1
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. Cell Rep 2024; 43:114540. [PMID: 39058595 PMCID: PMC11426333 DOI: 10.1016/j.celrep.2024.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shintaro Otsuka
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hitesh K Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Hashitani H, Mitsui R, Hirai Y, Tanaka H, Miwa-Nishimura K. Nitrergic inhibition of sympathetic arteriolar constrictions in the female rodent urethra. J Physiol 2024; 602:2199-2226. [PMID: 38656747 DOI: 10.1113/jp285583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,β-methylene ATP (10 μM) but not prazosin (1 μM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 μM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 μM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 μM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 μM) shortened the vasodilatory responses, while atropine (1 μM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 μM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuuna Hirai
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidekazu Tanaka
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Miwa-Nishimura
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
3
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
4
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Chachlaki K, Messina A, Delli V, Leysen V, Maurnyi C, Huber C, Ternier G, Skrapits K, Papadakis G, Shruti S, Kapanidou M, Cheng X, Acierno J, Rademaker J, Rasika S, Quinton R, Niedziela M, L'Allemand D, Pignatelli D, Dirlewander M, Lang-Muritano M, Kempf P, Catteau-Jonard S, Niederländer NJ, Ciofi P, Tena-Sempere M, Garthwaite J, Storme L, Avan P, Hrabovszky E, Carleton A, Santoni F, Giacobini P, Pitteloud N, Prevot V. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci Transl Med 2022; 14:eabh2369. [PMID: 36197968 PMCID: PMC7613826 DOI: 10.1126/scitranslmed.abh2369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.,University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens 115 27, Greece
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Csilla Maurnyi
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Chieko Huber
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Gaëtan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Georgios Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sonal Shruti
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Maria Kapanidou
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xu Cheng
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Jesse Rademaker
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Richard Quinton
- Translational and Clinical Research Institute and the Royal Victoria Infirmary, University of Newcastle , Tyne NE1 3BZ, UK
| | - Marek Niedziela
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan 61-701, Poland
| | - Dagmar L'Allemand
- Department of Endocrinology, Children's Hospital of Eastern Switzerland, St. Gallen 9000, Switzerland
| | - Duarte Pignatelli
- Department of Endocrinology, Hospital S João; Department of Biomedicine, Faculty of Medicine of the University of Porto; IPATIMUP Research Institute, Porto 4200-319, Portugal
| | - Mirjam Dirlewander
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva CH1205, Switzerland
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zürich 8032, Switzerland
| | - Patrick Kempf
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Gynaecology and Obstretic, Jeanne de Flandres Hospital, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Philippe Ciofi
- Inserm, U1215, Neurocentre Magendie, Université de Bordeaux, Bordeaux F-33077, France
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba 14004, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba 14004, Spain
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6DH, UK
| | - Laurent Storme
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Neonatology, Hôpital Jeanne de Flandre, CHU of Lille, Lille F-59000, France
| | - Paul Avan
- Université de Clerremont-Ferrand, Clermont-Ferrand F-63000, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| |
Collapse
|
6
|
Wei J, Zhang J, Jiang S, Xu L, Qu L, Pang B, Jiang K, Wang L, Intapad S, Buggs J, Cheng F, Mohapatra S, Juncos LA, Osborn JL, Granger JP, Liu R. Macula Densa NOS1β Modulates Renal Hemodynamics and Blood Pressure during Pregnancy: Role in Gestational Hypertension. J Am Soc Nephrol 2021; 32:2485-2500. [PMID: 34127535 PMCID: PMC8722793 DOI: 10.1681/asn.2020070969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Regulation of renal hemodynamics and BP via tubuloglomerular feedback (TGF) may be an important adaptive mechanism during pregnancy. Because the β-splice variant of nitric oxide synthase 1 (NOS1β) in the macula densa is a primary modulator of TGF, we evaluated its role in normal pregnancy and gestational hypertension in a mouse model. We hypothesized that pregnancy upregulates NOS1β in the macula densa, thus blunting TGF, allowing the GFR to increase and BP to decrease. METHODS We used sophisticated techniques, including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of renal tubules in vivo, clearance kinetics of plasma FITC-sinistrin, and radiotelemetry BP monitoring, to determine the effects of normal pregnancy or reduced uterine perfusion pressure (RUPP) on macula densa NOS1β/NO levels, TGF responsiveness, GFR, and BP in wild-type and macula densa-specific NOS1 knockout (MD-NOS1KO) mice. RESULTS Macula densa NOS1β was upregulated during pregnancy, resulting in blunted TGF, increased GFR, and decreased BP. These pregnancy-induced changes in TGF and GFR were largely diminished, with a significant rise in BP, in MD-NOS1KO mice. In addition, RUPP resulted in a downregulation in macula densa NOS1β, enhanced TGF, decreased GFR, and hypertension. The superimposition of RUPP into MD-NOS1KO mice only caused a modest further alteration in TGF and its associated changes in GFR and BP. Finally, in African green monkeys, renal cortical NOS1β expression increased in normotensive pregnancies, but decreased in spontaneous gestational hypertensive pregnancies. CONCLUSIONS Macula densa NOS1β plays a critical role in the control of renal hemodynamics and BP during pregnancy.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida,Correspondence: Jin Wei, Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard MDC 8, Tampa, Florida 33612.
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Bo Pang
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Suttira Intapad
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | - Shyam Mohapatra
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | | - Joey P. Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
7
|
Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci 2021; 31:617-636. [PMID: 32739909 DOI: 10.1515/revneuro-2019-0111] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The molecular and chemical properties of neuronal nitric oxide synthase (nNOS) have made it a key mediator in many physiological functions and signaling transduction. The NOS monomer is inactive, but the dimer form is active. There are three forms of NOS, which are neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) nitric oxide synthase. nNOS regulates nitric oxide (NO) synthesis which is the mechanism used mostly by neurons to produce NO. nNOS expression and activation is regulated by some important signaling proteins, such as cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), calmodulin (CaM), heat shock protein 90 (HSP90)/HSP70. nNOS-derived NO has been implicated in modulating many physiological functions, such as synaptic plasticity, learning, memory, neurogenesis, etc. In this review, we have summarized recent studies that have characterized structural features, subcellular localization, and factors that regulate nNOS function. Finally, we have discussed the role of nNOS in the developing brain under a wide range of physiological conditions, especially long-term potentiation and depression.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Monireh Mohsenzadegan
- Department of Laboratory Sciences, Allied Medical College, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Komaki
- Department of Physiology, Medical College, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
8
|
Nelson RJ, Bumgarner JR, Walker WH, DeVries AC. Time-of-day as a critical biological variable. Neurosci Biobehav Rev 2021; 127:740-746. [PMID: 34052279 PMCID: PMC8504485 DOI: 10.1016/j.neubiorev.2021.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Time-of-day is a crucial, yet often overlooked, biological variable in biomedical research. We examined the top 25 most cited papers in several domains of behavioral neuroscience to determine whether time-of-day information was reported. The majority of studies report behavioral testing conducted during the day, which does not coincide with the optimal time to perform the testing from an functional perspective of the animals being tested. The majority of animal models used in biomedical research are nocturnal rodents; thus, testing during the light phase (i.e. animals' rest period) may alter the results and introduce variability across studies. Time-of-day is rarely considered in analyses or reported in publications; the majority of publications fail to include temporal details when describing their experimental methods, and those few that report testing during the dark rarely report whether measures are in place to protect from exposure to extraneous light. We propose that failing to account for time-of-day may compromise replication of findings across behavioral studies and reduce their value when extrapolating results to diurnal humans.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA; Department of Medicine, Division of Hematology and Oncology, Morgantown, WV, 26506, USA; WVU Cancer Institute, Morgantown, WV, 26506, USA; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
9
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
10
|
Transphyletic conservation of nitric oxide synthase regulation in cephalochordates and tunicates. Dev Genes Evol 2020; 230:329-338. [PMID: 32839880 DOI: 10.1007/s00427-020-00668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.
