1
|
Sawada Y, Nomura T, Martinac B, Sokabe M. A novel force transduction pathway from a tension sensor to the gate in the mechano-gating of MscL channel. Front Chem 2023; 11:1175443. [PMID: 37347044 PMCID: PMC10279863 DOI: 10.3389/fchem.2023.1175443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
The bacterial mechanosensitive channel of large conductance MscL is activated exclusively by increased tension in the membrane bilayer. Despite many proposed models for MscL opening, its precise mechano-gating mechanism, particularly how the received force at the tension sensor transmits to the gate remains incomplete. Previous studies have shown that along with amphipathic N-terminus located near the cytoplasmic surface of the membrane, Phe78 residue near the outer surface also acts as a "tension sensor," while Gly22 is a central constituent of the "hydrophobic gate." Present study focused on elucidating the force transmission mechanism from the sensor Phe78 in the outer transmembrane helix (TM2) to the gate in the inner transmembrane helix (TM1) of MscL by applying the patch clamp and molecular dynamics (MD) simulations to the wild type MscL channel and its single mutants at the sensor (F78N), the gate (G22N) and their combination (G22N/F78N) double mutant. F78N MscL resulted in a severe loss-of-function, while G22N MscL caused a gain-of-function channel exhibiting spontaneous openings at the resting membrane tension. We initially speculated that the spontaneous opening in G22N mutant might occur without tension acting on Phe78 residue. To test this hypothesis, we examined the (G22N/F78N) double mutant, which unexpectedly exhibited neither spontaneous activity nor activity by a relatively high membrane tension. To understand the underlying mechanism, we conducted MD simulations and analyzed the force transduction pathway. Results showed that the mutation at the tension sensor (F78N) in TM2 caused decreased interaction of this residue not only with lipids, but also with a group of amino acids (Ile32-Leu36-Ile40) in the neighboring TM1 helix, which resulted in an inefficient force transmission to the gate-constituting amino acids on TM1. This change also induced a slight tilting of TM1 towards the membrane plane and decreased the size of the channel pore at the gate, which seems to be the major mechanism for the inhibition of spontaneous opening of the double mutant channel. More importantly, the newly identified interaction between the TM2 (Phe78) and adjacent TM1 (Ile32-Leu36-Ile40) helices seems to be an essential force transmitting mechanism for the stretch-dependent activation of MscL given that substitution of any one of these four amino acids with Asn resulted in severe loss-of-function MscL as reported in our previous work.
Collapse
Affiliation(s)
- Yasuyuki Sawada
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Takeshi Nomura
- International Cooperative Research Project, Solution Oriented Research for Science and Technology (ICORP/SORST), Cell Mechanosensing, Japan Science and Technology Agency (JST), Nagoya, Japan
- Molecular Cardiology and Biophysics Division, Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- International Cooperative Research Project, Solution Oriented Research for Science and Technology (ICORP/SORST), Cell Mechanosensing, Japan Science and Technology Agency (JST), Nagoya, Japan
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Ishikawa, Japan
| |
Collapse
|
2
|
Sharma A, Anishkin A, Sukharev S, Vanegas JM. Tight hydrophobic core and flexible helices yield MscL with a high tension gating threshold and a membrane area mechanical strain buffer. Front Chem 2023; 11:1159032. [PMID: 37292176 PMCID: PMC10244533 DOI: 10.3389/fchem.2023.1159032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The mechanosensitive (MS) channel of large conductance, MscL, is the high-tension threshold osmolyte release valve that limits turgor pressure in bacterial cells in the event of drastic hypoosmotic shock. Despite MscL from Mycobacterium tuberculosis (TbMscL) being the first structurally characterized MS channel, its protective mechanism of activation at nearly-lytic tensions has not been fully understood. Here, we describe atomistic simulations of expansion and opening of wild-type (WT) TbMscL in comparison with five of its gain-of-function (GOF) mutants. We show that under far-field membrane tension applied to the edge of the periodic simulation cell, WT TbMscL expands into a funnel-like structure with trans-membrane helices bent by nearly 70°, but does not break its 'hydrophobic seal' within extended 20 μs simulations. GOF mutants carrying hydrophilic substitutions in the hydrophobic gate of increasing severity (A20N, V21A, V21N, V21T and V21D) also quickly transition into funnel-shaped conformations but subsequently fully open within 1-8 μs. This shows that solvation of the de-wetted (vapor-locked) constriction is the rate-limiting step in the gating of TbMscL preceded by area-buffering silent expansion. Pre-solvated gates in these GOF mutants reduce this transition barrier according to hydrophilicity and the most severe V21D eliminates it. We predict that the asymmetric shape-change of the periplasmic side of the channel during the silent expansion provides strain-buffering to the outer leaflet thus re-distributing the tension to the inner leaflet, where the gate resides.
Collapse
Affiliation(s)
- Arjun Sharma
- Department of Physics, University of Vermont, Burlington, VT, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Juan M. Vanegas
- Department of Physics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Gao Y, Amon JD, Artzi L, Ramírez-Guadiana FH, Brock KP, Cofsky JC, Marks DS, Kruse AC, Rudner DZ. Bacterial spore germination receptors are nutrient-gated ion channels. Science 2023; 380:387-391. [PMID: 37104613 PMCID: PMC11154005 DOI: 10.1126/science.adg9829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Bacterial spores resist antibiotics and sterilization and can remain metabolically inactive for decades, but they can rapidly germinate and resume growth in response to nutrients. Broadly conserved receptors embedded in the spore membrane detect nutrients, but how spores transduce these signals remains unclear. Here, we found that these receptors form oligomeric membrane channels. Mutations predicted to widen the channel initiated germination in the absence of nutrients, whereas those that narrow it prevented ion release and germination in response to nutrients. Expressing receptors with widened channels during vegetative growth caused loss of membrane potential and cell death, whereas the addition of germinants to cells expressing wild-type receptors triggered membrane depolarization. Therefore, germinant receptors act as nutrient-gated ion channels such that ion release initiates exit from dormancy.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
| | - Jeremy D. Amon
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
- Present Address: Moderna Genomics, 200 Technology Square, Cambridge MA 02139
| | - Lior Artzi
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
- Present Address: Evolved By Nature, 196 Boston Ave, Medford MA 02155
| | | | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115
- Present Address: Kernal Biologics, 238 Main Street, Cambrdige MA 02142
| | - Joshua C. Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston MA 02115
| | - Deborah S. Marks
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston MA 02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
| |
Collapse
|
4
|
Lane BJ, Pliotas C. Approaches for the modulation of mechanosensitive MscL channel pores. Front Chem 2023; 11:1162412. [PMID: 37021145 PMCID: PMC10069478 DOI: 10.3389/fchem.2023.1162412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
MscL was the first mechanosensitive ion channel identified in bacteria. The channel opens its large pore when the turgor pressure of the cytoplasm increases close to the lytic limit of the cellular membrane. Despite their ubiquity across organisms, their importance in biological processes, and the likelihood that they are one of the oldest mechanisms of sensory activation in cells, the exact molecular mechanism by which these channels sense changes in lateral tension is not fully understood. Modulation of the channel has been key to understanding important aspects of the structure and function of MscL, but a lack of molecular triggers of these channels hindered early developments in the field. Initial attempts to activate mechanosensitive channels and stabilize functionally relevant expanded or open states relied on mutations and associated post-translational modifications that were often cysteine reactive. These sulfhydryl reagents positioned at key residues have allowed the engineering of MscL channels for biotechnological purposes. Other studies have modulated MscL by altering membrane properties, such as lipid composition and physical properties. More recently, a variety of structurally distinct agonists have been shown bind to MscL directly, close to a transmembrane pocket that has been shown to have an important role in channel mechanical gating. These agonists have the potential to be developed further into antimicrobial therapies that target MscL, by considering the structural landscape and properties of these pockets.
