1
|
Duquette-Laplante F, Belleau-Matte A, Jemel B, Jutras B, Koravand A. The impact of noise on auditory processing in children and adults: A time-frequency analysis perspective. Brain Res 2025; 1856:149589. [PMID: 40120707 DOI: 10.1016/j.brainres.2025.149589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE The current study investigated the impact of listening conditions on cortical oscillatory activities in adults and children. EXPERIMENTAL PROCEDURE Fifteen adults and 15 children participated in this study. Electrophysiological measures were recorded with 64 electrodes. Stimulation was presented binaurally with parameters modulation: stimuli, listening conditions, noise and SNR. Intertrial phase clustering (ITPC) and power values were computed using spatially filtered data and complex Morlet wavelets. Data were statistically analyzed with mixed factorial ANOVAs. RESULTS In quiet, children exhibited stronger theta-alpha (ta-) ITPC than adults, especially for verbal stimuli, in bilateral temporal regions, while adults showed no regional differences. Beta-gamma (bg-) ITPC responses revealed that tonal stimuli only elicited stronger right temporal responses in children. Theta-alpha power was greater for tonal stimuli in children, while adults showed stronger right temporal responses. In noise, ta-ITPC reductions were more pronounced in children, especially in babble noise. In white noise, unlike babble noise, there was a systematic reduction of the ta-ITPC values as a function of the SNR level. The bg-ITPC responses were also weaker at lower than higher SNRs. Ta-Power was lower for tonal than verbal stimuli at the right electrode, with greater reductions in babble than in white noise. Bg-Power differences were observed only at the central electrode, where adults showed smaller reductions than children. DISCUSSION Results indicated that phase and power measures are sensitive to parameter modulation and could be used to understand auditory processing in noise, as they revealed increased susceptibility to noise in children compared to adults.
Collapse
Affiliation(s)
- Fauve Duquette-Laplante
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Health Sciences Building (FHS), 200 Lees Avenue, Room 261, Ottawa, Ontario K1N 6N5, Canada; School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Azrieli Research Center, CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| | - Aurélie Belleau-Matte
- School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Azrieli Research Center, CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Boutheina Jemel
- School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Research Laboratory in Neurosciences and Cognitive Electrophysiology, Research Center CIUSS-NIM, Hôpital Rivière des Prairies, 7070 Boul. Perras, Montréal, Québec H1E 1A4, Canada
| | - Benoît Jutras
- School of Speech-Language Pathology and Audiology, Université de Montréal, c.p. 6128, succ. Centre-ville, Montréal H3C 3J7, Canada; Azrieli Research Center, CHU Sainte-Justine, 3175, Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Amineh Koravand
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Health Sciences Building (FHS), 200 Lees Avenue, Room 261, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Donovan KM, Adams JD, Park KY, Demarest P, Tan G, Willie JT, Brunner P, Gorlewicz JL, Leuthardt EC. Vibrotactile auricular vagus nerve stimulation alters limbic system connectivity in humans: A pilot study. PLoS One 2025; 20:e0310917. [PMID: 40440290 PMCID: PMC12121794 DOI: 10.1371/journal.pone.0310917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/15/2025] [Indexed: 06/02/2025] Open
Abstract
Vibration offers a potential alternative modality for transcutaneous auricular vagus nerve stimulation (taVNS). However, mechanisms of action are not well-defined. The goal of this pilot study was to evaluate the potential of vibrotactile stimulation of the outer ear as a method for activating central brain regions similarly to established vagal nerve stimulation methods. Seven patients with intractable epilepsy undergoing stereotactic electroencephalography (sEEG) monitoring participated in the study. Vibrotactile taVNS was administered across five vibration frequencies (2, 6, 12, 20, and 40 Hz) following a randomized stimulation pattern with 30 trials per frequency. Spectral coherence during stimulation was analyzed across theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and broadband gamma (70-170 Hz) frequency bands. At the group level, vibrotactile taVNS significantly increased coherence in theta (effect sizes 6 Hz: r = 0.311; 20 Hz: r = 0.316; 40 Hz: r = 0.264) and alpha bands (effect sizes 20 Hz: r = 0.455; 40 Hz: r = 0.402). Anatomically, multiple limbic brain regions exhibited increased coherence during taVNS compared to baseline. The percentage of total electrode pairs demonstrating increased coherence was also quantified at the individual level. Twenty Hz vibration resulted in the highest percentage of responder pairs across low-frequency coherence measures, with a group-average of 33% of electrode pairs responding, though inter-subject variability was present. Overall, vibrotactile taVNS induced significant low-frequency coherence increases involving several limbic system structures. Further, parametric characterization revealed the presence of inter-subject variability in terms of identifying the vibration frequency with the greatest coherence response. These findings encourage continued research into vibrotactile stimulation as an alternative modality for noninvasive vagus nerve stimulation.
Collapse
Affiliation(s)
- Kara M. Donovan
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joshua D. Adams
- Department of Aerospace and Mechanical Engineering, Saint Louis University, St. Louis, Missouri, United States of America
| | - Ki Yun Park
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phillip Demarest
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gansheng Tan
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jon T. Willie
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter Brunner
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jenna L. Gorlewicz
- Department of Aerospace and Mechanical Engineering, Saint Louis University, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Division of Neurotechnology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States of America
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Brain Laser Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Kumagai S, Shiramatsu TI, Kawai K, Takahashi H. Vagus nerve stimulation as a predictive coding modulator that enhances feedforward over feedback transmission. Front Neural Circuits 2025; 19:1568655. [PMID: 40297016 PMCID: PMC12034665 DOI: 10.3389/fncir.2025.1568655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Vagus nerve stimulation (VNS) has emerged as a promising therapeutic intervention across various neurological and psychiatric conditions, including epilepsy, depression, and stroke rehabilitation; however, its mechanisms of action on neural circuits remain incompletely understood. Here, we present a novel theoretical framework based on predictive coding that conceptualizes VNS effects through differential modulation of feedforward and feedback neural circuits. Based on recent evidence, we propose that VNS shifts the balance between feedforward and feedback processing through multiple neuromodulatory systems, resulting in enhanced feedforward signal transmission. This framework integrates anatomical pathways, receptor distributions, and physiological responses to explain the influence of the VNS on neural dynamics across different spatial and temporal scales. Vagus nerve stimulation may facilitate neural plasticity and adaptive behavior through acetylcholine and noradrenaline (norepinephrine), which differentially modulate feedforward and feedback signaling. This mechanistic understanding serves as a basis for interpreting the cognitive and therapeutic outcomes across different clinical conditions. Our perspective provides a unified theoretical framework for understanding circuit-specific VNS effects and suggests new directions for investigating their therapeutic mechanisms.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Puthanmadam Subramaniyam N, C Thiagarajan T. A novel method for estimating functional connectivity from EEG coherence potentials. Sci Rep 2025; 15:10723. [PMID: 40155425 PMCID: PMC11953265 DOI: 10.1038/s41598-025-94076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Analysis of functional connectivity can provide insights into how the brain performs various cognitive and behavioral tasks as well as the neural mechanisms underlying several pathologies. In this work, we describe a novel approach to estimate functional connectivity from electroencephalography (EEG) data using the concept of coherence potentials (CPs), which are defined as clusters of high-amplitude deflections with similar waveform shapes. We define connectivity measures based on features of CPs, including the time intervals between CP peaks and their co-occurrence on different electrodes or channels. We used EEG data from 25 healthy subjects performing three tasks - resting state (eyes closed and eyes open), working memory and pattern completion tasks to investigate the ability of CP based connectivity measures to distinguish between these tasks. When compared with traditional connectivity measures including several spectral-based measures and mutual information, our results showed that CP based connectivity measures more robustly and significantly distinguished between all the tasks both at group-level and subject-level. In conclusion, CP based EEG connectivity measures provide a reliable way to distinguish between different cognitive task conditions and could pave way in the early detection of neurological disorders such as Alzheimer's disease that affect various cognitive tasks.
Collapse
Affiliation(s)
- Narayan Puthanmadam Subramaniyam
- Sapien Labs, 1201 Wilson Blvd, Arlington, 22209, VA, USA.