Collapse
|
11
|
Garbincius JF, Merz LE, Cuttitta AJ, Bayne KV, Schrade S, Armstead EA, Converso-Baran KL, Whitesall SE, D'Alecy LG, Michele DE. Enhanced dimethylarginine degradation improves coronary flow reserve and exercise tolerance in Duchenne muscular dystrophy carrier mice. Am J Physiol Heart Circ Physiol 2020; 319:H582-H603. [PMID: 32762558 DOI: 10.1152/ajpheart.00333.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by null mutations in dystrophin and characterized by muscle degeneration. Cardiomyopathy is common and often prevalent at similar frequency in female DMD carriers irrespective of whether they manifest skeletal muscle disease. Impaired muscle nitric oxide (NO) production in DMD disrupts muscle blood flow regulation and exaggerates postexercise fatigue. We show that circulating levels of endogenous methylated arginines including asymmetric dimethylarginine (ADMA), which act as NO synthase inhibitors, are elevated by acute necrotic muscle damage and in chronically necrotic dystrophin-deficient mice. We therefore hypothesized that excessive ADMA impairs muscle NO production and diminishes exercise tolerance in DMD. We used transgenic expression of dimethylarginine dimethylaminohydrolase 1 (DDAH), which degrades methylated arginines, to investigate their contribution to exercise-induced fatigue in DMD. Although infusion of exogenous ADMA was sufficient to impair exercise performance in wild-type mice, transgenic DDAH expression did not rescue exercise-induced fatigue in dystrophin-deficient male mdx mice. Surprisingly, DDAH transgene expression did attenuate exercise-induced fatigue in dystrophin-heterozygous female mdx carrier mice. Improved exercise tolerance was associated with reduced heart weight and improved cardiac β-adrenergic responsiveness in DDAH-transgenic mdx carriers. We conclude that DDAH overexpression increases exercise tolerance in female DMD carriers, possibly by limiting cardiac pathology and preserving the heart's responses to changes in physiological demand. Methylated arginine metabolism may be a new target to improve exercise tolerance and cardiac function in DMD carriers or act as an adjuvant to promote NO signaling alongside therapies that partially restore dystrophin expression in patients with DMD.NEW & NOTEWORTHY Duchenne muscular dystrophy (DMD) carriers are at risk for cardiomyopathy. The nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is released from damaged muscle in DMD and impairs exercise performance. Transgenic expression of dimethylarginine dimethylaminohydrolase to degrade ADMA prevents cardiac hypertrophy, improves cardiac function, and improves exercise tolerance in DMD carrier mice. These findings highlight the relevance of ADMA to muscular dystrophy and have important implications for therapies targeting nitric oxide in patients with DMD and DMD carriers.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lauren E Merz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kaitlynn V Bayne
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Sara Schrade
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Emily A Armstead
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | - Steven E Whitesall
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Physiology Phenotyping Core, University of Michigan, Ann Arbor, Michigan
| | - Louis G D'Alecy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Physiology Phenotyping Core, University of Michigan, Ann Arbor, Michigan
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Physiology Phenotyping Core, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Alvarez-Gonzalez MY, Sánchez-Islas E, Mucio-Ramirez S, de Gortari P, Amaya MI, Kodavanti PRS, León-Olea M. Perinatal exposure to octabromodiphenyl ether mixture, DE-79, alters the vasopressinergic system in adult rats. Toxicol Appl Pharmacol 2020; 391:114914. [PMID: 32032643 DOI: 10.1016/j.taap.2020.114914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.
Collapse
Affiliation(s)
- Mhar Y Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Samuel Mucio-Ramirez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - María I Amaya
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México, C.P. 14370, Mexico.
| |
Collapse
|
13
|
Hockley A, Berger JI, Smith PA, Palmer AR, Wallace MN. Nitric oxide regulates the firing rate of neuronal subtypes in the guinea pig ventral cochlear nucleus. Eur J Neurosci 2020; 51:963-983. [PMID: 31494975 PMCID: PMC7078996 DOI: 10.1111/ejn.14572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
The gaseous free radical, nitric oxide (NO) acts as a ubiquitous neuromodulator, contributing to synaptic plasticity in a complex way that can involve either long term potentiation or depression. It is produced by neuronal nitric oxide synthase (nNOS) which is presynaptically expressed and also located postsynaptically in the membrane and cytoplasm of a subpopulation of each major neuronal type in the ventral cochlear nucleus (VCN). We have used iontophoresis in vivo to study the effect of the NOS inhibitor L-NAME (L-NG-Nitroarginine methyl ester) and the NO donors SIN-1 (3-Morpholinosydnonimine hydrochloride) and SNOG (S-Nitrosoglutathione) on VCN units under urethane anaesthesia. Collectively, both donors produced increases and decreases in driven and spontaneous firing rates of some neurones. Inhibition of endogenous NO production with L-NAME evoked a consistent increase in driven firing rates in 18% of units without much effect on spontaneous rate. This reduction of gain produced by endogenous NO was mirrored when studying the effect of L-NAME on NMDA(N-Methyl-D-aspartic acid)-evoked excitation, with 30% of units showing enhanced NMDA-evoked excitation during L-NAME application (reduced NO levels). Approximately 25% of neurones contain nNOS and the NO produced can modulate the firing rate of the main principal cells: medium stellates (choppers), large stellates (onset responses) and bushy cells (primary-like responses). The main endogenous role of NO seems to be to partly suppress driven firing rates associated with NMDA channel activity but there is scope for it to increase neural gain if there were a pathological increase in its production following hearing loss.
Collapse
Affiliation(s)
- Adam Hockley
- Medical Research Council Institute of Hearing ResearchSchool of MedicineUniversity of NottinghamNottinghamUK
- School of Life SciencesUniversity of NottinghamNottinghamUK
- Department of OtolaryngologyKresge Hearing Research InstituteUniversity of MichiganAnn ArborMIUSA
| | - Joel I. Berger
- Medical Research Council Institute of Hearing ResearchSchool of MedicineUniversity of NottinghamNottinghamUK
- Department of NeurosurgeryUniversity of IowaIowa CityIAUSA
| | - Paul A. Smith
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Alan R. Palmer
- Medical Research Council Institute of Hearing ResearchSchool of MedicineUniversity of NottinghamNottinghamUK
- Hearing SciencesSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Mark N. Wallace
- Medical Research Council Institute of Hearing ResearchSchool of MedicineUniversity of NottinghamNottinghamUK
- Hearing SciencesSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
14
|
Ivanova VO, Balaban PM, Bal NV. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Int J Mol Sci 2020; 21:ijms21030981. [PMID: 32024149 PMCID: PMC7038066 DOI: 10.3390/ijms21030981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.
Collapse
|
15
|
Carreño Gutiérrez H, O'Leary A, Freudenberg F, Fedele G, Wilkinson R, Markham E, van Eeden F, Reif A, Norton WHJ. Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behaviour. Eur Neuropsychopharmacol 2020; 30:30-43. [PMID: 28951000 DOI: 10.1016/j.euroneuro.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter that has important behavioural functions in the vertebrate brain. In this study we compare the impact of decreased nitric NO signalling upon behaviour and neurobiology using both zebrafish and mouse. nitric oxide synthase mutant (nos1-/-) zebrafish show significantly reduced aggression and an increase in anxiety-like behaviour without altered production of the stress hormone cortisol. Nos1-/- mice also exhibit decreased aggression and are hyperactive in an open field test. Upon reduction of NO signalling, monoamine neurotransmitter metabolism is reduced as a consequence of decreased Monoamine oxidase activity. Treatment of nos1-/- zebrafish with the 5-HT receptor 1A agonist 8-OH-DPAT rescues aggression and some aspects of anxiety-like behaviour. Taken together, the interplay between NO and 5-HT appears to be critical to control behaviour. Our cross-species approach challenges the previous notion that reduced neuronal NOS leads to increased aggression. Rather, Nos1 knock-out can also lead to decreased aggression in some situations, a finding that may have implications for future translational research.