Collapse
Affiliation(s)
- Benjamin J. Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Wang J, Blount P. Feeling the Tension: The Bacterial Mechanosensitive Channel MscL as a Model System and Drug Target. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Martinac B, Kung C. The force-from-lipid principle and its origin, a ‘ what is true for E. coli is true for the elephant’ refrain. J Neurogenet 2022; 36:44-54. [DOI: 10.1080/01677063.2022.2097674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Ching Kung
- Laboratory of Molecular Biology and the Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
7
|
Wray R, Wang J, Blount P, Iscla I. Activation of a Bacterial Mechanosensitive Channel, MscL, Underlies the Membrane Permeabilization of Dual-Targeting Antibacterial Compounds. Antibiotics (Basel) 2022; 11:970. [PMID: 35884223 PMCID: PMC9312261 DOI: 10.3390/antibiotics11070970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Resistance to antibiotics is a serious and worsening threat to human health worldwide, and there is an urgent need to develop new antibiotics that can avert it. One possible solution is the development of compounds that possess multiple modes of action, requiring at least two mutations to acquire resistance. Compound SCH-79797 both avoids resistance and has two mechanisms of action: one inhibiting the folate pathway, and a second described as "membrane permeabilization"; however, the mechanism by which membranes from bacterial cells, but not the host, are disrupted has remained mysterious. The opening of the bacterial mechanosensitive channel of large conductance, MscL, which ordinarily serves the physiological role of osmotic emergency release valves gated by hypoosmotic shock, has been previously demonstrated to affect bacterial membrane permeabilization. MscL allows the rapid permeabilization of both ions and solutes through the opening of the largest known gated pore, which has a diameter of 30 Å. We found that SCH-79797 and IRS-16, a more potent derivative, directly bind to the MscL channel and produce membrane permeabilization as a result of its activation. These findings suggest that possessing or adding an MscL-activating component to an antibiotic compound could help to lower toxicity and evade antibiotic resistance.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Junmei Wang
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburg, PA 15261, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| |
Collapse
|
8
|
In Silico Screen Identifies a New Family of Agonists for the Bacterial Mechanosensitive Channel MscL. Antibiotics (Basel) 2022; 11:antibiotics11040433. [PMID: 35453186 PMCID: PMC9030384 DOI: 10.3390/antibiotics11040433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
MscL is a highly conserved mechanosensitive channel found in the majority of bacterial species, including pathogens. It functions as a biological emergency release valve, jettisoning solutes from the cytoplasm upon acute hypoosmotic stress. It opens the largest known gated pore and has been heralded as an antibacterial target. Although there are no known endogenous ligands, small compounds have recently been shown to specifically bind to and open the channel, leading to decreased cell growth and viability. Their binding site is at the cytoplasmic/membrane and subunit interfaces of the protein, which has been recently been proposed to play an essential role in channel gating. Here, we have targeted this pocket using in silico screening, resulting in the discovery of a new family of compounds, distinct from other known MscL-specific agonists. Our findings extended the study of this functional region, the progression of MscL as a viable drug target, and demonstrated the power of in silico screening for identifying and improving the design of MscL agonists.
Collapse
|
9
|
Wray R, Iscla I, Blount P. Curcumin activation of a bacterial mechanosensitive channel underlies its membrane permeability and adjuvant properties. PLoS Pathog 2021; 17:e1010198. [PMID: 34941967 PMCID: PMC8769312 DOI: 10.1371/journal.ppat.1010198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/19/2022] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Curcumin, a natural compound isolated from the rhizome of turmeric, has been shown to have antibacterial properties. It has several physiological effects on bacteria including an apoptosis-like response involving RecA, membrane permeabilization, inhibiting septation, and it can also work synergistically with other antibiotics. The mechanism by which curcumin permeabilizes the bacterial membrane has been unclear. Most bacterial species contain a Mechanosensitive channel of large conductance, MscL, which serves the function of a biological emergency release valve; these large-pore channels open in response to membrane tension from osmotic shifts and, to avoid cell lysis, allow the release of solutes from the cytoplasm. Here we show that the MscL channel underlies the membrane permeabilization by curcumin as well as its synergistic properties with other antibiotics, by allowing access of antibiotics to the cytoplasm; MscL also appears to have an inhibitory role in septation, which is enhanced when activated by curcumin.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Irene Iscla
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
10
|
Zhang X, Zhang Y, Tang S, Ma S, Shen Y, Chen Y, Tong Q, Li Y, Yang J. Hydrophobic Gate of Mechanosensitive Channel of Large Conductance in Lipid Bilayers Revealed by Solid-State NMR Spectroscopy. J Phys Chem B 2021; 125:2477-2490. [DOI: 10.1021/acs.jpcb.0c07487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xuning Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyang Tang
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shaojie Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Yanke Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Tong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuezhou Li
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
11
|
Paraschiv A, Hegde S, Ganti R, Pilizota T, Šarić A. Dynamic Clustering Regulates Activity of Mechanosensitive Membrane Channels. PHYSICAL REVIEW LETTERS 2020; 124:048102. [PMID: 32058787 DOI: 10.1103/physrevlett.124.048102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 06/10/2023]
Abstract
Experiments have suggested that bacterial mechanosensitive channels separate into 2D clusters, the role of which is unclear. By developing a coarse-grained computer model we find that clustering promotes the channel closure, which is highly dependent on the channel concentration and membrane stress. This behaviour yields a tightly regulated gating system, whereby at high tensions channels gate individually, and at lower tensions the channels spontaneously aggregate and inactivate. We implement this positive feedback into the model for cell volume regulation, and find that the channel clustering protects the cell against excessive loss of cytoplasmic content.