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| | | |
Collapse
|
6
|
Jung DY, Sahoo BC, Snyder AC. Distractor anticipation during working memory is associated with theta and beta oscillations across spatial scales. Front Integr Neurosci 2025; 19:1553521. [PMID: 40196759 PMCID: PMC11973340 DOI: 10.3389/fnint.2025.1553521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Anticipating distractors during working memory maintenance is critical to reduce their disruptive effects. In this study, we aimed to identify the oscillatory correlates of this process across different spatial scales of neural activity. Methods We simultaneously recorded local field potentials (LFP) from the lateral prefrontal cortex (LPFC) and electroencephalograms (EEG) from the scalp of monkeys performing a modified memory-guided saccade (MGS) task. The monkeys were required to remember the location of a target visual stimulus while anticipating distracting visual stimulus, flashed at 50% probability during the delay period. Results We found significant theta-band activity across spatial scales during anticipation of a distractor, closely linked with underlying working memory dynamics, through decoding and cross-temporal generalization analyses. EEG particularly reflected reactivation of memory around the anticipated time of a distractor, even in the absence of stimuli. During this anticipated time, beta-band activity exhibited transiently enhanced intrahemispheric communication between the LPFC and occipitoparietal brain areas. These oscillatory phenomena were observed only when the monkeys successfully performed the task, implicating their possible functional role in mitigating anticipated distractors. Discussion Our results demonstrate that distractor anticipation recruits multiple oscillatory processes across the brain during working memory maintenance, with a key activity observed predominantly in the theta and beta bands.
Collapse
Affiliation(s)
- Dennis Y. Jung
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Bikash C. Sahoo
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Adam C. Snyder
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Moraresku S, Hammer J, Dimakopoulos V, Kajsova M, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG. Neurosci Bull 2025:10.1007/s12264-025-01371-x. [PMID: 40095210 DOI: 10.1007/s12264-025-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
Collapse
Affiliation(s)
- Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Vasileios Dimakopoulos
- Klinik für Neurochirurgie, Universitätsspital Zürich, Universität Zürich, Zurich, Switzerland
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Kamil Vlcek
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia.
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia.
| |
Collapse
|
8
|
Seo J, Lee D, Pantazis D, Min BK. Phase-lagged tACS between executive and default mode networks modulates working memory. Sci Rep 2025; 15:9171. [PMID: 40097468 PMCID: PMC11914490 DOI: 10.1038/s41598-025-91881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique to enhance cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether a cross-frequency coupled tACS protocol with a phase lag (45 and 180 degrees) between the central executive and the default mode networks modulated working-memory performance. We found tACS-phase-dependent modulation of task performance reflected in hippocampal activation and task-related functional connectivity. Our observations provide a neurophysiological basis for neuromodulation and a feasible non-invasive approach to selectively stimulate a task-relevant deep brain structure. Overall, our study highlights the potential of tACS as a powerful tool for enhancing cognitive function and sheds light on the underlying mechanisms of this technique.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Korea
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
9
|
Sun L, Bao L. Neuronal theta oscillation of hippocampal ensemble and memory function. Behav Brain Res 2025; 481:115429. [PMID: 39800078 DOI: 10.1016/j.bbr.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes. In particular, the theta synchronization of hippocampal ensembles with other brain regions mediates the retrieval of multiple types of memory. The recent progress of theta oscillations in the formation of memory engrams is reviewed, as well as the increased theta power and neurotransmitter regulation on memory function. Detailed information based on an analysis of hippocampal local theta rhythms is presented. Moreover, the hippocampus theta synchronization with the sensory cortex, prefrontal cortex and amygdala, which mediate different types of memory retrieval, are also reviewed. Together, these findings contribute to understanding the important role of hippocampal theta oscillation in the storage and recall of memory traces.
Collapse
Affiliation(s)
- Lin Sun
- School of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi Province 046013, China
| | - Lihua Bao
- Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China.
| |
Collapse
|
10
|
Mujib MD, Rao AZ, Haque MFU, Alokaily AO, Hussain SS, Aldohbayb AA, Qazi SA, Hasan MA. Modulated theta band frequency with binaural beat stimulation correlates with improved cognitive scores in Alzheimer's patients. Front Aging Neurosci 2025; 17:1543282. [PMID: 40099247 PMCID: PMC11911351 DOI: 10.3389/fnagi.2025.1543282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Alzheimer's disease (AD) affects 50 million individuals worldwide, a number projected to triple by 2050. Due to discomfort through electrical and magnetic neuromodulation technologies, this is the first study to propose the potential of auditory binaural beat (BB) stimulation at an alpha frequency (10 Hz) for enhancing cognitive and neurological outcomes in AD patients. Methods Twenty-five patients were divided into the experimental-Group (n = 15) and control-Group (n = 10). Psychometric and neurological assessments were conducted Pre-Treatment (Day 1) and Post-Treatment (Day 14) following consecutive days of binaural beats (BB) or auditory tone stimulation administered from Day 2 to Day 13. Results A two-way ANOVA revealed a significant main effect of group (F = 6.087, p = 0.016) and session (F = 3.859, p = 0.024) on MMSE scores, with the experimental group showing significant improvement in MMSE scores (t = 7.33, p = 0.00000012) compared to the control group (p = 0.2306). Paired t-tests revealed a significant reduction in depression scores (DASS-21, t = 1.701, p = 0.0253) in the experimental group, while no significant improvements were noted in the control group. EEG recordings revealed significant changes in α-band, β-band, and γ-band power (p < 0.05). Moreover, The correlation between EEG bands and MMSE subparts showed that increased θ-band power in the experimental group was positively correlated (p < 0.05) with the frontal region during language tasks and in the frontal and central regions during registration and orientation tasks, indicating potential neurocognitive benefits. Discussion The results of this research imply that BB stimulation has untapped potential as a non-invasive therapy for patients with AD, hence there is the need for further studies to manage the dementia epidemic.
Collapse
Affiliation(s)
- Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Ahmad Zahid Rao
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Muhammad Fahim Ul Haque
- Department of Telecommunication Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Ahmad O Alokaily
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Syeda Sehar Hussain
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Ahmed A Aldohbayb
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Saad Ahmed Qazi
- Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Neurocomputation Lab, National Center of Artificial Intelligence, NED University of Engineering & Technology, Karachi, Pakistan
| | - Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Neurocomputation Lab, National Center of Artificial Intelligence, NED University of Engineering & Technology, Karachi, Pakistan
| |
Collapse
|
11
|
Mansur BDM, Villafane Barraza V, Voegtle A, Reichert C, Nasuto SJ, Sweeney‐Reed CM. Alpha-Oscillatory Current Application Impacts Prospective Remembering Through Strategic Monitoring. Psychophysiology 2025; 62:e70024. [PMID: 40090877 PMCID: PMC11911303 DOI: 10.1111/psyp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/29/2024] [Accepted: 02/04/2025] [Indexed: 03/18/2025]
Abstract
Prospective memory (PM) is the ability to remember to execute future intentions. PM requires engagement of attentional networks, in which oscillatory activity in the alpha frequency range has been implicated. The left dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex are assumed to be engaged during PM tasks. We hypothesized that the selective application of transcranial alternating current stimulation (tACS) at alpha frequency to these areas can modulate PM-associated event-related potentials. Participants were assigned to alpha-tACS, theta-tACS, or Sham stimulation. They performed a working memory task (OGT), with a PM component, pre-, during, and post-stimulation. EEG was recorded post-stimulation. Accuracy and reaction times (RTs) were computed. Following EEG source reconstruction of mean amplitude, source activity was contrasted between conditions in which performance was modulated by tACS using cluster-based permutation tests. RTs were slower on introducing the PM task, consistent with strategic monitoring. PM accuracy improved in the alpha-tACS group only. During PM trials, source activity in the posterior cingulate cortex (PCC) was lower following alpha-tACS than after Sham stimulation. Source activity in the DLPFC following alpha-tACS was lower during PM than in OGT trials following alpha-tACS. Performance modulation through alpha-tACS, and the lower DLPFC activity in PM than in OGT trials provide evidence of a role for alpha oscillations during strategic monitoring for a PM cue. Lower PCC activity in the alpha-tACS than Sham group is consistent with facilitation of disengagement of the default mode network, supporting re-direction of attention from the OGT to the PM task and task-switching.