Collapse
Affiliation(s)
- Héctor Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Rd, Leicester, LE1 7RH, UK
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany
| | - Giorgio Fedele
- Department of Genetics and Genome Biology, University of Leicester, University Rd, Leicester LE1 7RH, UK
| | - Rob Wilkinson
- Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Eleanor Markham
- Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Freek van Eeden
- Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Rd, Leicester, LE1 7RH, UK.
| |
Collapse
|
16
|
Balke JE, Zhang L, Percival JM. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle. Nitric Oxide 2018; 82:35-47. [PMID: 30503614 DOI: 10.1016/j.niox.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Defects in neuronal nitric oxide synthase (nNOS) splice variant localization and signaling in skeletal muscle are a firmly established pathogenic characteristic of many neuromuscular diseases, including Duchenne and Becker muscular dystrophy (DMD and BMD, respectively). Therefore, substantial efforts have been made to understand and therapeutically target skeletal muscle nNOS isoform signaling. The purpose of this review is to summarize recent salient advances in understanding of the regulation, targeting, and function of nNOSμ and nNOSβ splice variants in normal and dystrophic skeletal muscle, primarily using findings from mouse models. The first focus of this review is how the differential targeting of nNOS splice variants creates spatially and functionally distinct nitric oxide (NO) signaling compartments at the sarcolemma, Golgi complex, and cytoplasm. Particular attention is given to the functions of sarcolemmal nNOSμ and limitations of current nNOS knockout models. The second major focus is to review current understanding of cGMP-mediated nNOS signaling in skeletal muscle and its emergence as a therapeutic target in DMD and BMD. Accordingly, we address the preclinical and clinical successes and setbacks with the testing of phosphodiesterase 5 inhibitors to redress nNOS signaling defects in DMD and BMD. In summary, this review of nNOS function in normal and dystrophic muscle aims to advance understanding how the messenger NO is harnessed for cellular signaling from a skeletal muscle perspective.
Collapse
Affiliation(s)
- Jordan E Balke
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Ling Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA.
| |
Collapse
|
17
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
18
|
Kerrick WGL, Xu Y, Percival JM. nNOS splice variants differentially regulate myofilament function but are dispensable for intracellular calcium and force transients in cardiac papillary muscles. PLoS One 2018; 13:e0200834. [PMID: 30028847 PMCID: PMC6054407 DOI: 10.1371/journal.pone.0200834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Cardiac muscle expresses three neuronal nitric oxide synthase (nNOS) splice variants: nNOSα, nNOSμ and nNOSβ. The functions of these nNOS splice variants in cardiac muscle, particularly myofilament-associated nNOSβ are unclear. To decipher cardiac nNOS splice variant function we investigated myofilament function and intracellular calcium and force transients in demembranated and intact papillary muscles from two lines of nNOS knockout mice. The first line (KN1) lacks nNOSα and nNOSμ. The second line (KN2) lacks active nNOSα, nNOSμ and nNOSβ. Demembranated KN1 papillary muscles exhibited reduced myofilament ATPase activity (-35%) and specific force (-10%) relative to controls. Demembranated KN2 muscles exhibited a smaller decrease in myofilament ATPase activity (-21%), but a greater reduction in specific force (-26%) relative to controls. Myofilament calcium sensitivity in demembranated KN1 and KN2 papillary muscles was similar to controls. Thus, papillary muscle-expressed nNOS splice variants are necessary for control levels of myofilament ATPase activity and force generation, but dispensable for myofilament calcium sensitivity. The greater reduction in myofilament ATPase relative to specific force in KN1, but not KN2 muscle, reduced the energy cost of muscle contraction, suggesting that nNOSβ increased the energetic efficiency of contraction in the absence of nNOSμ and nNOSα. Analyses of intact KN1 and KN2 papillary muscles showed that both intracellular calcium transients and their evoked force transients were similar to controls at stimulation frequencies between 1 and 3 Hz. Therefore, nNOS was dispensable for baseline excitation-contraction coupling. In summary, these data suggest that nNOS splice variants differentially regulate myofilament function, but not baseline calcium handling in papillary muscles. More importantly, they suggest that nNOSβ is a novel modulator of myofilament function, and ultimately the energetic efficiency of cardiac papillary muscle contraction.
Collapse
Affiliation(s)
- W Glenn L Kerrick
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yuanyuan Xu
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
19
|
Beck K, Friebe A, Voussen B. Nitrergic signaling via interstitial cells of Cajal and smooth muscle cells influences circular smooth muscle contractility in murine colon. Neurogastroenterol Motil 2018; 30:e13300. [PMID: 29377328 DOI: 10.1111/nmo.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Regulation of gastrointestinal motility involves excitatory and inhibitory neurotransmission. Nitric oxide (NO), the major inhibitory neurotransmitter, acts via its receptor NO-sensitive guanylyl cyclase (NO-GC). In the GI tract, NO-GC is expressed in several cell types such as smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Using cell-specific knockout mice, we have previously shown that NO-GC modulates spontaneous contractions in colonic longitudinal smooth muscle. However, its detailed role in the colonic circular smooth muscle is still unclear. METHODS Myography was performed to evaluate spontaneous contractions in rings of proximal colon (2.5 mm) from global (GCKO) and cell-specific knockout mice for NO-GC. Immunohistochemistry and in situ hybridization were used to specify NO-GC expression. KEY RESULTS Colonic circular smooth muscle showed three different contraction patterns: high-frequency ripples, slow phasic contractions, and large contractions. Ripples formed independently of NO-GC. Slow phasic contractions occurred intermittently in WT, SMC-GCKO, and ICC-GCKO tissue, whereas they were more prominent and prolonged in GCKO and SMC/ICC-GCKO tissue. Tetrodotoxin and the NO-GC inhibitor ODQ transformed slow phasic contractions of WT and single cell-specific knockout into GCKO-like contractions. ODQ increased the frequency of large contractions in WT and ICC-GCKO colon but not in GCKO, SMC-GCKO, and SMC/ICC-GCKO preparations. Tetrodotoxin and hexamethonium abolished large contractions. CONCLUSIONS AND INFERENCES We conclude that short rings of murine colon can be effectively used to record spontaneous contractions. Although NO-GC in SMC determines smooth muscle tone, concerted action of NO-GC in both SMC and ICC modulates slow phasic contractions and large contractions.
