1
|
Wang L, Ying Y, Li N, Song Y, Zhao L, Sun H, Wang Z, Liu XH, Wang D. Transcriptome analysis of the hypothalamus and testes in Brandt's Vole: new insights into mechanisms of photoperiodic plasticity in postnatal testicular development. Funct Integr Genomics 2025; 25:55. [PMID: 40053130 DOI: 10.1007/s10142-025-01562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
Postnatal gonadal development is regulated by photoperiod via the hypothalamus, especially in seasonal breeding small rodents. However, the precise molecular mechanisms remain unclear. In this study, we conducted a comparative analysis of the transcriptomes of the hypothalamus and testes in 10-week-old male Brandt's voles born under long (LP, 16L:8D) and short photoperiod (SP, 8L:16D) conditions. Results indicate that the SP group exhibited significantly smaller testes with spermatogenesis halted before meiosis, identifying 129 differentially expressed genes (DEGs) in the hypothalamus and 21,673 DEGs in the testes. In the hypothalamus, genes involved in the thyroid hormone and retinoic acid (RA) pathway were notably altered under SP conditions, including decreased Tshb and Cga expression, increased Dio3, and reduced Crabp1 and Lrat, highlighting their key roles in SP signaling. In the testes, downregulated genes were significantly enriched in male reproduction-related GO terms and metabolic KEGG pathways, such as steroid hormone biosynthesis and retinol metabolism. Key genes for testosterone synthesis (e.g. Star, Cyp11a1) and RA synthesis (e.g. Rdh10, Rdh11) were downregulated, while those linked to RA degradation (Cyp26b1) and undifferentiated spermatogonia maintenance (e.g. Gdnf, Gfra1) were upregulated. These findings outline a molecular microenvironment that favors the preservation of undifferentiated spermatogonia over their differentiation from the hypothalamus to the testes. This study firstly provides valuable insights into the transcriptomic basis of SP-inhibited testicular development in Brandt's voles.
Collapse
Affiliation(s)
- Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaqi Ying
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao-Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Walczak-Jędrzejowska R, Niedzielski J, Slowikowska-Hilczer J, Nowak M, Marchlewska K. Hormonal Function of Undescended Testes Before Orchidopexy in Prepubertal Boys. J Clin Med 2024; 14:73. [PMID: 39797156 PMCID: PMC11721048 DOI: 10.3390/jcm14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: The hormonal aspect of undescended testes (UDTs) in prepubertal boys, i.e., after mini-puberty, is poorly understood. The aim of this study was to evaluate the hormonal function of UDTs before orchidopexy in prepubertal boys and its correlation with testicular parameters. Methods: The study included 90 prepubertal boys (0.9-8.8 years) with UDTs and 57 age-matched boys with testes in the scrotum (control). The testicular volume (TV), testicular atrophy index (TAI), and testicular growth potential (TGP) of the UDTs were assessed before orchidopexy and 18-24 months after. The analysis included FSH, LH, T, DHT, E2, Inh B, INSL3, and AMH levels. Results: The UDT group demonstrated a significantly higher FSH level and lower Inh B/FSH ratio than controls. Boys with UDTs aged under six years exhibited significantly higher FSH and LH levels and lower Inh B/FSH and T/LH ratios. The TV level of descended and undescended testes, both before and after surgery, was significantly positively related to T and DHT levels, but negatively with Inh B, INSL3 levels, Inh B/AMH, and Inh B/FSH. Conclusions: Hormonal evaluation of the hypothalamus-pituitary-testicular axis and Sertoli and Leydig cell function in prepubertal boys (after mini-puberty) may predict the further development and function of UDTs and may serve as a diagnostic tool in testicular descent disorder.
Collapse
Affiliation(s)
- Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland; (J.S.-H.); (K.M.)
| | - Jerzy Niedzielski
- Department of Pediatric Surgery and Urology, University Pediatric Centre, Central University Hospital, Medical University of Lodz, 90-419 Lodz, Poland; (J.N.); (M.N.)
| | - Jolanta Slowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland; (J.S.-H.); (K.M.)
| | - Maciej Nowak
- Department of Pediatric Surgery and Urology, University Pediatric Centre, Central University Hospital, Medical University of Lodz, 90-419 Lodz, Poland; (J.N.); (M.N.)
| | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland; (J.S.-H.); (K.M.)
| |
Collapse
|
3
|
Posastiuc FP, Rizzoto G, Constantin NT, Nicolae G, Chiers K, Diaconescu AI, Șerban AI, Van Soom A, Codreanu MD. Anti-Müllerian hormone in feline cryptorchidism: Serum levels, tissue expression, and implications for testicular health. Theriogenology 2024; 230:54-60. [PMID: 39265439 DOI: 10.1016/j.theriogenology.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Anti-Müllerian hormone (AMH) has become a pivotal subject in the study of testicular descent, maturation, integrity, and male fertility. Recent studies explored its roles and implications across various domestic species. A prominent approach involved the understanding of the modulation of AMH in reproductive disorders, including cryptorchidism. While substantial findings have been reported in dogs, ruminants, swine, and horses, data on AMH in feline cryptorchidism remains limited. Here, we aimed to bridge this gap by comparing AMH serum levels among cryptorchid, healthy intact, and castrated tomcats, employing an enzyme-linked immunosorbent assay (ELISA) kit for quantification. In addition, AMH expression in retained and descended testes was evaluated through immunohistochemistry, with positive staining quantified via pixel analysis in two distinct regions of interest: the seminiferous tubule and the interstitial space. Furthermore, tissue samples were subjected to histological evaluation and morphometric analysis, which included the calculation of seminiferous tubule areas (STA) and assessment of Johnsen scores. Thus, the relationship between AMH expression, altered testicular histology, and impaired spermatogenesis could be examined. The expression of AMH in retained and descended testes, was investigated, and the relationship between AMH expression, altered testicular histology, and impaired spermatogenesis was examined. Mean serum AMH levels differed significantly (P < 0.001) across the different groups being 15.35 ± 4.66 ng/mL (mean ± SD) in healthy intact tomcats (n = 15), 25.55 ± 2.86 ng/mL (mean ± SD) in cryptorchids (n = 10) and below 0.015 ng/mL in castrated cats (n = 10). STAs and Johnsen scores were significantly reduced in retained testes when compared to descended gonads (P < 0.01). Furthermore, serum AMH was negatively correlated with both the STA (ρ = -0.725, P < 0.001) and the Johnsen scores (ρ = -0.699, P < 0.001), suggesting its potential value for tissue integrity and spermatogenesis evaluation. In addition, positive immunostaining was significantly higher in retained testes (P < 0.05), especially in the interstitial space (P < 0.01), suggesting an involvement of the Leydig cells. Additionally, the increased interstitial expression was linked to the degree of tissue degeneration and the impaired spermatogenesis being negatively corelated with both Johnsen scores (ρ = -0.309, P < 0.01) and STA (ρ = -0.208, P < 0.05). Our findings underscore the potential of AMH in assessing testicular health and reveal possible interspecific differences, stressing the need for further investigation in cats.
Collapse
Affiliation(s)
- F P Posastiuc
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - G Rizzoto
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - N T Constantin
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.
| | - G Nicolae
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - K Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - A I Diaconescu
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - A I Șerban
- Department of Preclinical Science, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - M D Codreanu
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|
4
|
Posastiuc FP, Rizzoto G, Constantin NT, Nicolae G, Chiers K, Diaconescu AI, Șerban AI, Van Soom A, Codreanu MD. Anti-Müllerian hormone as a diagnostic marker for testicular degeneration in dogs: insights from cryptorchid models. Front Vet Sci 2024; 11:1481248. [PMID: 39439823 PMCID: PMC11493918 DOI: 10.3389/fvets.2024.1481248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The increasing prevalence of infertility in male dogs in clinical practice mirrors current trends seen in human medicine. Acquired infertility is notably more common in dogs compared to congenital causes, with conditions such as testicular degeneration leading to irreversible loss of fertility. Current diagnostic methods for testicular degeneration, such as histopathological and cytological examinations, rely on testicular biopsy or fine needle aspiration, making them less feasible for routine use. Anti-Müllerian hormone (AMH), produced by Sertoli cells, has emerged as a potential alternative biomarker for testicular health, which can be measured in serum. This study evaluates AMH as a potential marker for testicular degeneration, using cryptorchid dogs as models for impaired fertility and altered testicular histology. Methods The relationship between serum AMH levels and AMH tissue expression with impaired spermatogenesis and altered histology was investigated. Serum AMH levels were determined in intact, cryptorchid, and castrated individuals using an immuno-enzymatic ELISA kit and compared between subgroups based on testicular location. Tissue AMH immuno-expression was differentially quantified in two regions of interest (ROIs), the interstitial space and the seminiferous tubule, in both descended and retained gonads. Furthermore, testicles were analyzed using histomorphometric analysis in seminiferous tubules, while spermatogenesis was evaluated using the Johnsen score. Results Serum AMH levels were positively correlated with AMH expression assessed in both interstitial space (ρ = 0.494, p ≤ 0.01) and seminiferous tubules (ρ = 0.610, p ≤ 0.001). Conversely, serum AMH levels showed a negative correlation with the seminiferous tubule area (ρ = -0.435, p ≤ 0.05). Smaller seminiferous tubule areas were linked to increased AMH reactivity in both seminiferous tubules (ρ = -0.774, p ≤ 0.001) and interstitial space (ρ = -0.725, p ≤ 0.001). Additionally, lower Johnsen scores were associated with higher serum AMH levels (ρ = -0.537, p ≤ 0.01) and elevated AMH expression in both seminiferous tubules (ρ = -0.756, p ≤ 0.001) and interstitial space (ρ = -0.679, p ≤ 0.001). Discussion Our results suggest that higher serum levels and tissue expression of AMH are linked to smaller seminiferous tubules and poorer Johnsen scores, reflecting degenerative changes and Sertoli cell dysfunction in retained testicles. Given the similarities in the mechanisms that increase AMH levels in both cryptorchid and non-cryptorchid testicles affected by testicular degeneration, this study recommends using AMH as a marker for diagnosing testicular degeneration in dogs.