Collapse
Affiliation(s)
- Bruno de Matos Mansur
- Department of Neurology, Neurocybernetics and RehabilitationOtto von Guericke UniversityMagdeburgGermany
| | - Viviana Villafane Barraza
- Department of Neurology, Neurocybernetics and RehabilitationOtto von Guericke UniversityMagdeburgGermany
| | - Angela Voegtle
- Department of Neurology, Neurocybernetics and RehabilitationOtto von Guericke UniversityMagdeburgGermany
| | - Christoph Reichert
- Department of Behavioral NeurologyLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Slawomir J. Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological SciencesUniversity of ReadingReadingUK
| | - Catherine M. Sweeney‐Reed
- Department of Neurology, Neurocybernetics and RehabilitationOtto von Guericke UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| |
Collapse
|
12
|
Aykan S, Laguitton V, Villalon SM, Lagarde S, Makhalova J, Bartolomei F, Bénar CG. Working memory deficit in patients with focal epilepsy is associated with higher interictal theta connectivity. Clin Neurophysiol 2025; 170:49-57. [PMID: 39667168 DOI: 10.1016/j.clinph.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE Interictal cognitive disturbances are frequent in patients with focal epilepsies and the links with alteration of resting state brain oscillations are not well known. Changes in theta oscillations, may contribute to cognitive impairment. This study aimed to investigate whether changes in theta activity are related to cognitive disturbances. METHODS Retrospective data of 23 patients with temporal/frontal lobe epilepsy were included. Theta connectivity, power and interictal spikes rate from five-minute interictal resting state stereoelectroencephalography datasets were computed. Cognitive performances were assessed by Wechsler Intelligence Scale (WAIS-IV) and Weschler Memory Scale (WMS-III). Linear regression was performed to evaluate effect of interictal activity and seizure related parameters on cognitive scores. RESULTS WAIS-IV working memory score in patients with epilepsy showed negative correlation with frontotemporal theta connectivity (F(1,17) = 5,239, p = 0,036, R2 = 0,200, β = -0,497). Moreover, theta connectivity was correlated with mesial temporal spike rate and theta power (F(2,17) = 10,967, p = 0,001, adj.R2 = 0,540). CONCLUSIONS Patients with focal epilepsy often encounter compromised cognitive functions, particularly notable in the domain of working memory. This impairment might be attributed to physiological mechanisms involving increased theta connectivity within the frontotemporal regions and interictal spiking. SIGNIFICANCE Our study highlights the relation between theta connectivity and working memory impairments in patients with focal epilepsy.
Collapse
Affiliation(s)
- Simge Aykan
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Türkiye; Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Virginie Laguitton
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Julia Makhalova
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Christian-George Bénar
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| |
Collapse
|
13
|
Liu F, Li F, Du B. The role of brain oscillatory activity in processing the informative value of feedback during rule acquisition. Eur J Neurosci 2025; 61. [PMID: 39676282 DOI: 10.1111/ejn.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Information conveyed through feedback enables individuals to learn new routines and better adapt to their environment. However, the neural mechanisms of rule-related information of feedback have not been fully elucidated. Herein, we quantified the effect of informative value on feedback via a rule induction task (RIT), in which participants were required to find the correct sorting rule based on feedback. To disengage the effects of informative value and valence on feedback in the RIT, a control task was developed in which feedback only involved the valence aspect and no reference for subsequent selections. We measured power and intertrial phase clustering (ITPC) values via EEG to determine the neural mechanisms of rule-related feedback. The results revealed that (1) differences in oscillatory activities between positive and negative feedback were only observed during the control task, and no such effect was found in the RIT task. This finding suggests that the participants paid more attention to rule-related information than to the correctness of feedback during rule learning. (2) The task differences under positive or negative feedback were associated with the delta-theta and alpha-beta bands, and this pattern was similar within the frontal and parietal regions. These findings suggest that the processing of rule-related information of feedback relies on broad frequency bands within the frontoparietal cortex to facilitate rule information integration. In summary, these findings indicate that multiple frequency bands are involved in encoding the informative value aspect of feedback, and individuals rely on this aspect of feedback rather than valence during rule learning.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Bin Du
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| |
Collapse
|
14
|
Mao L, Che X, Wang J, Jiang X, Zhao Y, Zou L, Wei S, Pan S, Guo D, Zhu X, Hu D, Yang X, Chen Z, Wang D. Sub-acute stroke demonstrates altered beta oscillation and connectivity pattern in working memory. J Neuroeng Rehabil 2024; 21:212. [PMID: 39633420 PMCID: PMC11619298 DOI: 10.1186/s12984-024-01516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Working memory (WM) is suggested to play a pivotal role in relearning and neural restoration during stroke rehabilitation. Using EEG, this study investigated the oscillatory mechanisms of WM in subacute stroke. METHODS This study included 48 first subacute stroke patients (26 good-recovery, 22 poor-recovery, based on prognosis after a 4-week period) and 24 matched health controls. We examined the oscillatory characteristics and functional connectivity of the 0-back WM paradigm and assessed their associations with prognosis. RESULTS Patients of poor recovery are characterised by a loss of significant beta rebound, beta-band connectivity, as well as impaired working memory speed and performances. Meanwhile, patients with good recovery have preserved these capacities to some extent. Our data further identified beta rebound to be closely associated with working memory speed and performances. CONCLUSIONS We provided novel findings that beta rebound and network connectivity as mechanistic evidence of impaired working memory in subacute stroke. These oscillatory features could potentially serve as a biomarker for brain stimulation technologies in stroke recovery.
Collapse
Affiliation(s)
- Lin Mao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310003, China
| | - Juehan Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, 311100, China
| | - Yifan Zhao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Liliang Zou
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuang Wei
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Xueqiong Zhu
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Dongxia Hu
- Departments of Physical Medicine and Rehabilitation, The Second Affiliated Hospital, Nanchang University School of Medicine, Nanchang, 330038, China
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zuobing Chen
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| | - Daming Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
15
|
Magosso E, Borra D. The strength of anticipated distractors shapes EEG alpha and theta oscillations in a Working Memory task. Neuroimage 2024; 300:120835. [PMID: 39245399 DOI: 10.1016/j.neuroimage.2024.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
Working Memory (WM) requires maintenance of task-relevant information and suppression of task-irrelevant/distracting information. Alpha and theta oscillations have been extensively investigated in relation to WM. However, studies that examine both theta and alpha bands in relation to distractors, encompassing not only power modulation but also connectivity modulation, remain scarce. Here, we depicted, at the EEG-source level, the increase in power and connectivity in theta and alpha bands induced by strong relative to weak distractors during a visual Sternberg-like WM task involving the encoding of verbal items. During retention, a strong or weak distractor was presented, predictable in time and nature. Analysis focused on the encoding and retention phases before distractor presentation. Theta and alpha power were computed in cortical regions of interest, and connectivity networks estimated via spectral Granger causality and synthetized using in/out degree indices. The following modulations were observed for strong vs. weak distractors. In theta band during encoding, the power in frontal regions increased, together with frontal-to-frontal and bottom-up occipital-to-temporal-to-frontal connectivity; even during retention, bottom-up theta connectivity increased. In alpha band during retention, but not during encoding, the power in temporal-occipital regions increased, together with top-down frontal-to-occipital and temporal-to-occipital connectivity. From our results, we postulate a proactive cooperation between theta and alpha mechanisms: the first would mediate enhancement of target representation both during encoding and retention, and the second would mediate increased inhibition of sensory areas during retention only, to suppress the processing of imminent distractor without interfering with the processing of ongoing target stimulus during encoding.
Collapse
Affiliation(s)
- Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy.
| | - Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy
| |
Collapse
|
16
|
Malekmohammadi A, Cheng G. Music Familiarization Elicits Functional Connectivity Between Right Frontal/Temporal and Parietal Areas in the Theta and Alpha Bands. Brain Topogr 2024; 38:2. [PMID: 39367155 PMCID: PMC11452474 DOI: 10.1007/s10548-024-01081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/13/2024] [Indexed: 10/06/2024]
Abstract
Frequent listening to unfamiliar music excerpts forms functional connectivity in the brain as music becomes familiar and memorable. However, where these connections spectrally arise in the cerebral cortex during music familiarization has yet to be determined. This study investigates electrophysiological changes in phase-based functional connectivity recorded with electroencephalography (EEG) from twenty participants' brains during thrice passive listening to initially unknown classical music excerpts. Functional connectivity is evaluated based on measuring phase synchronization between all pairwise combinations of EEG electrodes across all repetitions via repeated measures ANOVA and between every two repetitions of listening to unknown music with the weighted phase lag index (WPLI) method in different frequency bands. The results indicate an increased phase synchronization during gradual short-term familiarization between the right frontal and the right parietal areas in the theta and alpha bands. In addition, the increased phase synchronization is discovered between the right temporal areas and the right parietal areas at the theta band during gradual music familiarization. Overall, this study explores the short-term music familiarization effects on neural responses by revealing that repetitions form phasic coupling in the theta and alpha bands in the right hemisphere during passive listening.
