1
|
Liu B, Zhao J, Chen H, Dong Y, Zhang X, Lv M, Yang Y, Liu H, Zhang J, Zheng H, Zhang Y. RH2Fusion: A universal tool for precise DNA fragment assembly. Int J Biol Macromol 2025; 288:138788. [PMID: 39675608 DOI: 10.1016/j.ijbiomac.2024.138788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Despite its limitations, restriction enzyme (RE)-mediated cleavage remains the prevalent method for generating sticky ends in DNA assembly. Here, we present RNase HII Fusion (RH2Fusion), a robust system for user-defined sticky ends, enabling scarless assembly of multiple DNA fragments alongside simultaneous site-directed mutagenesis (SDM) at multiple sites. In bacterial cells, DNA fragments with ribonucleotide modifications are expected to form complementary 3' overhangs after RNase HII treatment, followed by annealing and recombination via the bacterial self-repair system. In vitro, RNase HII-mediated cleavage produces similar overhangs, which are subsequently processed and ligated by YgdG and T4 DNA ligase, enabling efficient DNA assembly. We report for the first time that Escherichia coli Exonuclease IX (YgdG) possesses ribonuclease-specific cleavage activity, selectively cleaving ribonucleotides without cleaving deoxyribonucleotides. Through the fusion of RNase HII and YgdG, novel constructs RNase RY (RNase HII-YgdG) and RNase YR (YgdG-RNase HII) are generated, each showcasing dual enzyme functionality. In conclusion, RH2Fusion offers a rapid, effective, and versatile alternative for DNA assembly, empowering researchers across diverse fields like synthetic biology and genetic engineering. This transformative tool is poised to significantly enhance the capabilities of DNA manipulation and advance molecular biology research.
Collapse
Affiliation(s)
- Benchao Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junru Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hui Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yan Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiandan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Min Lv
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361102, China
| | - Yunruo Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huaqing Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianhui Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hualei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
2
|
Conti BA, Ruiz PD, Broton C, Blobel NJ, Kottemann MC, Sridhar S, Lach FP, Wiley TF, Sasi NK, Carroll T, Smogorzewska A. RTF2 controls replication repriming and ribonucleotide excision at the replisome. Nat Commun 2024; 15:1943. [PMID: 38431617 PMCID: PMC10908796 DOI: 10.1038/s41467-024-45947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.
Collapse
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Cayla Broton
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas J Blobel
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Molly C Kottemann
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Tom F Wiley
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Carroll
- Bioinformatics, The Rockefeller University, New York, NY, 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Laspata N, Kaur P, Mersaoui S, Muoio D, Liu Z, Bannister MH, Nguyen H, Curry C, Pascal J, Poirier G, Wang H, Masson JY, Fouquerel E. PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Res 2023; 51:2215-2237. [PMID: 36794853 PMCID: PMC10018367 DOI: 10.1093/nar/gkad066] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
PARP1 is a DNA-dependent ADP-Ribose transferase with ADP-ribosylation activity that is triggered by DNA breaks and non-B DNA structures to mediate their resolution. PARP1 was also recently identified as a component of the R-loop-associated protein-protein interaction network, suggesting a potential role for PARP1 in resolving this structure. R-loops are three-stranded nucleic acid structures that consist of a RNA-DNA hybrid and a displaced non-template DNA strand. R-loops are involved in crucial physiological processes but can also be a source of genome instability if persistently unresolved. In this study, we demonstrate that PARP1 binds R-loops in vitro and associates with R-loop formation sites in cells which activates its ADP-ribosylation activity. Conversely, PARP1 inhibition or genetic depletion causes an accumulation of unresolved R-loops which promotes genomic instability. Our study reveals that PARP1 is a novel sensor for R-loops and highlights that PARP1 is a suppressor of R-loop-associated genomic instability.
Collapse
Affiliation(s)
- Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Parminder Kaur
- Physics Department, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, Raleigh, NC 27695, USA
| | - Sofiane Yacine Mersaoui
- CHU de Québec Research Centre, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, McMahon, Québec City, Québec G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
| | - Zhiyan Silvia Liu
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell Henry Bannister
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai Dang Nguyen
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caroline Curry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
- CHU de Québec Research Centre, CHUL Pavilion, Oncology Division, Quebec, Canada
| | - Hong Wang
- Physics Department, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Jean-Yves Masson
- CHU de Québec Research Centre, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, McMahon, Québec City, Québec G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Raducanu VS, Tehseen M, Al-Amodi A, Joudeh LI, De Biasio A, Hamdan SM. Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics. Nat Commun 2022; 13:6973. [PMID: 36379932 PMCID: PMC9666535 DOI: 10.1038/s41467-022-34751-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The final steps of lagging strand synthesis induce maturation of Okazaki fragments via removal of the RNA primers and ligation. Iterative cycles between Polymerase δ (Polδ) and Flap endonuclease-1 (FEN1) remove the primer, with an intermediary nick structure generated for each cycle. Here, we show that human Polδ is inefficient in releasing the nick product from FEN1, resulting in non-processive and remarkably slow RNA removal. Ligase 1 (Lig1) can release the nick from FEN1 and actively drive the reaction toward ligation. These mechanisms are coordinated by PCNA, which encircles DNA, and dynamically recruits Polδ, FEN1, and Lig1 to compete for their substrates. Our findings call for investigating additional pathways that may accelerate RNA removal in human cells, such as RNA pre-removal by RNase Hs, which, as demonstrated herein, enhances the maturation rate ~10-fold. They also suggest that FEN1 may attenuate the various activities of Polδ during DNA repair and recombination.
Collapse
Affiliation(s)
- Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Luay I Joudeh
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
5
|
Lee H, Cho H, Kim J, Lee S, Yoo J, Park D, Lee G. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids. Nucleic Acids Res 2022; 50:1801-1814. [PMID: 34788459 PMCID: PMC8886854 DOI: 10.1093/nar/gkab1064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
RNase H is involved in fundamental cellular processes and is responsible for removing the short stretch of RNA from Okazaki fragments and the long stretch of RNA from R-loops. Defects in RNase H lead to embryo lethality in mice and Aicardi-Goutieres syndrome in humans, suggesting the importance of RNase H. To date, RNase H is known to be a non-sequence-specific endonuclease, but it is not known whether it performs other functions on the structural variants of RNA:DNA hybrids. Here, we used Escherichia coli RNase H as a model, and examined its catalytic mechanism and its substrate recognition modes, using single-molecule FRET. We discovered that RNase H acts as a processive exoribonuclease on the 3' DNA overhang side but as a distributive non-sequence-specific endonuclease on the 5' DNA overhang side of RNA:DNA hybrids or on blunt-ended hybrids. The high affinity of previously unidentified double-stranded (ds) and single-stranded (ss) DNA junctions flanking RNA:DNA hybrids may help RNase H find the hybrid substrates in long genomic DNA. Our study provides new insights into the multifunctionality of RNase H, elucidating unprecedented roles of junctions and ssDNA overhang on RNA:DNA hybrids.
