances the ability of the viral DNA helicase-primase to unwind cisplatin-modified DNA. J Biol Chem 1998; 273:13801-7. [PMID: 9593724 DOI: 10.1074/jbc.273.22.13801] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex virus type-1 UL5, UL8, and UL52 genes encode an essential heterotrimeric DNA helicase-primase that is responsible for concomitant DNA unwinding and primer synthesis at the viral DNA replication fork. The viral single-strand DNA-binding protein (ICP8) can stimulate DNA unwinding by the helicase-primase as a result of a physical interaction that is mediated by the UL8 subunit. In this study, we investigated the ability of the helicase-primase to unwind a fork-like substrate that contains an intrastrand d(GpG) DNA cross-link produced by the antitumor drug cisplatin. We also examined the ability of ICP8 to modulate the effect of the cisplatin lesion. The data show that the lesion inhibited the helicase-primase when located on the DNA strand along which it translocates. However, the lesion did not represent a permanent obstacle to its progression. In contrast, the adduct did not affect the helicase-primase when located on the opposite DNA strand. ICP8 specifically stimulated DNA unwinding by the helicase-primase. Coating concentrations of ICP8 were necessary for optimal unwinding of damaged DNA. Addition of competitor DNA to helicase reactions led to substantial reduction of DNA unwinding by the helicase-primase, suggesting that the enzyme is distributive. ICP8 did not abolish the competition, indicating that it did not stimulate the helicase by increasing its processivity. Rather, ICP8 may stimulate DNA unwinding and enable bypass of cisplatin damaged DNA by recruiting the helicase-primase to the DNA.
Collapse
Affiliation(s)
- N Tanguy Le Gac
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 route de Narbonne, 31077 Toulouse cedex, France
| | | | | |
Collapse
|
45
|
Boehmer PE. The herpes simplex virus type-1 single-strand DNA-binding protein, ICP8, increases the processivity of the UL9 protein DNA helicase. J Biol Chem 1998; 273:2676-83. [PMID: 9446572 DOI: 10.1074/jbc.273.5.2676] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus type-1 UL9 protein is a sequence-specific DNA-binding protein that recognizes elements in the viral origins of DNA replication and possesses DNA helicase activity. It forms an essential complex with its cognate single-strand DNA-binding protein, ICP8. The DNA helicase activity of the UL9 protein is greatly stimulated as a consequence of this interaction. A complex of these two proteins is thought to be responsible for unwinding the viral origins of DNA replication. The aim of this study was to identify the mechanism by which ICP8 stimulates the translocation of the UL9 protein along DNA. The data show that the association of the UL9 protein with DNA substrate is slow and that its dissociation from the DNA substrate is fast, suggesting that it is nonprocessive. ICP8 caused maximal stimulation of DNA unwinding activity at equimolar UL9 protein concentrations, indicating that the active species is a complex that contains UL9 protein and ICP8 in 1:1 ratio. ICP8 prevented dissociation of UL9 protein from the DNA substrate, suggesting that it increases its processivity. ICP8 specifically stimulated the DNA-dependent ATPase activity of the UL9 protein with DNA cofactors that allow translocation of UL9 protein and those with secondary structure. These data suggest that UL9 protein and ICP8 form a specific complex that translocates along DNA. Within this complex, ICP8 tethers the UL9 protein to the DNA substrate, thereby preventing its dissociation, and participates directly in the assimilation and stabilization of the unwound DNA strand, thus facilitating translocation of the complex through regions of duplex DNA.
Collapse
Affiliation(s)
- P E Boehmer
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| |
Collapse
|