1
|
Yang HH, Brezovec BE, Serratosa Capdevila L, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. Cell 2024; 187:6290-6308.e27. [PMID: 39293446 DOI: 10.1016/j.cell.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here, we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream of distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Our results suggest that a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bella E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | - Quinn X Vanderbeck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Freitas-Santos J, Brito IRR, Santana-Melo I, Oliveira KB, de Souza FMA, Gitai DLG, Duzzioni M, Bueno NB, de Araujo LA, Shetty AK, Castro OWD. Effects of cocaine, nicotine, and marijuana exposure in Drosophila Melanogaster development: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111049. [PMID: 38844126 DOI: 10.1016/j.pnpbp.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Abuse-related drug usage is a public health issue. Drosophila melanogaster has been used as an animal model to study the biological effects of these psychoactive substances in preclinical studies. Our objective in this review is to evaluate the adverse effects produced by cocaine, nicotine, and marijuana during the development of D. melanogaster. We searched experimental studies in which D. melanogaster was exposed to these three psychoactive drugs in seven online databases up to January 2023. Two reviewers independently extracted the data. Fifty-one studies met eligibility criteria and were included in the data extraction: nicotine (n = 26), cocaine (n = 20), and marijuana (n = 5). Fifteen studies were eligible for meta-analysis. Low doses (∼0.6 mM) of nicotine increased locomotor activity in fruit flies, while high doses (≥3 mM) led to a decrease. Similarly, exposure to cocaine increased locomotor activity, resulting in decreased climbing response in D. melanogaster. Studies with exposure to marijuana did not present a profile for our meta-analysis. However, this drug has been less associated with locomotor changes, but alterations in body weight and fat content and changes in cardiac function. Our analyses have shown that fruit flies exposed to drugs of abuse during different developmental stages, such as larvae and adults, exhibit molecular, morphological, behavioral, and survival changes that are dependent on the dosage. These phenotypes resemble the adverse effects of psychoactive substances in clinical medicine.
Collapse
Affiliation(s)
- Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Isa Rafaella Rocha Brito
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Daniel Leite Góes Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Nassib Bezerra Bueno
- Faculty of nutrition (FANUT), Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Lucas Anhezini de Araujo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
3
|
Medeiros AM, Hobbiss AF, Borges G, Moita M, Mendes CS. Mechanosensory bristles mediate avoidance behavior by triggering sustained local motor activity in Drosophila melanogaster. Curr Biol 2024; 34:2812-2830.e5. [PMID: 38861987 DOI: 10.1016/j.cub.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
During locomotion, most vertebrates-and invertebrates such as Drosophila melanogaster-are able to quickly adapt to terrain irregularities or avoid physical threats by integrating sensory information along with motor commands. Key to this adaptability are leg mechanosensory structures, which assist in motor coordination by transmitting external cues and proprioceptive information to motor centers in the central nervous system. Nevertheless, how different mechanosensory structures engage these locomotor centers remains poorly understood. Here, we tested the role of mechanosensory structures in movement initiation by optogenetically stimulating specific classes of leg sensory structures. We found that stimulation of leg mechanosensory bristles (MsBs) and the femoral chordotonal organ (ChO) is sufficient to initiate forward movement in immobile animals. While the stimulation of the ChO required brain centers to induce forward movement, unexpectedly, brief stimulation of leg MsBs triggered a fast response and sustained motor activity dependent only on the ventral nerve cord (VNC). Moreover, this leg-MsB-mediated movement lacked inter- and intra-leg coordination but preserved antagonistic muscle activity within joints. Finally, we show that leg-MsB activation mediates strong avoidance behavior away from the stimulus source, which is preserved even in the absence of a central brain. Overall, our data show that mechanosensory stimulation can elicit a fast motor response, independently of central brain commands, to evade potentially harmful stimuli. In addition, it sheds light on how specific sensory circuits modulate motor control, including initiation of movement, allowing a better understanding of how different levels of coordination are controlled by the VNC and central brain locomotor circuits.
Collapse
Affiliation(s)
- Alexandra M Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Anna F Hobbiss
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Gonçalo Borges
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Marta Moita
- Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - César S Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.
| |
Collapse
|
4
|
Das D, Ghosh G, Dutta A, Sherpa RD, Ghosh P, Hui SP, Ghosh S. Fruit ripening retardant Daminozide induces cognitive impairment, cell specific neurotoxicity, and genotoxicity in Drosophila melanogaster. Neurotoxicology 2024; 103:123-133. [PMID: 38851594 DOI: 10.1016/j.neuro.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND We explored neurotoxic and genotoxic effects of Daminozide, a fruit ripening retardant, on the brain of Drosophila melanogaster, based on our previous finding of DNA fragmentation in larval brain cell in the flies experimentally exposed to this chemicals. METHODS Adult flies were subjected to two distinct concentrations of daminozide (200 mg/L and 400 mg/L) mixed in culture medium, followed by an examination of specific behaviors such as courtship conditioning and aversive phototaxis, which serve as indicators of cognitive functions. We investigated brain histology and histochemistry to assess the overall toxicity of daminozide, focusing on neuron type-specific effects. Additionally, we conducted studies on gene expression specific to neuronal function. Statistical comparisons were then made between the exposed and control flies across all tested attributes. RESULTS The outcome of behavioral assays suggested deleterious effects of Daminozide on learning, short term and long term memory function. Histological examination of brain sections revealed cellular degeneration, within Kenyon cell neuropiles in Daminozide-exposed flies. Neurone specific Immuno-histochemistry study revealed significant reduction of dopaminergic and glutaminergic neurones with discernible reduction in cellular counts, alteration in cell and nuclear morphology among daminozide exposed flies. Gene expression analyses demonstrated upregulation of rutabaga (rut), hb9 and down regulation of PKa- C1, CrebB, Ace and nAchRbeta-1 in exposed flies which suggest dysregulation of gene functions involved in motor neuron activity, learning, and memory. CONCLUSION Taken together, our findings suggests that Daminozide induces multifaceted harmful impacts on the neural terrain of Drosophila melanogaster, posing a threat to its cognitive abilities.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER)- Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal, India
| | - Arthita Dutta
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rinchen D Sherpa
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls' College. Howrah. India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Sujay Ghosh
- Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
5
|
Babski H, Codianni M, Bhandawat V. Octopaminergic descending neurons in Drosophila: Connectivity, tonic activity and relation to locomotion. Heliyon 2024; 10:e29952. [PMID: 38698992 PMCID: PMC11064449 DOI: 10.1016/j.heliyon.2024.e29952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Projection neurons that communicate between different brain regions and local neurons that shape computation within a brain region form the majority of all neurons in the brain. Another important class of neurons is neuromodulatory neurons; these neurons are in much smaller numbers than projection/local neurons but have a large influence on computations in the brain. Neuromodulatory neurons are classified by the neurotransmitters they carry, such as dopamine and serotonin. Much of our knowledge of the effect of neuromodulators comes from experiments in which either a large population of neuromodulatory neurons or the entire population is perturbed. Alternatively, a given neuromodulator is exogenously applied. While these experiments are informative of the general role of the neurotransmitter, one limitation of these experiments is that the role of individual neuromodulatory neurons remains unknown. In this study, we investigate the role of a class of octopaminergic (octopamine is the invertebrate equivalent of norepinephrine) neurons in Drosophila or fruit fly. Neuromodulation in Drosophila work along similar principles as humans; and the smaller number of neuromodulatory neurons allow us to assess the role of individual neurons. This study focuses on a subpopulation of octopaminergic descending neurons (OA-DNs) whose cell bodies are in the brain and project to the thoracic ganglia. Using in-vivo whole-cell patch-clamp recordings and anatomical analyses that allow us to compare light microscopy data to the electron microscopic volumes available in the fly, we find that neurons within each cluster have similar physiological properties, including their relation to locomotion. However, neurons in the same cluster with similar anatomy have very different connectivity. Our data is consistent with the hypothesis that each OA-DN is recruited individually and has a unique function within the fly's brain.
Collapse
Affiliation(s)
- Helene Babski
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| | - Marcello Codianni
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| |
Collapse
|
6
|
Gowda SBM, Banu A, Hussain S, Mohammad F. Neuronal mechanisms regulating locomotion in adult Drosophila. J Neurosci Res 2024; 102:e25332. [PMID: 38646942 DOI: 10.1002/jnr.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.