Collapse
Affiliation(s)
- Alireza Malekmohammadi
- Electrical Engineering, Institute for Cognitive Systems, Technical University of Munich, 80333, Munich, Germany.
| | - Gordon Cheng
- Electrical Engineering, Institute for Cognitive Systems, Technical University of Munich, 80333, Munich, Germany
| |
Collapse
|
17
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
18
|
Stout JJ, George AE, Kim S, Hallock HL, Griffin AL. Using synchronized brain rhythms to bias memory-guided decisions. eLife 2024; 12:RP92033. [PMID: 39037771 PMCID: PMC11262798 DOI: 10.7554/elife.92033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.
Collapse
Affiliation(s)
- John J Stout
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | | | - Suhyeong Kim
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| | | | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of DelawareNewarkUnited States
| |
Collapse
|
19
|
Lim RY, Lew WCL, Ang KK. Review of EEG Affective Recognition with a Neuroscience Perspective. Brain Sci 2024; 14:364. [PMID: 38672015 PMCID: PMC11048077 DOI: 10.3390/brainsci14040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Emotions are a series of subconscious, fleeting, and sometimes elusive manifestations of the human innate system. They play crucial roles in everyday life-influencing the way we evaluate ourselves, our surroundings, and how we interact with our world. To date, there has been an abundance of research on the domains of neuroscience and affective computing, with experimental evidence and neural network models, respectively, to elucidate the neural circuitry involved in and neural correlates for emotion recognition. Recent advances in affective computing neural network models often relate closely to evidence and perspectives gathered from neuroscience to explain the models. Specifically, there has been growing interest in the area of EEG-based emotion recognition to adopt models based on the neural underpinnings of the processing, generation, and subsequent collection of EEG data. In this respect, our review focuses on providing neuroscientific evidence and perspectives to discuss how emotions potentially come forth as the product of neural activities occurring at the level of subcortical structures within the brain's emotional circuitry and the association with current affective computing models in recognizing emotions. Furthermore, we discuss whether such biologically inspired modeling is the solution to advance the field in EEG-based emotion recognition and beyond.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
| | - Wai-Cheong Lincoln Lew
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| |
Collapse
|
20
|
Grob AM, Heinbockel H, Milivojevic B, Doeller CF, Schwabe L. Causal role of the angular gyrus in insight-driven memory reconfiguration. eLife 2024; 12:RP91033. [PMID: 38407185 PMCID: PMC10942625 DOI: 10.7554/elife.91033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations. To test this hypothesis, participants received continuous theta burst stimulation (cTBS) over the left angular gyrus or sham stimulation before gaining insight into the relationship between previously separate life-like animated events in a narrative-insight task. During this task, participants also underwent EEG recording and their memory for linked and non-linked events was assessed shortly thereafter. Our results show that cTBS to the angular gyrus decreased memory for the linking events and reduced the memory advantage for linked relative to non-linked events. At the neural level, cTBS targeting the angular gyrus reduced centro-temporal coupling with frontal regions and abolished insight-induced neural representational changes for events linked via imagination, indicating impaired memory reconfiguration. Further, the cTBS group showed representational changes for non-linked events that resembled the patterns observed in the sham group for the linked events, suggesting failed pruning of the narrative in memory. Together, our findings demonstrate a causal role of the left angular gyrus in insight-related memory reconfigurations.
Collapse
Affiliation(s)
- Anna-Maria Grob
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| | - Hendrik Heinbockel
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| | - Branka Milivojevic
- Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Max-Planck-Insitute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute of Psychology, Leipzig UniversityLeipzigGermany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| |
Collapse
|
21
|
Stout JJ, George AE, Kim S, Hallock HL, Griffin AL. Using synchronized brain rhythms to bias memory-guided decisions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535279. [PMID: 37034665 PMCID: PMC10081324 DOI: 10.1101/2023.04.02.535279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain machine interface that initiated task trials based on the magnitude of prefrontal hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain machine interfacing.
Collapse
|
22
|
Otstavnov N, Riaz A, Moiseeva V, Fedele T. Temporal and Spatial Information Elicit Different Power and Connectivity Profiles during Working Memory Maintenance. J Cogn Neurosci 2024; 36:290-302. [PMID: 38010298 DOI: 10.1162/jocn_a_02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Working memory (WM) is the cognitive ability to store and manipulate information necessary for ongoing tasks. Although frontoparietal areas are involved in the retention of visually presented information, oscillatory neural activity differs for temporal and spatial WM processing. In this study, we corroborated previous findings describing the modulation of neural oscillations and expanded our investigation to the network organization underlying the cognitive processing of temporal and spatial information. We utilized MEG recordings during a Sternberg visual WM task. The spectral oscillatory activity in the maintenance phase revealed increased frontal theta (4-8 Hz) and parietal beta (13-30 Hz) in the temporal condition. Source level coherence analysis delineated the prominent role of parietal areas in all frequency bands during the maintenance of temporal information, whereas frontal and central areas showed major contributions in theta and beta ranges during the maintenance of spatial information. Our study revealed distinct spectral profiles of neural oscillations for separate cognitive subdomains of WM processing. The delineation of specific functional networks might have important implications for clinical applications, enabling the development of stimulation protocols targeting cognitive disabilities associated with WM impairments.
Collapse
Affiliation(s)
| | - Abrar Riaz
- RWTH Aachen University, Germany
- Forschungszentrum Jülich, Germany
| | | | | |
Collapse
|
23
|
Wu R, Ma H, Hu J, Wang D, Wang F, Yu X, Li Y, Fu W, Lai M, Hu Z, Feng W, Shan C, Wang C. Electroacupuncture stimulation to modulate neural oscillations in promoting neurological rehabilitation. Brain Res 2024; 1822:148642. [PMID: 37884179 DOI: 10.1016/j.brainres.2023.148642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Electroacupuncture (EA) stimulation is a modern neuromodulation technique that integrates traditional Chinese acupuncture therapy with contemporary electrical stimulation. It involves the application of electrical currents to specific acupoints on the body following acupuncture. EA has been widely used in the treatment of various neurological disorders, including epilepsy, stroke, Parkinson's disease, and Alzheimer's disease. Recent research suggests that EA stimulation may modulate neural oscillations, correcting abnormal brain electrical activity, therefore promoting brain function and aiding in neurological rehabilitation. This paper conducted a comprehensive search in databases such as PubMed, Web of Science, and CNKI using keywords like "electroacupuncture," "neural oscillations," and "neurorehabilitation", covering the period from year 1980 to 2023. We provide a detailed overview of how electroacupuncture stimulation modulates neural oscillations, including maintaining neural activity homeostasis, influencing neurotransmitter release, improving cerebral hemodynamics, and enhancing specific neural functional networks. The paper also discusses the current state of research, limitations of electroacupuncture-induced neural oscillation techniques, and explores prospects for their combined application, aiming to offer broader insights for both basic and clinical research.