Collapse
Affiliation(s)
- Hyunjee Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - HyeokJin Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jooyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sua Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
6
|
Williams JS, Kunkel TA. Ribonucleotide Incorporation by Eukaryotic B-family Replicases and Its Implications for Genome Stability. Annu Rev Biochem 2022; 91:133-155. [PMID: 35287470 DOI: 10.1146/annurev-biochem-032620-110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
7
|
González de Cózar JM, Carretero-Junquera M, Ciesielski GL, Miettinen SM, Varjosalo M, Kaguni LS, Dufour E, Jacobs HT. A second hybrid-binding domain modulates the activity of Drosophila ribonuclease H1. J Biochem 2020; 168:515-533. [PMID: 32589740 PMCID: PMC7657459 DOI: 10.1093/jb/mvaa067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an ∼90% drop in Kcat with a decreased KM, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were co-overexpressed in S2 cells, and functional interactions between them in vitro were minor.
Collapse
Affiliation(s)
| | | | - Grzegorz L Ciesielski
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Sini M Miettinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Laurie S Kaguni
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
8
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
9
|
Lietard J, Damha MJ, Somoza MM. Large-Scale Photolithographic Synthesis of Chimeric DNA/RNA Hairpin Microarrays To Explore Sequence Specificity Landscapes of RNase HII Cleavage. Biochemistry 2019; 58:4389-4397. [PMID: 31631649 PMCID: PMC6838787 DOI: 10.1021/acs.biochem.9b00806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Ribonuclease HII (RNase HII) is an essential endoribonuclease that binds to double-stranded DNA with RNA nucleotide incorporations and cleaves 5' of the ribonucleotide at RNA-DNA junctions. Thought to be present in all domains of life, RNase HII protects genomic integrity by initiating excision repair pathways that protect the encoded information from rapid degradation. There is sparse evidence that the enzyme cleaves some substrates better than others, but a large-scale study is missing. Such large-scale studies can be carried out on microarrays, and we employ chemical photolithography to synthesize very large combinatorial libraries of fluorescently labeled DNA/RNA chimeric sequences that self-anneal to form hairpin structures that are substrates for Escherichia coli RNase HII. The relative activity is determined by the loss of fluorescence upon cleavage. Each substrate includes a double-stranded 5 bp variable region with one to five consecutive ribonucleotide substitutions. We also examined the effect of all possible single and double mismatches, for a total of >9500 unique structures. Differences in cleavage efficiency indicate some level of substrate preference, and we identified the 5'-dC/rC-rA-dX-3' motif in well-cleaved substrates. The results significantly extend known patterns of RNase HII sequence specificity and serve as a template using large-scale photolithographic synthesis to comprehensively map landscapes of substrate specificity of nucleic acid-processing enzymes.
Collapse
Affiliation(s)
- Jory Lietard
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A
0B8, Canada
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| |
Collapse
|
10
|
Randall JR, Nye TM, Wozniak KJ, Simmons LA. RNase HIII Is Important for Okazaki Fragment Processing in Bacillus subtilis. J Bacteriol 2019; 201:e00686-18. [PMID: 30670546 PMCID: PMC6416905 DOI: 10.1128/jb.00686-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
RNA-DNA hybrids are common in chromosomal DNA. Persistent RNA-DNA hybrids result in replication fork stress, DNA breaks, and neurological disorders in humans. During replication, Okazaki fragment synthesis relies on frequent RNA primer placement, providing one of the most prominent forms of covalent RNA-DNA strands in vivo The mechanism of Okazaki fragment maturation, which involves RNA removal and subsequent DNA replacement, in bacteria lacking RNase HI remains unclear. In this work, we reconstituted repair of a linear model Okazaki fragment in vitro using purified recombinant enzymes from Bacillus subtilis We showed that RNase HII and HIII are capable of incision on Okazaki fragments in vitro and that both enzymes show mild stimulation by single-stranded DNA binding protein (SSB). We also showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation in vitro Furthermore, we found that YpcP is a 5' to 3' nuclease that can act on a wide variety of RNA- and DNA-containing substrates and exhibits preference for degrading RNA in model Okazaki fragments. Together, our data showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation, whereas YpcP also contributes to the removal of RNA from an Okazaki fragment in vitroIMPORTANCE All cells are required to resolve the different types of RNA-DNA hybrids that form in vivo When RNA-DNA hybrids persist, cells experience an increase in mutation rate and problems with DNA replication. Okazaki fragment synthesis on the lagging strand requires an RNA primer to begin synthesis of each fragment. The mechanism of RNA removal from Okazaki fragments remains unknown in bacteria that lack RNase HI. We examined Okazaki fragment processing in vitro and found that RNase HIII in conjunction with DNA polymerase I represent the most efficient repair pathway. We also assessed the contribution of YpcP and found that YpcP is a 5' to 3' exonuclease that prefers RNA substrates with activity on Okazaki and flap substrates in vitro.
Collapse
Affiliation(s)
- Justin R Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taylor M Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Lietard J, Ameur D, Damha MJ, Somoza MM. High-Density RNA Microarrays Synthesized In Situ by Photolithography. Angew Chem Int Ed Engl 2018; 57:15257-15261. [PMID: 30187993 PMCID: PMC6237118 DOI: 10.1002/anie.201806895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 02/03/2023]
Abstract
While high-density DNA microarrays have been available for over three decades, the synthesis of equivalent RNA microarrays has proven intractable until now. Herein we describe the first in situ synthesis of mixed-based, high-density RNA microarrays using photolithography and light-sensitive RNA phosphoramidites. With coupling efficiencies comparable to those of DNA monomers, RNA oligonucleotides at least 30 nucleotides long can now efficiently be prepared using modified phosphoramidite chemistry. A two-step deprotection route unmasks the phosphodiester, the exocyclic amines and the 2' hydroxyl. Hybridization and enzymatic assays validate the quality and the identity of the surface-bound RNA. We show that high-density is feasible by synthesizing a complex RNA permutation library with 262144 unique sequences. We also introduce DNA/RNA chimeric microarrays and explore their applications by mapping the sequence specificity of RNase HII.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| | - Dominik Ameur
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| | - Masad J. Damha
- Department of ChemistryMcGill University801 Rue Sherbrooke OMontréalQC H3A 0B8Canada
| | - Mark M. Somoza
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| |
Collapse
|
12
|
Lietard J, Ameur D, Damha MJ, Somoza MM. In‐situ‐Synthese von hochdichten RNA‐Mikroarrays mittels Photolithographie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jory Lietard
- Institute für Anorganische ChemieFakultät für ChemieUniversität Wien Althanstraße 14, UZA II 1090 Wien Österreich
| | - Dominik Ameur
- Institute für Anorganische ChemieFakultät für ChemieUniversität Wien Althanstraße 14, UZA II 1090 Wien Österreich
| | - Masad J. Damha
- Department of ChemistryMcGill University 801 Rue Sherbrooke O Montréal QC H3A 0B8 Kanada
| | - Mark M. Somoza
- Institute für Anorganische ChemieFakultät für ChemieUniversität Wien Althanstraße 14, UZA II 1090 Wien Österreich
| |
Collapse
|
13
|
Shen W, Sun H, De Hoyos CL, Bailey JK, Liang XH, Crooke ST. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Res 2017; 45:10672-10692. [PMID: 28977560 PMCID: PMC5737507 DOI: 10.1093/nar/gkx710] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops.