Collapse
Affiliation(s)
- Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
7
|
Simpson JH. Descending control of motor sequences in Drosophila. Curr Opin Neurobiol 2024; 84:102822. [PMID: 38096757 PMCID: PMC11215313 DOI: 10.1016/j.conb.2023.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
The descending neurons connecting the fly's brain to its ventral nerve cord respond to sensory stimuli and evoke motor programs of varying complexity. Anatomical characterization of the descending neurons and their synaptic connections suggests how these circuits organize movements, while optogenetic manipulation of their activity reveals what behaviors they can induce. Monitoring their responses to sensory stimuli or during behavior performance indicates what information they may encode. Recent advances in all three approaches make the descending neurons an excellent place to better understand the sensorimotor integration and transformation required for nervous systems to govern the motor sequences that constitute animal behavior.
Collapse
Affiliation(s)
- Julie H Simpson
- Dept. Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, USA.
| |
Collapse
|
8
|
Yang HH, Brezovec LE, Capdevila LS, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562426. [PMID: 37904997 PMCID: PMC10614758 DOI: 10.1101/2023.10.15.562426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream from distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Notably, a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from brain cells that drive specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H. Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Luke E. Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305 USA
| | | | | | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Rachel I. Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
9
|
Costa-Machado LF, Garcia-Dominguez E, McIntyre RL, Lopez-Aceituno JL, Ballesteros-Gonzalez Á, Tapia-Gonzalez A, Fabregat-Safont D, Eisenberg T, Gomez J, Plaza A, Sierra-Ramirez A, Perez M, Villanueva-Bermejo D, Fornari T, Loza MI, Herradon G, Hofer SJ, Magnes C, Madeo F, Duerr JS, Pozo OJ, Galindo MI, Del Pino I, Houtkooper RH, Megias D, Viña J, Gomez-Cabrera MC, Fernandez-Marcos PJ. Peripheral modulation of antidepressant targets MAO-B and GABAAR by harmol induces mitohormesis and delays aging in preclinical models. Nat Commun 2023; 14:2779. [PMID: 37188705 PMCID: PMC10185515 DOI: 10.1038/s41467-023-38410-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
- Kaertor Foundation, EMPRENDIA Building, Floor 2, Office 4, Campus Vida, E-15706, Santiago de Compostela, Spain, E-15706, Santiago de Compostela, Spain
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jose Luis Lopez-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Álvaro Ballesteros-Gonzalez
- Developmental Biology and Disease Models Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Andrea Tapia-Gonzalez
- Neural Plasticity Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute - (IMIM), Barcelona, Spain
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006, Castelló de la Plana, Castellón, Spain
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Jesús Gomez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Adrian Plaza
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain
| | - Manuel Perez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - David Villanueva-Bermejo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL UAM-CSIC), C/ Nicolás Cabrera, 9, P.O. Box. 28049, Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL UAM-CSIC), C/ Nicolás Cabrera, 9, P.O. Box. 28049, Madrid, Spain
| | - María Isabel Loza
- Kaertor Foundation, EMPRENDIA Building, Floor 2, Office 4, Campus Vida, E-15706, Santiago de Compostela, Spain, E-15706, Santiago de Compostela, Spain
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonzalo Herradon
- Lab. Pharmacology, Faculty of Pharmacy, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Janet S Duerr
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute - (IMIM), Barcelona, Spain
| | - Maximo-Ibo Galindo
- Developmental Biology and Disease Models Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
- UPV-CIPF Joint Research Unit "Disease Mechanisms and Nanomedicine". Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Isabel Del Pino
- Neural Plasticity Group, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550, Alicante, Spain
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM + CSIC, E28049, Madrid, Spain.
| |
Collapse
|
10
|
Zhang J, Lentz L, Goldammer J, Iliescu J, Tanimura J, Riemensperger TD. Asymmetric Presynaptic Depletion of Dopamine Neurons in a Drosophila Model of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24108585. [PMID: 37239942 DOI: 10.3390/ijms24108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) often displays a strong unilateral predominance in arising symptoms. PD is correlated with dopamine neuron (DAN) degeneration in the substantia nigra pars compacta (SNPC), and in many patients, DANs appear to be affected more severely on one hemisphere than the other. The reason for this asymmetric onset is far from being understood. Drosophila melanogaster has proven its merit to model molecular and cellular aspects of the development of PD. However, the cellular hallmark of the asymmetric degeneration of DANs in PD has not yet been described in Drosophila. We ectopically express human α-synuclein (hα-syn) together with presynaptically targeted syt::HA in single DANs that innervate the Antler (ATL), a symmetric neuropil located in the dorsomedial protocerebrum. We find that expression of hα-syn in DANs innervating the ATL yields asymmetric depletion of synaptic connectivity. Our study represents the first example of unilateral predominance in an invertebrate model of PD and will pave the way to the investigation of unilateral predominance in the development of neurodegenerative diseases in the genetically versatile invertebrate model Drosophila.
Collapse
Affiliation(s)
- Jiajun Zhang
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Lucie Lentz
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jens Goldammer
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jessica Iliescu
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jun Tanimura
- Neuronal Circuit Division, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Thomas Dieter Riemensperger
- Institute of Zoology, Experimental Morphology and Neuroanatomy, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
11
|
Bressan GN, Cardoso PM, Reckziegel J, Fachinetto R. Reserpine and PCPA reduce heat tolerance in Drosophila melanogaster. Life Sci 2023; 318:121497. [PMID: 36780938 DOI: 10.1016/j.lfs.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Drosophila melanogaster is a model organism to study molecular mechanisms and the role of the genes and proteins involved in thermal nociception. Monoamines (i.e. dopamine) have been involved in temperature preference behavior in D. melanogaster. Therefore, we investigated whether the monoamines, particularly dopamine and serotonin, participate in the response to thermal nociceptive stimuli in D. melanogaster. Flies were treated with reserpine (an inhibitor of vesicular monoamines transporter, 3-300 μM), 3-Iodo-L-tyrosine (3-I-T, an inhibitor of tyrosine hydroxylase, 16.28-65.13 mM), and para-Chloro-DL-phenylalanine (PCPA, an inhibitor of tryptophan hydroxylase, 20-80 mM); then, the flies were subjected to tests of thermal tolerance and avoidance of noxious heat. Climbing behavior was used as a test to evaluate locomotor activity. Reserpine reduces the thermal tolerance profile of the D. melanogaster, as well as the avoidance of noxious heat and locomotor activity depending on the concentration. PCPA, but not 3-I-T, decreased heat tolerance and avoidance of noxious heat. These data suggest that monoamines, particularly serotonin, are associated with the impaired avoidance of noxious heat which could be related to the reduction of heat tolerance in D. melanogaster.
Collapse
Affiliation(s)
- Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Garrett EC, Bielawski AM, Ruchti E, Sherer LM, Waghmare I, Hess-Homeier D, McCabe BD, Stowers RS, Certel SJ. The matricellular protein Drosophila Cellular Communication Network Factor is required for synaptic transmission and female fertility. Genetics 2023; 223:iyac190. [PMID: 36602539 PMCID: PMC9991515 DOI: 10.1093/genetics/iyac190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023] Open
Abstract
Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.
Collapse
Affiliation(s)
| | - Ashley M Bielawski
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Lewis M Sherer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Indrayani Waghmare
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Hess-Homeier
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - R Steven Stowers
- Department of Cell Biology and Microbiology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
13
|
Banu A, Gowda SBM, Salim S, Mohammad F. Serotonergic control of feeding microstructure in Drosophila. Front Behav Neurosci 2023; 16:1105579. [PMID: 36733453 PMCID: PMC9887136 DOI: 10.3389/fnbeh.2022.1105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
To survive, animals maintain energy homeostasis by seeking out food. Compared to freely feeding animals, food-deprived animals may choose different strategies to balance both energy and nutrition demands, per the metabolic state of the animal. Serotonin mediates internal states, modifies existing neural circuits, and regulates animal feeding behavior, including in humans and fruit flies. However, an in-depth study on the neuromodulatory effects of serotonin on feeding microstructure has been held back for several technical reasons. Firstly, most feeding assays lack the precision of manipulating neuronal activity only when animals start feeding, which does not separate neuronal effects on feeding from foraging and locomotion. Secondly, despite the availability of optogenetic tools, feeding in adult fruit flies has primarily been studied using thermogenetic systems, which are confounded with heat. Thirdly, most feeding assays have used food intake as a measurement, which has a low temporal resolution to dissect feeding at the microstructure level. To circumvent these problems, we utilized OptoPAD assay, which provides the precision of optogenetics to control neural activity contingent on the ongoing feeding behavior. We show that manipulating the serotonin circuit optogenetically affects multiple feeding parameters state-dependently. Food-deprived flies with optogenetically activated and suppressed serotonin systems feed with shorter and longer sip durations and longer and shorter inter-sip intervals, respectively. We further show that serotonin suppresses and enhances feeding via 5-HT1B and 5-HT7 receptors, respectively.