Collapse
Affiliation(s)
- Florin Petrișor Posastiuc
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Guilherme Rizzoto
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nicolae Tiberiu Constantin
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - George Nicolae
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Alexandru Ilie Diaconescu
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andreea Iren Șerban
- Department of Preclinical Science, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mario Darius Codreanu
- Department of Clinical Sciences II, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Silveira JM, Cesar Dos Santos A, Calado de Brito DC, de Oliveira MF, Conley AJ, de Assis Neto AC. Morphohistometric and steroidogenic parameters during testicular and epididymal differentiation in cavy (Galea spixii) fetuses. Reprod Biol 2024; 24:100829. [PMID: 38039944 DOI: 10.1016/j.repbio.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Sexual differentiation and steroidogenic mechanisms have an important impact on postnatal gonadal phenotypic development. Thus, establishing the activities that lead to male phenotypic development can provide a better understanding of this process. This study examined the prenatal development of cavies to establish morphological and histometric development patterns and protein and enzyme immunolocalization processes that are responsible for androgen synthesis in the testes and epididymis. Histological and histometric analyses of the diameter of the seminiferous cords and epididymal ducts of male fetuses on Days 25, 30, 40, and 50 were performed, as well as immunohistochemistry of the steroidogenic enzymes 5α-reductase and 17β-HSD, the androgen receptor, and the anti-Müllerian hormone (AMH). Our findings showed a cellular grouping of gonocytes from Day 30 onward that was characteristic of the seminiferous cord, which was not present in the lumen at any of the studied dates. From Day 50 onward, the differentiation of the three anatomical regions of the epididymis was evident, the head (caput), body (corpus), and tail (cauda), with tissue distinctions. Furthermore, the diameters of the seminiferous cords and epididymal ducts significantly increased with age. On Day 50, the tail showed the greatest diameter of the three regions. The Sertoli and Leydig cells exhibited AMH immunoreactivity at all dates. In addition, the Leydig cells and epididymal epithelial tissue were immunopositive for 5α-reductase, 17β-HSD, and the androgen receptor; therefore, these factors influenced the development and maintenance of the testis and epididymis during cavy prenatal development.
Collapse
Affiliation(s)
- Júlia Moreira Silveira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amilton Cesar Dos Santos
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Alan James Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, UC, Davis, CA, USA
| | - Antonio Chaves de Assis Neto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Svanholm S, Brouard V, Roza M, Marini D, Karlsson O, Berg C. Impaired spermatogenesis and associated endocrine effects of azole fungicides in peripubertal Xenopus tropicalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115876. [PMID: 38154155 DOI: 10.1016/j.ecoenv.2023.115876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3β-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.
Collapse
Affiliation(s)
- Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden.
| | - Vanessa Brouard
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden
| | - Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daniele Marini
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden; Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden
| |
Collapse
|
8
|
An K, Yao B, Tan Y, Kang Y, Su J. Potential Role of Anti-Müllerian Hormone in Regulating Seasonal Reproduction in Animals: The Example of Males. Int J Mol Sci 2023; 24:5874. [PMID: 36982948 PMCID: PMC10054328 DOI: 10.3390/ijms24065874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Seasonal reproduction is a survival strategy by which animals adapt to environmental changes to improve their fitness. Males are often characterized by a significantly reduced testicular volume, indicating that they are in an immature state. Although many hormones, including gonadotropins, have played a role in testicular development and spermatogenesis, research on other hormones is insufficient. The anti-Müllerian hormone (AMH), which is a hormone responsible for inducing the regression of Müllerian ducts involved in male sex differentiation, was discovered in 1953. Disorders in AMH secretion are the main biomarkers of gonadal dysplasia, indicating that it may play a crucial role in reproduction regulation. A recent study has found that the AMH protein is expressed at a high level during the non-breeding period of seasonal reproduction in animals, implying that it may play a role in restricting breeding activities. In this review, we summarize the research progress on the AMH gene expression, regulatory factors of the gene's expression, and its role in reproductive regulation. Using males as an example, we combined testicular regression and the regulatory pathway of seasonal reproduction and attempted to identify the potential relationship between AMH and seasonal reproduction, to broaden the physiological function of AMH in reproductive suppression, and to provide new ideas for understanding the regulatory pathway of seasonal reproduction.
Collapse
Affiliation(s)
- Kang An
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Reny SE, Mukherjee A, Mol PM. The curious case of testicular descent: factors controlling testicular descent with a note on cryptorchidism. AFRICAN JOURNAL OF UROLOGY 2023. [DOI: 10.1186/s12301-023-00342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract
Background
The testicular descent is a uniquely complex process depending upon multiple factors like growth and reorganisation of the specific gonadal ligaments, hormones, etc., which interplay with each other. Though an unambiguous event, it is still laced with incredulity since the data interpretation were intermingled between different species creating more ambiguity in certain aspects of this process. In order to understand the aetiopathology of cryptorchidism the extensive study of the factors controlling the descent is necessitous.
Main body
Though testes originate in the abdomen, they migrate to an extra abdominal site the scrotum, which makes it vulnerable to pathological conditions associated with the descent. The hormones that play vital role in the first phase of descent are insulin-like hormone 3 (INSL3), Anti-müllerian hormone as well as testosterone, whereas androgens, genitofemoral nerve and its neurotransmitter calcitonin gene-related peptide (CGRP) influence the second phase. Despite the vast research regarding the complex nexus of events involving the descent there are disparities among the cross species studies. However all these discrepancies make testicular descent yet again fascinating and perplexing. Our aim is to provide a comprehensive review including recent advances which provides thorough coverage of anatomical and hormonal factors in the descent as well as cryptorchidism.
Conclusion
Though our understanding on testicular descent has evolved over the decades there still has obscurity surrounding it and the studies on the factors responsible for descent are becoming more intense with the time. Our knowledge on many factors such as INSL3 and CGRP is more established now; however, on the other hand the role of androgens still remains speculative. As the knowledge and understanding of the biological process of testicular descent increases it will pave ways to new treatment plans to treat cryptorchidism more effectively.
Collapse
|
10
|
Bhattacharya I, Dey S. Emerging concepts on Leydig cell development in fetal and adult testis. Front Endocrinol (Lausanne) 2023; 13:1086276. [PMID: 36686449 PMCID: PMC9851038 DOI: 10.3389/fendo.2022.1086276] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Leydig cells (Lc) reside in the interstitial compartment of the testis and are the target of Luteinising hormone (LH) for Testosterone (T) production, thus critically regulates male fertility. Classical histological studies have identified two morphologically different populations of Lc during testicular development [fetal (FLc) and adult (ALc)]. Recent progress in ex vivo cell/organ culture, genome-wide analysis, genetically manipulated mouse models, lineage tracing, and single-cell RNA-seq experiments have revealed the diverse cellular origins with differential transcriptomic and distinct steroidogenic outputs of these populations. FLc originates from both coelomic epithelium and notch-active Nestin-positive perivascular cells located at the gonad-mesonephros borders, and get specified as Nr5a1 (previously known as Ad4BP/SF-1) expressing cells by embryonic age (E) 12.5 days in fetal mouse testes. These cells produce androstenedione (precursor of T, due to lack of HSD17β3 enzyme) and play critical a role in initial virilization and patterning of the male external genitalia. However, in neonatal testis, FLc undergoes massive regression/dedifferentiation and gradually gets replaced by T-producing ALc. Very recent studies suggest a small fraction (5-20%) of FLc still persists in adult testis. Both Nestin-positive perivascular cells and FLc are considered to be the progenitor populations for ALc. This minireview article summarizes the current understanding of Lc development in fetal and adult testes highlighting their common or diverse cellular (progenitor/stem) origins with respective functional significance in both rodents and primates. (227 words).
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, School of Biological Science, Central University of Kerala, Periye, Kerala, India
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
11
|
Anti-Müllerian Hormone and Polycystic Ovary Syndrome in Women and Its Male Equivalent. Biomedicines 2022; 10:biomedicines10102506. [PMID: 36289767 PMCID: PMC9599141 DOI: 10.3390/biomedicines10102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
This article reviews the main findings on anti-Müllerian hormone (AMH) and its involvement in the pathogenesis of polycystic ovary syndrome (PCOS) and its male equivalent. In women, AMH is produced by granulosa cells from the mid-fetal life to menopause and is a reliable indirect marker of ovarian reserve. AMH protects follicles from atresia, inhibits their differentiation in the ovary, and stimulates gonadotrophin-releasing hormone neurons pulsatility. AMH overexpression in women with PCOS likely contributes to the increase of the follicle cohort and of androgen levels, leading to follicular arrest and anovulation. In the male, AMH is synthesized at high levels by Sertoli cells from fetal life to puberty when serum AMH falls to levels similar to those observed in women. AMH is involved in the differentiation of the genital tract during fetal life and plays a role in Sertoli and Leydig cells differentiation and function. Serum AMH is used to assess Sertoli cell function in children with disorders of sex development and various conditions affecting the hypothalamic–pituitary–testicular axis. Although the reproductive function of male relative of women with PCOS has been poorly investigated, adolescents have elevated levels of AMH which could play a detrimental role on their fertility.