Collapse
Affiliation(s)
- Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Raman Ganti
- Institute for Medical Engineering and Science Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Wray R, Wang J, Iscla I, Blount P. Novel MscL agonists that allow multiple antibiotics cytoplasmic access activate the channel through a common binding site. PLoS One 2020; 15:e0228153. [PMID: 31978161 PMCID: PMC6980572 DOI: 10.1371/journal.pone.0228153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
The antibiotic resistance crisis is becoming dire, yet in the past several years few potential antibiotics or adjuvants with novel modes of action have been identified. The bacterial mechanosensitive channel of large conductance, MscL, found in the majority of bacterial species, including pathogens, normally functions as an emergency release valve, sensing membrane tension upon low-osmotic stress and discharging cytoplasmic solutes before cell lysis. Opening the huge ~30Å diameter pore of MscL inappropriately is detrimental to the cell, allowing solutes from and even passage of drugs into to cytoplasm. Thus, MscL is a potential novel drug target. However, there are no known natural agonists, and small compounds that modulate MscL activity are just now being identified. Here we describe a small compound, K05, that specifically modulates MscL activity and we compare results with those obtained for the recently characterized MscL agonist 011A. While the structure of K05 only vaguely resembles 011A, many of the findings, including the binding pocket, are similar. On the other hand, both in vivo and molecular dynamic simulations indicate that the two compounds modulate MscL activity in significantly different ways.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburg, Pennsylvania, United States of America
| | - Irene Iscla
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
13
|
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol Mol Biol Rev 2020; 84:84/1/e00055-19. [PMID: 31941768 DOI: 10.1128/mmbr.00055-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
General principles in biology have often been elucidated from the study of bacteria. This is true for the bacterial mechanosensitive channel of large conductance, MscL, the channel highlighted in this review. This channel functions as a last-ditch emergency release valve discharging cytoplasmic solutes upon decreases in osmotic environment. Opening the largest gated pore, MscL passes molecules up to 30 Å in diameter; exaggerated conformational changes yield advantages for study, including in vivo assays. MscL contains structural/functional themes that recur in higher organisms and help elucidate how other, structurally more complex, channels function. These features of MscL include (i) the ability to directly sense, and respond to, biophysical changes in the membrane, (ii) an α helix ("slide helix") or series of charges ("knot in a rope") at the cytoplasmic membrane boundary to guide transmembrane movements, and (iii) important subunit interfaces that, when disrupted, appear to cause the channel to gate inappropriately. MscL may also have medical applications: the modality of the MscL channel can be changed, suggesting its use as a triggered nanovalve in nanodevices, including those for drug targeting. In addition, recent studies have shown that the antibiotic streptomycin opens MscL and uses it as one of the primary paths to the cytoplasm. Moreover, the recent identification and study of novel specific agonist compounds demonstrate that the channel is a valid drug target. Such compounds may serve as novel-acting antibiotics and adjuvants, a way of permeabilizing the bacterial cell membrane and, thus, increasing the potency of commonly used antibiotics.
Collapse
|
14
|
Balleza D, Rosas ME, Romero-Romero S. Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels (Austin) 2019; 13:455-476. [PMID: 31647368 PMCID: PMC6833973 DOI: 10.1080/19336950.2019.1674242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We systematically predict the internal flexibility of the S3 segment, one of the most mobile elements in the voltage-sensor domain. By analyzing the primary amino acid sequences of V-sensor containing proteins, including Hv1, TPC channels and the voltage-sensing phosphatases, we established correlations between the local flexibility and modes of activation for different members of the VGIC superfamily. Taking advantage of the structural information available, we also assessed structural aspects to understand the role played by the flexibility of S3 during the gating of the pore. We found that S3 flexibility is mainly determined by two specific regions: (1) a short NxxD motif in the N-half portion of the helix (S3a), and (2) a short sequence at the beginning of the so-called paddle motif where the segment has a kink that, in some cases, divide S3 into two distinct helices (S3a and S3b). A good correlation between the flexibility of S3 and the reported sensitivity to temperature and mechanical stretch was found. Thus, if the channel exhibits high sensitivity to heat or membrane stretch, local S3 flexibility is low. On the other hand, high flexibility of S3 is preferentially associated to channels showing poor heat and mechanical sensitivities. In contrast, we did not find any apparent correlation between S3 flexibility and voltage or ligand dependence. Overall, our results provide valuable insights into the dynamics of channel-gating and its modulation.
Collapse
Affiliation(s)
- Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Mario E Rosas
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth , Bayreuth , Germany
| |
Collapse
|
15
|
Wray R, Herrera N, Iscla I, Wang J, Blount P. An agonist of the MscL channel affects multiple bacterial species and increases membrane permeability and potency of common antibiotics. Mol Microbiol 2019; 112:896-905. [PMID: 31177589 PMCID: PMC6736685 DOI: 10.1111/mmi.14325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
The bacterial MscL channel normally functions as an emergency release valve discharging cytoplasmic solutes upon osmotic stress. The channel opens and passes molecules up to 30 Å and its pore is the largest of any gated channel. Opening the MscL pore inappropriately is detrimental to the bacterial cell, suggesting MscL as a potential novel drug target. A small-molecule compound, 011A, has been shown to increase sensitivity of the Escherichia coli MscL channel, slow growth, and even decrease viability of quiescent cultures. The mscL gene is highly conserved and found in the vast majority of bacterial species, including pathogens. Here, we test the hypothesis that 011A can influence the growth and viability of other bacterial species, specifically Staphylococcus aureus and Mycobacterium smegmatis, in a MscL-dependent manner. Furthermore, we demonstrate that the 011A compound can increase potency of other antibiotics, presumably by permeabilizing the membrane and allowing easier access of the antibiotic into the cytoplasm. Thus, MscL activators have potential as novel broad-spectrum antibiotics or adjuvants that work with antibiotics to selectively allow passage across bacterial membranes.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
| | - Nadia Herrera
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA
| | - Irene Iscla
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
| |
Collapse
|
16
|
Owada N, Yoshida M, Morita K, Yoshimura K. Temperature-sensitive mutants of MscL mechanosensitive channel. J Biochem 2019; 166:281-288. [PMID: 31143940 DOI: 10.1093/jb/mvz035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/25/2019] [Indexed: 01/15/2023] Open
Abstract
MscL is a mechanosensitive channel that undergoes a global conformational change upon application of membrane stretching. To elucidate how the structural stability and flexibility occur, we isolated temperature-sensitive (Ts) mutants of Escherichia coli MscL that allowed cell growth at 32°C but not at 42°C. Two Ts mutants, L86P and D127V, were identified. The L86P mutation occurred in the second transmembrane helix, TM2. Substitution of residues neighbouring L86 with proline also led to a Ts mutation, but the substitution of L86 with other amino acids did not result in a Ts phenotype, indicating that the Ts phenotype was due to a structural change of TM2 helix by the introduction of a proline residue. The D127V mutation was localized in the electrostatic belt of the bundle of cytoplasmic helices, indicating that stability of the pentameric bundle of the cytoplasmic helix affects MscL structure. Together, this study described a novel class of MscL mutations that were correlated with the thermodynamic stability of the MscL structure.
Collapse
Affiliation(s)
- Naoto Owada
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Kohei Morita
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, Japan
| |
Collapse
|
17
|
Wray R, Iscla I, Kovacs Z, Wang J, Blount P. Novel compounds that specifically bind and modulate MscL: insights into channel gating mechanisms. FASEB J 2019; 33:3180-3189. [PMID: 30359098 PMCID: PMC6404570 DOI: 10.1096/fj.201801628r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The bacterial mechanosensitive channel of large conductance (MscL) normally functions as an emergency release valve discharging cytoplasmic solutes upon osmotic stress. Opening the large pore of MscL inappropriately is detrimental to the cell, and thus it has been speculated to be a potential antibiotic target. Although MscL is one of the best studied mechanosensitive channels, no chemical that influenced bacterial growth by modulating MscL is known. We therefore used a high-throughput screen to identify compounds that slowed growth in an MscL-dependent manner. We characterized 2 novel sulfonamide compounds identified in the screen. We demonstrated that, although both increase MscL gating, one of these compounds does not work through the folate pathway, as other antimicrobial sulfonamides; indeed, the sulfonamide portion of the compound is not needed for activity. The only mode of action appears to be MscL activation. The binding pocket is where an α-helix runs along the cytoplasmic membrane and interacts with a neighboring subunit; analogous motifs have been observed in several prokaryotic and eukaryotic channels. The data not only demonstrate that MscL is a viable antibiotic target, but also give insight into the gating mechanisms of MscL, and they may have implications for developing agonists for other channels.-Wray, R., Iscla, I., Kovacs, Z., Wang, J., Blount, P. Novel compounds that specifically bind and modulate MscL: insights into channel gating mechanisms.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Herrera N, Maksaev G, Haswell ES, Rees DC. Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 2018; 8:14566. [PMID: 30275500 PMCID: PMC6167328 DOI: 10.1038/s41598-018-32536-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 12/04/2022] Open
Abstract
Microbial survival in dynamic environments requires the ability to successfully respond to abrupt changes in osmolarity. The mechanosensitive channel of large conductance (MscL) is a ubiquitous channel that facilitates the survival of bacteria and archaea under severe osmotic downshock conditions by relieving excess turgor pressure in response to increased membrane tension. A prominent structural feature of MscL, the cytoplasmic C-terminal domain, has been suggested to influence channel assembly and function. In this report, we describe the X-ray crystal structure and electrophysiological properties of a C-terminal domain truncation of the Mycobacterium tuberculosis MscL (MtMscLΔC). A crystal structure of MtMscLΔC solubilized in the detergent n-dodecyl-β-D-maltopyranoside reveals the pentameric, closed state-like architecture for the membrane spanning region observed in the previously solved full-length MtMscL. Electrophysiological characterization demonstrates that MtMscLΔC retains mechanosensitivity, but with conductance and tension sensitivity more closely resembling full length EcMscL than MtMscL. This study establishes that the C-terminal domain of MtMscL is not required for oligomerization of the full-length channel, but rather influences the tension sensitivity and conductance properties of the channel. The collective picture that emerges from these data is that each MscL channel structure has characteristic features, highlighting the importance of studying multiple homologs.