Collapse
Affiliation(s)
- Ruiren Wu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongli Ma
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Wang
- Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoming Yu
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wang Fu
- Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minghui Lai
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cong Wang
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
24
|
Fide E, Yerlikaya D, Güntekin B, Babiloni C, Yener GG. Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cogn Neurodyn 2023; 17:1621-1635. [PMID: 37974589 PMCID: PMC10640558 DOI: 10.1007/s11571-022-09920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Working memory performances are based on brain functional connectivity, so that connectivity may be deranged in individuals with mild cognitive impairment (MCI) and patients with dementia due to Alzheimer's disease (ADD). Here we tested the hypothesis of abnormal functional connectivity as revealed by the imaginary part of coherency (ICoh) at electrode pairs from event-related electroencephalographic oscillations in ADD and MCI patients. Methods The study included 43 individuals with MCI, 43 with ADD, and 68 demographically matched healthy controls (HC). Delta, theta, alpha, beta, and gamma bands event-related ICoh was measured during an oddball paradigm. Inter-hemispheric, midline, and intra-hemispheric ICoh values were compared in ADD, MCI, and HC groups. Results The main results of the present study can be summarized as follows: (1) A significant increase of midline frontal and temporal theta coherence in the MCI group as compared to the HC group; (2) A significant decrease of theta, delta, and alpha intra-hemispheric coherence in the ADD group as compared to the HC and MCI groups; (3) A significant decrease of theta midline coherence in the ADD group as compared to the HC and MCI groups; (4) Normal inter-hemispheric coherence in the ADD and MCI groups. Conclusions Compared with the MCI and HC, the ADD group showed disrupted event-related intra-hemispheric and midline low-frequency band coherence as an estimate of brain functional dysconnectivity underlying disabilities in daily living. Brain functional connectivity during attention and short memory demands is relatively resilient in elderly subjects even with MCI (with preserved abilities in daily activities), and it shows reduced efficiency at multiple operating oscillatory frequencies only at an early stage of ADD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09920-0.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
25
|
Toy S, Shafiei SB, Ozsoy S, Abernathy J, Bozdemir E, Rau KK, Schwengel DA. Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography. Brain Sci 2023; 13:1661. [PMID: 38137109 PMCID: PMC10741622 DOI: 10.3390/brainsci13121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The development of sound clinical reasoning, while essential for optimal patient care, can be quite an elusive process. Researchers typically rely on a self-report or observational measures to study decision making, but clinicians' reasoning processes may not be apparent to themselves or outside observers. This study explored electroencephalography (EEG) to examine neurocognitive correlates of clinical decision making during a simulated American Board of Anesthesiology-style standardized oral exam. Eight novice anesthesiology residents and eight fellows who had recently passed their board exams were included in the study. Measures included EEG recordings from each participant, demographic information, self-reported cognitive load, and observed performance. To examine neurocognitive correlates of clinical decision making, power spectral density (PSD) and functional connectivity between pairs of EEG channels were analyzed. Although both groups reported similar cognitive load (p = 0.840), fellows outperformed novices based on performance scores (p < 0.001). PSD showed no significant differences between the groups. Several coherence features showed significant differences between fellows and residents, mostly related to the channels within the frontal, between the frontal and parietal, and between the frontal and temporal areas. The functional connectivity patterns found in this study could provide some clues for future hypothesis-driven studies in examining the underlying cognitive processes that lead to better clinical reasoning.
Collapse
Affiliation(s)
- Serkan Toy
- Departments of Basic Science Education & Health Systems and Implementation Science, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA;
| | - Somayeh B. Shafiei
- Intelligent Cancer Care Laboratory, Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | | | - James Abernathy
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, 1800 Orleans Street, Baltimore, MD 21287, USA;
| | - Eda Bozdemir
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA;
| | - Kristofer K. Rau
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA;
| | - Deborah A. Schwengel
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, 1800 Orleans Street, Baltimore, MD 21287, USA;
| |
Collapse
|
26
|
Zhou T, Kawasaki K, Suzuki T, Hasegawa I, Roe AW, Tanigawa H. Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance. Cell Rep 2023; 42:113169. [PMID: 37740917 DOI: 10.1016/j.celrep.2023.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Interaction between the inferotemporal (ITC) and prefrontal (PFC) cortices is critical for retrieving information from memory and maintaining it in working memory. Neural oscillations provide a mechanism for communication between brain regions. However, it remains unknown how information flow via neural oscillations is functionally organized in these cortices during these processes. In this study, we apply Granger causality analysis to electrocorticographic signals from both cortices of monkeys performing visual association tasks to map information flow. Our results reveal regions within the ITC where information flow to and from the PFC increases via specific frequency oscillations to form clusters during memory retrieval and maintenance. Theta-band information flow in both directions increases in similar regions in both cortices, suggesting reciprocal information exchange in those regions. These findings suggest that specific subregions function as nodes in the memory information-processing network between the ITC and the PFC.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan; Osaka University, Suita, Osaka 565-0871, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan.
| |
Collapse
|
27
|
Yoshiiwa S, Takano H, Ido K, Kawato M, Morishige KI. Group analysis and classification of working memory task conditions using electroencephalogram cortical currents during an n-back task. Front Neurosci 2023; 17:1222749. [PMID: 37942143 PMCID: PMC10627866 DOI: 10.3389/fnins.2023.1222749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Electroencephalographic studies of working memory have demonstrated cortical activity and oscillatory representations without clarifying how the stored information is retained in the brain. To address this gap, we measured scalp electroencephalography data, while participants performed a modified n-back working memory task. We calculated the current intensities from the estimated cortical currents by introducing a statistical map generated using Neurosynth as prior information. Group analysis of the cortical current level revealed that the current amplitudes and power spectra were significantly different between the modified n-back and delayed match-to-sample conditions. Additionally, we classified information on the working memory task conditions using the amplitudes and power spectra of the currents during the encoding and retention periods. Our results indicate that the representation of executive control over memory retention may be mediated through both persistent neural activity and oscillatory representations in the beta and gamma bands over multiple cortical regions that contribute to visual working memory functions.
Collapse
Affiliation(s)
| | - Hironobu Takano
- Department of Intelligent Robotics, Toyama Prefectural University, Imizu, Japan
| | - Keisuke Ido
- Center of Liberal Arts and Science, Toyama Prefectural University, Imizu, Japan
| | - Mitsuo Kawato
- Department of Intelligent Robotics, Toyama Prefectural University, Imizu, Japan
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Ken-ichi Morishige
- Department of Intelligent Robotics, Toyama Prefectural University, Imizu, Japan
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| |
Collapse
|
28
|
Sandoval IK, Ngoh G, Wu J, Crowley MJ, Rutherford HJV. EEG coherence before and after giving birth. Brain Res 2023; 1816:148468. [PMID: 37336317 DOI: 10.1016/j.brainres.2023.148468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
During pregnancy and the postpartum period, changes in brain volume and in motivational, sensory, cognitive, and emotional processes have been described. However, to date, longitudinal modifications of brain function have been understudied. To explore regional cortical coupling, in pregnancy and at 3 months postpartum, we analyzed resting-state electroencephalographic (EEG) coherence in the delta, theta, alpha1, alpha2, beta1, and beta2 frequency bands across frontal and parietal regions of the maternal brain (Fp1, Fp2, F3, F4, P3, and P4). We found that from pregnancy to the postpartum period, mothers showed less intrahemispheric EEG coherence between the frontal and parietal regions in the alpha1 and alpha2 bands, as well as greater interhemispheric EEG coherence between frontopolar regions in the beta2 band. These changes suggest decreased inhibition of neural circuits. These neurophysiological changes may represent an adaptive process characteristic of motherhood.
Collapse
Affiliation(s)
| | - Gwendolyn Ngoh
- Yale Child Study Center, Yale University, New Haven, CT, USA
| | - Jia Wu
- Yale Child Study Center, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
29
|
Hernández-Arteaga E, Cruz-Aguilar MA, Hernández-González M, Guevara MA, Ramírez-Salado I, Rivera-García AP. New bands in the sleep stages of spider monkeys (Ateles geoffroyi): Electroencephalographic correlations and spatial distribution. Am J Primatol 2023; 85:e23541. [PMID: 37530429 DOI: 10.1002/ajp.23541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
The study of electroencephalographic (EEG) signals in nonhuman primates has led to important discoveries in neurophysiology and sleep behavior. Several studies have analyzed digital EEG data from primate species with prehensile tails, like the spider monkey, and principal component analysis has led to the identification of new EEG bands and their spatial distribution during sleep and wakefulness in these monkeys. However, the spatial location of the EEG correlations of these new bands during the sleep-wake cycle in the spider monkey has not yet been explored. Thus, the objective of this study was to determine the spatial distribution of EEG correlations in the new bands during wakefulness, rapid eye movement (REM) sleep, and non-REM sleep in this species. EEG signals were obtained from the scalp of six monkeys housed in experimental conditions in a laboratory setting. Regarding the 1-21 Hz band, a significant correlation between left frontal and central regions was recorded during non-REM 2 sleep. In the REM sleep, a significant correlation between these cortical areas was seen in two bands: 1-3 and 3-13 Hz. This reflects a modification of the degree of coupling between the cortical areas studied, associated with the distinct stages of sleep. The intrahemispheric EEG correlation found between left perceptual and motor regions during sleep in the spider monkey could indicate activation of a neural circuit for the processing of environmental information that plays a critical role in monitoring the danger of nocturnal predation.