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jeffrey K Bailey
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
14
|
Krishnan S, Petchiappan A, Singh A, Bhatt A, Chatterji D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. Mol Microbiol 2016; 102:168-82. [PMID: 27349932 DOI: 10.1111/mmi.13453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 02/03/2023]
Abstract
Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response.
Collapse
Affiliation(s)
- Sushma Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anushya Petchiappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
15
|
Minias AE, Brzostek AM, Korycka- Machala M, Dziadek B, Minias P, Rajagopalan M, Madiraju M, Dziadek J. RNase HI Is Essential for Survival of Mycobacterium smegmatis. PLoS One 2015; 10:e0126260. [PMID: 25965344 PMCID: PMC4429107 DOI: 10.1371/journal.pone.0126260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides are present. Here we investigated the importance of RNase H type I encoding genes for model organism Mycobacterium smegmatis. By performing gene replacement through homologous recombination, we demonstrate that each of the two presumable RNase H type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome without affecting the growth rate of the mutant. Further, we demonstrate that deletion of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally, we question the possibility of existence of RNase HI related alternative mode of initiation of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis as the first bacterial species, where function of RNase H type I has been found essential.
Collapse
Affiliation(s)
- Alina E. Minias
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| | - Anna M. Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Bozena Dziadek
- Department of Immunoparasitology, University of Lodz, Lodz, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Lodz, Lodz, Poland
| | - Malini Rajagopalan
- Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas, United States of America
| | - Murty Madiraju
- Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas, United States of America
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
16
|
A hybrid chimeric system for versatile and ultra-sensitive RNase detection. Sci Rep 2015; 5:9558. [PMID: 25828752 PMCID: PMC4381352 DOI: 10.1038/srep09558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/11/2015] [Indexed: 12/21/2022] Open
Abstract
We developed a new versatile strategy that allows the detection of several classes of RNases (i.e., targeting ss- or ds-RNA, DNA/RNA hetero-hybrid or junctions) with higher sensitivity than existing assays. Our two-step approach consists of a DNA-RNA-DNA chimeric Hairpin Probe (cHP) conjugated to magnetic microparticles and containing a DNAzyme sequence in its terminal region, and molecular beacons for fluorescence signal generation. In the first step, the digestion of the RNA portion of the cHP sequences in presence of RNases leads to the release of multiple copies of the DNAzyme in solution. Then, after magnetic washing, each DNAzyme molecule elicits the catalytic cleavage of numerous molecular beacons, providing a strong amplification of the overall sensitivity of the assay. We successfully applied our approach to detect very low concentrations of RNase A, E. coli RNase I, and RNase H. Furthermore, we analyzed the effect of two antibiotics (penicillin and streptomycin) on RNase H activity, demonstrating the applicability of our strategy for the screening of inhibitors. Finally, we exploited our system to detect RNase activity directly in crude biological samples (i.e., blood and saliva) and in cell culture medium, highlighting its suitability as cheap and sensitive tool for the detection of RNase levels.
Collapse
|
17
|
Minias AE, Brzostek AM, Minias P, Dziadek J. The deletion of rnhB in Mycobacterium smegmatis does not affect the level of RNase HII substrates or influence genome stability. PLoS One 2015; 10:e0115521. [PMID: 25603150 PMCID: PMC4300193 DOI: 10.1371/journal.pone.0115521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022] Open
Abstract
RNase HII removes RNA from RNA/DNA hybrids, such as single ribonucleotides and RNA primers generated during DNA synthesis. Both, RNase HII substrates and RNase HII deficiency have been associated with genome instability in several organisms, and genome instability is a major force leading to the acquisition of drug resistance in bacteria. Understanding the mechanisms that underlie this phenomenon is one of the challenges in identifying efficient methods to combat bacterial pathogens. The aim of the present study was set to investigate the role of rnhB, presumably encoding RNase HII, in maintaining genome stability in the M. tuberculosis model organism Mycobacterium smegmatis. We performed gene replacement through homologous recombination to obtain mutant strains of Mycobacterium smegmatis lacking the rnhB gene. The mutants did not present an altered phenotype, according to the growth rate in liquid culture or susceptibility to hydroxyurea, and did not show an increase in the spontaneous mutation rate, determined using the Luria-Delbrück fluctuation test for streptomycin resistance in bacteria. The mutants also did not present an increase in the level of RNase HII substrates, measured as the level of alkaline degradation of chromosomal DNA or determined through immunodetection. We conclude that proteins other than RnhB proteins efficiently remove RNase HII substrates in M. smegmatis. These results highlight differences in the basic biology between Mycobacteria and eukaryotes and between different species of bacteria.
Collapse
Affiliation(s)
- Alina E. Minias
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Department of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
- * E-mail: (AM); (JD)
| | - Anna M. Brzostek
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
18
|
Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 2014; 28:1384-96. [PMID: 24990962 PMCID: PMC4083084 DOI: 10.1101/gad.242990.114] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R loops are three-stranded nucleic acid structures that comprise nascent RNA hybridized with the DNA template, leaving the nontemplate DNA single-stranded. These structures form naturally during transcription even though their persistent formation can have deleterious effects on genome integrity. Interestingly, an increasing number of studies also suggest that R loops function as potential gene expression regulators. Here, Skourti-Stathaki and Proudfoot review the most recent findings about R loops, highlighting their opposite roles in cellular fitness. R loops are three-stranded nucleic acid structures that comprise nascent RNA hybridized with the DNA template, leaving the nontemplate DNA single-stranded. R loops form naturally during transcription even though their persistent formation can be a risky outcome with deleterious effects on genome integrity. On the other hand, over the last few years, an increasingly strong case has been built for R loops as potential regulators of gene expression. Therefore, understanding their function and regulation under these opposite situations is essential to fully characterize the mechanisms that control genome integrity and gene expression. Here we review recent findings about these interesting structures that highlight their opposite roles in cellular fitness.