Collapse
|
12
|
Mehanovic S, Pierre KJ, Viger RS, Tremblay JJ. COUP-TFII interacts and functionally cooperates with GATA4 to regulate Amhr2 transcription in mouse MA-10 Leydig cells. Andrology 2022; 10:1411-1425. [PMID: 35973717 DOI: 10.1111/andr.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor COUP-TFII and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression and function. OBJECTIVES Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION Our results establish the importance of a physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
13
|
Huhtaniemi I. The first report on homozygous INHA inactivation in humans. Eur J Endocrinol 2022; 187:C1-C2. [PMID: 35521788 PMCID: PMC9175547 DOI: 10.1530/eje-22-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Ilpo Huhtaniemi
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Correspondence should be addressed to I Huhtaniemi;
| |
Collapse
|
14
|
Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022; 10:biomedicines10030540. [PMID: 35327342 PMCID: PMC8945152 DOI: 10.3390/biomedicines10030540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consensus (2003), which supports the positive diagnosis of PCOS when patients present two out of the following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovulation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes, and disturbed lifestyle lead to the development of pathophysiological disturbances, which include hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular level, different proteins and molecular and signaling pathways are involved in disease progression, which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic variances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types. Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin disease. Different genetic loci and specific genes have been identified so far as being associated with this disease. Genome-wide association studies (GWAS) and related genetic studies have changed the scenario for the diagnosis and treatment of this reproductive and metabolic condition known as PCOS. This review article briefly discusses different genes associated directly or indirectly with disease development and progression.
Collapse
Affiliation(s)
- Himani Nautiyal
- Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun 248001, India;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Emine Güven
- Biomedical Engineering Department, Faculty of Engineering, Düzce University, Düzce 81620, Turkey;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| |
Collapse
|
15
|
Xin X, Chen H, Tian F, Li J, Yan H, Yu Y, Ma F, Li H, Wang Y, Li X, Zhu Y, Ge RS. Effects of perfluoroundecanoic acid on the function of Leydig cells in adult male rats. Toxicol Appl Pharmacol 2022; 439:115903. [PMID: 35143807 DOI: 10.1016/j.taap.2022.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/09/2023]
Abstract
Perfluoroundecanoic acid (PFUnA), a perfluorinated compound, has environmental persistence, bioaccumulation, and potential toxicity. However, its effect on Leydig cell function remains unclear. Rats (age of 56 days) were gavaged with 0 (corn oil), 0.1, 0.5, 1, or 5 mg/kg/day PFUnA for 28 days. PFUnA significantly reduced serum testosterone levels as low as 0.5 mg/kg. PFUnA markedly decreased Leydig cell number as low as 0.1 mg/kg. PFUnA markedly reduced transcript levels of Star and Insl3 in the testes at 1 mg/kg after adjusting to Leydig cell number. It also reduced their protein levels. PFUnA significantly decreased the phosphorylation of AKT1 and mTOR as low as 0.1 mg/kg and the phosphorylation of ERK1/2 at 1 mg/kg and the phosphorylation of AKT1, AKT2, ERK1/2, and mTOR in Leydig cells at various concentrations (0.01-10 μM) after 24 h of in vitro treatment. In conclusion, PFUnA inhibits Leydig cell function possibly via AKT/ERK1/2/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xiu Xin
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiqiong Chen
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fuhong Tian
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
16
|
Bedenk J, Režen T, Železnik Ramuta T, Jančar N, Vrtačnik Bokal E, Geršak K, Virant Klun I. Recombinant anti-Müllerian hormone in the maturation medium improves the in vitro maturation of human immature (GV) oocytes after controlled ovarian hormonal stimulation. Reprod Biol Endocrinol 2022; 20:18. [PMID: 35073905 PMCID: PMC8785574 DOI: 10.1186/s12958-022-00895-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In vitro maturation (IVM) of oocytes is a laboratory method that allows the maturation of immature (GV) oocytes retrieved from patients enrolled in the in vitro fertilization (IVF) programme. However, this method is still sparsely researched and used in clinical practice, leading to suboptimal clinical results. Anti-Müllerian hormone (AMH) is an important hormone with known effects on human ovaries, especially on follicles (follicular cells) during folliculogenesis. In contrast, the effect of AMH on the human oocyte itself is unknown. Therefore, we wanted to determine whether human oocytes express AMH receptor 2 (AMHR2) for this hormone. Recombinant AMH was added to the IVM medium to determine whether it affected oocyte maturation. METHODS In total, 247 human oocytes (171 immature and 76 mature) were collected from patients enrolled in the intracytoplasmic sperm injection (ICSI) programme who were aged 20 to 43 years and underwent a short antagonist protocol of ovarian stimulation. The expression of AMHR2 protein and AMHR2 gene was analysed in immature and mature oocytes. Additionally, maturation of GV oocytes was performed in vitro in different maturation media with or without added AMH to evaluate the effect of AMH on the oocyte maturation rate. RESULTS Immunocytochemistry and confocal microscopy revealed that AMHR2 protein is expressed in both immature and mature human oocytes. AMHR2 was expressed in a spotted pattern throughout the whole oocyte. The IVM procedure revealed that AMH in maturation medium improved GV oocyte maturation in vitro, as all oocytes were successfully matured in maturation medium containing recombinant AMH only. Furthermore, antagonism between AMH and follicle-stimulating hormone (FSH) during the maturation process was observed, with fewer oocytes maturing when both AMH and FSH were added to the maturation medium. Finally, AMHR2 gene expression was found in immature and in vitro matured oocytes but absent in mature oocytes. CONCLUSIONS The positive AMHR2 protein and AMHR2 gene expression in human oocytes shows that AMH could directly act on human oocytes. This was further functionally confirmed by the IVM procedure. These findings suggest the potential clinical application of recombinant AMH to improve IVM of human oocytes in the future.
Collapse
Affiliation(s)
- Jure Bedenk
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | - Tadeja Režen
- Institute of Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Jančar
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Eda Vrtačnik Bokal
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β family produced essentially by the supporting somatic cells of the testis. Initially known for its inhibiting role upon the development of female internal organs, AMH has been shown to exert many other effects namely upon germ cells. Circulating AMH reflects the ovarian reserve of young developing follicles and is used to evaluate the fertility potential in assisted reproduction. The signaling pathway of AMH is both similar and different from that of other members of the TGF-β family. Like these, it signals through two distinct serine/threonine receptors, type 1 and type 2, that phosphorylate cytoplasmic effectors, the Smads. It also shares type 1 receptors and Smads with other members of the family. However, AMH is the only family member with its own, dedicated, ligand-specific type 2 receptor, AMHR2. The monogamic relationship between AMH and AMHR2 is supported by molecular studies of the Persistent Müllerian Duct Syndrome, characterized by the presence of Müllerian derivatives in otherwise normally virilized males: mutations of AMH or AMHR2 are clinically indistinguishable.
Collapse
Affiliation(s)
- Nathalie Josso
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| | - Jean-Yves Picard
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| |
Collapse
|
18
|
Cate RL. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Front Endocrinol (Lausanne) 2022; 13:905324. [PMID: 35721723 PMCID: PMC9201060 DOI: 10.3389/fendo.2022.905324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Over seventy years ago it was proposed that the fetal testis produces a hormone distinct from testosterone that is required for complete male sexual development. At the time the hormone had not yet been identified but was invoked by Alfred Jost to explain why the Müllerian duct, which develops into the female reproductive tract, regresses in the male fetus. That hormone, anti-Müllerian hormone (AMH), and its specific receptor, AMHR2, have now been extensively characterized and belong to the transforming growth factor-β families of protein ligands and receptors involved in growth and differentiation. Much is now known about the downstream events set in motion after AMH engages AMHR2 at the surface of specific Müllerian duct cells and initiates a cascade of molecular interactions that ultimately terminate in the nucleus as activated transcription factors. The signals generated by the AMH signaling pathway are then integrated with signals coming from other pathways and culminate in a complex gene regulatory program that redirects cellular functions and fates and leads to Müllerian duct regression.
Collapse
|
19
|
Cate RL, di Clemente N, Racine C, Groome NP, Pepinsky RB, Whitty A. The anti-Müllerian hormone prodomain is displaced from the hormone/prodomain complex upon bivalent binding to the hormone receptor. J Biol Chem 2021; 298:101429. [PMID: 34801555 PMCID: PMC8801479 DOI: 10.1016/j.jbc.2021.101429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Noncovalent complexes of transforming growth factor-β family growth/differentiation factors with their prodomains are classified as latent or active, depending on whether the complexes can bind their respective receptors. For the anti-Müllerian hormone (AMH), the hormone-prodomain complex is active, and the prodomain is displaced upon binding to its type II receptor, AMH receptor type-2 (AMHR2), on the cell surface. However, the mechanism by which this displacement occurs is unclear. Here, we used ELISA assays to measure the dependence of prodomain displacement on AMH concentration and analyzed results with respect to the behavior expected for reversible binding in combination with ligand-induced receptor dimerization. We found that, in solution, the prodomain has a high affinity for the growth factor (GF) (Kd = 0.4 pM). Binding of the AMH complex to a single AMHR2 molecule does not affect this Kd and does not induce prodomain displacement, indicating that the receptor binding site in the AMH complex is fully accessible to AMHR2. However, recruitment of a second AMHR2 molecule to bind the ligand bivalently leads to a 1000-fold increase in the Kd for the AMH complex, resulting in rapid release of the prodomain. Displacement occurs only if the AMHR2 is presented on a surface, indicating that prodomain displacement is caused by a conformational change in the GF induced by bivalent binding to AMHR2. In addition, we demonstrate that the bone morphogenetic protein 7 prodomain is displaced from the complex with its GF by a similar process, suggesting that this may represent a general mechanism for receptor-mediated prodomain displacement in this ligand family.