Collapse
Affiliation(s)
| | - Manuel A Cruz-Aguilar
- Laboratorio de Cronobiología y Sueño, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Dirección de Investigaciones en Neurociencias, CDMX, México
| | - Marisela Hernández-González
- Laboratorio de Neurofisiología de la Conducta Reproductiva, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, México
| | - Miguel A Guevara
- Laboratorio de Correlación Electroencefalográfica y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, México
| | - Ignacio Ramírez-Salado
- Laboratorio de Cronobiología y Sueño, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Dirección de Investigaciones en Neurociencias, CDMX, México
| | - Ana P Rivera-García
- Laboratorio de Cronobiología y Sueño, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Dirección de Investigaciones en Neurociencias, CDMX, México
| |
Collapse
|
30
|
Booth SJ, Garg S, Brown LJE, Green J, Pobric G, Taylor JR. Aberrant oscillatory activity in neurofibromatosis type 1: an EEG study of resting state and working memory. J Neurodev Disord 2023; 15:27. [PMID: 37608248 PMCID: PMC10463416 DOI: 10.1186/s11689-023-09492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic neurodevelopmental disorder commonly associated with impaired cognitive function. Despite the well-explored functional roles of neural oscillations in neurotypical populations, only a limited number of studies have investigated oscillatory activity in the NF1 population. METHODS We compared oscillatory spectral power and theta phase coherence in a paediatric sample with NF1 (N = 16; mean age: 13.03 years; female: n = 7) to an age/sex-matched typically developing control group (N = 16; mean age: 13.34 years; female: n = 7) using electroencephalography measured during rest and during working memory task performance. RESULTS Relative to typically developing children, the NF1 group displayed higher resting state slow wave power and a lower peak alpha frequency. Moreover, higher theta power and frontoparietal theta phase coherence were observed in the NF1 group during working memory task performance, but these differences disappeared when controlling for baseline (resting state) activity. CONCLUSIONS Overall, results suggest that NF1 is characterised by aberrant resting state oscillatory activity that may contribute towards the cognitive impairments experienced in this population. TRIAL REGISTRATION ClinicalTrials.gov, NCT03310996 (first posted: October 16, 2017).
Collapse
Affiliation(s)
- Samantha J Booth
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shruti Garg
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura J E Brown
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan Green
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Gorana Pobric
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jason R Taylor
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
31
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
32
|
Nakamura-Palacios EM, Falçoni Júnior AT, Anders QS, de Paula LDSP, Zottele MZ, Ronchete CF, Lirio PHC. Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review. Front Hum Neurosci 2023; 17:1116890. [PMID: 37520930 PMCID: PMC10375045 DOI: 10.3389/fnhum.2023.1116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4-8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.
Collapse
Affiliation(s)
| | | | - Quézia Silva Anders
- Superior School of Sciences of the Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Brazil
| | | | | | | | | |
Collapse
|
33
|
Soltani Kouhbanani S, Arabi SM, Zarenezhad S. Does the Frontal Brain Electrical Activity Mediate the Effect of Home Executive Function Environment and Screen Time on Children's Executive Function? J Genet Psychol 2023; 184:430-445. [PMID: 37335540 DOI: 10.1080/00221325.2023.2223653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Executive functions play an important role in various developmental aspects of children; however, environmental factors influencing individual differences in children's executive function and their neural substructures, particularly in middle childhood, are rarely investigated. Therefore, the current study aimed to investigate the relationship between the home executive function environment (HEFE) and screen time with the executive function of children aged 8-12 years by employing the mediating variables of alpha, beta, and theta waves. The parents of 133 normal children completed Barkley Deficits in Executive Functioning, HEFE, and Screen Time Scales. Alpha, beta, and theta brain waves were also measured. Data were examined using correlational and path analysis. The results suggested a positive and significant relationship between home executive functions and the executive functions of children. Furthermore, the results indicated an inverse and significant relationship between screen time and executive function. The results also proved the mediating role of alpha, beta, and theta brain waves in the relationship between screen time and the children's executive function. Environmental factors (such as home environment and screen time) affect the function of brain waves and, thus, the daily executive function of children.
Collapse
Affiliation(s)
- Sakineh Soltani Kouhbanani
- Department of Educational Sciences, Educational Sciences and Psychology Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyedeh Manizheh Arabi
- Department of Motor Behavior, Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Somayeh Zarenezhad
- Department of Educational Sciences, Educational Sciences and Psychology Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
34
|
Zhang H, Hao Y, He H, Roberts N. EEG based brain functional connectivity analysis for post-autoimmune encephalitis (AE) patients with epilepsy. Epilepsy Res 2023; 193:107166. [PMID: 37216856 DOI: 10.1016/j.eplepsyres.2023.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Autoimmune Encephalitis (AE) refers to a group of conditions that occur when the body's immune system mistakenly attacks healthy brain cells, leading to inflammation of the brain. Seizures are a common symptom of AE and more than a third of patients experiencing seizures secondary to AE become epileptic over time. The objective of the present study is to identify biomarkers that can be used to identify those patients in whom AE will evolve into epilepsy. The bursts of abnormal electrical activity that occur during a seizure can be recorded by using Electroencephalography (EEG). In this work, common EEG (cEEG) and ambulatory EEG (aEEG) were recorded to compare the brain functional connectivity (FC) properties in post-AE patients with epilepsy patients and post-AE patients without epilepsy. The brain functional networks of spike waves were first constructed on the basis of Phase Locking Value (PLV). An analysis was then performed of the differences which existed in the FC properties of clustering coefficient, characteristic path length, global efficiency, local efficiency, and node degree between post-AE patients with epilepsy patients and post-AE patients without epilepsy. From the perspective of brain functional network analysis, post-AE patients with epilepsy showed a more complex network structure. Furthermore, the five FC properties have been found signification different, all FC property values of post-AE patients with epilepsy are higher than those of post-AE patients without epilepsy of cEEG and aEEG. Based on the extracted FC properties, five classifiers were used to classify them, and the results showed that all five FC properties could effectively distinguish between post-AE patients with epilepsy patients and post-AE patients without epilepsy in both cEEG and aEEG. These findings are potentially helpful for diagnosing whether a patient with AE will become epileptic.
Collapse
Affiliation(s)
- Huimin Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Hao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| | - Hong He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Neil Roberts
- Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
35
|
Hasheminia S, Sho’ouri N. The effect of musk incense stick aroma inhalation on different features of electroencephalogram signals and working memory for use in neurofeedback training. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
36
|
Lendner JD, Harler U, Daume J, Engel AK, Zöllner C, Schneider TR, Fischer M. Oscillatory and aperiodic neuronal activity in working memory following anesthesia. Clin Neurophysiol 2023; 150:79-88. [PMID: 37028144 DOI: 10.1016/j.clinph.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE Anesthesia and surgery are associated with cognitive impairment, particularly memory deficits. So far, electroencephalography markers of perioperative memory function remain scarce. METHODS We included male patients >60 years scheduled for prostatectomy under general anesthesia. We obtained neuropsychological assessments and a visual match-to-sample working memory task with simultaneous 62-channel scalp electroencephalography 1 day before and 2 to 3 days after surgery. RESULTS Twenty-six patients completed both pre- and postoperative sessions. Compared with preoperative performance, verbal learning deteriorated after anesthesia (California Verbal Learning Test total recall; t25 = -3.25, p = 0.015, d = -0.902), while visual working memory performance showed a dissociation between match and mismatch accuracy (match*session F1,25 = 3.866, p = 0.060). Better verbal learning was associated with an increase of aperiodic brain activity (total recall r = 0.66, p = 0.029, learning slope r = 0.66, p = 0.015), whereas visual working memory accuracy was tracked by oscillatory theta/alpha (7 - 9 Hz), low beta (14 - 18 Hz) and high beta/gamma (34 - 38 Hz) activity (matches: p < 0.001, mismatches: p = 0.022). CONCLUSIONS Oscillatory and aperiodic brain activity in scalp electroencephalography track distinct features of perioperative memory function. SIGNIFICANCE Aperiodic activity provides a potential electroencephalographic biomarker to identify patients at risk for postoperative cognitive impairments.