Collapse
Affiliation(s)
- Nadia Herrera
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Infectious Diseases, Department of Medicine University of California, San Francisco, San Francisco, CA, 94143-0654, USA
| | - Grigory Maksaev
- Department of Biology, NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Elizabeth S Haswell
- Department of Biology, NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
19
|
Wang X, Tang S, Wen X, Hong L, Hong F, Li Y. Transmembrane TM3b of Mechanosensitive Channel MscS Interacts With Cytoplasmic Domain Cyto-Helix. Front Physiol 2018; 9:1389. [PMID: 30327617 PMCID: PMC6174206 DOI: 10.3389/fphys.2018.01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022] Open
Abstract
The mechanosensitive channel MscS functions as an osmolyte emergency release-valve in the event of a sudden decrease in external environmental osmolarity. MscS has served as a paradigm for studying how channel proteins detect and respond to mechanical stimuli. However, the inter-domain interactions and structural rearrangements that occur in the MscS gating process remain largely unknown. Here, we determined the interactions between the transmembrane domain and cytoplasmic domain of MscS. Using in vivo cellular viability, single-channel electrophysiological recording, and cysteine disulfide trapping, we demonstrated that N117 of the TM3b helix and N167 of the Cyto-helix are critical residues that function at the TM3b-Cyto helix interface. In vivo downshock assays showed that double cysteine substitution at N117 and N167 failed to rescue the osmotic-lysis phenotype of cells in acute osmotic downshock. Single-channel recordings demonstrated that cysteine cross-linking of N117C and N167C led to a non-conductive channel. Consistently, coordination of the histidines of N117H and N167H caused a decrease in channel gating. Moreover, cross-linked N117 and N167 altered the gating of the severe gain-of-function mutant L109S. Our results demonstrate that N117–N167 interactions stabilize the inactivation state by an association of TM3b segments with β-domains of the cytoplasmic region, providing further insights into the gating mechanism of the MscS channel.
Collapse
Affiliation(s)
- Xiaomin Wang
- Children's Hospital and Department of Biophysics, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Children's Hospital and Department of Biophysics, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxu Wen
- Children's Hospital and Department of Biophysics, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Hong
- Children's Hospital and Department of Biophysics, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifan Hong
- Children's Hospital and Department of Biophysics, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- Children's Hospital and Department of Biophysics, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Najem JS, Rowe I, Anishkin A, Leo DJ, Sukharev S. The voltage-dependence of MscL has dipolar and dielectric contributions and is governed by local intramembrane electric field. Sci Rep 2018; 8:13607. [PMID: 30206263 PMCID: PMC6133944 DOI: 10.1038/s41598-018-31945-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/29/2018] [Indexed: 02/01/2023] Open
Abstract
Channels without canonical voltage sensors can be modulated by voltage acting on other domains. Here we show that besides protein dipoles, pore hydration can be affected by electric fields. In patches, both WT MscL and its V23T mutant show a decrease in the tension midpoint with hyperpolarization. The mutant exhibits a stronger parabolic dependence of transition energy on voltage, highly consistent with the favourable dielectric contribution from water filling the expanding pore. Purified V23T MscL in DPhPC droplet interface bilayers shows a similar voltage dependence. When reconstituted in an asymmetric DOPhPC/DPhPC bilayer carrying a permanent bias of ~130 mV due to a dipole potential difference between the interfaces, the channel behaved as if the local intramembrane electric field sets the tension threshold for gating rather than just the externally applied voltage. The data emphasize the roles of polarized water in the pore and interfacial lipid dipoles in channel gating thermodynamics.
Collapse
Affiliation(s)
- Joseph S Najem
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, United States.,Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee, 37916, United States
| | - Ian Rowe
- Department of Biology, University of Maryland, College Park, MD, 20817, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD, 20817, United States
| | - Donald J Leo
- College of Engineering, University of Georgia, Athens, Georgia, 30605, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, 20817, United States.
| |
Collapse
|
21
|
Yang LM, Zheng H, Ratnakar JS, Adebesin BY, Do QN, Kovacs Z, Blount P. Engineering a pH-Sensitive Liposomal MRI Agent by Modification of a Bacterial Channel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704256. [PMID: 29638039 PMCID: PMC6140348 DOI: 10.1002/smll.201704256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
MscL is a bacterial mechanosensitive channel that serves as a cellular emergency release valve, protecting the cell from lysis upon a drop in external osmolarity. The channel has an extremely large pore (30 Å) and can be purified and reconstituted into artificial membranes. Moreover, MscL is modified to open in response to alternative external stimuli including changes in pH. These properties suggest this channel's potential as a triggered "nanopore" for localized release of vesicular contents such as magnetic resonance imaging (MRI) contrast agents and drugs. Toward this end, several variants of pH-triggered MscL nanovalves are engineered. Stealth vesicles previously been shown to evade normal in vivo clearance and passively accumulate in inflamed and malignant tissues are reconstituted. These vesicles are loaded with 1,4,7,10-tetraazacyclododecane tetraacetic acid gadolinium complex (Gd-DOTA), an MRI contrast reagent, and the resulting nanodevices tested for their ability to release Gd-DOTA as evidenced by enhancement of the longitudinal relaxation rate (R1 ) of the bulk water proton spins. Nanovalves that are responsive to physiological pH changes are identified, but differ in sensitivity and efficacy, thus giving an array of nanovalves that could potentially be useful in different settings. These triggered nanodevices may be useful in delivering both diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Hui Zheng
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - James S Ratnakar
- Advanced Imaging Research Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Bukola Y Adebesin
- Advanced Imaging Research Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
22
|
Abstract
Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.
Collapse
|
23
|
Abstract
Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Navid Bavi
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
24
|
Rosholm KR, Baker MAB, Ridone P, Nakayama Y, Rohde PR, Cuello LG, Lee LK, Martinac B. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Sci Rep 2017; 7:45180. [PMID: 28345591 PMCID: PMC5366917 DOI: 10.1038/srep45180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/29/2022] Open
Abstract
The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform.