Collapse
|
14
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Dravecz N, Shaw T, Davies I, Brown C, Ormerod L, Vu G, Walker T, Taank T, Shirras AD, Broughton SJ. Reduced Insulin Signaling Targeted to Serotonergic Neurons but Not Other Neuronal Subtypes Extends Lifespan in Drosophila melanogaster. Front Aging Neurosci 2022; 14:893444. [PMID: 35865744 PMCID: PMC9294736 DOI: 10.3389/fnagi.2022.893444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced Insulin/IGF-like signaling (IIS) plays an evolutionarily conserved role in improving longevity and some measures of health-span in model organisms. Recent studies, however, have found a disconnection between lifespan extension and behavioral health-span. We have previously shown that reduction of IIS in Drosophila neurons extends female lifespan but does not improve negative geotaxis senescence and has a detrimental effect on exploratory walking senescence in both sexes. We hypothesize that individual neuronal subtypes respond differently to IIS changes, thus the behavioral outcomes of pan-neuronal IIS reduction are the balance of positive, negative and neutral functional effects. In order to further understand how reduced IIS in neurons independently modulates lifespan and locomotor behavioral senescence we expressed a dominant negative Insulin receptor transgene selectively in individual neuronal subtypes and measured the effects on lifespan and two measures of locomotor senescence, negative geotaxis and exploratory walking. IIS reduction in cholinergic, GABAergic, dopaminergic, glutamatergic, and octopaminergic neurons was found to have either no affect or a detrimental effect on lifespan and locomotor senescence. However, reduction of IIS selectively in serotonergic neurons resulted in extension of lifespan in females with no effect on locomotor senescence. These data indicate that individual neuronal subtypes respond differently to IIS changes in the modulation of lifespan and locomotor senescence, and identify a specific role for the insulin receptor in serotonergic neurons in the modulation of lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Susan J. Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
16
|
Nakagawa H, Maehara S, Kume K, Ohta H, Tomita J. Biological functions of α2-adrenergic-like octopamine receptor in Drosophila melanogaster. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12807. [PMID: 35411674 PMCID: PMC9744561 DOI: 10.1111/gbb.12807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Octopamine regulates various physiological phenomena including memory, sleep, grooming and aggression in insects. In Drosophila, four types of octopamine receptors have been identified: Oamb, Oct/TyrR, OctβR and Octα2R. Among these receptors, Octα2R was recently discovered and pharmacologically characterized. However, the effects of the receptor on biological functions are still unknown. Here, we showed that Octα2R regulated several behaviors related to octopamine signaling. Octα2R hypomorphic mutant flies showed a significant decrease in locomotor activity. We found that Octα2R expressed in the pars intercerebralis, which is a brain region projected by octopaminergic neurons, is involved in control of the locomotor activity. Besides, Octα2R hypomorphic mutants increased time and frequency of grooming and inhibited starvation-induced hyperactivity. These results indicated that Octα2R expressed in the central nervous system is responsible for the involvement in physiological functions.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Shiori Maehara
- Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Hiroto Ohta
- Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan,Department of Applied Microbial Engineering, Faculty of Life SciencesSojo UniversityKumamotoJapan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| |
Collapse
|
17
|
Israel S, Rozenfeld E, Weber D, Huetteroth W, Parnas M. Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila. Curr Biol 2022; 32:1131-1149.e7. [PMID: 35139358 PMCID: PMC8926844 DOI: 10.1016/j.cub.2022.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/31/2021] [Accepted: 01/12/2022] [Indexed: 01/05/2023]
Abstract
How different sensory stimuli are collected, processed, and further transformed into a coordinated motor response is a fundamental question in neuroscience. In particular, the internal and external conditions that drive animals to switch to backward walking and the mechanisms by which the nervous system supports such behavior are still unknown. In fruit flies, moonwalker descending neurons (MDNs) are considered command-type neurons for backward locomotion as they receive visual and mechanosensory inputs and transmit motor-related signals to downstream neurons to elicit backward locomotion. Whether other modalities converge onto MDNs, which central brain neurons activate MDNs, and whether other retreat-driving pathways exist is currently unknown. Here, we show that olfactory stimulation can elicit MDN-mediated backward locomotion. Moreover, we identify the moonwalker subesophageal zone neurons (MooSEZs), a pair of bilateral neurons, which can trigger straight and rotational backward locomotion. MooSEZs act via postsynaptic MDNs and via other descending neurons. Although they respond to olfactory input, they are not required for odor-induced backward walking. Thus, this work reveals an important modality input to MDNs, a novel set of neurons presynaptic to MDNs driving backward locomotion and an MDN-independent backward locomotion pathway.
Collapse
Affiliation(s)
- Shai Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Denise Weber
- Institute for Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Wolf Huetteroth
- Institute for Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
18
|
Vyas M, Parepally SK, Kamala Jayanthi PD. Is the Natural Instinct to Oviposit in Mated Female Oriental Fruit Fly, Bactrocera dorsalis More of a Brain-Independent Act? Front Physiol 2022; 13:800441. [PMID: 35360250 PMCID: PMC8964073 DOI: 10.3389/fphys.2022.800441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
What physiological and neuro-molecular changes control the female oviposition behavior post-mating in insects? The molecular changes that occur in a gravid female insect are difficult to dissect out considering the distinct behavioral patterns displayed by different insect groups. To understand the role of the brain center in Oriental fruit fly, Bactrocera dorsalis oviposition, egg-laying behavior was analyzed in γ-octalactone exposed, decapitated mated B. dorsalis females. Interestingly, the females displayed a possible urge to oviposit, which suggests a natural instinct to pass on the gene pool. Expression analysis of certain genes involved in oviposition behavior was also carried out in these insects to explore the molecular aspects of such behavior. This study tries to assess the involvement of brain center in egg-laying and also explore the role of certain neurotransmitter-related receptors in decapitated B. dorsalis oviposition behavior. Our results indicate that B. dorsalis oviposition behavior could potentially have a bypass route of neuronal control devoid of the brain. The study reported here establishes that decapitation in gravid females fails to abolish their ability to sense ovipositional cues and also to oviposit.
Collapse
|
19
|
DiCarlo GE, Wallace MT. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci Biobehav Rev 2022; 133:104494. [PMID: 34906613 PMCID: PMC8792250 DOI: 10.1016/j.neubiorev.2021.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by deficits in social communication and by patterns of restricted interests and/or repetitive behaviors. The Simons Foundation Autism Research Initiative's Human Gene and CNV Modules now list over 1000 genes implicated in ASD and over 2000 copy number variant loci reported in individuals with ASD. Given this ever-growing list of genetic changes associated with ASD, it has become evident that there is likely not a single genetic cause of this disorder nor a single neurobiological basis of this disorder. Instead, it is likely that many different neurobiological perturbations (which may represent subtypes of ASD) can result in the set of behavioral symptoms that we called ASD. One such of possible subtype of ASD may be associated with dopamine dysfunction. Precise regulation of synaptic dopamine (DA) is required for reward processing and behavioral learning, behaviors which are disrupted in ASD. Here we review evidence for DA dysfunction in ASD and in animal models of ASD. Further, we propose that these studies provide a scaffold for scientists and clinicians to consider subcategorizing the ASD diagnosis based on the genetic changes, neurobiological difference, and behavioral features identified in individuals with ASD.