Collapse
Affiliation(s)
- K Beck
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - A Friebe
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - B Voussen
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Saito A, Taniguchi Y, Kim SH, Selvakumar B, Perez G, Ballinger MD, Zhu X, Sabra J, Jallow M, Yan P, Ito K, Rajendran S, Hirotsune S, Wynshaw-Boris A, Snyder SH, Sawa A, Kamiya A. Developmental Alcohol Exposure Impairs Activity-Dependent S-Nitrosylation of NDEL1 for Neuronal Maturation. Cereb Cortex 2018; 27:3918-3929. [PMID: 27371763 DOI: 10.1093/cercor/bhw201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuronal nitric oxide synthase is involved in diverse signaling cascades that regulate neuronal development and functions via S-Nitrosylation-mediated mechanism or the soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway activated by nitric oxide. Although it has been studied extensively in vitro and in invertebrate animals, effects on mammalian brain development and underlying mechanisms remain poorly understood. Here we report that genetic deletion of "Nos1" disrupts dendritic development, whereas pharmacological inhibition of the sGC/cGMP pathway does not alter dendritic growth during cerebral cortex development. Instead, nuclear distribution element-like (NDEL1), a protein that regulates dendritic development, is specifically S-nitrosylated at cysteine 203, thereby accelerating dendritic arborization. This post-translational modification is enhanced by N-methyl-D-aspartate receptor-mediated neuronal activity, the main regulator of dendritic formation. Notably, we found that disruption of S-Nitrosylation of NDEL1 mediates impaired dendritic maturation caused by developmental alcohol exposure, a model of developmental brain abnormalities resulting from maternal alcohol use. These results highlight S-Nitrosylation as a key activity-dependent mechanism underlying neonatal brain maturation and suggest that reduction of S-Nitrosylation of NDEL1 acts as a pathological factor mediating neurodevelopmental abnormalities caused by maternal alcohol exposure.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Yu Taniguchi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sun-Hong Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Balakrishnan Selvakumar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gabriel Perez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael D Ballinger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Sabra
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariama Jallow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Priscilla Yan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shreenath Rajendran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Abeno, Osaka 545-8585, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
21
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 771] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
22
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
23
|
Chachlaki K, Garthwaite J, Prevot V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 2017. [PMID: 28621341 DOI: 10.1038/nrendo.2017.69] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemical signalling molecule nitric oxide (NO), which freely diffuses through aqueous and lipid environments, subserves an array of functions in the mammalian central nervous system, such as the regulation of synaptic plasticity, blood flow and neurohormone secretion. In this Review, we consider the cellular and molecular mechanisms by which NO evokes short-term and long-term changes in neuronal activity. We also highlight recent studies showing that discrete populations of neurons that synthesize NO in the hypothalamus constitute integrative systems that support life by relaying metabolic and gonadal signals to the neuroendocrine brain, and thus gate the onset of puberty and adult fertility. The putative involvement and therapeutic potential of NO in the pathophysiology of brain diseases, for which hormonal imbalances during postnatal development could be risk factors, is also discussed.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, F-59000 Lille, France
- University of Lille, University Hospital Federations (FHU) 1,000 days for Health, School of Medicine, 1 place de Verdun, F-59000 Lille, France
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, F-59000 Lille, France
- University of Lille, University Hospital Federations (FHU) 1,000 days for Health, School of Medicine, 1 place de Verdun, F-59000 Lille, France
| |
Collapse
|
24
|
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8:1719-1735. [PMID: 28451297 PMCID: PMC5396510 DOI: 10.1039/c6sc03631g] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya , Saratov 410012 , Russia
| |
Collapse
|
25
|
Sharma NM, Patel KP. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opin Ther Targets 2017; 21:11-22. [PMID: 27885874 PMCID: PMC5488701 DOI: 10.1080/14728222.2017.1265505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Nitric oxide (NO) synthesized via neuronal nitric oxide synthase (nNOS) plays a significant role in regulation/modulation of autonomic control of circulation. Various pathological states are associated with diminished nNOS expression and blunted autonomic effects of NO in the central nervous system (CNS) including heart failure, hypertension, diabetes mellitus, chronic renal failure etc. Therefore, elucidation of the molecular mechanism/s involved in dysregulation of nNOS is essential to understand the pathogenesis of increased sympathoexcitation in these diseased states. Areas covered: nNOS is a highly regulated enzyme, being regulated at transcriptional and posttranslational levels via protein-protein interactions and modifications viz. phosphorylation, ubiquitination, and sumoylation. The enzyme activity of nNOS also depends on the optimal concentration of substrate, cofactors and association with regulatory proteins. This review focuses on the posttranslational regulation of nNOS in the context of normal and diseased states within the CNS. Expert opinion: Gaining insight into the mechanism/s involved in the regulation of nNOS would provide novel strategies for manipulating nNOS directed therapeutic modalities in the future, including catalytically active dimer stabilization and protein-protein interactions with intracellular protein effectors. Ultimately, this is expected to provide tools to improve autonomic dysregulation in various diseases such as heart failure, hypertension, and diabetes.
Collapse
Affiliation(s)
- Neeru M Sharma
- a Department of Cellular & Integrative Physiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kaushik P Patel
- a Department of Cellular & Integrative Physiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
26
|
Abstract
Lactic acid bacteria (LAB) are the most commonly used microorganisms in probiotic products and it is known that these LAB enhanced the immune response and increase resistance to neoplasia and infections. In previous studies using an experimental model of BALB/c mice it was demonstrated that a cyclical diet of yoghurt given to animals previously injected with the carcinogen 1,2 dimethylhydrazine (DMH) inhibited the development of colorectal carcinoma. The animals showed an inflammatory response prior to the development of the tumour, which was diminished with the yoghurt feeding. We examined the immunoregulatory and antiinflammatory mechanisms involved in the inhibition of tumour growth by yoghurt and compared with the mechanisms of a non-steroidal antiinflammatory drug (Indomethacin). Five experimental groups (BALB/c mice) were used in this study: 1) DMH group, injected with 1,2 dimethylhydrazine weekly for 10 weeks. 2) DMH-yoghurt group, yoghurt was supplemented 10 days followed by inoculation with DMH. After tumour induction yoghurt was given every 10 days for six months. 3) Only yoghurt given during six months following the same schedule (yoghurt control. 4) DMH-indomethacin group. After tumour induction, animals were treated with indomethacin, injected cyclically. 5) Non-treatment control group fed with a conventional balanced diet. We studied IgA secreting cells and CD4+ and CD8+ T cells in the large intestine of mice fed long term with yoghurt and others treated with indomethacin. TNFα, INFγ cytokines, Bcl2 protein and iNOS enzyme production was also measured We observed an increase in the number of IgA-secreting cells but not in the CD4+ and CD8+ cells in the mice fed long term with yoghurt. Indomethacin treated mice showed high values of all these cellular populations. Mice injected with indomethacin did not show increased levels of the proinflammatory cytokine TNFα and INFγ. These cytokines were increased in DMH and DMH plus yoghurt groups. iNOS enzyme determinations were increased in DMH and DMH plus indomethacin group. These results coincided with the inflammatory response observed in the histological findings. Bcl-2 protein was increased in mice fed long term with yoghurt. We suggest that the immune mechanisms by which yoghurt operates would be different to those induced with the antiinflammatory drug indomethacin. Yoghurt activated the production of cytokines that could exert a regulation of the immune response by apoptosis induced by TNFα. We conclude that yoghurt down modulate the immune response and exert its antitumour activity by its antiinflammatory activity, a mechanism that is different with that of the antiinflammatory indomethacin.
Collapse
Affiliation(s)
| | | | - G. Perdigón
- Centro de Referencias para Lactobacilos (CERELA). Chacabuco 145, (4000) Tucumán. Argentina
| |
Collapse
|
27
|
Wang X, Chandrashekar K, Wang L, Lai EY, Wei J, Zhang G, Wang S, Zhang J, Juncos LA, Liu R. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice. Hypertension 2016; 67:792-9. [PMID: 26883268 DOI: 10.1161/hypertensionaha.115.07032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈ 40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈ 15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading.