Collapse
Affiliation(s)
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
19
|
Mitsunobu H, Zhu B, Lee SJ, Tabor S, Richardson CC. Flap endonuclease of bacteriophage T7: Possible roles in RNA primer removal, recombination and host DNA breakdown. BACTERIOPHAGE 2014; 4:e28507. [PMID: 25105057 PMCID: PMC4124056 DOI: 10.4161/bact.28507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022]
Abstract
Gene 6 protein of bacteriophage T7 has 5′-3′-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5′-flap. This dependency of activity on the length of the 5′-flap may result from the structured helical gateway region of gene 6 protein which differs from that of human flap endonuclease 1. The flap endonuclease activity provides a mechanism by which RNA-terminated Okazaki fragments, displaced by the lagging strand DNA polymerase, are processed. 3′-extensions generated during degradation of duplex DNA by the exonuclease activity of gene 6 protein are inhibitory to further degradation of the 5′-terminus by the exonuclease activity of gene 6 protein. The single-stranded DNA binding protein of T7 overcomes this inhibition.
Collapse
Affiliation(s)
- Hitoshi Mitsunobu
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Bin Zhu
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Seung-Joo Lee
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Stanley Tabor
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | - Charles C Richardson
- The Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| |
Collapse
|
20
|
Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD. A saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 2014; 34:1521-34. [PMID: 24550002 PMCID: PMC3993591 DOI: 10.1128/mcb.00960-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/23/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
Errors during DNA replication are one likely cause of gross chromosomal rearrangements (GCRs). Here, we analyze the role of RNase H2, which functions to process Okazaki fragments, degrade transcription intermediates, and repair misincorporated ribonucleotides, in preventing genome instability. The results demonstrate that rnh203 mutations result in a weak mutator phenotype and cause growth defects and synergistic increases in GCR rates when combined with mutations affecting other DNA metabolism pathways, including homologous recombination (HR), sister chromatid HR, resolution of branched HR intermediates, postreplication repair, sumoylation in response to DNA damage, and chromatin assembly. In some cases, a mutation in RAD51 or TOP1 suppressed the increased GCR rates and/or the growth defects of rnh203Δ double mutants. This analysis suggests that cells with RNase H2 defects have increased levels of DNA damage and depend on other pathways of DNA metabolism to overcome the deleterious effects of this DNA damage.
Collapse
Affiliation(s)
- Stephanie Allen-Soltero
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Sandra L. Martinez
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Wu H, Sun H, Liang X, Lima WF, Crooke ST. Human RNase H1 is associated with protein P32 and is involved in mitochondrial pre-rRNA processing. PLoS One 2013; 8:e71006. [PMID: 23990920 PMCID: PMC3750045 DOI: 10.1371/journal.pone.0071006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
Mammalian RNase H1 has been implicated in mitochondrial DNA replication and RNA processing and is required for embryonic development. We identified the mitochondrial protein P32 that binds specifically to human RNase H1, but not human RNase H2. P32 binds human RNase H1 via the hybrid-binding domain of the enzyme at an approximately 1∶1 ratio. P32 enhanced the cleavage activity of RNase H1 by reducing the affinity of the enzyme for the heteroduplex substrate and enhancing turnover, but had no effect on the cleavage pattern. RNase H1 and P32 were partially co-localized in mitochondria and reduction of P32 or RNase H1 levels resulted in accumulation of mitochondrial pre ribosomal RNA [12S/16S] in HeLa cells. P32 also co-immunoprecipitated with MRPP1, a mitochondrial RNase P protein required for mitochondrial pre-rRNA processing. The P32-RNase H1 complex was shown to physically interact with mitochondrial DNA and pre-rRNA. These results expand the potential roles for RNase H1 to include assuring proper transcription and processing of guanosine-cytosine rich pre-ribosomal RNA in mitochondria. Further, the results identify P32 as a member of the ‘RNase H1 degradosome’ and the key P32 enhances the enzymatic efficiency of human RNase H1.
Collapse
Affiliation(s)
- Hongjiang Wu
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Hong Sun
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Xuehai Liang
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Walt F. Lima
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Stanley T. Crooke
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
23
|
Abstract
Cellular DNA replication requires efficient copying of the double-stranded chromosomal DNA. The leading strand is elongated continuously in the direction of fork opening, whereas the lagging strand is made discontinuously in the opposite direction. The lagging strand needs to be processed to form a functional DNA segment. Genetic analyses and reconstitution experiments identified proteins and multiple pathways responsible for maturation of the lagging strand. In both prokaryotes and eukaryotes the lagging-strand fragments are initiated by RNA primers, which are removed by a joining mechanism involving strand displacement of the primer into a flap, flap removal, and then ligation. Although the prokaryotic fragments are ~1200 nucleotides long, the eukaryotic fragments are much shorter, with lengths determined by nucleosome periodicity. The prokaryotic joining mechanism is simple and efficient. The eukaryotic maturation mechanism involves many enzymes, possibly three pathways, and regulation that can shift from high efficiency to high fidelity.
Collapse
|
24
|
Liu B, Xiang D, Long Y, Tong C. Real time monitoring of junction ribonuclease activity of RNase H using chimeric molecular beacons. Analyst 2013; 138:3238-45. [DOI: 10.1039/c3an36414c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Jongruja N, You DJ, Angkawidjaja C, Kanaya E, Koga Y, Kanaya S. Structure and characterization of RNase H3 from Aquifex aeolicus. FEBS J 2012; 279:2737-53. [PMID: 22686566 DOI: 10.1111/j.1742-4658.2012.08657.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of ribonuclease H3 from Aquifex aeolicus (Aae-RNase H3) was determined at 2.0 Å resolution. Aae-RNase H3 consists of an N-terminal TATA box-binding protein (TBP)-like domain (N-domain) and a C-terminal RNase H domain (C-domain). The structure of the C-domain highly resembles that of Bacillus stearothermophilus RNase H3 (Bst-RNase H3), except that it contains three disulfide bonds, and the fourth conserved glutamate residue of the Asp-Glu-Asp-Glu active site motif (Glu198) is located far from the active site. These disulfide bonds were shown to contribute to hyper-stabilization of the protein. Non-conserved Glu194 was identified as the fourth active site residue. The structure of the N-domain without the C-domain also highly resembles that of Bst-RNase H3. However, the arrangement of the N-domain relative to the C-domain greatly varies for these proteins because of the difference in the linker size between the domains. The linker of Bst-RNase H3 is relatively long and flexible, while that of Aae-RNase H3 is short and assumes a helix formation. Biochemical characterizations of Aae-RNase H3 and its derivatives without the N- or C-domain or with a mutation in the N-domain indicate that the N-domain of Aae-RNase H3 is important for substrate binding, and uses the flat surface of the β-sheet for substrate binding. However, this surface is located far from the active site and on the opposite side to the active site. We propose that the N-domain of Aae-RNase H3 is required for initial contact with the substrate. The resulting complex may be rearranged such that only the C-domain forms a complex with the substrate.