Collapse
Affiliation(s)
- Gabriella E DiCarlo
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States
| | - Mark T Wallace
- Vanderbilt University Brain Institute, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States; Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
20
|
Hernandez-Diaz S, Ghimire S, Sanchez-Mirasierra I, Montecinos-Oliva C, Swerts J, Kuenen S, Verstreken P, Soukup SF. Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol Dis 2021; 163:105595. [PMID: 34933093 DOI: 10.1016/j.nbd.2021.105595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Synapses are critical for neuronal communication and brain function. To maintain neuronal homeostasis, synapses rely on autophagy. Autophagic alterations cause neurodegeneration and synaptic dysfunction is a feature in neurodegenerative diseases. In Parkinson's disease (PD), where the loss of synapses precedes dopaminergic neuron loss, various PD-causative proteins are involved in the regulation of autophagy. So far only a few factors regulating autophagy at the synapse have been identified and the molecular mechanisms underlying autophagy at the synapse is only partially understood. Here, we describe Endophilin-B (EndoB) as a novel player in the regulation of synaptic autophagy in health and disease. We demonstrate that EndoB is required for autophagosome biogenesis at the synapse, whereas the loss of EndoB blocks the autophagy induction promoted by the PD mutation LRRK2G2019S. We show that EndoB is required to prevent neuronal loss. Moreover, loss of EndoB in the Drosophila visual system leads to an increase in synaptic contacts between photoreceptor terminals and their post-synaptic synapses. These data confirm the role of autophagy in synaptic contact formation and neuronal survival.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Jef Swerts
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Sabine Kuenen
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
21
|
Goldsmith CA, Quinn RD, Szczecinski NS. Investigating the role of low level reinforcement reflex loops in insect locomotion. BIOINSPIRATION & BIOMIMETICS 2021; 16:065008. [PMID: 34547724 DOI: 10.1088/1748-3190/ac28ea] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Insects are highly capable walkers, but many questions remain regarding how the insect nervous system controls locomotion. One particular question is how information is communicated between the 'lower level' ventral nerve cord (VNC) and the 'higher level' head ganglia to facilitate control. In this work, we seek to explore this question by investigating how systems traditionally described as 'positive feedback' may initiate and maintain stepping in the VNC with limited information exchanged between lower and higher level centers. We focus on the 'reflex reversal' of the stick insect femur-tibia joint between a resistance reflex (RR) and an active reaction in response to joint flexion, as well as the activation of populations of descending dorsal median unpaired (desDUM) neurons from limb strain as our primary reflex loops. We present the development of a neuromechanical model of the stick insect (Carausius morosus) femur-tibia (FTi) and coxa-trochanter joint control networks 'in-the-loop' with a physical robotic limb. The control network generates motor commands for the robotic limb, whose motion and forces generate sensory feedback for the network. We based our network architecture on the anatomy of the non-spiking interneuron joint control network that controls the FTi joint, extrapolated network connectivity based on known muscle responses, and previously developed mechanisms to produce 'sideways stepping'. Previous studies hypothesized that RR is enacted by selective inhibition of sensory afferents from the femoral chordotonal organ, but no study has tested this hypothesis with a model of an intact limb. We found that inhibiting the network's flexion position and velocity afferents generated a reflex reversal in the robot limb's FTi joint. We also explored the intact network's ability to sustain steady locomotion on our test limb. Our results suggested that the reflex reversal and limb strain reinforcement mechanisms are both necessary but individually insufficient to produce and maintain rhythmic stepping in the limb, which can be initiated or halted by brief, transient descending signals. Removing portions of this feedback loop or creating a large enough disruption can halt stepping independent of the higher-level centers. We conclude by discussing why the nervous system might control motor output in this manner, as well as how to apply these findings to generalized nervous system understanding and improved robotic control.
Collapse
Affiliation(s)
- C A Goldsmith
- West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America
| | - R D Quinn
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - N S Szczecinski
- West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America
| |
Collapse
|
22
|
Nelson JM, Saunders CJ, Johnson EC. The Intrinsic Nutrient Sensing Adipokinetic Hormone Producing Cells Function in Modulation of Metabolism, Activity, and Stress. Int J Mol Sci 2021; 22:7515. [PMID: 34299134 PMCID: PMC8307046 DOI: 10.3390/ijms22147515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022] Open
Abstract
All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.
Collapse
Affiliation(s)
- Jonathan M. Nelson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
| | - Cecil J. Saunders
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
| | - Erik C. Johnson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA; (J.M.N.); (C.J.S.)
- Center of Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
23
|
Thoener J, König C, Weiglein A, Toshima N, Mancini N, Amin F, Schleyer M. Associative learning in larval and adult Drosophila is impaired by the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine. Biol Open 2021; 10:269081. [PMID: 34106227 PMCID: PMC8214425 DOI: 10.1242/bio.058198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Across the animal kingdom, dopamine plays a crucial role in conferring reinforcement signals that teach animals about the causal structure of the world. In the fruit fly Drosophila melanogaster, dopaminergic reinforcement has largely been studied using genetics, whereas pharmacological approaches have received less attention. Here, we apply the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine (3IY), which causes acute systemic inhibition of dopamine signaling, and investigate its effects on Pavlovian conditioning. We find that 3IY feeding impairs sugar-reward learning in larvae while leaving task-relevant behavioral faculties intact, and that additional feeding of a precursor of dopamine (L-3,4-dihydroxyphenylalanine, L-DOPA), rescues this impairment. Concerning a different developmental stage and for the aversive valence domain. Moreover, we demonstrate that punishment learning by activating the dopaminergic neuron PPL1-γ1pedc in adult flies is also impaired by 3IY feeding, and can likewise be rescued by L-DOPA. Our findings exemplify the advantages of using a pharmacological approach in combination with the genetic techniques available in D. melanogaster to manipulate neuronal and behavioral function. Summary: We surveyed the effects of a dopamine-synthesis inhibitor on associative learning in larval and adult Drosophila. This approach can supplement genetic tools in investigating the conserved reinforcing function of dopamine.
Collapse
Affiliation(s)
- Juliane Thoener
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Christian König
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Naoko Toshima
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Nino Mancini
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Fatima Amin
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| |
Collapse
|
24
|
Ben-Menahem D. GnRH-Related Neurohormones in the Fruit Fly Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22095035. [PMID: 34068603 PMCID: PMC8126107 DOI: 10.3390/ijms22095035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic and phylogenetic analyses of various invertebrate phyla revealed the existence of genes that are evolutionarily related to the vertebrate’s decapeptide gonadotropin-releasing hormone (GnRH) and the GnRH receptor genes. Upon the characterization of these gene products, encoding peptides and putative receptors, GnRH-related peptides and their G-protein coupled receptors have been identified. These include the adipokinetic hormone (AKH) and corazonin (CRZ) in insects and their cognate receptors that pair to form bioactive signaling systems, which network with additional neurotransmitters/hormones (e.g., octopamine and ecdysone). Multiple studies in the past 30 years have identified many aspects of the biology of these peptides that are similar in size to GnRH and function as neurohormones. This review briefly describes the main activities of these two neurohormones and their receptors in the fruit fly Drosophila melanogaster. The similarities and differences between Drosophila AKH/CRZ and mammalian GnRH signaling systems are discussed. Of note, while GnRH has a key role in reproduction, AKH and CRZ show pleiotropic activities in the adult fly, primarily in metabolism and stress responses. From a protein evolution standpoint, the GnRH/AKH/CRZ family nicely demonstrates the developmental process of neuropeptide signaling systems emerging from a putative common ancestor and leading to divergent activities in distal phyla.