Collapse
Affiliation(s)
- Ximing Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Kiran Chandrashekar
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - En Yin Lai
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Gensheng Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Shaohui Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Luis A Juncos
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.).
| |
Collapse
|
28
|
Hyndman KA, Arguello AM, Morsing SKH, Pollock JS. Dynamin-2 is a novel NOS1β interacting protein and negative regulator in the collecting duct. Am J Physiol Regul Integr Comp Physiol 2016; 310:R570-7. [PMID: 26791826 DOI: 10.1152/ajpregu.00008.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022]
Abstract
Nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) production in collecting ducts is critical for maintaining fluid-electrolyte balance. Rat collecting ducts express both the full-length NOS1α and its truncated variant NOS1β, while NOS1β predominates in mouse collecting ducts. We reported that dynamin-2 (DNM2), a protein involved in excising vesicles from the plasma membrane, and NOS1α form a protein-protein interaction that promotes NO production in rat collecting ducts. NOS1β was found to be highly expressed in human renal cortical/medullary samples; hence, we tested the hypothesis that DNM2 is a positive regulator of NOS1β-derived NO production. COS7 and mouse inner medullary collecting duct-3 (mIMCD3) cells were transfected with NOS1β and/or DNM2. Coimmunoprecipitation experiments show that NOS1β and DNM2 formed a protein-protein interaction. DNM2 overexpression decreased nitrite production (index of NO) in both COS7 and mIMCD-3 cells by 50-75%. mIMCD-3 cells treated with a panel of dynamin inhibitors or DNM2 siRNA displayed increased nitrite production. To elucidate the physiological significance of IMCD DNM2/NOS1β regulation in vivo, flox control and CDNOS1 knockout mice were placed on a high-salt diet, and freshly isolated IMCDs were treated acutely with a dynamin inhibitor. Dynamin inhibition increased nitrite production by IMCDs from flox mice. This response was blunted (but not abolished) in collecting duct-specific NOS1 knockout mice, suggesting that DNM2 also negatively regulates NOS3 in the mouse IMCD. We conclude that DNM2 is a novel negative regulator of NO production in mouse collecting ducts. We propose that DNM2 acts as a "break" to prevent excess or potentially toxic NO levels under high-salt conditions.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexandra M Arguello
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sofia K H Morsing
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, Liu EY, Zhang J, Hansen PBL, Fan F, Juncos LA, Wang L, Pollock J, Huang PL, Fu Y, Wang S, Liu R. Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension. J Am Soc Nephrol 2015; 27:2346-56. [PMID: 26647426 DOI: 10.1681/asn.2015050515] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/24/2015] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) is an important negative modulator of tubuloglomerular feedback responsiveness. We recently found that macula densa expresses α-, β-, and γ-splice variants of neuronal nitric oxide synthase 1 (NOS1), and NOS1β expression in the macula densa increases on a high-salt diet. This study tested whether upregulation of NOS1β expression in the macula densa affects sodium excretion and salt-sensitive hypertension by decreasing tubuloglomerular feedback responsiveness. Expression levels of NOS1β mRNA and protein were 30- and five-fold higher, respectively, than those of NOS1α in the renal cortex of C57BL/6 mice. Furthermore, macula densa NO production was similar in the isolated perfused juxtaglomerular apparatus of wild-type (WT) and nitric oxide synthase 1α-knockout (NOS1αKO) mice. Compared with control mice, mice with macula densa-specific knockout of all nitric oxide synthase 1 isoforms (MD-NOS1KO) had a significantly enhanced tubuloglomerular feedback response and after acute volume expansion, significantly reduced GFR, urine flow, and sodium excretion. Mean arterial pressure increased significantly in MD-NOS1KO mice (P<0.01) but not NOS1flox/flox mice fed a high-salt diet. After infusion of angiotensin II, mean arterial pressure increased by 61.6 mmHg in MD-NOS1KO mice versus 32.0 mmHg in WT mice (P<0.01) fed a high-salt diet. These results indicate that NOS1β is a primary NOS1 isoform expressed in the macula densa and regulates the tubuloglomerular feedback response, the natriuretic response to acute volume expansion, and the development of salt-sensitive hypertension. These findings show a novel mechanism for salt sensitivity of BP and the significance of tubuloglomerular feedback response in long-term control of sodium excretion and BP.
Collapse
Affiliation(s)
- Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Departments of Physiology and Biophysics and
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Richard J Roman
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ying Ge
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Liang Cheng
- Departments of Physiology and Biophysics and
| | - Eddie Y Liu
- Departments of Physiology and Biophysics and
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Fan Fan
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jennifer Pollock
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Paul L Huang
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yiling Fu
- Departments of Physiology and Biophysics and
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Departments of Physiology and Biophysics and
| |
Collapse
|
30
|
Jang JH, Kang MJ, Ko GP, Kim SJ, Yi EC, Zhang YH. Identification of a novel splice variant of neuronal nitric oxide synthase, nNOSβ, in myofilament fraction of murine cardiomyocytes. Nitric Oxide 2015; 50:20-27. [PMID: 26271450 DOI: 10.1016/j.niox.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/30/2022]
Abstract
Splice variant forms of neuronal nitric oxide synthase (nNOS or NOS1), nNOSα and nNOSμ, are well established to be functionally expressed in discrete compartments in cardiomyocytes (e.g. sarcoplasmic reticulum, SR, caveolae in plasma membrane or mitochondria). So far, whether nNOS is expressed in myofilament fraction of cardiomyocytes and the splice variant form of nNOS are unknown. Immunoblotting results using two nNOS specific antibodies (BD Transduction Laboratories aa 1095-1289 and Santa Cruz Biotechnology aa 2-300) clearly demonstrated that nNOS was abundantly expressed in myofilament-enriched fraction of cardiomyocytes. Whilst the molecular weight of nNOS in membrane/cytosol fractions was ∼165 kDa, nNOS in myofilament was below 140 kDa, suggesting that the predominant splice variant of nNOS in myofilament is nNOSβ. RT-PCR results confirmed the expressions of both nNOSα and nNOSβ mRNAs in rat cardiomyocytes. Similarly, immunoprecipitation experiments using myofilament lysates of cardiomyocytes identified nNOS with low molecular weight (M.W. ∼140 kDa), confirming nNOSβ. Intriguingly, all three splice variants of nNOS were undetectable in the lysates of cardiomyocytes (including myofilament fractions) from nNOS-/- mice (which lacks nNOSα/μ). Furthermore, nNOSβ expression in myofilament of cardiomyocytes was not different in hypertensive rats compared to the level expressed in sham. iTRAQ-based quantitative proteomics analysis revealed that nNOS regulates phosphorylations of ∼20 proteins in cardiac myofilaments. Collectively, we provide direct evidence that different splice variants of nNOS are expressed in myofilament and membrane/cytosol fractions of cardiomyocytes. Discrete expressions of various splice variants in different compartments of cardiomyocytes suggest diverse roles nNOS play in healthy and diseased heart.
Collapse
Affiliation(s)
- Ji Hyun Jang
- Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine and College of Pharmacy, Seoul National University, Republic of Korea
| | - Gwang Pyo Ko
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine and College of Pharmacy, Seoul National University, Republic of Korea.
| | - Yin Hua Zhang
- Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea; Yanbian University Hospital, Yanji, Jilin Province, China; Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
31
|
Schmidtko A. Nitric oxide-mediated pain processing in the spinal cord. Handb Exp Pharmacol 2015; 227:103-17. [PMID: 25846616 DOI: 10.1007/978-3-662-46450-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A large body of evidence indicates that nitric oxide (NO) plays an important role in the processing of persistent inflammatory and neuropathic pain in the spinal cord. Several animal studies revealed that inhibition or knockout of NO synthesis ameliorates persistent pain. However, spinal delivery of NO donors caused dual pronociceptive and antinociceptive effects, pointing to multiple downstream signaling mechanisms of NO. This review summarizes the localization and function of NO-dependent signaling mechanisms in the spinal cord, taking account of the recent progress made in this field.