Collapse
Affiliation(s)
- Richard L Cate
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| | - Nathalie di Clemente
- INSERM, Centre de Recherche Saint Antoine (CRSA), IHU ICAN, Sorbonne Université, Paris, France
| | - Chrystèle Racine
- INSERM, Centre de Recherche Saint Antoine (CRSA), IHU ICAN, Sorbonne Université, Paris, France
| | - Nigel P Groome
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - R Blake Pepinsky
- Department of Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Anti-Müllerian hormone, testosterone, and insulin-like peptide 3 as biomarkers of Sertoli and Leydig cell function during deslorelin-induced testicular downregulation in the dog. Theriogenology 2021; 175:100-110. [PMID: 34534687 DOI: 10.1016/j.theriogenology.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
The role of anti-Müllerian hormone (AMH) and insulin-like peptide 3 (INSL3) in male infertility is not fully understood. We used the downregulated testis as a model of gonadotropin-dependent infertility. Serum testosterone and AMH concentrations were studied in five adult male Beagles implanted (day 0) with 4.7 mg deslorelin (Suprelorin®, Virbac) (DES group). Testicular expression of LH receptor (LHR) and androgen receptor (AR), AMH, type 2 AMH receptor (AMHR2), INSL3 and its receptor (RXFP2) was evaluated 112 days (16 weeks) after deslorelin treatment by qPCR and immunohistochemistry, and compared to untreated adult (CON, n = 6) and prepubertal (PRE, n = 8) dogs. Serum testosterone concentration decreased significantly by the onset of aspermia on study day 14 (four dogs) or day 21 (one dog), and was baseline on day 105 (week 15). In contrast, serum AMH started to increase only after the onset of aspermia and reached the maximum detectable concentration of the assay by day 49-105 in individual dogs. Testicular LHR gene expression in DES was lower than in CON and PRE (P < 0.0001), while AR gene expression in DES was similar to CON and significantly higher than PRE (P < 0.0001). Testicular AMH expression in DES was intermediate compared to the lowest mRNA levels found in CON and the highest in PRE (P ≤ 0.006). AMHR2 gene expression was similar between groups. AMH protein was detected in Sertoli cells only, while AMHR2 immunoreactivity was principally detected in Leydig cells which appeared to be increased in DES. INSL3 and RXFP2 gene expression was significantly downregulated in the DES testis along with noticeably weak Leydig cell immunosignals compared to CON. In conclusion, deslorelin treatment caused testicular LH insensitivity without affecting androgen sensitivity, and de-differentiation of Sertoli and Leydig cells. In DES, upregulation of the AMH-AMHR2 feed-back loop and downregulation of the INSL3-RXFP2 feed-forward loop are paracrine-autocrine mechanisms that may additionally regulate testosterone production independent of gonadotropins. Our results support AMH and INSL3 as unique biomarkers and paracrine-autocrine regulators of testis function involved in the intimate interplay between Sertoli and Leydig cells.
Collapse
|
21
|
Rodgers RJ, Abbott JA, Walters KA, Ledger WL. Translational Physiology of Anti-Müllerian Hormone: Clinical Applications in Female Fertility Preservation and Cancer Treatment. Front Endocrinol (Lausanne) 2021; 12:689532. [PMID: 34557157 PMCID: PMC8454407 DOI: 10.3389/fendo.2021.689532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Whilst the ability of AMH to induce the regression of the Müllerian ducts in the male fetus is well appreciated, AMH has additional biological actions in relation to steroid biosynthesis and ovarian follicle dynamics. An understanding of the physiology of AMH illuminates the potential therapeutic utility of AMH to protect the ovarian reserve during chemotherapy and in the treatment of female malignancies. The translation of the biological actions of AMH into clinical applications is an emerging focus of research, with promising preliminary results. Objective and Rationale Studies indicate AMH restrains primordial follicle development, thus administration of AMH during chemotherapy may protect the ovarian reserve by preventing the mass activation of primordial follicles. As AMH induces regression of tissues expressing the AMH receptor (AMHRII), administration of AMH may inhibit growth of malignancies expressing AMHR II. This review evaluates the biological actions of AMH in females and appraises human clinical applications. Search Methods A comprehensive search of the Medline and EMBASE databases seeking articles related to the physiological functions and therapeutic applications of AMH was conducted in July 2021. The search was limited to studies published in English. Outcomes AMH regulates primordial follicle recruitment and moderates sex steroid production through the inhibition of transcription of enzymes in the steroid biosynthetic pathway, primarily aromatase and 17α-hydroxylase/17,20-lyase. Preliminary data indicates that administration of AMH to mice during chemotherapy conveys a degree of protection to the ovarian reserve. Administration of AMH at the time of ovarian tissue grafting has the potential to restrain uncontrolled primordial follicle growth during revascularization. Numerous studies demonstrate AMH induced regression of AMHR II expressing malignancies. As this action occurs via a different mechanism to traditional chemotherapeutic agents, AMH has the capacity to inhibit proliferation of chemo-resistant ovarian cancer cells and cancer stem cells. Wider Implications To date, AMH has not been administered to humans. Data identified in this review suggests administration of AMH would be safe and well tolerated. Administration of AMH during chemotherapy may provide a synchronistic benefit to women with an AMHR II expressing malignancy, protecting the ovarian reserve whilst the cancer is treated by dual mechanisms.
Collapse
Affiliation(s)
- Rachael Jean Rodgers
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
22
|
Brunello FG, Rey RA. AMH and AMHR2 Involvement in Congenital Disorders of Sex Development. Sex Dev 2021; 16:138-146. [PMID: 34515230 DOI: 10.1159/000518273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Anti-müllerian hormone (AMH) is 1 of the 2 testicular hormones involved in male development of the genitalia during fetal life. When the testes differentiate, AMH is secreted by Sertoli cells and binds to its specific receptor type II (AMHR2) on the müllerian ducts, inducing their regression. In the female fetus, the lack of AMH allows the müllerian ducts to form the fallopian tubes, the uterus, and the upper part of the vagina. The human AMH gene maps to 19p13.3 and consists of 5 exons and 4 introns spanning 2,764 bp. The AMHR2 gene maps to 12q13.13, consists of 11 exons, and is 7,817 bp long. Defects in the AMH pathway are the underlying etiology of a subgroup of disorders of sex development (DSD) in 46,XY patients. The condition is known as the persistent müllerian duct syndrome (PMDS), characterized by the existence of a uterus and fallopian tubes in a boy with normally virilized external genitalia. Approximately 200 cases of patients with PMDS have been reported to date with clinical, biochemical, and molecular genetic characterization. An updated review is provided in this paper. With highly sensitive techniques, AMH and AMHR2 expression has also been detected in other tissues, and massive sequencing technologies have unveiled variants in AMH and AMHR2 genes in hitherto unsuspected conditions.
Collapse
Affiliation(s)
- Franco G Brunello
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Srisuwatanasagul K, Srisuwatanasagul S, Roongsitthichai A. Expressions of cytochrome P450 aromatase and anti-Müllerian hormone in testes of fattening pigs by the timing of the first vaccination for immunocastration. Reprod Domest Anim 2020; 56:400-407. [PMID: 33295050 DOI: 10.1111/rda.13875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 12/05/2020] [Indexed: 11/26/2022]
Abstract
In practice, two injections of gonadotropin-releasing hormone (GnRH) vaccine are recommended for pig immunocastration for effective outcomes. The present study aimed to investigate the expressions of cytochrome P450 aromatase (P450arom ) and anti-Müllerian hormone (AMH) in testes, testicular length and testicular histomorphometry of the fattening pigs receiving the first injection of GnRH vaccine 6 weeks earlier than the standard protocol. Based on vaccination protocol, 24 pigs were equally divided into three groups: T1 was vaccinated at 15 and 19 weeks of age, T2 received vaccine at 9 and 19 weeks of age and C remained intact. P450arom and AMH expressions were analysed using immunohistochemistry and Western blot. The results revealed that testicular length was highest in C pigs, but not different between T1 and T2 groups (6.5 ± 0.2 versus 6.9 ± 0.3 cm, p = .538). Histomorphometry demonstrated that the height of spermatogenic epithelia, the diameter of seminiferous tubules and the number of seminiferous tubules between T1 and T2 groups were not different (p > .05). For P450arom , immunohistochemistry revealed that H-score of C group was significantly higher than that of both T1 and T2 groups. Western blot analysis showed that C group possessed the densest protein band. Moreover, H-score between T1 and T2 groups was not significantly different. Protein band intensity between both groups was not apparently different. As for AMH, C pigs had significantly lower H-score than both T1 and T2 pigs. Furthermore, T2 pigs possessed significantly higher H-score than T1 pigs. Western blot analysis showed that the most intense protein band was found in T2 group. In summary, GnRH vaccine affected testicular development and functions. The first injection could be performed either at 9 or 15 weeks of age since both protocols contributed to comparable results in aspect of testicular length, histomorphometry and expressions of P450arom and AMH.