Collapse
Affiliation(s)
- David Ben-Menahem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
25
|
Araujo SM, Bortolotto VC, Poetini MR, Dahleh MMM, Couto SDF, Pinheiro FC, Meichtry LB, Musachio EAS, Ramborger BP, Roehrs R, Guerra GP, Prigol M. γ-Oryzanol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in Drosophila melanogaster. Stress 2021; 24:282-293. [PMID: 32723199 DOI: 10.1080/10253890.2020.1790519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic unpredictable mild stress (CUMS) is a valid model for inducing depression-like symptoms in animal models, causing predictive behavioral, neurochemical, and physiological responses to this condition. This work aims to evaluate the possible antidepressant effect of γ-oryzanol (ORY) in the CUMS-induced depressive model in male Drosophila melanogaster. We will use the CUMS protocol to continue the study previously conducted by our research group, mimicking a depressive state in these insects. Male flies were subjected to various stressors according to a 10-day randomized schedule and concomitantly treated with ORY or fluoxetine (FLX). After the experimental period, in vivo behavioral tests were performed (open field, forced swimming, aggressiveness test, mating test, male virility, sucrose preference index and light/dark test) and ex vivo analyses measuring serotonin (5HT), dopamine (DA), octopamine (OCT) levels and body weight. We report here that ORY-treated flies and concomitant exposure to CUMS did not exhibit obvious behaviors such as prolonged immobility or increased aggressive behavior, reduced male mating and virility behavior, and anxiolytic behavior, in contrast to ORY, not altering sucrose preference and body weight flies exposed to CUMS. ORY effectively prevented 5HT and OCT reduction and partially protected against DA reduction. The data presented here are consistent and provide evidence for the use of ORY as a potential antidepressant compound.Lay SummaryFlies treated with ORY and concomitant exposure to CUMS did not exhibit obvious depressive-like behaviors, such as prolonged immobility in the FST or increased aggressive behavior, or reduced mating behavior, male virility, or anxiolytic behavior. ORY did not change the preference for sucrose and body weight of flies, about the levels of monoamines in the heads of flies, ORY was effective in preventing the reduction of 5HT and OCT, and we had partial protection of ORY for reducing the levels of DA.
Collapse
Affiliation(s)
- Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Shanda de Freitas Couto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Franciane Cabral Pinheiro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Bruna Piaia Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, Brazil
| | - Rafael Roehrs
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| |
Collapse
|
26
|
Hague MTJ, Woods HA, Cooper BS. Pervasive effects of Wolbachia on host activity. Biol Lett 2021; 17:20210052. [PMID: 33947218 PMCID: PMC8097217 DOI: 10.1098/rsbl.2021.0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host-symbiont interactions, including how Wolbachia spread within host populations.
Collapse
Affiliation(s)
- Michael T. J. Hague
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
27
|
Mahishi D, Triphan T, Hesse R, Huetteroth W. The Panopticon-Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference. Front Behav Neurosci 2021; 15:640146. [PMID: 33841109 PMCID: PMC8026880 DOI: 10.3389/fnbeh.2021.640146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Animal behaviours are demonstrably governed by sensory stimulation, previous experience and internal states like hunger. With increasing hunger, priorities shift towards foraging and feeding. During foraging, flies are known to employ efficient path integration strategies. However, general long-term activity patterns for both hungry and satiated flies in conditions of foraging remain to be better understood. Similarly, little is known about how permanent contact chemosensory stimulation affects locomotion. To address these questions, we have developed a novel, simplistic fly activity tracking setup—the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of walking behaviour, of several flies in parallel, with all arena surfaces covered by a uniform substrate layer. We tested two constellations of providing food: (i) in single patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI, further assessment, analysis and presentation is done with a custom-built MATLAB analysis framework. We find that starvation history leads to a long-lasting reduction in locomotion, as well as a delayed place preference for food patches which seems to be not driven by immediate hunger motivation.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tilman Triphan
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ricarda Hesse
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Zhao Z, Zhao X, He T, Wu X, Lv P, Zhu AJ, Du J. Epigenetic regulator Stuxnet modulates octopamine effect on sleep through a Stuxnet-Polycomb-Octβ2R cascade. EMBO Rep 2021; 22:e47910. [PMID: 33410264 DOI: 10.15252/embr.201947910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
Sleep homeostasis is crucial for sleep regulation. The role of epigenetic regulation in sleep homeostasis is unestablished. Previous studies showed that octopamine is important for sleep homeostasis. However, the regulatory mechanism of octopamine reception in sleep is unknown. In this study, we identify an epigenetic regulatory cascade (Stuxnet-Polycomb-Octβ2R) that modulates the octopamine receptor in Drosophila. We demonstrate that stuxnet positively regulates Octβ2R through repression of Polycomb in the ellipsoid body of the adult fly brain and that Octβ2R is one of the major receptors mediating octopamine function in sleep homeostasis. In response to octopamine, Octβ2R transcription is inhibited as a result of stuxnet downregulation. This feedback through the Stuxnet-Polycomb-Octβ2R cascade is crucial for sleep homeostasis regulation. This study demonstrates a Stuxnet-Polycomb-Octβ2R-mediated epigenetic regulatory mechanism for octopamine reception, thus providing an example of epigenetic regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao He
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyu Wu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Lv
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Alan J Zhu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
30
|
Vesicular neurotransmitter transporters in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183308. [PMID: 32305263 DOI: 10.1016/j.bbamem.2020.183308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.
Collapse
|
31
|
Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, et alScheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM. A connectome and analysis of the adult Drosophila central brain. eLife 2020; 9:e57443. [PMID: 32880371 PMCID: PMC7546738 DOI: 10.7554/elife.57443] [Show More Authors] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tom Dolafi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Khaled A Khairy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Peter H Li
- Google ResearchMountain ViewUnited States
| | | | - Nicole Neubarth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
| | | | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Chelsea X Alvarado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dennis A Bailey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Ballinger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Octave Duclos
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bryon Eubanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelli Fairbanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Finley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily M Joyce
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - SungJin Kim
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicole A Kirk
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charli Maldonado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily A Manley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sari McLin
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Miatta Ndama
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicholas Padilla
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Elliott E Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Neha Rampally
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Caitlin Ribeiro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jon Thomson Rymer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean M Ryan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Anne K Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelsey Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natalie L Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Margaret A Sobeski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alia Suleiman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jackie Swift
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Temour Tokhi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory SXE Jefferis
- MRC Laboratory of Molecular BiologyCambridgeUnited States
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viren Jain
- Google Research, Google LLCZurichSwitzerland
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
32
|
Pop S, Chen CL, Sproston CJ, Kondo S, Ramdya P, Williams DW. Extensive and diverse patterns of cell death sculpt neural networks in insects. eLife 2020; 9:59566. [PMID: 32894223 PMCID: PMC7535934 DOI: 10.7554/elife.59566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/06/2020] [Indexed: 11/20/2022] Open
Abstract
Changes to the structure and function of neural networks are thought to underlie the evolutionary adaptation of animal behaviours. Among the many developmental phenomena that generate change programmed cell death (PCD) appears to play a key role. We show that cell death occurs continuously throughout insect neurogenesis and happens soon after neurons are born. Mimicking an evolutionary role for increasing cell numbers, we artificially block PCD in the medial neuroblast lineage in Drosophila melanogaster, which results in the production of ‘undead’ neurons with complex arborisations and distinct neurotransmitter identities. Activation of these ‘undead’ neurons and recordings of neural activity in behaving animals demonstrate that they are functional. Focusing on two dipterans which have lost flight during evolution we reveal that reductions in populations of flight interneurons are likely caused by increased cell death during development. Our findings suggest that the evolutionary modulation of death-based patterning could generate novel network configurations. Just like a sculptor chips away at a block of granite to make a statue, the nervous system reaches its mature state by eliminating neurons during development through a process known as programmed cell death. In vertebrates, this mechanism often involves newly born neurons shrivelling away and dying if they fail to connect with others during development. Most studies in insects have focused on the death of neurons that occurs at metamorphosis, during the transition between larva to adult, when cells which are no longer needed in the new life stage are eliminated. Pop et al. harnessed a newly designed genetic probe to point out that, in fruit flies, programmed cell death of neurons at metamorphosis is not the main mechanism through which cells die. Rather, the majority of cell death takes place as soon as neurons are born throughout all larval stages, when most of the adult nervous system is built. To gain further insight into the role of this ‘early’ cell death, the neurons were stopped from dying, showing that these cells were able to reach maturity and function. Together, these results suggest that early cell death may be a mechanism fine-tuned by evolution to shape the many and varied nervous systems of insects. To explore this, Pop et al. looked for hints of early cell death in relatives of fruit flies that are unable to fly: the swift lousefly and the bee lousefly. This analysis showed that early cell death is likely to occur in these two insects, but it follows different patterns than in the fruit fly, potentially targeting the neurons that would have controlled flight in these flies’ ancestors. Brains are the product of evolution: learning how neurons change their connections and adapt could help us understand how the brain works in health and disease. This knowledge may also be relevant to work on artificial intelligence, a discipline that often bases the building blocks and connections in artificial ‘brains’ on how neurons communicate with one another.