Collapse
Affiliation(s)
- Achim Schmidtko
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, Stockumer Str. 10, 58453, Witten, Germany,
| |
Collapse
|
32
|
Rahman MS, Thomas P. Molecular characterization and hypoxia-induced upregulation of neuronal nitric oxide synthase in Atlantic croaker: Reversal by antioxidant and estrogen treatments. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:91-106. [DOI: 10.1016/j.cbpa.2015.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 01/27/2023]
|
33
|
James BM, Li Q, Luo L, Kendrick KM. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks. Front Cell Neurosci 2015; 9:105. [PMID: 25870540 PMCID: PMC4375995 DOI: 10.3389/fncel.2015.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022] Open
Abstract
There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS−/−) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS−/− animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS−/− animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS−/− animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS−/− animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS−/− animals could be rescued by the NO-donor, molsidomine. Both nNOS−/− and wildtype animals showed an age-associated decline in locomotor activity although young nNOS−/− animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity.
Collapse
Affiliation(s)
- Bronwen M James
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China ; Department of Medicine, St Bernard's Hospital Gibraltar, UK
| | - Qin Li
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| | - Lizhu Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| | - Keith M Kendrick
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| |
Collapse
|
34
|
Coomber B, Kowalkowski VL, Berger JI, Palmer AR, Wallace MN. Modulating central gain in tinnitus: changes in nitric oxide synthase in the ventral cochlear nucleus. Front Neurol 2015; 6:53. [PMID: 25806021 PMCID: PMC4354362 DOI: 10.3389/fneur.2015.00053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/25/2015] [Indexed: 01/30/2023] Open
Abstract
A significant challenge in tinnitus research lies in explaining how acoustic insult leads to tinnitus in some individuals, but not others. One possibility is genetic variability in the expression and function of neuromodulators – components of neural signaling that alter the balance of excitation and inhibition in neural circuits. An example is nitric oxide (NO) – a free radical and potent neuromodulator in the mammalian brain – that regulates plasticity via both pre-synaptic and postsynaptic mechanisms. Changes in NO have previously been implicated in tinnitus generation, specifically in the ventral cochlear nucleus (VCN). Here, we examined nitric oxide synthase (NOS) – the enzyme responsible for NO production – in the guinea pig VCN following acoustic trauma. NOS was present in most cell types – including spherical and globular bushy cells, small, medium, and large multipolar cells, and octopus cells – spanning the entire extent of the VCN. The staining pattern was symmetrical in control animals. Unilateral acoustic over-exposure (AOE) resulted in marked asymmetries between ipsilateral and contralateral sides of the VCN in terms of the distribution of NOS across the cochlear nuclei in animals with behavioral evidence of tinnitus: fewer NOS-positive cells and a reduced level of NOS staining was present across the whole extent of the contralateral VCN, relative to the ipsilateral VCN. The asymmetric pattern of NOS-containing cells was observed as early as 1 day after AOE and was also present in some animals at 3, 7, and 21 days after AOE. However, it was not until 8 weeks after AOE, when tinnitus had developed, that asymmetries were significant overall, compared with control animals. Asymmetrical NOS expression was not correlated with shifts in the threshold hearing levels. Variability in NOS expression between animals may represent one underlying difference that can be linked to whether or not tinnitus develops after noise exposure.
Collapse
Affiliation(s)
- Ben Coomber
- MRC Institute of Hearing Research , Nottingham , UK
| | - Victoria L Kowalkowski
- MRC Institute of Hearing Research , Nottingham , UK ; Otology and Hearing, Division of Clinical Neuroscience, University of Nottingham , Nottingham , UK
| | | | | | | |
Collapse
|
35
|
Hong YH, Frugier T, Zhang X, Murphy RM, Lynch GS, Betik AC, Rattigan S, McConell GK. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice. J Appl Physiol (1985) 2015; 118:1113-21. [PMID: 25749441 DOI: 10.1152/japplphysiol.00056.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/28/2015] [Indexed: 01/25/2023] Open
Abstract
Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.
Collapse
Affiliation(s)
- Yet Hoi Hong
- College of Health and Biomedicine and Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia; Department of Physiology, Faculty of Medicine, University of Malaya, Malaysia
| | - Tony Frugier
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| | - Xinmei Zhang
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
| | - Robyn M Murphy
- Department of Zoology, La Trobe University, Melbourne, Australia
| | - Gordon S Lynch
- Department of Physiology, University of Melbourne, Melbourne, Australia; and
| | - Andrew C Betik
- College of Health and Biomedicine and Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
| | - Stephen Rattigan
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Glenn K McConell
- College of Health and Biomedicine and Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia;
| |
Collapse
|
36
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 2015; 9:3. [PMID: 25653586 PMCID: PMC4300918 DOI: 10.3389/fnins.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.
Collapse
Affiliation(s)
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
37
|
Lacchini R, Muniz JJ, Nobre YTDA, Cologna AJ, Martins ACP, Tanus-Santos JE. nNOS polymorphisms are associated with responsiveness to sildenafil in clinical and postoperative erectile dysfunction. Pharmacogenomics 2015; 15:775-84. [PMID: 24897285 DOI: 10.2217/pgs.14.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Sildenafil potentiates the nitric oxide (NO) signaling pathway. Since neuronal NOS is very important in the penis, we assessed whether NOS1 polymorphisms are associated with altered responsiveness to sildenafil in erectile dysfunction (ED). MATERIALS & METHODS Patients (n = 137) were divided as clinical ED or postoperative ED. They were subdivided as good responders or poor responders to sildenafil, and genotypes for rs41279104 and rs2682826 NOS1 polymorphisms were determined. RESULTS We found that the rs41279104 CT genotype was associated with good responders in postoperative ED patients, while rs2682826 CT genotype was associated with good responders in postoperative ED, and the TT genotype associated with good responders in both groups. Finally, the CT haplotype was associated with good responders in postoperative ED. CONCLUSION NOS1 polymorphisms are associated with responsiveness to sildenafil in ED. Original submitted 20 November 2013; Revision submitted 31 January 2014.
Collapse
Affiliation(s)
- Riccardo Lacchini
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
38
|
Müller M, Colcuc S, Drescher DG, Eckardt AJ, von Pein H, Taube C, Schumacher J, Gockel HR, Schimanski CC, Lang H, Gockel I. Murine genetic deficiency of neuronal nitric oxide synthase (nNOS(-/-) ) and interstitial cells of Cajal (W/W(v) ): Implications for achalasia? J Gastroenterol Hepatol 2014; 29:1800-7. [PMID: 24720557 DOI: 10.1111/jgh.12600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Nitric oxide (NO) is an important inhibitory mediator of esophageal function, and its lack leads to typical features of achalasia. In contrast, the role of intramuscular interstitial cells of Cajal (ICC-IM) and vasoactive intestinal peptide (VIP) in lower esophageal sphincter (LES) function is still controversial. Therefore, we examined the function and morphology of the LES in vivo in NO-deficient (nNOS(-/-) ), ICC-IM-deficient (W/W(v) )-, and wild-type (WT) mice. METHODS Esophageal manometry was performed with a micro-sized transducer catheter to quantify LES pressure, swallow evoked LES relaxation, and esophageal body motility. The LES morphology was examined by semiquantitative analysis of the immunoreactivity (reduction grade I-IV) of neuronal NOS (nNOS), ICC-IM, and VIP and their correlation with esophageal function. RESULTS nNOS(-/-) in comparison to WT mice showed a significantly higher LES mean resting pressure with an impaired swallow induced relaxation, whereas W/W(v) mice had a hypotensive LES with decreased relaxation. W/W(v) and nNOS(-/-) mice demonstrated differing degrees of tubular esophageal dysfunction. The reduced immunoreactivity of nNOS correlated with an increased LES pressure and decreased LES relaxation, respectively. Cajal-cell reduction correlated with impaired LES relaxation, whereas VIP reduction revealed no correlation with esophageal function. CONCLUSIONS The reduction of ICC-IM and nNOS can cause dysfunction of the LES and esophageal peristalsis, whereas VIP reduction seems to have no effect. ICC-IM and nNOS deficiency might be independent relevant causes of esophageal dysfunction similar to that seen in human achalasia.