Collapse
Affiliation(s)
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
24
|
Fertility Preservation in Childhood Cancer: Endocrine Activity in Prepubertal Human Testis Xenografts Exposed to a Pubertal Hormone Environment. Cancers (Basel) 2020; 12:cancers12102830. [PMID: 33008013 PMCID: PMC7600569 DOI: 10.3390/cancers12102830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Substantial strides have been made in treating childhood cancers; however, as a result of chemotherapy and radiotherapy, young males experience long-term side effects, including impaired fertility. Whilst prepubertal testicular tissue can be cryopreserved prior to gonadotoxic treatments, it remains to be determined how to generate mature gametes from the immature human testis tissue. Development of immature germ cells into sperm is a complex process, which is supported by mature Sertoli cells and testosterone produced from Leydig cells. We used an established testicular xenotransplantation model to investigate the effect of puberty hormones, known as gonadotrophins, on functional maturation of the spermatogonial stem cell (SSC) niche. Limited testosterone production and partial maturation of Sertoli cells occurred in prepubertal testis grafts, suggesting that longer periods of grafting and/or identification of additional factors are required to develop testicular transplantation as a model for fertility preservation in male survivors of childhood cancer. Abstract Survivors of childhood cancer are at risk for long-term treatment-induced health sequelae, including gonadotoxicity and iatrogenic infertility. At present, for prepubertal boys there are no viable clinical options to preserve future reproductive potential. We investigated the effect of a pubertal induction regimen with gonadotrophins on prepubertal human testis xenograft development. Human testis tissue was obtained from patients with cancer and non-malignant haematological disorders (n = 6; aged 1–14 years) who underwent testis tissue cryopreservation for fertility preservation. Fresh and frozen-thawed testis fragments were transplanted subcutaneously or intratesticularly into immunocompromised mice. Graft-bearing mice received injections of vehicle or exogenous gonadotrophins, human chorionic gonadotrophin (hCG, 20 IU), and follicle-stimulating hormone (FSH, 12.5 IU) three times a week for 12 weeks. The gross morphology of vehicle and gonadotrophin-exposed grafts was similar for both transplantation sites. Exposure of prepubertal human testis tissue xenografts to exogenous gonadotrophins resulted in limited endocrine function of grafts, as demonstrated by the occasional expression of the steroidogenic cholesterol side-chain cleavage enzyme (CYP11A1). Plasma testosterone concentrations (0.13 vs. 0.25 ng/mL; p = 0.594) and seminal vesicle weights (10.02 vs. 13.93 mg; p = 0.431) in gonadotrophin-exposed recipient mice were comparable to vehicle-exposed controls. Regardless of the transplantation site and treatment, initiation and maintenance of androgen receptor (AR) expression were observed in Sertoli cells, indicating commitment towards a more differentiated status. However, neither exogenous gonadotrophins (in castrated host mice) nor endogenous testosterone (in intact host mice) were sufficient to repress the expression of markers associated with immature Sertoli cells, such as anti-Müllerian hormone (AMH) and Ki67, or to induce the redistribution of junctional proteins (connexin 43, CX43; claudin 11, CLDN11) to areas adjacent to the basement membrane. Spermatogonia did not progress developmentally but remained the most advanced germ cell type in testis xenografts. Overall, these findings demonstrate that exogenous gonadotrophins promote partial activation and maturation of the somatic environment in prepubertal testis xenografts. However, alternative hormone regimens or additional factors for pubertal induction are required to complete the functional maturation of the spermatogonial stem cell (SSC) niche.
Collapse
|
25
|
Racoubian E, Aimagambetova G, Finan RR, Almawi WY. Age-dependent changes in anti-Müllerian hormone levels in Lebanese females: correlation with basal FSH and LH levels and LH/FSH ratio: a cross-sectional study. BMC Womens Health 2020; 20:134. [PMID: 32586307 PMCID: PMC7318543 DOI: 10.1186/s12905-020-00998-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background To investigate the age-dependent changes in circulating anti-Müllerian hormone (AMH) levels in healthy Arabic-speaking Lebanese women, and to correlate changes in serum AMH levels with serum FSH and LH values, and LH/FSH ratio. Methods Cross-sectional study, involving 1190 healthy females, age 17–54 years, with regular menses and both ovaries. Serum AMH levels (ng/ml) were measured by ELISA. Results There was an inverse proportion of AMH and subject’s age, which declined from median 6.71 (2.91) ng/ml in young subjects, to 0.68 (0.45) ng/ml in subjects older than 50 years. Average yearly decrease in median AMH levels was 0.27 ng/ml/year through age 35, but then diminished to 0.12 ng/ml/year afterwards. Receiver operating characteristic curve analysis demonstrated high sensitivity and specificity of age as determinant of AMH levels. In contrast to AMH, FSH levels increased progressively from 5.89 (0.11–62.10) ng/ml in young subjects, to 38.43 (3.99–88.30) ng/ml in subjects older than 50 years. On the other hand, age-dependent changes in LH/FSH ratio paralleled those of AMH. Linear regression modeling testing the independent effect of AMH on FSH and LH, adjusted for age, showed that AMH was significant predictor of FSH and LH/FSH ratio, but not LH. This did not contribute significantly to baseline LH and FSH prediction. Conclusions Circulating AMH levels are inversely related to age as also shown elsewhere, and are predictors of LH/FSH ratio and FSH but not LH levels in eumenorrheic females.
Collapse
Affiliation(s)
- Eddie Racoubian
- St. Marc Medical and Diagnostic Center, Ashrafieh, Beirut, Lebanon
| | | | - Ramzi R Finan
- Department of Obstetrics and Gynecology, Hôtel-Dieu de France, Beirut, Lebanon
| | - Wassim Y Almawi
- School of Medicine, Nazarbayev University, Nur-Sultan, Astana, Kazakhstan. .,Faculte' des Sciences de Tunis, Universite' de Tunis El Manar, Tunis, Tunisia. .,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
26
|
New insights into anti-Müllerian hormone role in the hypothalamic-pituitary-gonadal axis and neuroendocrine development. Cell Mol Life Sci 2020; 78:1-16. [PMID: 32564094 PMCID: PMC7867527 DOI: 10.1007/s00018-020-03576-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Research into the physiological actions of anti-Müllerian hormone (AMH) has rapidly expanded from its classical role in male sexual differentiation to the regulation of ovarian function, routine clinical use in reproductive health and potential use as a biomarker in the diagnosis of polycystic ovary syndrome (PCOS). During the past 10 years, the notion that AMH could act exclusively at gonadal levels has undergone another paradigm shift as several exciting studies reported unforeseen AMH actions throughout the Hypothalamic–Pituitary–Gonadal (HPG) axis. In this review, we will focus on these findings reporting novel AMH actions across the HPG axis and we will discuss their potential impact and significance to better understand human reproductive disorders characterized by either developmental alterations of neuroendocrine circuits regulating fertility and/or alterations of their function in adult life. Finally, we will summarize recent preclinical studies suggesting that elevated levels of AMH may potentially be a contributing factor to the central pathophysiology of PCOS and other reproductive diseases.
Collapse
|
27
|
Safian D, Bogerd J, Schulz RW. Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. Gen Comp Endocrinol 2019; 284:113244. [PMID: 31415728 DOI: 10.1016/j.ygcen.2019.113244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a cellular developmental process characterized by the coordinated proliferation and differentiation activities of somatic and germ cells in order to produce a large number of spermatozoa, the cellular basis of male fertility. Somatic cells in the testis, such as Leydig, peritubular myoid and Sertoli cells, provide structural and metabolic support and contribute to the regulatory microenvironment required for proper germ cell survival and development. The pituitary follicle-stimulating hormone (Fsh) is a major endocrine regulator of vertebrate spermatogenesis, targeting somatic cell functions in the testes. In fish, Fsh regulates Leydig and Sertoli cell functions, such as sex steroid and growth factor production, processes that also control the development of spermatogonia, the germ cell stages at the basis of the spermatogenic process. Here, we summarize recent advances in our understanding of mechanisms used by Fsh to regulate the development of spermatogonia. This involves discussing the roles of insulin-like growth factor (Igf) 3 and canonical and non-canonical Wnt signaling pathways. We will also discuss how these locally active regulatory systems interact to maintain testis tissue homeostasis.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; Reproduction and Developmental Biology Group, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
28
|
Li Y, Gao D, Xu T, Adur MK, Zhang L, Luo L, Zhu T, Tong X, Zhang D, Wang Y, Ning W, Qi X, Cao Z, Zhang Y. Anti-Müllerian hormone inhibits luteinizing hormone-induced androstenedione synthesis in porcine theca cells. Theriogenology 2019; 142:421-432. [PMID: 31711705 DOI: 10.1016/j.theriogenology.2019.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
AMH (Anti-Müllerian Hormone) is involved in the regulation of follicle growth initiation and inhibits FSH-induced aromatase expression and estrogen production in granulosa cells. However, the function of AMH in steroidogenesis by theca cells remains unclear. The aim of this study is to investigate the role of AMH as a regulator of the basal and stimulated steroid production by pig granulosa cells (pGCs) and theca cells (pTCs). PGCs and pTCs were incubated with hormones AMH, LH (luteinizing hormone), FSH (follicle stimulating hormone), individually or in combination. The expression of CYP19A1, HSD3B1, CYP11A1, LHCGR, and CYP17A1 mRNA were evaluated by quantitative reverse transcriptase PCR. In pGCs, 10 ng/mL AMH significantly decreased the FSH-stimulated effect on FSHR and CYP19A1 expression and estradiol production. In pTCs, LH treatment significantly increased the expression of HSD3B1, CYP11A1, LHCGR, and androstenedione or progesterone production (P < 0.05). Additionally, 10 ng/mL AMH also significantly decreased the LH-stimulated effects on the expression of HSD3B1, CYP11A1, CYP17A1, LHCGR and androstenedione production. Transfection with siAMHR2-I abolished the suppressive effects of AMH on LH-induced HSD3B1 expression and androstenedione production. Taken together, these results demonstrate that AMH is involved in FSH induced estradiol production in pGCs and LH induced androstenedione production in pTCs by regulating the steroidogenesis pathway.