Collapse
Affiliation(s)
- Sinziana Pop
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Connor J Sproston
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
33
|
King LB, Boto T, Botero V, Aviles AM, Jomsky BM, Joseph C, Walker JA, Tomchik SM. Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet 2020; 16:e1008920. [PMID: 32697780 PMCID: PMC7398555 DOI: 10.1371/journal.pgen.1008920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/03/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 is a monogenetic disorder that predisposes individuals to tumor formation and cognitive and behavioral symptoms. The neuronal circuitry and developmental events underlying these neurological symptoms are unknown. To better understand how mutations of the underlying gene (NF1) drive behavioral alterations, we have examined grooming in the Drosophila neurofibromatosis 1 model. Mutations of the fly NF1 ortholog drive excessive grooming, and increased grooming was observed in adults when Nf1 was knocked down during development. Furthermore, intact Nf1 Ras GAP-related domain signaling was required to maintain normal grooming. The requirement for Nf1 was distributed across neuronal circuits, which were additive when targeted in parallel, rather than mapping to discrete microcircuits. Overall, these data suggest that broadly-distributed alterations in neuronal function during development, requiring intact Ras signaling, drive key Nf1-mediated behavioral alterations. Thus, global developmental alterations in brain circuits/systems function may contribute to behavioral phenotypes in neurofibromatosis type 1.
Collapse
Affiliation(s)
- Lanikea B. King
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ari M. Aviles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Breanna M. Jomsky
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Chevara Joseph
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
34
|
Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020; 9:e54074. [PMID: 32314735 PMCID: PMC7173974 DOI: 10.7554/elife.54074] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Collapse
Affiliation(s)
- Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sebastian Birtles
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
35
|
Roeder T. The control of metabolic traits by octopamine and tyramine in invertebrates. J Exp Biol 2020; 223:223/7/jeb194282. [DOI: 10.1242/jeb.194282] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT
Octopamine (OA) and tyramine (TA) are closely related biogenic monoamines that act as signalling compounds in invertebrates, where they fulfil the roles played by adrenaline and noradrenaline in vertebrates. Just like adrenaline and noradrenaline, OA and TA are extremely pleiotropic substances that regulate a wide variety of processes, including metabolic pathways. However, the role of OA and TA in metabolism has been largely neglected. The principal aim of this Review is to discuss the roles of OA and TA in the control of metabolic processes in invertebrate species. OA and TA regulate essential aspects of invertebrate energy homeostasis by having substantial effects on both energy uptake and energy expenditure. These two monoamines regulate several different factors, such as metabolic rate, physical activity, feeding rate or food choice that have a considerable influence on effective energy intake and all the principal contributors to energy consumption. Thereby, OA and TA regulate both metabolic rate and physical activity. These effects should not be seen as isolated actions of these neuroactive compounds but as part of a comprehensive regulatory system that allows the organism to switch from one physiological state to another.
Collapse
Affiliation(s)
- Thomas Roeder
- Kiel University, Zoology, Department of Molecular Physiology, 24098 Kiel, Germany
- DZL, German Centre for Lung Research, ARCN, 24098 Kiel, Germany
| |
Collapse
|
36
|
Reynoso MMN, Lucia A, Zerba EN, Alzogaray RA. The Octopamine Receptor Is a Possible Target for Eugenol-Induced Hyperactivity in the Blood-Sucking Bug Triatoma infestans (Hemiptera: Reduviidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:627-630. [PMID: 31637445 DOI: 10.1093/jme/tjz183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Eugenol is a major component of the essential oils in cloves and other aromatic plants. In insects, it produces toxic effects and repellency, and there is evidence that its site of action is the octopamine receptor. The objective of the present study was to explore whether the octopamine receptor is involved in the hyperactivity produced by eugenol in the blood-sucking bug Triatoma infestans (Klug). This insect is the main vector of Chagas disease in Latin America. Four treatments were topically applied on third instar nymphs: 1) octopamine, 2) eugenol, 3) phentolamine hydrochloride (an antagonist of the octopamine receptor) followed by octopamine, and 4) phentolamine hydrochloride followed by eugenol. Both octopamine and eugenol hyperactivated the nymphs. However, pretreatment with phentolamine hydrochloride inhibited the hyperactivating effect of both compounds. These results are in agreement with previous works on Drosophila melanogaster (Meigen) (Diptera: Drosophilidae) and the American cockroach. They suggest that the octopamine receptor is a possible site of action for eugenol.
Collapse
Affiliation(s)
- Mercedes M N Reynoso
- Centro de Investigaciones de Plagas e Insecticidas, UNIDEF-CITEDEF-CONICET-CIPEIN, Juan B. de La Salle 4397, (B1603ALO) Villa Martelli, Buenos Aires, Argentina
| | - Alejandro Lucia
- Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Luján (INEDES, CONICET-UNLu), Ruta 5 y Avenida Constitución, (B6700) Luján, Buenos Aires, Argentina
| | - Eduardo N Zerba
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), (B1650HMQ) San Martín, Buenos Aires, Argentina
| | - Raúl A Alzogaray
- Centro de Investigaciones de Plagas e Insecticidas, UNIDEF-CITEDEF-CONICET-CIPEIN, Juan B. de La Salle 4397, (B1603ALO) Villa Martelli, Buenos Aires, Argentina
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín (UNSAM), (B1650HMQ) San Martín, Buenos Aires, Argentina
| |
Collapse
|
37
|
Emanuel S, Kaiser M, Pflueger HJ, Libersat F. On the Role of the Head Ganglia in Posture and Walking in Insects. Front Physiol 2020; 11:135. [PMID: 32153430 PMCID: PMC7047666 DOI: 10.3389/fphys.2020.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/07/2020] [Indexed: 12/04/2022] Open
Abstract
In insects, locomotion is the result of rhythm generating thoracic circuits and their modulation by sensory reflexes and by inputs from the two head ganglia, the cerebral and the gnathal ganglia (GNG), which act as higher order neuronal centers playing different functions in the initiation, goal-direction, and maintenance of movement. Current knowledge on the various roles of major neuropiles of the cerebral ganglia (CRG), such as mushroom bodies (MB) and the central complex (CX), in particular, are discussed as well as the role of the GNG. Thoracic and head ganglia circuitries are connected by ascending and descending neurons. While less is known about the ascending neurons, recent studies in large insects and Drosophila have begun to unravel the identity of descending neurons and their appropriate roles in posture and locomotion. Descending inputs from the head ganglia are most important in initiating and modulating thoracic central pattern generating circuitries to achieve goal directed locomotion. In addition, the review will also deal with some known monoaminergic descending neurons which affect the motor circuits involved in posture and locomotion. In conclusion, we will present a few issues that have, until today, been little explored. For example, how and which descending neurons are selected to engage a specific motor behavior and how feedback from thoracic circuitry modulate the head ganglia circuitries. The review will discuss results from large insects, mainly locusts, crickets, and stick insects but will mostly focus on cockroaches and the fruit fly, Drosophila.
Collapse
Affiliation(s)
- Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Kaiser
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hans-Joachim Pflueger
- Fachbereich Biologie Chemie Pharmazie, Institut für Biologie, Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
38
|
Howard CE, Chen CL, Tabachnik T, Hormigo R, Ramdya P, Mann RS. Serotonergic Modulation of Walking in Drosophila. Curr Biol 2019; 29:4218-4230.e8. [PMID: 31786064 PMCID: PMC6935052 DOI: 10.1016/j.cub.2019.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
To navigate complex environments, animals must generate highly robust, yet flexible, locomotor behaviors. For example, walking speed must be tailored to the needs of a particular environment. Not only must animals choose the correct speed and gait, they must also adapt to changing conditions and quickly respond to sudden and surprising new stimuli. Neuromodulators, particularly the small biogenic amine neurotransmitters, have the ability to rapidly alter the functional outputs of motor circuits. Here, we show that the serotonergic system in the vinegar fly, Drosophila melanogaster, can modulate walking speed in a variety of contexts and also change how flies respond to sudden changes in the environment. These multifaceted roles of serotonin in locomotion are differentially mediated by a family of serotonergic receptors with distinct activities and expression patterns.