Collapse
|
37
|
Plaska CR, Ortega J, Gomes BA, Ellmore TM. Interhemispheric Connectivity Supports Load-Dependent Working Memory Maintenance for Complex Visual Stimuli. Brain Connect 2022; 12:892-904. [PMID: 35473394 PMCID: PMC9807256 DOI: 10.1089/brain.2021.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract Introduction: One manipulation used to study the neural basis of working memory (WM) is to vary the information load at encoding, then measure activity and connectivity during maintenance in the delay period. A hallmark finding is increased delay activity and connectivity between frontoparietal brain regions with increased load. Most WM studies, however, employ simple stimuli during encoding and unfilled intervals during the delay. In this study, we asked how delay period activity and connectivity change during low and high load maintenance of complex stimuli. Methods: Twenty-two participants completed a modified Sternberg WM task with two or five naturalistic scenes as stimuli during scalp electroencephalography (EEG). On each trial, the delay was filled with phase-scrambled scenes to provide a visual perceptual control with similar color and spatial frequency as presented during encoding. Functional connectivity during the delay was assessed by the phase-locking value (PLV). Results: Results showed reduced theta/alpha delay activity amplitude during high compared with low WM load across frontal, central, and parietal sources. A network with higher connectivity during low load consisted of increased PLV between (1) left frontal and right posterior temporal sources in the theta/alpha bands, (2) right anterior temporal and left central sources in the alpha and lower beta bands, and (3) left anterior temporal and posterior temporal sources in the theta, alpha, and lower beta bands. Discussion: The findings suggest a role for interhemispheric connectivity during WM maintenance of complex stimuli with load modulation when limited attentional resources are essential for filtering. Impact statement The patterns of brain connectivity subserving working memory (WM) have largely been investigated to date using simple stimuli, including letters, digits, and shapes and during unfilled WM delay intervals. Fewer studies describe functional connectivity changes during the maintenance of more naturalistic stimuli in the presence of distractors. In the present study, we employed a scene-based WM task during electroencephalography in healthy humans and found that during low-load WM maintenance with distractors increased interhemispheric connectivity in frontotemporal networks. These findings suggest a role for increased interhemispheric connectivity during maintenance of complex stimuli when attentional resources are essential for filtering.
Collapse
Affiliation(s)
- Chelsea Reichert Plaska
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, New York, New York, USA.,Department of Psychology, The City College of New York, New York, New York, USA
| | - Jefferson Ortega
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, New York, New York, USA
| | | | - Timothy M. Ellmore
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, New York, New York, USA.,Department of Psychology, The City College of New York, New York, New York, USA.,Address correspondence to: Timothy M. Ellmore, Department of Psychology, The City College of New York, North Academic Center, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
38
|
Voegtle A, Reichert C, Hinrichs H, Sweeney-Reed CM. Repetitive Anodal TDCS to the Frontal Cortex Increases the P300 during Working Memory Processing. Brain Sci 2022; 12:1545. [PMID: 36421869 PMCID: PMC9688092 DOI: 10.3390/brainsci12111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (TDCS) is a technique with which neuronal activity, and therefore potentially behavior, is modulated by applying weak electrical currents to the scalp. Application of TDCS to enhance working memory (WM) has shown promising but also contradictory results, and little emphasis has been placed on repeated stimulation protocols, in which effects are expected to be increased. We aimed to characterize potential behavioral and electrophysiological changes induced by TDCS during WM training and evaluate whether repetitive anodal TDCS has a greater modulatory impact on the processes underpinning WM than single-session stimulation. We examined the effects of single-session and repetitive anodal TDCS to the dorsolateral prefrontal cortex (DLPFC), targeting the frontal-parietal network, during a WM task in 20 healthy participants. TDCS had no significant impact on behavioral measures, including reaction time and accuracy. Analyzing the electrophysiological response, the P300 amplitude significantly increased following repetitive anodal TDCS, however, positively correlating with task performance. P300 changes were identified over the parietal cortex, which is known to engage with the frontal cortex during WM processing. These findings support the hypothesis that repetitive anodal TDCS modulates electrophysiological processes underlying WM.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Catherine M. Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences—CBBS, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
39
|
Hu Z, Samuel IB, Meyyappan S, Bo K, Rana C, Ding M. Aftereffects of Frontoparietal Theta tACS on Verbal Working Memory: Behavioral and Neurophysiological Analysis. IBRO Neurosci Rep 2022; 13:469-477. [PMID: 36386597 PMCID: PMC9649961 DOI: 10.1016/j.ibneur.2022.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Verbal working memory is supported by a left-lateralized frontoparietal theta oscillatory (4–8 Hz) network. We tested whether stimulating the left frontoparietal network at theta frequency during verbal working memory can produce observable after-stimulation effects in behavior and neurophysiology. Weak theta-band alternating electric currents were delivered via two 4 × 1 HD electrode arrays centered at F3 and P3. Three stimulation configurations, including in-phase, anti-phase, or sham, were tested on three different days in a cross-over (within-subject) design. On each test day, the subject underwent three experimental sessions: pre-, during- and post-stimulation sessions. In all sessions, the subject performed a Sternberg verbal working memory task with three levels of memory load (load 2, 4 and 6), imposing three levels of cognitive demand. Analyzing behavioral and EEG data from the post-stimulation session, we report two main observations. First, in-phase stimulation improved task performance in subjects with higher working memory capacity (WMC) under higher memory load (load 6). Second, in-phase stimulation enhanced frontoparietal theta synchrony during working memory retention in subjects with higher WMC under higher memory loads (load 4 and load 6), and the enhanced frontoparietal theta synchronization is mainly driven by enhanced frontal→parietal theta Granger causality. These observations suggest that (1) in-phase theta transcranial alternating current stimulation (tACS) during verbal working memory can result in observable behavioral and neurophysiological consequences post stimulation, (2) the short-term plasticity effects are state- and individual-dependent, and (3) enhanced executive control underlies improved behavioral performance. Frontoparietal network was stimulated at theta frequency (4 - 8Hz) during verbal working memory and aftereffeccts analyzed In-phase frontoparietal theta stimulation improved working memory performance in participants with higher working memory capacity Enhanced behavioral performance was accompanied by enhanced frontoparietal theta synchrony Enhanced frontoparietal theta synchronization was driven by enhanced frontal→parietal theta Granger causality
Collapse
|
40
|
Soleimani B, Das P, Dushyanthi Karunathilake IM, Kuchinsky SE, Simon JZ, Babadi B. NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis. Neuroimage 2022; 260:119496. [PMID: 35870697 PMCID: PMC9435442 DOI: 10.1016/j.neuroimage.2022.119496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.
Collapse
Affiliation(s)
- Behrad Soleimani
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Proloy Das
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA; Department of Biology, University of Maryland College Park, MD, USA.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
41
|
Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci 2022; 16:1013691. [PMID: 36263365 PMCID: PMC9574066 DOI: 10.3389/fnins.2022.1013691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial current stimulation is a neuromodulation technique used to modulate brain oscillations and, in turn, to enhance human cognitive function in a non-invasive manner. This study investigated whether cross-frequency coupled transcranial alternating current stimulation (CFC-tACS) improved working memory performance. Participants in both the tACS-treated and sham groups were instructed to perform a modified Sternberg task, where a combination of letters and digits was presented. Theta-phase/high-gamma-amplitude CFC-tACS was administered over electrode F3 and its four surrounding return electrodes (Fp1, Fz, F7, and C3) for 20 min. To identify neurophysiological correlates for the tACS-mediated enhancement of working memory performance, we analyzed EEG alpha and theta power, cross-frequency coupling, functional connectivity, and nodal efficiency during the retention period of the working memory task. We observed significantly reduced reaction times in the tACS-treated group, with suppressed treatment-mediated differences in frontal alpha power and unidirectional Fz-delta-phase to Oz-high-gamma-amplitude modulation during the second half of the retention period when network analyses revealed tACS-mediated fronto-occipital dissociative neurodynamics between alpha suppression and delta/theta enhancement. These findings indicate that tACS modulated top-down control and functional connectivity across the fronto-occipital regions, resulting in improved working memory performance. Our observations are indicative of the feasibility of enhancing cognitive performance by the CFC-formed tACS.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyun-Seok Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, South Korea
| | - Youngchul Kwak
- Department of Electronics Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Min-Hee Ahn
- Laboratory of Brain and Cognitive Science for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Kyung Mook Choi
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Byoung-Kyong Min
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Interdisciplinary Program in Brain and Cognitive Sciences, Korea University, Seoul, South Korea
- *Correspondence: Byoung-Kyong Min,
| |
Collapse
|
42
|
Dimakopoulos V, Mégevand P, Stieglitz LH, Imbach L, Sarnthein J. Information flows from hippocampus to auditory cortex during replay of verbal working memory items. eLife 2022; 11:78677. [PMID: 35960169 PMCID: PMC9374435 DOI: 10.7554/elife.78677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and – additionally in four participants – recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance. Every day, the brain’s ability to temporarily store and recall information – called working memory – enables us to reason, solve complex problems or to speak. Holding pieces of information in working memory for short periods of times is a skill that relies on communication between neural circuits that span several areas of the brain. The hippocampus, a seahorse-shaped area at the centre of the brain, is well-known for its role in learning and memory. Less clear, however, is how brain regions that process sensory inputs, including visual stimuli and sounds, contribute to working memory. To investigate, Dimakopoulos et al. studied the flow of information between the hippocampus and the auditory cortex, which processes sound. To do so, various types of electrodes were placed on the scalp or surgically implanted in the brains of people with drug-resistant epilepsy. These electrodes measured the brain activity of participants as they read, heard and then mentally replayed strings of up to 8 letters. The electrical signals analysed reflected the flow of information between brain areas. When participants read and heard the sequence of letters, brain signals flowed from the auditory cortex to the hippocampus. The flow of electrical activity was reversed while participants recalled the letters. This pattern was found only in the left side of the brain, as expected for a language related task, and only if participants recalled the letters correctly. This work by Dimakopoulos et al. provides the first evidence of bidirectional communication between brain areas that are active when people memorise and recall information from their working memory. In doing so, it provides a physiological basis for how the brain encodes and replays information stored in working memory, which evidently relies on the interplay between the hippocampus and sensory cortex.