Collapse
Affiliation(s)
- Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Ning
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
29
|
Yan YL, Batzel P, Titus T, Sydes J, Desvignes T, BreMiller R, Draper B, Postlethwait JH. A Hormone That Lost Its Receptor: Anti-Müllerian Hormone (AMH) in Zebrafish Gonad Development and Sex Determination. Genetics 2019; 213:529-553. [PMID: 31399485 PMCID: PMC6781894 DOI: 10.1534/genetics.119.302365] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fetal mammalian testes secrete Anti-Müllerian hormone (Amh), which inhibits female reproductive tract (Müllerian duct) development. Amh also derives from mature mammalian ovarian follicles, which marks oocyte reserve and characterizes polycystic ovarian syndrome. Zebrafish (Danio rerio) lacks Müllerian ducts and the Amh receptor gene amhr2 but, curiously, retains amh To discover the roles of Amh in the absence of Müllerian ducts and the ancestral receptor gene, we made amh null alleles in zebrafish. Results showed that normal amh prevents female-biased sex ratios. Adult male amh mutants had enormous testes, half of which contained immature oocytes, demonstrating that Amh regulates male germ cell accumulation and inhibits oocyte development or survival. Mutant males formed sperm ducts and some produced a few offspring. Young female mutants laid a few fertile eggs, so they also had functional sex ducts. Older amh mutants accumulated nonvitellogenic follicles in exceedingly large but sterile ovaries, showing that Amh helps control ovarian follicle maturation and proliferation. RNA-sequencing data partitioned juveniles at 21 days postfertilization (dpf) into two groups that each contained mutant and wild-type fish. Group21-1 upregulated ovary genes compared to Group21-2, which were likely developing as males. By 35 dpf, transcriptomes distinguished males from females and, within each sex, mutants from wild types. In adult mutants, ovaries greatly underexpressed granulosa and theca genes, and testes underexpressed Leydig cell genes. These results show that ancestral Amh functions included development of the gonadal soma in ovaries and testes and regulation of gamete proliferation and maturation. A major gap in our understanding is the identity of the gene encoding a zebrafish Amh receptor; we show here that the loss of amhr2 is associated with the breakpoint of a chromosome rearrangement shared among cyprinid fishes.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | | |
Collapse
|
30
|
Mehanovic S, Mendoza-Villarroel RE, Viger RS, Tremblay JJ. The Nuclear Receptor COUP-TFII Regulates Amhr2 Gene Transcription via a GC-Rich Promoter Element in Mouse Leydig Cells. J Endocr Soc 2019; 3:2236-2257. [PMID: 31723721 PMCID: PMC6839530 DOI: 10.1210/js.2019-00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
31
|
Gorsic LK, Dapas M, Legro RS, Hayes MG, Urbanek M. Functional Genetic Variation in the Anti-Müllerian Hormone Pathway in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:2855-2874. [PMID: 30786001 PMCID: PMC6543512 DOI: 10.1210/jc.2018-02178] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/15/2019] [Indexed: 01/08/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a highly heritable, common endocrine disorder characterized by hyperandrogenism, irregular menses, and polycystic ovaries. PCOS is often accompanied by elevated levels of anti-Müllerian hormone (AMH). AMH inhibits follicle maturation. AMH also inhibits steroidogenesis through transcriptional repression of CYP17A1. We recently identified 16 rare PCOS-specific pathogenic variants in AMH. OBJECTIVE To test whether additional members of the AMH signaling pathway also contribute to the etiology of PCOS. PARTICIPANTS/DESIGN Targeted resequencing of coding and regulatory regions of AMH and its specific type 2 receptor, AMHR2, was performed on 608 women affected with PCOS and 142 reproductively normal control women. Prediction tools of deleteriousness and in silico evidence of epigenetic modification were used to prioritize variants for functional evaluation. Dual-luciferase reporter assays and splicing assays were used to measure the impact of genetic variants on function. RESULTS We identified 20 additional variants in/near AMH and AMHR2 with significantly reduced signaling activity in in vitro assays. Collectively, from our previous study and as reported herein, we have identified a total of 37 variants with impaired activity in/near AMH and AMHR2 in 41 women affected with PCOS, or 6.7% of our PCOS cohort. Furthermore, no functional variants were observed in the 142 phenotyped controls. The functional variants were significantly associated with PCOS in our cohort of 608 women with PCOS and 142 controls (P = 2.3 × 10-5) and very strongly associated with PCOS relative to a larger non-Finnish European (gnomAD) population-based control cohort (P < 1 × 10-9). CONCLUSION The AMH signaling cascade plays an important role in PCOS etiology.
Collapse
Affiliation(s)
- Lidija K Gorsic
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Matthew Dapas
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Anthropology, Northwestern University, Evanston, Illinois
| | - Margrit Urbanek
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Correspondence and Reprint Requests: Margrit Urbanek, PhD, Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Tarry 15-717, Chicago, Illinois 60611. E-mail:
| |
Collapse
|
32
|
Bouchard MF, Bergeron F, Grenier Delaney J, Harvey LM, Viger RS. In Vivo Ablation of the Conserved GATA-Binding Motif in the Amh Promoter Impairs Amh Expression in the Male Mouse. Endocrinology 2019; 160:817-826. [PMID: 30759208 PMCID: PMC6426834 DOI: 10.1210/en.2019-00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.
Collapse
Affiliation(s)
- Marie France Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Jasmine Grenier Delaney
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Louis-Mathieu Harvey
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Quebec, Canada
- Correspondence: Robert S. Viger, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval, 2705 Laurier Boulevard, Quebec, Quebec G1V 4G2, Canada. E-mail:
| |
Collapse
|
33
|
Barbotin AL, Peigné M, Malone SA, Giacobini P. Emerging Roles of Anti-Müllerian Hormone in Hypothalamic-Pituitary Function. Neuroendocrinology 2019; 109:218-229. [PMID: 31280262 PMCID: PMC6878735 DOI: 10.1159/000500689] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022]
Abstract
Since its initial discovery in the 1940s, research into the physiological actions of anti-Müllerian hormone (AMH), from its eponymous role in male developmental biology to its routine clinical use in female reproductive health, has undergone a paradigm shifting change. With several exciting studies recently reporting hitherto unforeseen AMH actions at all levels in the hypogonadal-pituitary-gonadal axis, the importance of this hormone for both hypothalamic and pituitary reproductive control is finding increasing support and significance. In this review, we will briefly summarize what is known about the traditional roles and biology of AMH and how this could be integrated with new findings of AMH actions at the level of the hypothalamic-pituitary axis. We also synthesize the important findings from these new studies and discuss their potential impact and significance to our understanding of one of the most common reproductive disorders currently affecting women, polycystic ovary syndrome.
Collapse
Affiliation(s)
- Anne-Laure Barbotin
- Université de Lille, Inserm, CHU Lille, UMR-S 1172, Laboratoire du Développement et Plasticité du Cerveau Neuroendocrine, Centre de Recherche Jean-Pierre Aubert, Lille, France
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU de Lille, Lille, France
| | - Maëliss Peigné
- Université de Lille, Inserm, CHU Lille, UMR-S 1172, Laboratoire du Développement et Plasticité du Cerveau Neuroendocrine, Centre de Recherche Jean-Pierre Aubert, Lille, France
- AP-HP, Unité de Médecine de la Reproduction, Service de Gynécologie-Obstétrique, Hôpital Bichat-Claude Bernard, Paris, France
| | - Samuel Andrew Malone
- Université de Lille, Inserm, CHU Lille, UMR-S 1172, Laboratoire du Développement et Plasticité du Cerveau Neuroendocrine, Centre de Recherche Jean-Pierre Aubert, Lille, France
| | - Paolo Giacobini
- Université de Lille, Inserm, CHU Lille, UMR-S 1172, Laboratoire du Développement et Plasticité du Cerveau Neuroendocrine, Centre de Recherche Jean-Pierre Aubert, Lille, France,
| |
Collapse
|
34
|
Rodríguez Gutiérrez D, Eid W, Biason-Lauber A. A Human Gonadal Cell Model From Induced Pluripotent Stem Cells. Front Genet 2018; 9:498. [PMID: 30405703 PMCID: PMC6207579 DOI: 10.3389/fgene.2018.00498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022] Open
Abstract
Sertoli cells are main players in the male gonads development and their study may shed light on 46,XY disorders of sex development (DSD). Mature primary Sertoli cells are incapable of proliferating in prolonged in vitro cultures and the available Sertoli cell models have several limitations since they derive from mouse or human cancer tissues. We differentiated human fibroblasts (HFs)-derived induced pluripotent stem cells into Sertoli-like cells (SLC) and, in order to characterize this new Sertoli cell model, we performed gene expression analyses by NextGeneration Sequencing techniques. This approach revealed that our putative SLC have reduced expression of pluripotency markers and expressed Sertoli cell markers such as SRY-Related HMG-Box 9 (SOX9), vimentin (VIM), and claudin-11 (CLDN-11). More in detail, the transcriptional profile analysis suggested that these cells are in an early stage of Sertoli cells maturation. Harnessing the power of induced pluripotent stem cells, we were able to generate SLC that show genetic and functional similarities to human Sertoli cells (HSerCs). SLC could become an excellent source of patient-specific Sertoli cells that could be of paramount benefit for both basic research and personalized medicine in sex development and reproductive medicine.
Collapse
Affiliation(s)
| | - Wassim Eid
- Section of Medicine, Endocrinology Division, University of Fribourg, Fribourg, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Anna Biason-Lauber
- Section of Medicine, Endocrinology Division, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
35
|
Ovarian activity regulation by anti-Müllerian hormone in early stages of human female life, an overview. ANTHROPOLOGICAL REVIEW 2018. [DOI: 10.2478/anre-2018-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study aimed at describing the anti-Müllerian hormone (AMH), with special focus on molecular background for ovarian activity, in particular the role AMH plays in sex determination and gonadogenesis process in early stages of prenatal life and folliculogenesis in postnatal life. It is a review of the literature currently indexed and abstracted in MEDLINE, SCOPUS and Google Scholars. The process of sex determination and gonad differentiation occurring during embryogenesis was discussed along with underlying molecular mechanisms. In the postnatal life the impact of AMH on the process of folliculogenesis was described. Clinical use of recent findings was shown as well. Genetic studies and molecular analyses have demonstrated that AMH is highly conservative, indicating its significance in reproductive process on the background of evolutionary processes.