Collapse
Affiliation(s)
- Kadla R Rosholm
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Matthew A B Baker
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Pietro Ridone
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Yoshitaka Nakayama
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Paul R Rohde
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lawrence K Lee
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Boris Martinac
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
25
|
Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity. Proc Natl Acad Sci U S A 2016; 113:E5838-E5846. [PMID: 27647888 DOI: 10.1073/pnas.1522185113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For most cells, a sudden decrease in external osmolarity results in fast water influx that can burst the cell. To survive, cells rely on the passive response of mechanosensitive channels, which open under increased membrane tension and allow the release of cytoplasmic solutes and water. Although the gating and the molecular structure of mechanosensitive channels found in Escherichia coli have been extensively studied, the overall dynamics of the whole cellular response remain poorly understood. Here, we characterize E. coli's passive response to a sudden hypoosmotic shock (downshock) on a single-cell level. We show that initial fast volume expansion is followed by a slow volume recovery that can end below the initial value. Similar response patterns were observed at downshocks of a wide range of magnitudes. Although wild-type cells adapted to osmotic downshocks and resumed growing, cells of a double-mutant ([Formula: see text]) strain expanded, but failed to fully recover, often lysing or not resuming growth at high osmotic downshocks. We propose a theoretical model to explain our observations by simulating mechanosensitive channels opening, and subsequent solute efflux and water flux. The model illustrates how solute efflux, driven by mechanical pressure and solute chemical potential, competes with water influx to reduce cellular osmotic pressure and allow volume recovery. Our work highlights the vital role of mechanosensation in bacterial survival.
Collapse
|
26
|
The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat Commun 2016; 7:11984. [PMID: 27329693 PMCID: PMC4917966 DOI: 10.1038/ncomms11984] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/18/2016] [Indexed: 12/24/2022] Open
Abstract
The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We propose that this may also represent a common principle in the gating cycle of unrelated mechanosensitive ion channels, allowing the coupling of channel conformation to membrane dynamics.
Collapse
|
27
|
Wray R, Iscla I, Gao Y, Li H, Wang J, Blount P. Dihydrostreptomycin Directly Binds to, Modulates, and Passes through the MscL Channel Pore. PLoS Biol 2016; 14:e1002473. [PMID: 27280286 PMCID: PMC4900634 DOI: 10.1371/journal.pbio.1002473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins; however, the routes by which it enters the bacterial cell are largely unknown. The mechanosensitive channel of large conductance, MscL, is found in the vast majority of bacterial species, where it serves as an emergency release valve rescuing the cell from sudden decreases in external osmolarity. While it is known that MscL expression increases the potency of dihydrostreptomycin, it has remained unclear if this effect is due to a direct interaction. Here, we use a combination of genetic screening, MD simulations, and biochemical and mutational approaches to determine if dihydrostreptomycin directly interacts with MscL. Our data strongly suggest that dihydrostreptomycin binds to a specific site on MscL and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell.
Collapse
Affiliation(s)
- Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ya Gao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Junmei Wang
- Green Center for Systems Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
28
|
Kocer A. Mechanisms of mechanosensing - mechanosensitive channels, function and re-engineering. Curr Opin Chem Biol 2015; 29:120-7. [PMID: 26610201 DOI: 10.1016/j.cbpa.2015.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Sensing and responding to mechanical stimuli is an ancient behavior and ubiquitous to all forms of life. One of its players 'mechanosensitive ion channels' are involved in processes from osmosensing in bacteria to pain in humans. However, the mechanism of mechanosensing is yet to be elucidated. This review describes recent developments in the understanding of a bacterial mechanosensitive channel. Force from the lipid principle of mechanosensation, new methods to understand protein-lipid interactions, the role of water in the gating, the use of engineered mechanosensitive channels in the understanding of the gating mechanism and application of the accumulated knowledge in the field of drug delivery, drug design and sensor technologies are discussed.
Collapse
Affiliation(s)
- Armagan Kocer
- University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
29
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
30
|
Iscla I, Wray R, Eaton C, Blount P. Scanning MscL Channels with Targeted Post-Translational Modifications for Functional Alterations. PLoS One 2015; 10:e0137994. [PMID: 26368283 PMCID: PMC4569298 DOI: 10.1371/journal.pone.0137994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Mechanosensitive channels are present in all living organisms and are thought to underlie the senses of touch and hearing as well as various important physiological functions like osmoregulation and vasoregulation. The mechanosensitive channel of large conductance (MscL) from Escherichia coli was the first protein shown to encode mechanosensitive channel activity and serves as a paradigm for how a channel senses and responds to mechanical stimuli. MscL plays a role in osmoprotection in E. coli, acting as an emergency release valve that is activated by membrane tension due to cell swelling after an osmotic down-shock. Using an osmotically fragile strain in an osmotic down-shock assay, channel functionality can be directly determined in vivo. In addition, using thiol reagents and expressed MscL proteins with a single cysteine substitution, we have shown that targeted post-translational modifications can be performed, and that any alterations that lead to dysfunctional proteins can be identified by this in vivo assay. Here, we present the results of such a scan performed on 113 MscL cysteine mutants using five different sulfhydryl-reacting probes to confer different charges or hydrophobicity to each site. We assessed which of these targeted modifications affected channel function and the top candidates were further studied using patch clamp to directly determine how channel activity was affected. This comprehensive screen has identified many residues that are critical for channel function as well as highlighted MscL domains and residues that undergo the most drastic environmental changes upon gating.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Christina Eaton
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Najem JS, Dunlap MD, Rowe ID, Freeman EC, Grant JW, Sukharev S, Leo DJ. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers. Sci Rep 2015; 5:13726. [PMID: 26348441 PMCID: PMC4562232 DOI: 10.1038/srep13726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 02/01/2023] Open
Abstract
MscL, a stretch-activated channel, saves bacteria experiencing hypo-osmotic shocks from lysis. Its high conductance and controllable activation makes it a strong candidate to serve as a transducer in stimuli-responsive biomolecular materials. Droplet interface bilayers (DIBs), flexible insulating scaffolds for such materials, can be used as a new platform for incorporation and activation of MscL. Here, we report the first reconstitution and activation of the low-threshold V23T mutant of MscL in a DIB as a response to axial compressions of the droplets. Gating occurs near maximum compression of both droplets where tension in the membrane is maximal. The observed 0.1-3 nS conductance levels correspond to the V23T-MscL sub-conductive and fully open states recorded in native bacterial membranes or liposomes. Geometrical analysis of droplets during compression indicates that both contact angle and total area of the water-oil interfaces contribute to the generation of tension in the bilayer. The measured expansion of the interfaces by 2.5% is predicted to generate a 4-6 mN/m tension in the bilayer, just sufficient for gating. This work clarifies the principles of interconversion between bulk and surface forces in the DIB, facilitates the measurements of fundamental membrane properties, and improves our understanding of MscL response to membrane tension.