Collapse
Affiliation(s)
- Vasileios Dimakopoulos
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Pierre Mégevand
- Département des neurosciences fondamentales, Faculté de médecine, Université de Genève, Genève, Switzerland.,Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland, Genève, Switzerland
| | - Lennart H Stieglitz
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Lukas Imbach
- Schweizerisches Epilepsie Zentrum, Klinik Lengg AG, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| |
Collapse
|
43
|
Arski ON, Wong SM, Warsi NM, Pang E, Kerr E, Smith ML, Taylor MJ, Dunkley BT, Ochi A, Otsubo H, Sharma R, Yau I, Jain P, Donner EJ, Snead OC, Ibrahim GM. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 2022; 63:2583-2596. [PMID: 35778973 DOI: 10.1111/epi.17357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS Intracranial recordings were acquired from stereotactically-implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative respectively. Trials with and without transient epileptiform events were compared. RESULTS Twelve children (mean age of 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rz = 9, Rz = 8). Retrieval trials that were in-phase with the preferred phase angle were associated with faster reaction times (p = 0.01, p = 0.03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (PDD z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rz = 5, Rz = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = 0.01, p = 0.03). SIGNIFICANCE This work highlights the role of hippocampal phase in working memory. We observe post-stimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.
Collapse
Affiliation(s)
- Olivia N Arski
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Nebras M Warsi
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elizabeth Pang
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth Kerr
- Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
45
|
Bertaccini R, Ellena G, Macedo-Pascual J, Carusi F, Trajkovic J, Poch C, Romei V. Parietal Alpha Oscillatory Peak Frequency Mediates the Effect of Practice on Visuospatial Working Memory Performance. Vision (Basel) 2022; 6:vision6020030. [PMID: 35737417 PMCID: PMC9230002 DOI: 10.3390/vision6020030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Visuospatial working memory (WM) requires the activity of a spread network, including right parietal regions, to sustain storage capacity, attentional deployment, and active manipulation of information. Notably, while the electrophysiological correlates of such regions have been explored using many different indices, evidence for a functional involvement of the individual frequency peaks in the alpha (IAF) and theta bands (ITF) is still poor despite their relevance in many influential theories regarding WM. Interestingly, there is also a parallel lack of literature about the effect of short-term practice on WM performance. Here, we aim to clarify whether the simple repetition of a change-detection task might be beneficial to WM performance and to which degree these effects could be predicted by IAF and ITF. For this purpose, 25 healthy participants performed a change-detection task at baseline and in a retest session, while IAF and ITF were also measured. Results show that task repetition improves WM performance. In addition, right parietal IAF, but not ITF, accounts for performance gain such that faster IAF predicts higher performance gain. Our findings align with recent literature suggesting that the faster the posterior alpha, the finer the perceptual sampling rate, and the higher the WM performance gain.
Collapse
Affiliation(s)
- Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
| | - Giulia Ellena
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Joaquin Macedo-Pascual
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
- Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Fabrizio Carusi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
| | - Claudia Poch
- Departamento de Educación, Universidad de Nebrija, 28015 Madrid, Spain;
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy; (R.B.); (G.E.); (J.M.-P.); (F.C.); (J.T.)
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Roma, Italy
- Correspondence:
| |
Collapse
|
46
|
Dube A, Kumar U, Gupta K, Gupta J, Patel B, Kumar Singhal S, Yadav K, Jetaji L, Dube S. Language as the Working Model of Human Mind. ARTIF INTELL 2022. [DOI: 10.5772/intechopen.98536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Human Mind, functional aspect of Human Brain, has been envisaged to be working on the tenets of Chaos, a seeming order within a disorder, the premise of Universe. The armamentarium of Human Mind makes use of distributed neuronal networks sub-serving Sensorial Mechanisms, Mirror Neurone System (MNS) and Motor Mechanisms etching a stochastic trajectory on the virtual phase-space of Human Mind, obeying the ethos of Chaos. The informational sensorial mechanisms recruit attentional mechanisms channelising through the window of chaotic neural dynamics onto MNS that providing algorithmic image information flow along virtual phase- space coordinates concluding onto motor mechanisms that generates and mirrors a stimulus- specific and stimulus-adequate response. The singularity of self-iterating fractal architectonics of Event-Related Synchrony (ERS), a Power Spectral Density (PSD) precept of electroencephalographic (EEG) time-series denotes preferential and categorical inhibition gateway and an Event-Related Desynchrony (ERD) represents event related and locked gateway to stimulatory/excitatory neuronal architectonics leading to stimulus-locked and adequate neural response. The contextual inference in relation to stochastic phase-space trajectory of self- iterating fractal of Off-Center α ERS (Central)-On-Surround α ERD-On Surround θ ERS document efficient neural dynamics of working memory., across patterned modulation and flow of the neurally coded information.
Collapse
|
47
|
Using a Novel Functional Brain Network Approach to Locate Important Nodes for Working Memory Tasks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063564. [PMID: 35329248 PMCID: PMC8955367 DOI: 10.3390/ijerph19063564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Working Memory (WM) is a short-term memory for processing and storing information. When investigating WM mechanisms using Electroencephalogram (EEG), its rhythmic synchronization properties inevitably become one of the focal features. To further leverage these features for better improve WM task performance, this paper uses a novel algorithm: Weight K-order propagation number (WKPN) to locate important brain nodes and their coupling characteristic in different frequency bands while subjects are proceeding French word retaining tasks, which is an intriguing but original experiment paradigm. Based on this approach, we investigated the node importance of PLV brain networks under different memory loads and found that the connectivity between frontal and parieto-occipital lobes in theta and beta frequency bands enhanced with increasing memory load. We used the node importance of the brain network as a feature vector of the SVM to classify different memory load states, and the highest classification accuracy of 95% is obtained in the beta band. Compared to the Weight degree centrality (WDC) and Weight Page Rank (WPR) algorithm, the SVM with the node importance of the brain network as the feature vector calculated by the WKPN algorithm has higher classification accuracy and shorter running time. It is concluded that the algorithm can effectively spot active central hubs so that researchers can later put more energy to study these areas where active hubs lie in such as placing Transcranial alternating current stimulation (tACS).
Collapse
|
48
|
Naro A, Pignolo L, Calabrò RS. Brain Network Organization Following Post-Stroke Neurorehabilitation. Int J Neural Syst 2022; 32:2250009. [PMID: 35139774 DOI: 10.1142/s0129065722500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain network analysis can offer useful information to guide the rehabilitation of post-stroke patients. We applied functional network connection models based on multiplex-multilayer network analysis (MMN) to explore functional network connectivity changes induced by robot-aided gait training (RAGT) using the Ekso, a wearable exoskeleton, and compared it to conventional overground gait training (COGT) in chronic stroke patients. We extracted the coreness of individual nodes at multiple locations in the brain from EEG recordings obtained before and after gait training in a resting state. We found that patients provided with RAGT achieved a greater motor function recovery than those receiving COGT. This difference in clinical outcome was paralleled by greater changes in connectivity patterns among different brain areas central to motor programming and execution, as well as a recruitment of other areas beyond the sensorimotor cortices and at multiple frequency ranges, contemporarily. The magnitude of these changes correlated with motor function recovery chances. Our data suggest that the use of RAGT as an add-on treatment to COGT may provide post-stroke patients with a greater modification of the functional brain network impairment following a stroke. This might have potential clinical implications if confirmed in large clinical trials.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| | - Loris Pignolo
- Sant'Anna Institute, Via Siris, 11, 88900 Crotone, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| |
Collapse
|
49
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
50
|
Yao R, Xue J, Li H, Wang Q, Deng H, Tan S. Dynamics and synchronization control in schizophrenia for EEG signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|