Collapse
|
36
|
Cheon KY, Chung YJ, Cho HH, Kim MR, Cha JH, Kang CS, Lee JY, Kim JH. Expression of Müllerian-Inhibiting Substance/Anti-Müllerian Hormone Type II Receptor in the Human Theca Cells. J Clin Endocrinol Metab 2018; 103:3376-3385. [PMID: 29947765 DOI: 10.1210/jc.2018-00549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/21/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Müllerian-inhibiting substance/anti-Müllerian hormone (MIS/AMH) is produced in the ovarian granulosa cells, and it is believed to inhibit ovarian folliculogenesis and steroidogenesis in women of reproductive age. OBJECTIVE To investigate the expression of MIS/AMH type II receptor (MISRII/AMHRII) that binds MIS/AMH in the ovaries of reproductive-age women; to identify the exact targets of MIS/AMH. DESIGN Laboratory study using human ovarian tissue. SETTING University hospital. PATIENTS Tissue samples from 25 patients who had undergone ovarian surgery. INTERVENTIONS The segregation of ovarian granulosa and theca cells by laser microdissection was followed by RT-PCR, analyzing MISRII/AMHRII mRNA expression. Afterward, in situ hybridization and immunohistochemistry were performed to determine the localization of MISRII/AMHRII mRNA and protein expression. MAIN OUTCOME MEASURES MISRII/AMHRII mRNA expression by RT-PCR, in situ hybridization, and immunohistochemistry. RESULTS MISRII/AMHRII were expressed in granulosa and theca cells of preantral and antral follicles. The granulosa cells showed stronger MISRII/AMHRII expression than theca cells. MISRII/AMHRII mRNA staining of granulosa and theca cells in large antral follicles, early atretic follicles, and corpus luteum waned but were still detected weakly, showing higher expression in theca cells than in granulosa cells. However, MISRII/AMHRII protein in the granulosa layer of the atretic follicle and corpus luteum could not be assessed. CONCLUSIONS As MISRII/AMHRII is expressed in both granulosa and theca cells, this indicates that MIS/AMH, produced in the granulosa cells, is active in the theca cells as well. MIS/AMH is most likely actively involved not only in the autocrine and endocrine processes but also in the paracrine processes involving theca cells.
Collapse
Affiliation(s)
- Keun Young Cheon
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Jee Chung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Cho
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mee Ran Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Ho Cha
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Suk Kang
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jang Heub Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
37
|
Liu J, Wang Y, Fang Y, Ni C, Ma L, Zheng W, Bao S, Li X, Lian Q, Ge RS. Gestational exposure to ziram disrupts rat fetal Leydig cell development. CHEMOSPHERE 2018; 203:393-401. [PMID: 29627606 DOI: 10.1016/j.chemosphere.2018.03.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Ziram is an endocrine disruptor and may cause birth abnormality of the male reproductive system. However, the effects of ziram on fetal Leydig cell (FLC) development are still unknown. The objective of the present study was to determine the endocrine-disrupting effect of ziram on rat FLC development after gestational exposure. Pregnant Sprague Dawley dams were randomly divided into 5 groups and were gavaged with 0 (corn oil, the control), 1, 2, 4, or 8 mg/kg ziram from gestational day 12 (GD12) to GD21. FLC development was evaluated by measuring serum testosterone, FLC number and distribution, and the expression levels of Leydig and Sertoli cell genes. Ziram significantly increased serum testosterone level at 1 mg/kg (1.350 ± 0.099 ng/ml vs. 0.989 ± 0.106 ng/ml in the control), while it remarkably lowered it at 8 mg/kg (0.598 ± 0.086 ng/ml). Quantitative immunohistochemical staining showed that ziram increased FLC number via stimulating cell proliferation at 1 mg/kg and lowered it via inhibiting its proliferation at 8 mg/kg without affecting Sertoli cell number. Further study demonstrated that the expression of Nr5a1, Lhcgr, Scarb1, Star, Cyp11a1, and Cyp17a1 genes and proteins in the testis was upregulated at 1 mg/kg and the expression of Leydig (Nr5a1, Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, and Insl3) and Sertoli cell (Fshr, Hsd17b3, Dhh, Amh, and Sox9) genes and proteins was downregulated by ziram at 8 mg/kg. In conclusion, ziram had biphasic effects on FLC development with low dose to increase FLC number and function and high dose to decrease them.
Collapse
Affiliation(s)
- Jianpeng Liu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Leikai Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Wenwen Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Suhao Bao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
38
|
Scarlet D, Wulf M, Kuhl J, Köhne M, Ille N, Conley AJ, Aurich C. Anti-Müllerian hormone profiling in prepubertal horses and its relationship with gonadal function. Theriogenology 2018; 117:72-77. [PMID: 29784463 DOI: 10.1016/j.theriogenology.2018.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Anti-Müllerian hormone (AMH) has gained increasing interest as a biomarker for assessment of gonadal activity. The ability to predict the ovarian follicular reserve of prepubertal female horses (fillies) or to identify stallions with testicular pathologies already during their prepubertal life has not been analyzed so far. Both would help to select fertile horses and reduce costs associated with keeping animals. The objectives of the present study were to (1) assess AMH, LH, FSH, progesterone (females) and testosterone (males) dynamics in prepubertal horses from birth onwards and (2) determine whether AMH concentrations detected in plasma of prepubertal female and male horses are correlated with postpubertal gonadal development. Warmblood foals (n = 30, 14 females, 10 normal males and 6 males with abnormal testicular development) born between February and May of two consecutive years (n = 28 in the first year and n = 2 the next year), were included in the study. Information on gestational length, parity of the dam and placental weight was collected for all foals. Blood samples for hormone analysis were collected from birth onwards every four weeks up to the age of one year. At two years, blood samples were collected on the day when antral follicle count (AFC) and total testicular volume (TTV) were assessed. AMH was detectable in the plasma of all animals from birth onwards and its concentration was significantly higher (P < .001) in males than in females, regardless of testicular development. In males, AMH and testosterone concentration were similar for all animals during the first year of life, regardless of testicular development. At two years, AMH concentration was higher (P < .05) in males with abnormal testicular development than in those with normal testes. In females, AMH concentration at two years was correlated with AMH concentration at birth (P < .05) and with AFC (P < .001). At birth, LH concentration was lower (P < .05) in stallions with abnormal testes (0.3 ± 0.2 ng/ml) than in controls (0.6 ± 0.2 ng/ml). A high negative correlation between AMH concentration and gestation length was observed in males during the first eight weeks of life (P < .01, r = -0.64 to -0.71). Elevated progesterone concentrations over 1 ng/ml were observed in several females starting with 20 weeks of age. This was paralleled by an increase in AMH concentration and was preceded by FSH and LH increases. In conclusion, AMH determination can be reliably used from two years onwards to identify stallions with abnormal testicular development, but it is inconclusive before puberty. In female horses, determination of AMH concentration at a prepubertal age allows for prediction of AMH and AFC after puberty. We suggest that premature luteinisation occurs before the onset of puberty in female horses and that LH secretion in the perinatal period is involved in testicular development and descent in the horse.
Collapse
Affiliation(s)
- Dragos Scarlet
- Obstetrics, Gynecology and Andrology, University of Veterinary Medicine Vienna, Austria.
| | - Manuela Wulf
- Graf Lehndorff Institute for Equine Science, Neustadt (Dosse), Germany
| | - Juliane Kuhl
- Center for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine Vienna, Austria
| | - Martin Köhne
- Center for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine Vienna, Austria
| | - Natascha Ille
- Center for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine Vienna, Austria
| | - Alan J Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Christine Aurich
- Graf Lehndorff Institute for Equine Science, Neustadt (Dosse), Germany
| |
Collapse
|
39
|
Li X, Liu J, Wu S, Zheng W, Li H, Bao S, Chen Y, Guo X, Zhang L, Ge RS. In utero single low-dose exposure of cadmium induces rat fetal Leydig cell dysfunction. CHEMOSPHERE 2018; 194:57-66. [PMID: 29197250 DOI: 10.1016/j.chemosphere.2017.11.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Cadmium chloride (Cd) is a potent endocrine disruptor and may cause the malformation in the male reproductive tract. However, the effects of a single in utero exposure to low doses of Cd on fetal Leydig cell development are still unknown. The objective of this study is to investigate the effects of a single in utero exposure to low doses of Cd on rat fetal Leydig cell development. Adult 64-day-old Sprague-Dawley dams received a single intraperitoneal injection of 0, 0.25, 0.5, and 1.0 mg/kg Cd on gestational day 12. Cd dose-dependently reduced testosterone production of fetal testis, lowered fetal Leydig cell numbers, downregulated protein expression levels of Leydig (LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, and CYP17A1), and Sertoli cells (HSD17B3, DHH, and FSHR). In conclusion, our results demonstrated that a single in utero exposure to low doses of Cd blocked fetal Leydig cell development.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Jianpeng Liu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Siwen Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Wenwen Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Suhao Bao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Lei Zhang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
40
|
Winters SJ, Moore JP, Clark BJ. Leydig cell insufficiency in hypospermatogenesis: a paracrine effect of activin-inhibin signaling? Andrology 2018; 6:262-271. [PMID: 29409132 DOI: 10.1111/andr.12459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Clinical findings and a variety of experimental models indicate that Leydig cell dysfunction accompanies damage to the seminiferous tubules with increasing severity. Most studies support the idea that intratesticular signaling from the seminiferous tubules to Leydig cells regulates steroidogenesis, which is disrupted when hypospermatogenesis occurs. Sertoli cells seem to play a pivotal role in this process. In this review, we summarize relevant clinical and experimental observations and present evidence to support the hypothesis that testicular activin signaling and its regulation by testicular inhibin may link seminiferous tubular dysfunction to reduced testosterone biosynthesis.
Collapse
Affiliation(s)
- S J Winters
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - J P Moore
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - B J Clark
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
41
|
Effect of age and castration on serum anti-Müllerian hormone concentration in male alpacas. Theriogenology 2018; 105:174-177. [PMID: 28982028 DOI: 10.1016/j.theriogenology.2017.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 11/21/2022]
Abstract
The synthesis of anti-Müllerian Hormone (AMH) by the Sertoli cells in males is crucial for sexual differentiation. There are no studies on AMH in Camelids. The objectives of this research were to 1) compare AMH serum concentrations in prepubertal and adult male alpacas and 2) determine the effect of castration on these concentrations in adult males to provide a validation of a commercial AMH test in alpacas. Serum samples were obtained from 15 prepubertal animals (5 for each age groups of 6, 7 and 8 months) and from 5 adult males (age 5-9 years), pre- and 24 h post-castration. AMH was determined with a quantitative ELISA according to the manufacture's instructions. There was not significant difference (P < 0.05) in AMH level (pg/ml) between pre-pubertal (549.9 ± 120.8, 789.4 ± 172.3, 597.5 ± 177.3 for ages 4, 7, and 8 months, respectively) and adult alpacas (938.7 ± 175.9). In adult males, AMH concentration decreased significantly following castration (P < 0.05) (938.7 ± 383.5 pg/ml) pre-castration, and 222.1 ± 116.5 pg/ml) after castration). There was a positive correlation between testosterone levels and AMH. In conclusion, the quantitative assay used is a reliable test to determine AMH in alpacas. The AMH level in prepubertal and adult alpacas appear to not differ, contrarily from other mammals, this requires further investigation. The decrease in serum AMH concentrations after castration suggests that measurement of this hormone can be used to diagnose bilateral cryptorchid or hemicastrated unilateral cryptorchid animals in this species.