Collapse
Affiliation(s)
- Nujarin Jongruja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Duxin JP, Moore HR, Sidorova J, Karanja K, Honaker Y, Dao B, Piwnica-Worms H, Campbell JL, Monnat RJ, Stewart SA. Okazaki fragment processing-independent role for human Dna2 enzyme during DNA replication. J Biol Chem 2012; 287:21980-91. [PMID: 22570476 DOI: 10.1074/jbc.m112.359018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Cell Biology and Physiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM, Behlke MA, Walder JA. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 2011; 11:80. [PMID: 21831278 PMCID: PMC3224242 DOI: 10.1186/1472-6750-11-80] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 12/13/2022] Open
Abstract
Background The polymerase chain reaction (PCR) is commonly used to detect the presence of nucleic acid sequences both in research and diagnostic settings. While high specificity is often achieved, biological requirements sometimes necessitate that primers are placed in suboptimal locations which lead to problems with the formation of primer dimers and/or misamplification of homologous sequences. Results Pyrococcus abyssi (P.a.) RNase H2 was used to enable PCR to be performed using blocked primers containing a single ribonucleotide residue which are activated via cleavage by the enzyme (rhPCR). Cleavage occurs 5'-to the RNA base following primer hybridization to the target DNA. The requirement of the primer to first hybridize with the target sequence to gain activity eliminates the formation of primer-dimers and greatly reduces misamplification of closely related sequences. Mismatches near the scissile linkage decrease the efficiency of cleavage by RNase H2, further increasing the specificity of the assay. When applied to the detection of single nucleotide polymorphisms (SNPs), rhPCR was found to be far more sensitive than standard allele-specific PCR. In general, the best discrimination occurs when the mismatch is placed at the RNA:DNA base pair. Conclusion rhPCR eliminates the formation of primer dimers and markedly improves the specificity of PCR with respect to off-target amplification. These advantages of the assay should find utility in challenging qPCR applications such as genotyping, high level multiplex assays and rare allele detection.
Collapse
Affiliation(s)
- Joseph R Dobosy
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 5224, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bubeck D, Reijns MAM, Graham SC, Astell KR, Jones EY, Jackson AP. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res 2011; 39:3652-66. [PMID: 21245041 PMCID: PMC3089482 DOI: 10.1093/nar/gkq980] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi–Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids.
Collapse
Affiliation(s)
- Doryen Bubeck
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
31
|
Abstract
Faithful DNA replication involves the removal of RNA residues from genomic DNA prior to the ligation of nascent DNA fragments in all living organisms. Because the physiological roles of archaeal type 2 RNase H are not fully understood, the substrate structure requirements for the detection of RNase H activity need further clarification. Biochemical characterization of a single RNase H detected within the genome of Pyrococcus abyssi showed that this type 2 RNase H is an Mg- and alkaline pH-dependent enzyme. PabRNase HII showed RNase activity and acted as a specific endonuclease on RNA-DNA/DNA duplexes. This specific cleavage, 1 nucleotide upstream of the RNA-DNA junction, occurred on a substrate in which RNA initiators had to be fully annealed to the cDNA template. On the other hand, a 5' RNA flap Okazaki fragment intermediate impaired PabRNase HII endonuclease activity. Furthermore, introduction of mismatches into the RNA portion near the RNA-DNA junction decreased both the specificity and the efficiency of cleavage by PabRNase HII. Additionally, PabRNase HII could cleave a single ribonucleotide embedded in a double-stranded DNA. Our data revealed PabRNase HII as a dual-function enzyme likely required for the completion of DNA replication and DNA repair.
Collapse
|
32
|
Crow YJ, Rehwinkel J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 2009; 18:R130-6. [PMID: 19808788 DOI: 10.1093/hmg/ddp293] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a genetically determined encephalopathy demonstrating phenotypic overlap both with the sequelae of congenital infection and with systemic lupus erythematosus (SLE). Recent molecular advances have revealed that AGS can be caused by mutations in any one of five genes, most commonly on a recessive basis but occasionally as a dominant trait. Like AGS, SLE is associated with a perturbation of type I interferon metabolism. Interestingly then, heterozygous mutations in the AGS1 gene TREX1 underlie a cutaneous subtype of SLE-called familial chilblain lupus, and mutations in TREX1 represent the single most common cause of monogenic SLE identified to date. Evidence is emerging to show that the nucleases defective in AGS are involved in removing endogenously produced nucleic acid (NA) species, and that a failure of this removal results in activation of the immune system. This hypothesis explains the phenotypic overlap of AGS with congenital infection and some aspects of SLE, where an equivalent type I interferon-mediated innate immune response is triggered by viral and self NAs, respectively. The combined efforts of clinicians, geneticists, immunologists and cell biologists are producing rapid progress in the understanding of AGS and overlapping autoimmune disorders. These studies provide important insights into the pathogenesis of SLE and beg urgent questions about the development and use of immunosuppressive therapies in AGS and related phenotypes.
Collapse
Affiliation(s)
- Yanick J Crow
- Academic Unit of Medical Genetics, Manchester Academic Health Science Centre, Central Manchester Foundation Trust, St Mary's Hospital, University of Manchester, Oxford Road, Manchester M13 9WL, UK.
| | | |
Collapse
|
33
|
Abstract
Junction ribonuclease (JRNase) recognizes the transition from RNA to DNA of an RNA-DNA/DNA hybrid, such as an Okazaki fragment, and cleaves it, leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. Although this JRNase activity was originally reported in calf RNase H2, some other RNases H have recently been suggested to possess it. This paper shows that these enzymes can also cleave an RNA-DNA/RNA heteroduplex in a manner similar to the RNA-DNA/DNA substrate. The cleavage site of the RNA-DNA/RNA substrate corresponds to the RNA/RNA duplex region, indicating that the cleavage activity cannot be categorized as RNase H activity, which specifically cleaves an RNA strand of an RNA/DNA hybrid. Examination of several RNases H with respect to JRNase activity suggested that the activity is only found in RNase HII orthologs. Therefore, RNases HIII, which are RNase HII paralogs, are distinguished from RNases HII by the absence of JRNase activity. Whether a substrate can be targeted by JRNase activity would depend only on whether or not an RNA-DNA junction consisting of one ribonucleotide and one deoxyribonucleotide is included in the duplex. In addition, although the activity has been reported not to occur on completely single-stranded RNA-DNA, it can recognize a single-stranded RNA-DNA junction if a double-stranded region is located adjacent to the junction.