Collapse
Affiliation(s)
- Michaela Müller
- Department of Gastroenterology, German Diagnostic Clinic, Wiesbaden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Froehner SC, Reed SM, Anderson KN, Huang PL, Percival JM. Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice. Hum Mol Genet 2014; 24:492-505. [PMID: 25214536 DOI: 10.1093/hmg/ddu469] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack nNOSμ and nNOSβ to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSβ was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSμ and nNOSβ is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSβ as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies.
Collapse
Affiliation(s)
- Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington Medical School, Seattle, WA, USA
| | - Sarah M Reed
- Department of Physiology and Biophysics, University of Washington Medical School, Seattle, WA, USA
| | - Kendra N Anderson
- Department of Physiology and Biophysics, University of Washington Medical School, Seattle, WA, USA
| | - Paul L Huang
- Cardiovascular Research Center and Harvard Stem Cell Institute, Massachusetts General Hospital, Boston, MA, USA and
| | - Justin M Percival
- Department of Physiology and Biophysics, University of Washington Medical School, Seattle, WA, USA Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
40
|
Lies B, Groneberg D, Friebe A. Toward a better understanding of gastrointestinal nitrergic neuromuscular transmission. Neurogastroenterol Motil 2014; 26:901-12. [PMID: 24827638 DOI: 10.1111/nmo.12367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/21/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nitric oxide (NO) is an important inhibitory neurotransmitter in the gastrointestinal (GI) tract. The majority of nitrergic effects are transduced by NO-sensitive guanylyl cyclase (NO-GC) as the receptor for NO, and, thus, mediated by cGMP-dependent mechanisms. Work carried out during the past years has demonstrated NO to be largely involved in GI smooth muscle relaxation and motility. However, detailed investigation of nitrergic signaling has turned out to be complicated as NO-GC was identified in several different GI cell types such as smooth muscle cells, interstitial cells of Cajal and fibroblast-like cells. With regards to nitrergic neurotransmission, special focus has been placed on the role of interstitial cells of Cajal using mutant mice with reduced populations of ICC. Recently, global and cell-specific knockout mice for enzymes participating in nitrergic signaling have been generated providing a suitable approach to further examine the role of NO-mediated signaling in GI smooth muscle. PURPOSE This review discusses the current knowledge on nitrergic mechanisms in gastrointestinal neuromuscular transmission with a focus on genetic models and outlines possible further investigations to gain better understanding on NO-mediated effects in the GI tract.
Collapse
Affiliation(s)
- B Lies
- Physiologisches Institut I, Universität Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
41
|
Hinova-Palova DV, Edelstein L, Landzhov B, Minkov M, Malinova L, Hristov S, Denaro FJ, Alexandrov A, Kiriakova T, Brainova I, Paloff A, Ovtscharoff W. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum. Front Syst Neurosci 2014; 8:96. [PMID: 24904317 PMCID: PMC4034338 DOI: 10.3389/fnsys.2014.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum-one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies.
Collapse
Affiliation(s)
- Dimka V Hinova-Palova
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | | | - Boycho Landzhov
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Minko Minkov
- Department of Anatomy and Histology, Medical University Varna, Bulgaria
| | - Lina Malinova
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Stanislav Hristov
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Frank J Denaro
- Department of Biology, Morgan State University Baltimore, MD, USA
| | - Alexandar Alexandrov
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Teodora Kiriakova
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Ilina Brainova
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Adrian Paloff
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Wladimir Ovtscharoff
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| |
Collapse
|
42
|
Zhang YH, Jin CZ, Jang JH, Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol 2014; 592:3189-200. [PMID: 24756636 DOI: 10.1113/jphysiol.2013.270306] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS or NOS1) is the major endogenous source of myocardial nitric oxide (NO), which facilitates cardiac relaxation and modulates contraction. In the healthy heart it regulates intracellular Ca(2+), signalling pathways and oxidative homeostasis and is upregulated from early phases upon pathogenic insult. nNOS plays pivotal roles in protecting the myocardium from increased oxidative stress, systolic/diastolic dysfunction, adverse structural remodelling and arrhythmias in the failing heart. Here, we show that the downstream target proteins of nNOS and underlying post-transcriptional modifications are shifted during disease progression from Ca(2+)-handling proteins [e.g. PKA-dependent phospholamban phosphorylation (PLN-Ser(16))] in the healthy heart to cGMP/PKG-dependent PLN-Ser(16) with acute angiotensin II (Ang II) treatment. In early hypertension, nNOS-derived NO is involved in increases of cGMP/PKG-dependent troponin I (TnI-Ser(23/24)) and cardiac myosin binding protein C (cMBP-C-Ser(273)). However, nNOS-derived NO is shown to increase S-nitrosylation of various Ca(2+)-handling proteins in failing myocardium. The spatial compartmentation of nNOS and its translocation for diverse binding partners in the diseased heart or various nNOS splicing variants and regulation in response to pathological stress may be responsible for varied underlying mechanisms and functions. In this review, we endeavour to outline recent advances in knowledge of the molecular mechanisms mediating the functions of nNOS in the myocardium in both normal and diseased hearts. Insights into nNOS gene regulation in various tissues are discussed. Overall, nNOS is an important cardiac protector in the diseased heart. The dynamic localization and various mediating mechanisms of nNOS ensure that it is able to regulate functions effectively in the heart under stress.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea Ischaemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, South Korea Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Chun Zi Jin
- Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Ji Hyun Jang
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yue Wang
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
43
|
Aquilano K, Baldelli S, Ciriolo MR. Nuclear recruitment of neuronal nitric-oxide synthase by α-syntrophin is crucial for the induction of mitochondrial biogenesis. J Biol Chem 2013; 289:365-78. [PMID: 24235139 DOI: 10.1074/jbc.m113.506733] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) has various splicing variants and different subcellular localizations. nNOS can be found also in the nucleus; however, its exact role in this compartment is still not completely defined. In this report, we demonstrate that the PDZ domain allows the recruitment of nNOS to nuclei, thus favoring local NO production, nuclear protein S-nitrosylation, and induction of mitochondrial biogenesis. In particular, overexpression of PDZ-containing nNOS (nNOSα) increases S-nitrosylated CREB with consequent augmented binding on cAMP response element consensus sequence on peroxisome proliferator-activated receptor γ co-activator (PGC)-1α promoter. The resulting PGC-1α induction is accompanied by the expression of mitochondrial genes (e.g., TFAM, MtCO1) and increased mitochondrial mass. Importantly, full active nNOS lacking PDZ domain (nNOSβ) does not localize in nuclei and fails in inducing the expression of PGC-1α. Moreover, we substantiate that the mitochondrial biogenesis normally accompanying myogenesis is associated with nuclear translocation of nNOS. We demonstrate that α-Syntrophin, which resides in nuclei of myocytes, functions as the upstream mediator of nuclear nNOS translocation and nNOS-dependent mitochondrial biogenesis. Overall, our results indicate that altered nNOS splicing and nuclear localization could be contributing factors in human muscular diseases associated with mitochondrial impairment.
Collapse
Affiliation(s)
- Katia Aquilano
- From the Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy and
| | | | | |
Collapse
|
44
|
Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 2013; 7:190. [PMID: 24198758 PMCID: PMC3813972 DOI: 10.3389/fncel.2013.00190] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/05/2013] [Indexed: 11/13/2022] Open
Abstract
Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex.