Collapse
Affiliation(s)
- Clare E Howard
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Medical Scientist Training Program, Columbia University, New York, NY 10027, USA
| | - Chin-Lin Chen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tanya Tabachnik
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rick Hormigo
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Pavan Ramdya
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
39
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Issa AR, Picao-Osorio J, Rito N, Chiappe ME, Alonso CR. A Single MicroRNA-Hox Gene Module Controls Equivalent Movements in Biomechanically Distinct Forms of Drosophila. Curr Biol 2019; 29:2665-2675.e4. [PMID: 31327720 PMCID: PMC6710004 DOI: 10.1016/j.cub.2019.06.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically distinct developmental stages of an organism, but it is currently unclear whether or not these movements have a common molecular cellular basis. Here we explore this problem in Drosophila, focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8, which we previously showed to be essential for the normal corrective response displayed by the fruit fly larva when turned upside down (self-righting). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behavior in the adult fly, an organism with different morphology, neural constitution, and biomechanics. Through the combination of gene expression, optical imaging, and quantitative behavioral approaches, we provide evidence that miR-iab4 exerts its effects on adult self-righting behavior in part through repression of the Hox gene Ultrabithorax (Ubx) in a specific set of adult motor neurons, the NB2-3/lin15 neurons. Our results show that miRNA controls the function, rather than the morphology, of these neurons and demonstrate that post-developmental changes in Hox gene expression can modulate behavior in the adult. Our work reveals that a common miRNA-Hox genetic module can be re-deployed in different neurons to control functionally equivalent movements in biomechanically distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function. The fruit fly miRNA gene miR-iab4 controls the same behavior in the larva and adult miR-iab4 exerts its behavioral roles via repression of the Hox gene Ultrabithorax miRNA/Hox inputs affect the physiology and not the anatomy of specific motor neurons Conditional expression shows a novel role of the Hox genes in adult neural function
Collapse
Affiliation(s)
- A Raouf Issa
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - João Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Nuno Rito
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| |
Collapse
|
41
|
Karam CS, Jones SK, Javitch JA. Come Fly with Me: An overview of dopamine receptors in Drosophila melanogaster. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:56-65. [PMID: 31219669 DOI: 10.1111/bcpt.13277] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) receptors play critical roles in a wide range of behaviours, including sensory processing, motor function, reward and arousal. As such, aberrant DA signalling is associated with numerous neurological and psychiatric disorders. Therefore, understanding the mechanisms by which DA neurotransmission drives intracellular signalling pathways that modulate behaviour can provide critical insights to guide the development of targeted therapeutics. Drosophila melanogaster has emerged as a powerful model with unique advantages to study the mechanisms underlying DA neurotransmission and associated behaviours in a controlled and systematic manner. Many regions in the fly brain innervated by dopaminergic neurons have been mapped and linked to specific behaviours, including associative learning and arousal. Here, we provide an overview of the homology between human and Drosophila dopaminergic systems and review the current literature on the pharmacology, molecular signalling mechanisms and behavioural outcome of DA receptor activation in the Drosophila brain.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA.,Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| |
Collapse
|
42
|
Abstract
The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In Drosophila, two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA;
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA; .,Department of Psychology and Neuroscience and Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4R2
| |
Collapse
|
43
|
Lee J, Iyengar A, Wu CF. Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. J Neurogenet 2019; 33:125-142. [PMID: 30982417 DOI: 10.1080/01677063.2019.1581188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Drosophila, high-frequency electrical stimulation across the brain triggers a highly stereotypic repertoire of spasms. These electroconvulsive seizures (ECS) manifest as distinctive spiking discharges across the nervous system and can be stably assessed throughout the seizure repertoire in the large indirect flight muscles dorsal longitudinal muscles (DLMs) to characterize modifications in seizure-prone mutants. However, the relationships between ECS-spike patterns and native motor programs, including flight and grooming, are not known and their similarities and distinctions remain to be characterized. We employed quantitative spike pattern analyses for the three motor patterns including: (1) overall firing frequency, (2) spike timing between contralateral fibers, and (3) short-term variability in spike interval regularity (CV2) and instantaneous firing frequency (ISI-1). This base-line information from wild-type (WT) flies facilitated quantitative characterization of mutational effects of major neurotransmitter systems: excitatory cholinergic (Cha), inhibitory GABAergic (Rdl) and electrical (ShakB) synaptic transmission. The results provide an initial glimpse on the vulnerability of individual motor patterns to different perturbations. We found marked alterations of ECS discharge spike patterns in terms of either seizure threshold, spike frequency or spiking regularity. In contrast, no gross alterations during grooming and a small but noticeable reduction of firing frequency during Rdl mutant flight were found, suggesting a role for GABAergic modulation of flight motor programs. Picrotoxin (PTX), a known pro-convulsant that inhibits GABAA receptors, induced DLM spike patterns that displayed some features, e.g. left-right coordination and ISI-1 range, that could be found in flight or grooming, but distinct from ECS discharges. These quantitative techniques may be employed to reveal overlooked relationships among aberrant motor patterns as well as their links to native motor programs.
Collapse
Affiliation(s)
- Jisue Lee
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Atulya Iyengar
- a Department of Biology , University of Iowa , Iowa City , IA , USA.,b Interdisiplinary Graduate Program in Neuroscience , University of Iowa , Iowa City , IA , USA
| | - Chun-Fang Wu
- a Department of Biology , University of Iowa , Iowa City , IA , USA.,b Interdisiplinary Graduate Program in Neuroscience , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
44
|
Venkatasubramanian L, Mann RS. The development and assembly of the Drosophila adult ventral nerve cord. Curr Opin Neurobiol 2019; 56:135-143. [PMID: 30826502 DOI: 10.1016/j.conb.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023]
Abstract
In order to generate complex motor outputs, the nervous system integrates multiple sources of sensory information that ultimately controls motor neurons to generate coordinated movements. The neural circuits that integrate higher order commands from the brain and generate motor outputs are located in the nerve cord of the central nervous system. Recently, genetic access to distinct functional subtypes that make up the Drosophila adult ventral nerve cord has significantly begun to advance our understanding of the structural organization and functions of the neural circuits coordinating motor outputs. Moreover, lineage-tracing and genetic intersection tools have been instrumental in deciphering the developmental mechanisms that generate and assemble the functional units of the adult nerve cord. Together, the Drosophila adult ventral nerve cord is emerging as a powerful system to understand the development and function of neural circuits that are responsible for coordinating complex motor outputs.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
45
|
Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in SLC6A3. Proc Natl Acad Sci U S A 2019; 116:3853-3862. [PMID: 30755521 DOI: 10.1073/pnas.1816247116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human dopamine (DA) transporter (hDAT) mediates clearance of DA. Genetic variants in hDAT have been associated with DA dysfunction, a complication associated with several brain disorders, including autism spectrum disorder (ASD). Here, we investigated the structural and behavioral bases of an ASD-associated in-frame deletion in hDAT at N336 (∆N336). We uncovered that the deletion promoted a previously unobserved conformation of the intracellular gate of the transporter, likely representing the rate-limiting step of the transport process. It is defined by a "half-open and inward-facing" state (HOIF) of the intracellular gate that is stabilized by a network of interactions conserved phylogenetically, as we demonstrated in hDAT by Rosetta molecular modeling and fine-grained simulations, as well as in its bacterial homolog leucine transporter by electron paramagnetic resonance analysis and X-ray crystallography. The stabilization of the HOIF state is associated both with DA dysfunctions demonstrated in isolated brains of Drosophila melanogaster expressing hDAT ∆N336 and with abnormal behaviors observed at high-time resolution. These flies display increased fear, impaired social interactions, and locomotion traits we associate with DA dysfunction and the HOIF state. Together, our results describe how a genetic variation causes DA dysfunction and abnormal behaviors by stabilizing a HOIF state of the transporter.