Collapse
Affiliation(s)
- Naoto Ohtani
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| | | | | |
Collapse
|
34
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
35
|
Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex. Biochem J 2008; 412:517-26. [PMID: 18318663 DOI: 10.1042/bj20080140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genome of an extremely thermophilic bacterium, Thermus thermophilus HB8, contains a single ORF (open reading frame) encoding an RNase-HII-like sequence. Despite the presence of significant amino acid sequence identities with RNase (ribonuclease) HII enzymes, the ORF TTHA0198 could not suppress the temperature-sensitive growth defect of an RNase-H-deficient Escherichia coli mutant and the purified recombinant protein could not cleave an RNA strand of an RNA/DNA heteroduplex, suggesting that the TTHA0198 exhibited no RNase H activity both in vivo and in vitro. When oligomeric RNA-DNA/DNAs were used as a mimic substrate for Okazaki fragments, however, the protein cleaved them only at the 5' side of the last ribonucleotide at the RNA-DNA junction. In fact, the TTHA0198 protein prefers the RNA-DNA junction to the RNA/DNA hybrid. We have referred to this activity as JRNase (junction RNase) activity, which recognizes an RNA-DNA junction of the RNA-DNA/DNA heteroduplex and cleaves it leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. E. coli and Deinococcus radiodurans RNases HII also cleaved the RNA-DNA/DNA substrates at the same site with a different metal-ion preference from that for RNase H activity, implying that the enzymes have JRNase activity as well as RNase H activity. The specialization in the JRNase activity of the RNase HII orthologue from T. thermophilus HB8 (Tth-JRNase) suggests that the JRNase activity of RNase HII enzymes might be independent of the RNase H activity.
Collapse
|
36
|
Abstract
Ribonucleases H are enzymes that cleave the RNA of RNA/DNA hybrids that form during replication and repair and which could lead to DNA instability if they were not processed. There are two main types of RNase H, and at least one of them is present in most organisms. Eukaryotic RNases H are larger and more complex than their prokaryotic counterparts. Eukaryotic RNase H1 has acquired a hybrid binding domain that confers processivity and affinity for the substrate, whereas eukaryotic RNase H2 is composed of three different proteins: the catalytic subunit (2A), similar to the monomeric prokaryotic RNase HII, and two other subunits (2B and 2C) that have no prokaryotic counterparts and as yet unknown functions, but that are necessary for catalysis. In this minireview, we discuss some of the most recent findings on eukaryotic RNases H1 and H2, focusing on the structural data on complexes between human RNase H1 and RNA/DNA hybrids that had provided great detail of how the hybrid binding- and RNase H-domains recognize and cleave the RNA strand of the hybrid substrates. We also describe the progress made in understanding the in vivo function of eukaryotic RNases H. Although prokayotes and some single-cell eukaryotes do not require RNases H for viability, in higher eukaryotes RNases H are essential. Rnaseh1 null mice arrest development around E8.5 because RNase H1 is necessary during embryogenesis for mitochondrial DNA replication. Mutations in any of the three subunits of human RNase H2 cause Aicardi-Goutières syndrome, a human neurological disorder with devastating consequences.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
You DJ, Chon H, Koga Y, Takano K, Kanaya S. Crystallization and preliminary crystallographic analysis of type 1 RNase H from the hyperthermophilic archaeon Sulfolobus tokodaii 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:781-4. [PMID: 16880556 PMCID: PMC2242919 DOI: 10.1107/s1744309106024420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/26/2006] [Indexed: 11/11/2022]
Abstract
Crystallization and preliminary crystallographic studies of type 1 RNase H from the hyperthermophilic archaeon Sulfolobus tokodaii 7 were performed. A crystal was grown at 277 K by the sitting-drop vapour-diffusion method. Native X-ray diffraction data were collected to 1.5 angstroms resolution using synchrotron radiation from station BL41XU at SPring-8. The crystal belongs to space group P4(3), with unit-cell parameters a = b = 39.21, c = 91.15 angstroms. Assuming the presence of one molecule in the asymmetric unit, the Matthews coefficient V(M) was calculated to be 2.1 angstroms3 Da(-1) and the solvent content was 40.5%. The structure of a selenomethionine Sto-RNase HI mutant obtained using a MAD data set is currently being analysed.
Collapse
Affiliation(s)
- Dong-Ju You
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyongi Chon
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST (Sosho Project), JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Correspondence e-mail:
| |
Collapse
|
38
|
Chon H, Tadokoro T, Ohtani N, Koga Y, Takano K, Kanaya S. Identification of RNase HII from psychrotrophic bacterium, Shewanella sp. SIB1 as a high-activity type RNase H. FEBS J 2006; 273:2264-75. [PMID: 16650002 DOI: 10.1111/j.1742-4658.2006.05241.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gene encoding RNase HII from the psychrotrophic bacterium, Shewanella sp. SIB1 was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RNase HII is a monomeric protein with 212 amino acid residues and shows an amino acid sequence identity of 64% to E. coli RNase HII. The enzymatic properties of SIB1 RNase HII, such as metal ion preference, pH optimum, and cleavage mode of substrate, were similar to those of E. coli RNase HII. SIB1 RNase HII was less stable than E. coli RNase HII, but the difference was marginal. The half-lives of SIB1 and E. coli RNases HII at 30 degrees C were approximately 30 and 45 min, respectively. The midpoint of the urea denaturation curve and optimum temperature of SIB1 RNase HII were lower than those of E. coli RNase HII by approximately 0.2 M and approximately 5 degrees C, respectively. However, SIB1 RNase HII was much more active than E. coli RNase HII at all temperatures studied. The specific activity of SIB1 RNase HII at 30 degrees C was 20 times that of E. coli RNase HII. Because SIB1 RNase HII was also much more active than SIB1 RNase HI, RNases HI and HII represent low- and high-activity type RNases H, respectively, in SIB1. In contrast, RNases HI and HII represent high- and low-activity type RNases H, respectively, in E. coli. We propose that bacterial cells usually contain low- and high-activity type RNases H, but these types are not correlated with RNase H families.
Collapse
Affiliation(s)
- Hyongi Chon
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Malik HS. Ribonuclease H evolution in retrotransposable elements. Cytogenet Genome Res 2005; 110:392-401. [PMID: 16093691 DOI: 10.1159/000084971] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 02/11/2004] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important role that Type I RNH plays in the life cycle of many retroelements, and its utility in tracing early events in retroelement evolution. Many retroelements utilize host genome-encoded RNH, but several lineages of retroelements, including some non-LTR retroposons and all LTR retrotransposons, encode their own RNH domains. Examination of these RNH domains suggests that all LTR retrotransposons acquired an enzymatically weak RNH domain that is missing an important catalytic residue found in all other RNH enzymes. We propose that this reduced activity is essential to ensure correct processing of the polypurine tract (PPT), which is an important step in the life cycle of these retrotransposons. Vertebrate retroviruses appear to have reacquired their RNH domains, which are catalytically more active, but their ancestral RNH domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domains unique to vertebrate retroviruses. The tether domain may serve to control the more active RNH domain of vertebrate retroviruses. Phylogenetic analysis of the RNH domains is also useful to "date" the relative ages of LTR and non-LTR retroelements. It appears that all LTR retrotransposons are as old as, or younger than, the "youngest" lineages of non-LTR retroelements, suggesting that LTR retrotransposons arose late in eukaryotes.