Collapse
Affiliation(s)
- Joseph S. Najem
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Myles D. Dunlap
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Ian D. Rowe
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Eric C. Freeman
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - John W. Grant
- Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Donald J. Leo
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
32
|
Malcolm HR, Blount P. Mutations in a Conserved Domain of E. coli MscS to the Most Conserved Superfamily Residue Leads to Kinetic Changes. PLoS One 2015; 10:e0136756. [PMID: 26340270 PMCID: PMC4560390 DOI: 10.1371/journal.pone.0136756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/08/2015] [Indexed: 12/13/2022] Open
Abstract
In Escherichia coli (E. coli) the mechanosensitive channel of small conductance, MscS, gates in response to membrane tension created from acute external hypoosmotic shock, thus rescuing the bacterium from cell lysis. E. coli MscS is the most well studied member of the MscS superfamily of channels, whose members are found throughout the bacterial and plant kingdoms. Homology to the pore lining helix and upper vestibule domain of E. coli MscS is required for inclusion into the superfamily. Although highly conserved, in the second half of the pore lining helix (TM3B), E. coli MscS has five residues significantly different from other members of the superfamily. In superfamilies such as this, it remains unclear why variations within such a homologous region occur: is it tolerance of alternate residues, or does it define functional variance within the superfamily? Point mutations (S114I/T, L118F, A120S, L123F, F127E/K/T) and patch clamp electrophysiology were used to study the effect of changing these residues in E. coli MscS on sensitivity and gating. The data indicate that variation at these locations do not consistently lead to wildtype channel phenotypes, nor do they define large changes in mechanosensation, but often appear to effect changes in the E. coli MscS channel gating kinetics.
Collapse
Affiliation(s)
- Hannah R. Malcolm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, 76390, United States of America
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, 76390, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion. Proc Natl Acad Sci U S A 2015; 112:10726-31. [PMID: 26261325 PMCID: PMC4553819 DOI: 10.1073/pnas.1503202112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prokaryotic mechanosensitive channel of large conductance (MscL) is a pressure-relief valve protecting the cell from lysing during acute osmotic downshock. When the membrane is stretched, MscL responds to the increase of membrane tension and opens a nonselective pore to about 30 Å wide, exhibiting a large unitary conductance of ∼ 3 nS. A fundamental step toward understanding the gating mechanism of MscL is to decipher the molecular details of the conformational changes accompanying channel opening. By applying fusion-protein strategy and controlling detergent composition, we have solved the structures of an archaeal MscL homolog from Methanosarcina acetivorans trapped in the closed and expanded intermediate states. The comparative analysis of these two new structures reveals significant conformational rearrangements in the different domains of MscL. The large changes observed in the tilt angles of the two transmembrane helices (TM1 and TM2) fit well with the helix-pivoting model derived from the earlier geometric analyses based on the previous structures. Meanwhile, the periplasmic loop region transforms from a folded structure, containing an ω-shaped loop and a short β-hairpin, to an extended and partly disordered conformation during channel expansion. Moreover, a significant rotating and sliding of the N-terminal helix (N-helix) is coupled to the tilting movements of TM1 and TM2. The dynamic relationships between the N-helix and TM1/TM2 suggest that the N-helix serves as a membrane-anchored stopper that limits the tilts of TM1 and TM2 in the gating process. These results provide direct mechanistic insights into the highly coordinated movement of the different domains of the MscL channel when it expands.
Collapse
|
34
|
Pacheco-Torres J, Mukherjee N, Walko M, López-Larrubia P, Ballesteros P, Cerdan S, Kocer A. Image guided drug release from pH-sensitive Ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1345-54. [DOI: 10.1016/j.nano.2015.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/03/2015] [Accepted: 03/29/2015] [Indexed: 01/11/2023]
|
35
|
Chandramouli B, Di Maio D, Mancini G, Barone V, Brancato G. Breaking the hydrophobicity of the MscL pore: insights into a charge-induced gating mechanism. PLoS One 2015; 10:e0120196. [PMID: 25825909 PMCID: PMC4380313 DOI: 10.1371/journal.pone.0120196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The mechanosensitive channel of large conductance (MscL) is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.
Collapse
Affiliation(s)
| | - Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- * E-mail:
| |
Collapse
|
36
|
Aryal P, Sansom MSP, Tucker SJ. Hydrophobic gating in ion channels. J Mol Biol 2015; 427:121-30. [PMID: 25106689 PMCID: PMC4817205 DOI: 10.1016/j.jmb.2014.07.030] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 02/01/2023]
Abstract
Biological ion channels are nanoscale transmembrane pores. When water and ions are enclosed within the narrow confines of a sub-nanometer hydrophobic pore, they exhibit behavior not evident from macroscopic descriptions. At this nanoscopic level, the unfavorable interaction between the lining of a hydrophobic pore and water may lead to stochastic liquid-vapor transitions. These transient vapor states are "dewetted", i.e. effectively devoid of water molecules within all or part of the pore, thus leading to an energetic barrier to ion conduction. This process, termed "hydrophobic gating", was first observed in molecular dynamics simulations of model nanopores, where the principles underlying hydrophobic gating (i.e., changes in diameter, polarity, or transmembrane voltage) have now been extensively validated. Computational, structural, and functional studies now indicate that biological ion channels may also exploit hydrophobic gating to regulate ion flow within their pores. Here we review the evidence for this process and propose that this unusual behavior of water represents an increasingly important element in understanding the relationship between ion channel structure and function.
Collapse
Affiliation(s)
- Prafulla Aryal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK.
| |
Collapse
|
37
|
Abstract
The mechanosensitive channel of large conductance, MscL, has been proposed as a triggered nanovalve to be used in drug release and other nanodevices. It is a small homopentameric bacterial protein that has the largest gated pore known: greater than 30 Å. Large molecules, even small proteins can be released through MscL. Although MscL normally gates in response to membrane tension, early studies found that hydrophilic or charged residue substitutions near the constriction of the channel leads to pore opening. Researchers have successfully changed the modality of MscL to open to stimuli such as light by chemically modifying a single residue, G22, within the MscL pore. Here, by utilizing in vivo, liposome efflux, and patch clamp assays we compared modification of G22 with that of another neighboring residue, G26, and demonstrate that modifying G26 may be a better choice for triggered nanovalves used for triggered vesicular release of compounds.
Collapse
|
38
|
Booth IR, Miller S, Müller A, Lehtovirta-Morley L. The evolution of bacterial mechanosensitive channels. Cell Calcium 2014; 57:140-50. [PMID: 25591932 DOI: 10.1016/j.ceca.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Mechanosensitive channels are ubiquitous and highly studied. However, the evolution of the bacterial channels remains enigmatic. It can be argued that mechanosensitivity might be a feature of all membrane proteins with some becoming progressively less sensitive to membrane tension over the course of evolution. Bacteria and archaea exhibit two main classes of channels, MscS and MscL. Present day channels suggest that the evolution of MscL may be highly constrained, whereas MscS has undergone elaboration via gene fusion (and potentially gene fission) events to generate a diversity of channel structures. Some of these channel variants are constrained to a small number of genera or species. Some are only found in higher organisms. Only exceptionally have these diverse channels been investigated in any detail. In this review we consider both the processes that might have led to the evolved complexity but also some of the methods exploiting the explosion of genome sequences to understand (and/or track) their distribution. The role of MscS-related channels in calcium-mediated cell biology events is considered.