Collapse
|
46
|
Reynoso MMN, Lucia A, Zerba EN, Alzogaray RA. Eugenol-hyperactivated nymphs of Triatoma infestans become intoxicated faster than non-hyperactivated nymphs when exposed to a permethrin-treated surface. Parasit Vectors 2018; 11:573. [PMID: 30390682 PMCID: PMC6215654 DOI: 10.1186/s13071-018-3146-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eugenol is a botanical monoterpene that hyperactivates the blood-sucking bug Triatoma infestans, and permethrin is a pyrethroid with a strong triatomicide effect. In the present work, we tested the hypothesis that eugenol-hyperactivated nymphs of T. infestans pick up more insecticide, and then become intoxicated faster, than non-hyperactivated nymphs when exposed to a permethrin-treated surface. RESULTS Values of knockdown time 50% (KT50) for third-instar T. infestans exposed to a paper impregnated with permethrin were obtained under the following situations: (a.i.) immediately after topical application of eugenol (KT50: 66.75 min for acetone pre-treated controls, and 46.27 min for eugenol pre-treated nymphs); (a.ii.) 30 min after topical application of eugenol (KT50: 66.79 min for controls, and 66.79 min for eugenol pre-treated nymphs); (b) simultaneously with exposure to eugenol vapors (KT50: 51.90 min for controls, and 39.5 min for nymphs exposed to an eugenol-treated filter paper); and (c) immediately after an injection of eugenol (on average, controls were knocked down after 63.00 min, whereas nymphs injected with eugenol were knocked down after 65.30 min). In other experimental series, the distance traveled (DT) by nymphs exposed to eugenol was quantified in the same situations previously described, but without exposure to permethrin. In (a.i.), the DT in interval 0-30 min after topical application of eugenol was 487.00 (control) and 1127.50 (eugenol) cm; in (a.ii.), the DT in the interval 31-60 min after topical application was 336.75 (control) and 256.75 (eugenol) cm; in (b), DT was 939.08 (control) and 1048.53 (eugenol) cm; and in (c), it was 589.20 (control) and 700.00 (eugenol) cm. The KT50 values for permethrin decreased significantly in situations (a.i.) and (b), and eugenol only produced a significant hyperactivity in the same situations. Finally, the amount of permethrin picked up by non-hyperactivated and hyperactivated nymphs exposed to a film of permethrin was quantified by gas chromatography. Non-hyperactivated nymphs picked up 0.34 μg/insect of permethrin, while hyperactivated nymphs picked up 0.65 μg/insect. CONCLUSION Results support the hypothesis that eugenol-hyperactivated nymphs of T. infestans pick up more insecticide, and then become intoxicated faster, than non-hyperactivated nymphs when exposed to a permethrin-treated surface.
Collapse
Affiliation(s)
| | - Alejandro Lucia
- UNIDEF-CITEDEF-CONICET- CIPEIN, Juan B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina
| | - Eduardo Nicolás Zerba
- UNIDEF-CITEDEF-CONICET- CIPEIN, Juan B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina
| | - Raúl Adolfo Alzogaray
- UNIDEF-CITEDEF-CONICET- CIPEIN, Juan B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Shin M, Copeland JM, Venton BJ. Drosophila as a Model System for Neurotransmitter Measurements. ACS Chem Neurosci 2018; 9:1872-1883. [PMID: 29411967 DOI: 10.1021/acschemneuro.7b00456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila melanogaster, the fruit fly, is an important, simple model organism for studying the effects of genetic mutations on neuronal activity and behavior. Biologists use Drosophila for neuroscience studies because of its genetic tractability, complex behaviors, well-known and simple neuroanatomy, and many orthologues to human genes. Neurochemical measurements in Drosophila are challenging due to the small size of the central nervous system. Recently, methods have been developed to measure real-time neurotransmitter release and clearance in both larvae and adults using electrochemistry. These studies have characterized dopamine, serotonin, and octopamine release in both wild type and genetic mutant flies. Tissue content measurements are also important, and separations are predominantly used. Capillary electrophoresis, with either electrochemical, laser-induced fluorescence, or mass spectrometry detection, facilitates tissue content measurements from single, isolated Drosophila brains or small samples of hemolymph. Neurochemical studies in Drosophila have revealed that flies have functioning transporters and autoreceptors, that their metabolism is different than in mammals, and that flies have regional, life stage, and sex differences in neurotransmission. Future studies will develop smaller electrodes, expand optical imaging techniques, explore physiological stimulations, and use advanced genetics to target single neuron release or study neurochemical changes in models of human diseases.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Jeffrey M. Copeland
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
- Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
48
|
Tung S, Mishra A, Gogna N, Aamir Sadiq M, Shreenidhi PM, Shree Sruti VR, Dorai K, Dey S. Evolution of dispersal syndrome and its corresponding metabolomic changes. Evolution 2018; 72:1890-1903. [PMID: 30075053 DOI: 10.1111/evo.13560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
Abstract
Dispersal is one of the strategies for organisms to deal with climate change and habitat degradation. Therefore, investigating the effects of dispersal evolution on natural populations is of considerable interest to ecologists and conservation biologists. Although it is known that dispersal itself can evolve due to selection, the behavioral, life-history and metabolic consequences of dispersal evolution are not well understood. Here, we explore these issues by subjecting four outbred laboratory populations of Drosophila melanogaster to selection for increased dispersal. The dispersal-selected populations had similar values of body size, fecundity, and longevity as the nonselected lines (controls), but evolved significantly greater locomotor activity, exploratory tendency, and aggression. Untargeted metabolomic fingerprinting through NMR spectroscopy suggested that the selected flies evolved elevated cellular respiration characterized by greater amounts of glucose, AMP, and NAD. Concurrent evolution of higher level of Octopamine and other neurotransmitters indicate a possible mechanism for the behavioral changes in the selected lines. We discuss the generalizability of our findings in the context of observations from natural populations. To the best of our knowledge, this is the first report of the evolution of metabolome due to selection for dispersal and its connection to dispersal syndrome evolution.
Collapse
Affiliation(s)
- Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Navdeep Gogna
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Mohammed Aamir Sadiq
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - P M Shreenidhi
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Kavita Dorai
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| |
Collapse
|
49
|
Sun J, Xu AQ, Giraud J, Poppinga H, Riemensperger T, Fiala A, Birman S. Neural Control of Startle-Induced Locomotion by the Mushroom Bodies and Associated Neurons in Drosophila. Front Syst Neurosci 2018; 12:6. [PMID: 29643770 PMCID: PMC5882849 DOI: 10.3389/fnsys.2018.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/05/2018] [Indexed: 01/12/2023] Open
Abstract
Startle-induced locomotion is commonly used in Drosophila research to monitor locomotor reactivity and its progressive decline with age or under various neuropathological conditions. A widely used paradigm is startle-induced negative geotaxis (SING), in which flies entrapped in a narrow column react to a gentle mechanical shock by climbing rapidly upwards. Here we combined in vivo manipulation of neuronal activity and splitGFP reconstitution across cells to search for brain neurons and putative circuits that regulate this behavior. We show that the activity of specific clusters of dopaminergic neurons (DANs) afferent to the mushroom bodies (MBs) modulates SING, and that DAN-mediated SING regulation requires expression of the DA receptor Dop1R1/Dumb, but not Dop1R2/Damb, in intrinsic MB Kenyon cells (KCs). We confirmed our previous observation that activating the MB α'β', but not αβ, KCs decreased the SING response, and we identified further MB neurons implicated in SING control, including KCs of the γ lobe and two subtypes of MB output neurons (MBONs). We also observed that co-activating the αβ KCs antagonizes α'β' and γ KC-mediated SING modulation, suggesting the existence of subtle regulation mechanisms between the different MB lobes in locomotion control. Overall, this study contributes to an emerging picture of the brain circuits modulating locomotor reactivity in Drosophila that appear both to overlap and differ from those underlying associative learning and memory, sleep/wake state and stress-induced hyperactivity.
Collapse
Affiliation(s)
- Jun Sun
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - An Qi Xu
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - Julia Giraud
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - Haiko Poppinga
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thomas Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| |
Collapse
|
50
|
GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc Natl Acad Sci U S A 2018; 115:E2115-E2124. [PMID: 29440493 PMCID: PMC5834679 DOI: 10.1073/pnas.1713869115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inhibition is an important feature of the neuronal circuit, and in walking, it aids in controlling coordinated movement of legs, leg segments, and joints. Recent studies in Drosophila report the role of premotor inhibitory interneurons in regulation of larval locomotion. However, in adult walking, the identity and function of premotor interneurons are poorly understood. Here, we use genetic methods for targeted knockdown of inhibitory neurotransmitter receptors in leg motoneurons, combined with automated video recording methods we have developed for quantitative analysis of fly leg movements and walking parameters, to reveal the resulting slower walking speed and defects in walking parameters. Our results indicate that GABAergic premotor inhibition to leg motoneurons is required to control the normal walking behavior in adult Drosophila. Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.
Collapse
|