Collapse
Affiliation(s)
- H S Malik
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
40
|
Chon H, Matsumura H, Koga Y, Takano K, Kanaya S. Crystallization and preliminary X-ray diffraction study of thermostable RNase HIII from Bacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:293-5. [PMID: 16511022 PMCID: PMC1952286 DOI: 10.1107/s1744309105003659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 02/02/2005] [Indexed: 11/11/2022]
Abstract
A thermostable ribonuclease HIII from Bacillus stearothermophilus (Bst RNase HIII) was crystallized and preliminary crystallographic studies were performed. Plate-like overlapping polycrystals were grown by the sitting-drop vapour-diffusion method at 283 K. Native X-ray diffraction data were collected to 2.8 A resolution using synchrotron radiation from station BL44XU at SPring-8. The crystals belong to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 66.73, b = 108.62, c = 48.29 A. Assuming one molecule per asymmetric unit, the VM value was 2.59 A3 Da(-1) and the solvent content was 52.2%.
Collapse
Affiliation(s)
- Hyongi Chon
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- PRESTO, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Kao HI, Bambara RA. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 2004; 38:433-52. [PMID: 14693726 DOI: 10.1080/10409230390259382] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An initiator RNA (iRNA) is required to prime cellular DNA synthesis. The structure of double-stranded DNA allows the synthesis of one strand to be continuous but the other must be generated discontinuously. Frequent priming of the discontinuous strand results in the formation of many small segments, designated Okazaki fragments. These short pieces need to be processed and joined to form an intact DNA strand. Our knowledge of the mechanism of iRNA removal is still evolving. Early reconstituted systems suggesting that the removal of iRNA requires sequential action of RNase H and flap endonuclease 1 (FEN1) led to the RNase H/FEN1 model. However, genetic analyses implied that Dna2p, an essential helicase/nuclease, is required. Subsequent biochemical studies suggested sequential action of RPA, Dna2p, and FEN1 for iRNA removal, leading to the second model, the Dna2p/RPA/FEN1 model. Studies of strand-displacement synthesis by polymerase delta indicated that in a reconstituted system, FEN1 could act as soon as short flaps are created, giving rise to a third model, the FEN1-only model. Each of the three pathways is supported by different genetic and biochemical results. Properties of the major protein components in this process will be discussed, and the validity of each model as a true representation of Okazaki fragment processing will be critically evaluated in this review.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
42
|
Jeong HS, Backlund PS, Chen HC, Karavanov AA, Crouch RJ. RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res 2004; 32:407-14. [PMID: 14734815 PMCID: PMC373335 DOI: 10.1093/nar/gkh209] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The composition of RNase H2 has been a long-standing problem. Whereas bacterial and archaeal RNases H2 are active as single polypeptides, the Saccharomyces cerevisiae homolog, Rnh2Ap, when expressed in Escherichia coli, fails to produce an active RNase H2. By affinity chromatography purification and identification of polypeptides associated with a tagged S.cerevisiae Rnh2Ap, we obtained a complex of three proteins [Rnh2Ap (Rnh201p), Ydr279p (Rnh202p) and Ylr154p (Rnh203p)] that together are necessary and sufficient for RNase H2 activity [correction]. Deletion of the gene encoding any one of the proteins or mutations in the catalytic site in Rnh2A led to loss of RNase H2 activity. Even when S.cerevisiae RNase H2 is catalytically compromised, it still exhibits a preference for cleavage of the phosphodiester bond on the 5' side of a ribonucleotide-deoxyribonucleotide sequence in substrates mimicking RNA-primed Okazaki fragments or a single ribonucleotide embedded in a duplex DNA. Interestingly, Ydr279p and Ylr154p have homologous proteins only in closely related species. The multisubunit nature of S.cerevisiae RNase H2 may be important both for structural purposes and to provide a means of interacting with other proteins involved in DNA replication/repair and transcription.
Collapse
Affiliation(s)
- Ho-Sang Jeong
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2790, USA
| | | | | | | | | |
Collapse
|
43
|
Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol Cell Biol 2003; 23:7849-60. [PMID: 14560028 PMCID: PMC207578 DOI: 10.1128/mcb.23.21.7849-7860.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.
Collapse
Affiliation(s)
- Julie L Callahan
- Department of Biology, Program in Genetics, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
44
|
Haruki M, Tsunaka Y, Morikawa M, Kanaya S. Cleavage of a DNA-RNA-DNA/DNA chimeric substrate containing a single ribonucleotide at the DNA-RNA junction with prokaryotic RNases HII. FEBS Lett 2002; 531:204-8. [PMID: 12417313 DOI: 10.1016/s0014-5793(02)03503-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have analyzed the cleavage specificities of various prokaryotic Type 2 ribonucleases H (RNases H) on chimeric DNA-RNA-DNA/DNA substrates containing one to four ribonucleotides. RNases HII from Bacillus subtilis and Thermococcus kodakaraensis cleaved all of these substrates to produce a DNA segment with a 5'-monoribonucleotide. Consequently, these enzymes cleaved even the chimeric substrate containing a single ribonucleotide at the DNA-RNA junction (5'-side of the single ribonucleotide). In contrast, Escherichia coli RNase HI and B. subtilis RNase HIII did not cleave the chimeric substrate containing a single ribonucleotide. These results suggest that bacterial and archaeal RNases HII are involved in excision of a single ribonucleotide misincorporated into DNA.
Collapse
Affiliation(s)
- Mitsuru Haruki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
45
|
Maga G, Villani G, Tillement V, Stucki M, Locatelli GA, Frouin I, Spadari S, Hübscher U. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase delta by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1. Proc Natl Acad Sci U S A 2001; 98:14298-303. [PMID: 11724925 PMCID: PMC64676 DOI: 10.1073/pnas.251193198] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase (pol) delta is essential for both leading and lagging strand DNA synthesis during chromosomal replication in eukaryotes. Pol delta has been implicated in the Okazaki fragment maturation process for the extension of the newly synthesized fragment and for the displacement of the RNA/DNA segment of the preexisting downstream fragment generating an intermediate flap structure that is the target for the Dna2 and flap endonuclease-1 (Fen 1) endonucleases. Using a single-stranded minicircular template with an annealed RNA/DNA primer, we could measure strand displacement by pol delta coupled to DNA synthesis. Our results suggested that pol delta alone can displace up to 72 nucleotides while synthesizing through a double-stranded DNA region in a distributive manner. Proliferating cell nuclear antigen (PCNA) reduced the template dissociation rate of pol delta, thus increasing the processivity of both synthesis and strand displacement, whereas replication protein A (RP-A) limited the size of the displaced fragment down to 20-30 nucleotides, by generating a "locked" flap DNA structure, which was a substrate for processing of the displaced fragment by Fen 1 into a ligatable product. Our data support a model for Okazaki fragment processing where the strand displacement activity of DNA polymerase delta is modulated by the concerted action of PCNA, RP-A and Fen 1.