Collapse
|
42
|
Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus. Gene 2017; 637:203-210. [DOI: 10.1016/j.gene.2017.09.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
|
43
|
Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A Long Noncoding RNA, lncRNA-Amhr2, Plays a Role in Amhr2 Gene Activation in Mouse Ovarian Granulosa Cells. Endocrinology 2017; 158:4105-4121. [PMID: 28938492 DOI: 10.1210/en.2017-00619] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Anti-Müllerian hormone (AMH) is critical to the regression of Müllerian ducts during mammalian male differentiation and targets ovarian granulosa cells and testicular Sertoli and Leydig cells of adults. Specific effects of AMH are exerted via its receptor, AMH type II receptor (Amhr2), but the mechanism by which the Amhr2 gene is specifically activated is not fully understood. To see whether a proximal promoter was sufficient for Amhr2 gene activation, we generated transgenic mice that bore the enhanced green fluorescent protein (EGFP) gene driven by a 500-bp mouse Amhr2 gene promoter. None of the established 10 lines, however, showed appropriate EGFP expression, indicating that the 500-bp promoter was insufficient for Amhr2 gene activation. As a regulatory element, we found a long noncoding RNA, lncRNA-Amhr2, transcribed from upstream of the Amhr2 gene in ovarian granulosa cells and testicular Sertoli cells. In primary granulosa cells, knockdown of lncRNA-Amhr2 resulted in a decrease of Amhr2 messnger RNA level, and a transient reporter gene assay showed that lncRNA-Amhr2 activation increased Amhr2 promoter activity. The activity was correlated with lncRNA-Amhr2 transcription in stably transfected OV3121 cells derived from mouse granulosa cells. Moreover, by the Tet-on system, the induction of lncRNA-Amhr2 transcription dramatically increased Amhr2 promoter activity in OV3121 cells. These results indicate that lncRNA-Amhr2 plays a role in Amhr2 gene activation in ovarian granulosa cells by enhancing promoter activity, providing insight into Amhr2 gene regulation underlying the AMH signaling in the female reproductive system.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryoma Yoneda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shota Mayama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
44
|
Ye L, Li X, Li L, Chen H, Ge RS. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Front Physiol 2017; 8:430. [PMID: 28701961 PMCID: PMC5487449 DOI: 10.3389/fphys.2017.00430] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
Collapse
Affiliation(s)
- Leping Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Haolin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
45
|
Aiceles V, da Fonte Ramos C. A link between hypothyroidism, obesity and male reproduction. Horm Mol Biol Clin Investig 2016; 25:5-13. [PMID: 26953711 DOI: 10.1515/hmbci-2015-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
Hypothyroidism is a condition in which the serum levels of thyroid hormones are below that necessary to carry out physiological functions in the body. Hypothyroidism is related to obesity as an increase in body weight gain is seen in hypothyroid patients. Moreover, an inverse correlation between free thyroxine values and body mass index has been reported. Leptin, a polypeptide hormone produced by adipocytes, was originally thought to be an antiobesity hormone due its anorexic effects on hypothalamic appetite regulation. However, nowadays it is known that leptin conveys information about the nutritional status to the brain being considered a crucial endocrine factor for regulating several physiological processes including reproduction. Since the identification of thyroid hormone and leptin receptors on the testes, these hormones are being recognized as having important roles in male reproductive functions. A clear link exists among thyroid hormones, leptin and reproduction. Both hormones can negatively affect spermatogenesis and consequently may cause male infertility. The World Health Organization (WHO) estimates the overall prevalence of primary infertility ranging from 8 to 15%. The fact that 30% of couples' inability to conceive is related to a male factor and that the longer hypothyroidism persisted, the greater the damage to the testes, strongly suggest that more studies attempting to clarify both hormones actions directly in the testes need to be conducted specially in cases of congenital hypothyroidism. Therefore, the goal of this review is to highlight the relationship of such hormones in the reproductive system.
Collapse
|
46
|
Otake S, Park MK. Expressional changes of AMH signaling system in the quail testis induced by photoperiod. Reproduction 2016; 152:575-589. [DOI: 10.1530/rep-16-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022]
Abstract
Gonadal sex differentiation proceeds by the interplay of various genes including the transcription factors and secretory factors in a complex network. The sex-differentiating genes are expressed not only during early sex differentiation but also throughout the gonadal development and even in the adult gonads. In addition, the evidence that they actually function in the adult gonads have been accumulated from the studies using the conditional knockout mice. However, many previous studies were focused on one single gene though those genes function in a network. In this study, the expressions of various sex-differentiating genes were analyzed simultaneously in the adult testis of the Japanese quail (Coturnix japonica), whose testicular functions are dramatically changed by altering the photoperiod, to elucidate the roles of them in the adult gonad. Anti-Müllerian hormone (AMH) was significantly upregulated in the regressed testis induced by the short-day condition. The expressions of the transcription factors that promoteAMHexpression in mammals (SF1,SOX9,WT1andGATA4) were also increased in the regressed testis. Moreover, AMH receptor (AMHR2) showed similar expression pattern to its ligand. We also analyzed the expressions of other transforming growth factor beta (TGFB) superfamily members and their receptors. The expressions of the ligands and receptors of TGFB family, and follistatin and betaglycan in addition to inhibin subunits were increased in the regressed testis. These results suggest that AMH is involved in the adult testicular functions of the Japanese quail together with other TGFB superfamily members.
Collapse
|
47
|
Holst BS. Diagnostic possibilities from a serum sample-Clinical value of new methods within small animal reproduction, with focus on anti-Müllerian hormone. Reprod Domest Anim 2016; 52 Suppl 2:303-309. [DOI: 10.1111/rda.12856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- BS Holst
- Department of Clinical Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| |
Collapse
|
48
|
Claes ANJ, Ball BA. Biological Functions and Clinical Applications of Anti-Müllerian Hormone in Stallions and Mares. Vet Clin North Am Equine Pract 2016; 32:451-464. [PMID: 27726984 DOI: 10.1016/j.cveq.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anti-Müllerian hormone (AMH) plays a major role in sexual differentiation, Leydig cell differentiation, and folliculogenesis. In addition, AMH has clinical value in equine practice. In stallions, AMH can serve as an endocrine marker for equine cryptorchidism and as an immunohistochemical marker for Sertoli cell tumors. Considering that AMH is also an ovarian specific product, intact mares can be differentiated from ovariectomized mares. Peripheral AMH concentrations reflect the follicular population in mares, and therefore, are useful in the assessment of ovarian reserve and reproductive life-span of aged mares. Last, AMH is particularly suitable as a diagnostic marker for equine granulosa cell tumors.
Collapse
Affiliation(s)
- Anthony N J Claes
- Department of Equine Science, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht 3584 CM, The Netherlands.
| | - Barry A Ball
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40546-0099 USA
| |
Collapse
|
49
|
Scarlet D, Aurich C, Ille N, Walter I, Weber C, Pieler D, Peinhopf W, Wohlsein P, Aurich J. Anti-Muellerian hormone, inhibin A, gonadotropins, and gonadotropin receptors in bull calves after partial scrotal resection, orchidectomy, and Burdizzo castration. Theriogenology 2016; 87:242-249. [PMID: 27693012 DOI: 10.1016/j.theriogenology.2016.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
Abstract
Eight-week-old calves were either castrated by partial scrotal resection (SR) without removing the testes (n = 10), Burdizzo (BZ) clamp (n = 10), orchidectomy (OR; n = 10), or were left gonad intact as controls (CO; n = 10). Concentrations of anti-Muellerian hormone (AMH), inhibin A, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in plasma were determined from 16 to 48 weeks of age. At 18 months, testes of SR, BZ, and CO bulls were obtained and the immunolocalization of LH and FSH receptors and AMH analyzed. Concentration of AMH in plasma of CO and SR bulls decreased with increasing age (P < 0.001). A similar AMH profile in CO and SR indicates that SR did not induce a true cryptorchid state. In groups OR and BZ, AMH was undetectable. Plasma inhibin concentration was higher in groups CO and SR than BZ and OR (P < 0.001). Plasma LH and FSH concentrations decreased over time (P < 0.001) and were higher in groups BZ and OR than SR and CO (P < 0.001). In the testes, immunolabeling for AMH existed in Sertoli cells of CO and SR but not BZ bulls. FSH receptors were localized in Sertoli cells, Leydig cells, spermatocytes, and the epididymis of CO and SR animals, whereas LH receptors were restricted to Leydig cells. In BZ animals, FSH and LH receptors and AMH were absent, indicating complete testicular degeneration. In conclusion, AMH is a more reliable marker for the presence of testicular tissue in bulls than inhibin. Scrotal resection did not induce a true inguinal cryptorchid state but affected testicular responsiveness to gonadotropic stimulation.
Collapse
Affiliation(s)
- Dragos Scarlet
- Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.
| | - Christine Aurich
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Natascha Ille
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Ingrid Walter
- Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | | | - Dagmar Pieler
- Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | | | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Jörg Aurich
- Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
50
|
Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene 2016; 582:97-111. [DOI: 10.1016/j.gene.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
|