Collapse
Affiliation(s)
- Ian R Booth
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Samantha Miller
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, Broad Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| | - Laura Lehtovirta-Morley
- Institute of Biological and Environmental Sciences, Cruikshank Building, University of Aberdeen, St Machar Drive, Aberdeen AB24 3UU, UK.
| |
Collapse
|
39
|
The mechanosensitive channel of small conductance (MscS) functions as a Jack-in-the box. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:159-66. [PMID: 25450806 DOI: 10.1016/j.bbamem.2014.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/04/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022]
Abstract
Phenotypical analysis of the lipid interacting residues in the closed state of the mechanosensitive channel of small conductance (MscS) from Escherichia coli (E. coli) has previously shown that these residues are critical for channel function. In the closed state, mutation of individual hydrophobic lipid lining residues to alanine, thus reducing the hydrophobicity, resulted in phenotypic changes that were observable using in vivo assays. Here, in an analogous set of experiments, we identify eleven residues in the first transmembrane domain of the open state of MscS that interact with the lipid bilayer. Each of these residues was mutated to alanine and leucine to modulate their hydrophobic interaction with the lipid tail-groups in the open state. The effects of these changes on channel function were analyzed using in vivo bacterial assays and patch clamp electrophysiology. Mutant channels were found to be functionally indistinguishable from wildtype MscS. Thus, mutation of open-state lipid interacting residues does not differentially stabilize or destabilize the open, closed, intermediate, or transition states of MscS. Based on these results and other data from the literature, we propose a new gating paradigm for MscS where MscS acts as a "Jack-In-The-Box" with the intrinsic bilayer lateral pressure holding the channel in the closed state. In this model, upon application of extrinsic tension the channel springs into the open state due to relief of the intrinsic lipid bilayer pressure.
Collapse
|
40
|
Zhong D, Yang LM, Blount P. Dynamics of protein-protein interactions at the MscL periplasmic-lipid interface. Biophys J 2014; 106:375-81. [PMID: 24461012 DOI: 10.1016/j.bpj.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022] Open
Abstract
MscL, the highly conserved bacterial mechanosensitive channel of large conductance, is one of the best studied mechanosensors. It is a homopentameric channel that serves as a biological emergency release valve that prevents cell lysis from acute osmotic stress. We previously showed that the periplasmic region of the protein, particularly a single residue located at the TM1/periplasmic loop interface, F47 of Staphylococcus aureus and I49 of Escherichia coli MscL, plays a major role in both the open dwell time and mechanosensitivity of the channel. Here, we introduced cysteine mutations at these sites and found they formed disulfide bridges that decreased the channel open dwell time. By scanning a likely interacting domain, we also found that these sites could be disulfide trapped by addition of cysteine mutations in other locations within the periplasmic loop of MscL, and this also led to rapid channel kinetics. Together, the data suggest structural rearrangements and protein-protein interactions that occur within this region upon normal gating, and further suggest that locking portions of the channel into a transition state decreases the stability of the open state.
Collapse
Affiliation(s)
- Dalian Zhong
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
41
|
Zhong D, Blount P. Electrostatics at the membrane define MscL channel mechanosensitivity and kinetics. FASEB J 2014; 28:5234-41. [PMID: 25223610 DOI: 10.1096/fj.14-259309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bacterial mechanosensitive channel of large conductance (MscL) serves as a biological emergency release valve, preventing the occurrence of cell lysis caused by acute osmotic stress. Its tractable nature allows it to serve as a paradigm for how a protein can directly sense membrane tension. Although much is known of the importance of the hydrophobicity of specific residues in channel gating, it has remained unclear whether electrostatics at the membrane plays any role. We studied MscL chimeras derived from functionally distinct orthologues: Escherichia coli and Staphylococcus aureus. Dissection of one set led to an observation that changing the charge of a single residue, K101, of E. coli (Ec)-MscL, effects a channel phenotype: when mutated to a negative residue, the channel is less mechanosensitive and has longer open dwell times. Assuming electrostatic interactions, we determined whether they are due to protein-protein or protein-lipid interactions by performing site-directed mutagenesis elsewhere in the protein and reconstituting channels into defined lipids, with and without negative head groups. We found that although both interactions appear to play some role, the primary determinant of the channel phenotype seems to be protein-lipid electrostatics. The data suggest a model for the role of electrostatic interactions in the dynamics of MscL gating.
Collapse
Affiliation(s)
- Dalian Zhong
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
42
|
Iscla I, Wray R, Wei S, Posner B, Blount P. Streptomycin potency is dependent on MscL channel expression. Nat Commun 2014; 5:4891. [PMID: 25205267 PMCID: PMC4161981 DOI: 10.1038/ncomms5891] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 01/15/2023] Open
Abstract
The antibiotic streptomycin is widely used in the treatment of microbial infections. The primary mechanism of action is inhibition of translation by binding to the ribosome, but how it enters the bacterial cell is unclear. Early in the study of this antibiotic, a mysterious streptomycin-induced K+-efflux preceding any decrease in viability was observed; it was speculated that this changed the electrochemical gradient such that streptomycin better accessed the cytoplasm. Here we use a high throughput screen to search for compounds targeting the mechanosensitive channel of large conductance (MscL) and find dihydrostreptomycin among the “hits”. Furthermore, we find that MscL is not only necessary for the previously described streptomycin-induced K+-efflux, but also directly increases MscL activity in electrophysiological studies. The data suggest that gating MscL is a novel mode of action of dihydrostreptomycin, and that MscL’s large pore may provide a mechanism for cell entry.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA
| |
Collapse
|
43
|
Mukherjee N, Jose MD, Birkner JP, Walko M, Ingólfsson HI, Dimitrova A, Arnarez C, Marrink SJ, Koçer A. The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating. FASEB J 2014; 28:4292-302. [PMID: 24958207 DOI: 10.1096/fj.14-251579] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the best-studied mechanosensitive channels is the mechanosensitive channel of large conductance (MscL). MscL senses tension in the membrane evoked by an osmotic down shock and directly couples it to large conformational changes leading to the opening of the channel. Spectroscopic techniques offer unique possibilities to monitor these conformational changes if it were possible to generate tension in the lipid bilayer, the native environment of MscL, during the measurements. To this end, asymmetric insertion of l-α-lysophosphatidylcholine (LPC) into the lipid bilayer has been effective; however, how LPC activates MscL is not fully understood. Here, the effects of LPC on tension-sensitive mutants of a bacterial MscL and on MscL homologs with different tension sensitivities are reported, leading to the conclusion that the mode of action of LPC is different from that of applied tension. Our results imply that LPC shifts the free energy of gating by interfering with MscL-membrane coupling. Furthermore, we demonstrate that the fine-tuned addition of LPC can be used for controlled activation of MscL in spectroscopic studies.
Collapse
Affiliation(s)
- Nobina Mukherjee
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Mac Donald Jose
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Jan Peter Birkner
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands; Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands; and
| | - Martin Walko
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Anna Dimitrova
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Clément Arnarez
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Armağan Koçer
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands; Neuroscience Department, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
MscL: channeling membrane tension. Pflugers Arch 2014; 467:15-25. [PMID: 24859800 DOI: 10.1007/s00424-014-1535-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Mechanosensitive channels are integral components for the response of bacteria to osmotic shock. The mechanosensitive channel of large conductance (MscL) responds to extreme turgor pressure increase that would otherwise lyse the cellular membrane. MscL has been studied as a model mechanosensitive channel using both structural and functional approaches. We will summarize the structural data and discuss outstanding questions surrounding the gating mechanism of this homo-oligomeric channel that has ~3 nS conductance. Specifically, we will explore the following: (1) the variability in oligomeric state that has been observed, (2) the open pore size measurements, and (3) the role of the C-terminal coiled coil domain for channel function. The oligomeric state of MscL has been characterized using various techniques, with a pentamer being the predominant form; however, the presence of mixtures of oligomers in the membrane is still uncertain. In the absence of structural data for the open state of MscL, the diameter of the open state pore has been estimated by several different approaches, leading to a current estimate between 25 and 30 Å. While the C-terminal domain is highly conserved among MscL homologues, it is not required for activity in vivo or in vitro. This domain is likely to remain intact during the gating transition and perform a filtering function that retains valuable osmolytes in the cytosol. Overall, studies of MscL have provided significant insight to the field, and serve as a paradigm for the analysis of non-homologous, eukaryotic mechanosensitive channel proteins.