Collapse
Affiliation(s)
- G Maga
- Istituto di Genetica Biochimica ed Evoluzionistica-Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shiels JC, Jerkovic B, Baranger AM, Bolton PH. RNA-DNA hybrids containing damaged DNA are substrates for RNase H. Bioorg Med Chem Lett 2001; 11:2623-6. [PMID: 11551764 DOI: 10.1016/s0960-894x(01)00527-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the replication of the lagging strand, RNA-DNA hybrids are formed and the RNA is subsequently degraded by the action of RNase H. Little is known about the effects of damaged DNA on lagging strand replication and subsequent RNA removal. The rates and sites of digestion by E. coli RNase H of RNA-DNA hybrids containing either a thymine glycol or urea site in the DNA strand have been examined. The cleavage patterns for duplexes containing thymine glycol or urea differ from that of a fully complementary duplex. There is one major product of the digestion of the fully complementary hybrid, but three products are formed in the reactions with the hybrids containing damaged DNAs. Cleavage is partially redirected to the position adjacent to the damaged sites. The overall rate of cleavage of these hybrids containing damaged DNA is comparable to that of the fully complementary duplex. These results indicate that the cleavage of RNA-DNA hybrids by RNase H is less selective when a damaged site is present in the DNA strand.
Collapse
Affiliation(s)
- J C Shiels
- Chemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
47
|
Chai Q, Qiu J, Chapados BR, Shen B. Archaeoglobus fulgidus RNase HII in DNA replication: enzymological functions and activity regulation via metal cofactors. Biochem Biophys Res Commun 2001; 286:1073-81. [PMID: 11527410 DOI: 10.1006/bbrc.2001.5523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA primer removal during DNA replication is dependent on ribonucleotide- and structure-specific RNase H and FEN-1 nuclease activities. A specific RNase H involved in this reaction has long been sought. RNase HII is the only open reading frame in Archaeoglobus fulgidus genome, while multiple RNases H exist in eukaryotic cells. Data presented here show that RNase HII from A. fulgidus (aRNase HII) specifically recognizes RNA-DNA junctions and generates products suited for the FEN-1 nuclease, indicating its role in DNA replication. Biochemical characterization of aRNase HII activity in the presence of various divalent metal ions reveals a broad metal tolerance with a preference for Mg(2+) and Mn(2+). Combined mutagenesis, biochemical competitions, and metal-dependent activity assays further clarify the functions of the identified amino acid residues in substrate binding or catalysis, respectively. These experiments also reveal that Asp129 form a second-metal binding site, and thus contribute to activity attenuation.
Collapse
Affiliation(s)
- Q Chai
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
48
|
Hines JC, Engel ML, Zhao H, Ray DS. RNA primer removal and gap filling on a model minicircle replication intermediate. Mol Biochem Parasitol 2001; 115:63-7. [PMID: 11377740 DOI: 10.1016/s0166-6851(01)00272-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Replication of kinetoplast DNA minicircles in Crithidia fasciculata occurs by a unidirectional mechanism involving continuous synthesis of one strand (L strand) and discontinuous synthesis of the complementary strand (H strand). L-strands are initiated by RNA priming at alternate origins (A and B) resulting in daughter molecules with a single nick or gap in the L strand at either ori A or ori B. Some of the gapped molecules contain ribonucleotides at the 5' side of the gap. We have investigated the ability of recombinant forms of kinetoplast replication proteins, DNA polymerase beta and structure specific endonuclease 1, to repair gaps in a model minicircle substrate. Structure specific endonuclease 1 was shown to efficiently remove all ribonucleotides from the 5' side of the model substrate by stepwise cleavage of the RNA primer. Polymerase beta was then able to extend the 3' terminus of the gap to yield a nicked molecule capable of covalent joining by a DNA ligase. These results demonstrate that the nuclease and polymerase enzymes present at antipodal protein complexes flanking the kinetoplast disk are capable of complete RNA primer removal and subsequent gap filling of newly synthesized minicircle L strands.
Collapse
Affiliation(s)
- J C Hines
- Molecular Biology Institute and Department of Microbiology and Molecular Genetics, University of California, 405 Hilgard Ave., 90095-1570, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
49
|
Chapados BR, Chai Q, Hosfield DJ, Qiu J, Shen B, Tainer JA. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication. J Mol Biol 2001; 307:541-56. [PMID: 11254381 DOI: 10.1006/jmbi.2001.4494] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA replication and cellular survival requires efficient removal of RNA primers during lagging strand DNA synthesis. In eukaryotes, RNA primer removal is initiated by type 2 RNase H, which specifically cleaves the RNA portion of an RNA-DNA/DNA hybrid duplex. This conserved type 2 RNase H family of replicative enzymes shares little sequence similarity with the well-characterized prokaryotic type 1 RNase H enzymes, yet both possess similar enzymatic properties. Crystal structures and structure-based mutational analysis of RNase HII from Archaeoglobus fulgidus, both with and without a bound metal ion, identify the active site for type 2 RNase H enzymes that provides the general nuclease activity necessary for catalysis. The two-domain architecture of type 2 RNase H creates a positively charged binding groove and links the unique C-terminal helix-loop-helix cap domain to the active site catalytic domain. This architectural arrangement apparently couples directional A-form duplex binding, by a hydrogen-bonding Arg-Lys phosphate ruler motif, to substrate-discrimination, by a tyrosine finger motif, thereby providing substrate-specific catalytic activity. Combined kinetic and mutational analyses of structurally implicated substrate binding residues validate this binding mode. These structural and mutational results together suggest a molecular mechanism for type 2 RNase H enzymes for the specific recognition and cleavage of RNA in the RNA-DNA junction within hybrid duplexes, which reconciles the broad substrate binding affinity with the catalytic specificity observed in biochemical assays. In combination with a recent independent structural analysis, these results furthermore identify testable molecular hypotheses for the activity and function of the type 2 RNase H family of enzymes, including structural complementarity, substrate-mediated conformational changes and coordination with subsequent FEN-1 activity.
Collapse
Affiliation(s)
- B R Chapados
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
50
|
Mitra S, Boldogh I, Izumi T, Hazra TK. Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:180-90. [PMID: 11746753 PMCID: PMC4927302 DOI: 10.1002/em.1070] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase beta or replicative polymerases delta and epsilon. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation.
Collapse
Affiliation(s)
- S Mitra
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|