Collapse
Affiliation(s)
| | | | - Kevin Fox
- School of Biosciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
45
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
46
|
Hyndman KA, Xue J, MacDonell A, Speed JS, Jin C, Pollock JS. Distinct regulation of inner medullary collecting duct nitric oxide production from mice and rats. Clin Exp Pharmacol Physiol 2013; 40:233-9. [PMID: 23331097 DOI: 10.1111/1440-1681.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) and NO synthase 1 (NOS1) maintain sodium and water homeostasis. The NOS1α and NOS1β splice variants are expressed in the rat inner medulla, but only NOS1β is expressed in the mouse. Collecting duct NOS1 is necessary for blood pressure control. We hypothesized that NOS1 splice variant expression and NO production in the inner medullary collecting duct (IMCD) are regulated differently in mice and rats by high dietary sodium. Male C57blk/J6 mice and Sprague-Dawley rats were fed a 0.4% (normal salt; NS), or 4% (high salt; HS) NaCl diet for 2 or 7 days. Mean arterial pressure was not altered by HS, whereas urinary sodium excretion in mice and rats was increased significantly. Urinary excretion of nitrate/nitrite (NO(x)) and IMCD nitrite production were significantly greater in mice compared with rats on the HS diet. Western blotting indicated that only NOS1β and NOS3 were expressed in the mouse IMCD and that expression was unaffected by the HS diet at either time point. In contrast, NOS1α was detected in the IMCD of rats, in addition to NOS1β and NOS3. Feeding of the HS diet for 2 days increased NOS1α and NOS1β expression in the rat IMCD and 7 day feeding of the HS diet further increased NOS1β expression. Expression of NOS3 was unchanged by the HS diet at either time point. In conclusion, IMCD NO production in mice and rats is distinctly regulated under both NS and HS conditions, including expression of NOS1 splice variants.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Experimental Medicine, Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW In recent years, renal collecting duct-specific endothelin-1 (ET1), endothelin A (ETA) and endothelin B (ETB) receptors as well as nitric oxide synthase 1 (NOS1) knockout mice have been developed with subsequent identification for an integral role in regulation of sodium water homeostasis and ultimately blood pressure. The focus of this review is to integrate these models and to propose a scheme for the control of sodium excretion by the collecting duct and the endothelin/ETB/NOS system. RECENT FINDINGS NOS1 splice variants are expressed in the kidney, especially in the collecting duct. Mice express predominantly NOS1β in the medulla, with NOS1α and NOS1β in the cortex, whereas rats express NOS1α and NOS1β in both the cortex and medulla. Novel transcription of collecting duct ET1 mediated by epithelial sodium channels, mitochondrial Na/Ca exchangers and glucocorticoids has been determined. ET1 via the ETB receptor increases nitric oxide production in both rat and mouse collecting ducts, suggesting that NOS1β is linked to ET1-dependent NOS activation in the kidney. As well, genetic deletion of NOS1 splice variants in the collecting duct results in a salt-sensitive hypertensive phenotype in mice, much like the collecting duct ET1 and collecting duct ETB knockout mice. SUMMARY In the collecting duct, the ET1/nitric oxide pathways are intimately linked, and deletion of collecting duct ET1, ETB receptor or NOS1β results in a salt-sensitive phenotype, which is at least partially dependent on dysregulation of sodium and water reabsorption.
Collapse
|
48
|
Hyndman KA, Boesen EI, Elmarakby AA, Brands MW, Huang P, Kohan DE, Pollock DM, Pollock JS. Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure. Hypertension 2013; 62:91-8. [PMID: 23608660 DOI: 10.1161/hypertensionaha.113.01291] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide is a pronatriuretic and prodiuretic factor. The highest renal NO synthase (NOS) activity is found in the inner medullary collecting duct. The collecting duct (CD) is the site of daily fine-tune regulation of sodium balance, and led us to hypothesize that a CD-specific deletion of NOS1 would result in an impaired ability to excrete a sodium load leading to a salt-sensitive blood pressure phenotype. We bred AQP2-CRE mice with NOS1 floxed mice to produce flox control and CD-specific NOS1 knockout (CDNOS1KO) littermates. CDs from CDNOS1KO mice produced 75% less nitrite, and urinary nitrite+nitrate (NOx) excretion was significantly blunted in the knockout genotype. When challenged with high dietary sodium, CDNOS1KO mice showed significantly reduced urine output, sodium, chloride, and NOx excretion, and increased mean arterial pressure relative to flox control mice. In humans, urinary NOx is a newly identified biomarker for the progression of hypertension. These findings reveal that NOS1 in the CD is critical in the regulation of fluid-electrolyte balance, and this new genetic model of CD NOS1 gene deletion will be a valuable tool to study salt-dependent blood pressure mechanisms.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Experimental Medicine, Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ahmed A Elmarakby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | | | | | | | | | |
Collapse
|
49
|
Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal 2013; 18:1078-99. [PMID: 22871241 PMCID: PMC3567782 DOI: 10.1089/ars.2012.4824] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca(2+) homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. RECENT ADVANCES Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. CRITICAL ISSUES Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. FUTURE DIRECTIONS Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance.
Collapse
Affiliation(s)
- Ricardo Carnicer
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mark J. Crabtree
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Vidhya Sivakumaran
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, Maryland
| | - Barbara Casadei
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University Medical Institutions, Baltimore, Maryland
| |
Collapse
|
50
|
Nott A, Nitarska J, Veenvliet JV, Schacke S, Derijck AAHA, Sirko P, Muchardt C, Pasterkamp RJ, Smidt MP, Riccio A. S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proc Natl Acad Sci U S A 2013; 110:3113-8. [PMID: 23359715 PMCID: PMC3581896 DOI: 10.1073/pnas.1218126110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic epigenetic modifications play a key role in mediating the expression of genes required for neuronal development. We previously identified nitric oxide (NO) as a signaling molecule that mediates S-nitrosylation of histone deacetylase 2 (HDAC2) and epigenetic changes in neurons. Here, we show that HDAC2 nitrosylation regulates neuronal radial migration during cortical development. Bead-array analysis performed in the developing cortex revealed that brahma (Brm), a subunit of the ATP-dependent chromatin-remodeling complex BRG/brahma-associated factor, is one of the genes regulated by S-nitrosylation of HDAC2. In the cortex, expression of a mutant form of HDAC2 that cannot be nitrosylated dramatically inhibits Brm expression. Our study identifies NO and HDAC2 nitrosylation as part of a signaling pathway that regulates cortical development and the expression of Brm in neurons.
Collapse
Affiliation(s)
- Alexi Nott
- Medical Research Council Laboratory for Molecular Cell Biology, and
| | - Justyna Nitarska
- Medical Research Council Laboratory for Molecular Cell Biology, and
| | - Jesse V. Veenvliet
- Department of Neuroscience and Pharmacology, University Medical Center, Utrecht 3584 CG, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, Science Park University of Amsterdam, Amsterdam 1098 XH, The Netherlands; and
| | - Stephan Schacke
- Medical Research Council Laboratory for Molecular Cell Biology, and
| | - Alwin A. H. A. Derijck
- Department of Neuroscience and Pharmacology, University Medical Center, Utrecht 3584 CG, The Netherlands
| | - Piotr Sirko
- Medical Research Council Laboratory for Molecular Cell Biology, and
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | | | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, University Medical Center, Utrecht 3584 CG, The Netherlands
| | - Marten P. Smidt
- Department of Neuroscience and Pharmacology, University Medical Center, Utrecht 3584 CG, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, Science Park University of Amsterdam, Amsterdam 1098 XH, The Netherlands; and
| | - Antonella Riccio
- Medical Research Council Laboratory for Molecular Cell Biology, and
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|