Collapse
|
45
|
Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, Deplazes E, Cornell B, Cranfield CG, Hankamer B, Landsberg MJ. Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 2014; 20:952-69. [PMID: 23834368 DOI: 10.1089/ars.2013.5471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sensations of touch and hearing are manifestations of mechanical contact and air pressure acting on touch receptors and hair cells of the inner ear, respectively. In bacteria, osmotic pressure exerts a significant mechanical force on their cellular membrane. Bacteria have evolved mechanosensitive (MS) channels to cope with excessive turgor pressure resulting from a hypo-osmotic shock. MS channel opening allows the expulsion of osmolytes and water, thereby restoring normal cellular turgor and preventing cell lysis. RECENT ADVANCES As biological force-sensing systems, MS channels have been identified as the best examples of membrane proteins coupling molecular dynamics to cellular mechanics. The bacterial MS channel of large conductance (MscL) and MS channel of small conductance (MscS) have been subjected to extensive biophysical, biochemical, genetic, and structural analyses. These studies have established MscL and MscS as model systems for mechanosensory transduction. CRITICAL ISSUES In recent years, MS ion channels in mammalian cells have moved into focus of mechanotransduction research, accompanied by an increased awareness of the role they may play in the pathophysiology of diseases, including cardiac hypertrophy, muscular dystrophy, or Xerocytosis. FUTURE DIRECTIONS A recent exciting development includes the molecular identification of Piezo proteins, which function as nonselective cation channels in mechanosensory transduction associated with senses of touch and pain. Since research on Piezo channels is very young, applying lessons learned from studies of bacterial MS channels to establishing the mechanism by which the Piezo channels are mechanically activated remains one of the future challenges toward a better understanding of the role that MS channels play in mechanobiology.
Collapse
Affiliation(s)
- Boris Martinac
- 1 Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute , Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Walton TA, Rees DC. Structure and stability of the C-terminal helical bundle of the E. coli mechanosensitive channel of large conductance. Protein Sci 2013; 22:1592-601. [PMID: 24038743 DOI: 10.1002/pro.2360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/19/2022]
Abstract
The crystal structure of the cytoplasmic domain (CTD) from the mechanosensitive channel of large conductance (MscL) in E. coli has been determined at 1.45 Å resolution. This domain forms a pentameric coiled coil similar to that observed in the structure of MscL from M. tuberculosis and also found in the cartilage oligomeric matrix protein (COMPcc). It contains canonical hydrophobic and atypical ionic interactions compared to previously characterized coiled coil structures. Thermodynamic analysis indicates that while the free EcMscL-CTD is less stable than other coiled coils, it is likely to remain folded in context of the full-length channel.
Collapse
Affiliation(s)
- Troy A Walton
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| | | |
Collapse
|
47
|
Zhong D, Blount P. Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL. Biochemistry 2013; 52:5415-20. [PMID: 23875651 DOI: 10.1021/bi400790j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The bacterial mechanosensitive channel of large conductance (MscL) directly senses and responds to membrane tension. It serves as an "emergency release valve" upon acute decreases in the osmotic environment, thus preventing cell lysis. It is one of the best studied mechanosensitive channels and serves as a paradigm of how a channel senses and responds to its membrane environment. The MscL protein is highly conserved, found throughout the bacterial kingdom, and has been shown to encode a functional mechanosensitive channel in all species where it has been studied. However, channels from different species have shown some functional variance; an extreme example is the Mycobacterium tuberculosis MscL, which when heterologously expressed in Escherichia coli requires significantly more membrane tension for gating than the endogenous E. coli MscL. We previously speculated that the membrane environment or factors not found in E. coli promoted the proper gating of the M. tuberculosis MscL channel in its native environment. Here, by reconstituting the M. tuberculosis and E. coli MscL channels in various lipids, we demonstrate that inclusion of phosphatidylinositol, a lipid found in M. tuberculosis but not E. coli, is sufficient for gating of the M. tuberculosis MscL channel within a physiological range of membrane tension.
Collapse
Affiliation(s)
- Dalian Zhong
- Department of Physiology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040, USA
| | | |
Collapse
|
48
|
Sarkar P, Sardesai AA, Murakami KS, Chatterji D. Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the ω subunit. J Biol Chem 2013; 288:25076-25087. [PMID: 23843456 DOI: 10.1074/jbc.m113.468520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The widely conserved ω subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of ω is known to be substituted by GroEL in ω-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of ω variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to ω, which is largely unstructured, ω mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, ω6 bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that ω6 binds to β' subunit in vitro with greater affinity than that of ω. The reconstituted RNAP holoenzyme in the presence of ω6 in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant ω results in death of the cell. Furthermore, lethality of ω6 is relieved in cells expressing the rpoC2112 allele encoding β'2112, a variant β' bearing Y457S substitution, immediately adjacent to the β' catalytic center. Our results suggest that the enhanced ω6-β' interaction may perturb the plasticity of the RNAP active center, implicating a role for ω and its flexible state.
Collapse
Affiliation(s)
- Paramita Sarkar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Abhijit A Sardesai
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, and
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dipankar Chatterji
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India,.
| |
Collapse
|
49
|
Nanatani K, Shijuku T, Akai M, Yukutake Y, Yasui M, Hamamoto S, Onai K, Morishita M, Ishiura M, Uozumi N. Characterization of the role of a mechanosensitive channel in osmotic down shock adaptation in Synechocystis sp PCC 6803. Channels (Austin) 2013; 7:238-42. [PMID: 23764907 DOI: 10.4161/chan.25350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Synechocystis sp strain PCC 6803 contains one gene encoding a putative large conductance mechanosensitive channel homolog [named SyMscL (slr0875)]. However, it is unclear whether SyMscL contributes to the adaptation to hypoosmotic stress in Synechocystis. Here we report the in vivo characteristics of SyMscL. SyMscL was mainly expressed in the plasma membrane of Synechocystis. Cell volume monitoring using stopped-flow spectrophotometry showed that ΔsymscL cells swelled more rapidly than wild-type cells under hypoosmotic stress conditions. Expression of symscL was under circadian control, and its peak corresponded to the beginning of subjective night. These results indicate that SyMscL functioned as one component of the osmotic homeostatic regulatory system of the cell coordinating the response of Synechocystis to daily metabolic osmotic fluctuations and environmental changes.
Collapse
Affiliation(s)
- Kei Nanatani
- Department of Biomolecular Engineering; Graduate School of Engineering; Tohoku University; Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sawada Y, Murase M, Sokabe M. The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics simulations: from tension sensing to channel opening. Channels (Austin) 2013; 6:317-31. [PMID: 23146938 DOI: 10.4161/chan.21895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.
Collapse
Affiliation(s)
- Yasuyuki Sawada
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|