1
|
Maggs LR, McVey M. REV7: a small but mighty regulator of genome maintenance and cancer development. Front Oncol 2025; 14:1516165. [PMID: 39839778 PMCID: PMC11747621 DOI: 10.3389/fonc.2024.1516165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator. Additionally, REV7 supports genome integrity by directing double-strand break repair pathway choice as part of the recently characterized mammalian shieldin complex. Given that genome instability is a hallmark of cancer, it is unsurprising that REV7, with its numerous genome maintenance roles, is implicated in multiple malignancies, including ovarian cancer, glioma, breast cancer, malignant melanoma, and small-cell lung cancer. Moreover, high REV7 expression is associated with poor prognoses and treatment resistance in these and other cancers. Promisingly, early studies indicate that REV7 suppression enhances sensitivity to chemotherapeutics, including cisplatin. This review aims to provide a comprehensive overview of REV7's myriad roles in genome maintenance and other functions as well as offer an updated summary of its connections to cancer and treatment resistance.
Collapse
Affiliation(s)
- Lara R. Maggs
- Department of Biology, Tufts University, Medford, MA, United States
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
Küppers R, Hansmann ML. Laser-Based Microdissection of Single Cells from Tissue Sections and PCR Analysis of Rearranged Immunoglobulin Genes from Isolated Normal and Malignant Human B Cells. Methods Mol Biol 2025; 2865:61-76. [PMID: 39424720 DOI: 10.1007/978-1-0716-4188-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Normal and malignant B cells carry rearranged immunoglobulin (Ig) variable region genes, which due to their practically limitless diversity represent ideal clonal markers for these cells. We describe here an approach to isolate single cells from frozen tissue sections by microdissection using a laser-based method. From the DNA of the isolated cells, rearranged IgH and Igκ genes are amplified in a semi-nested PCR approach, using a collection of IGV gene subgroup-specific primers recognizing nearly all IGV genes together with primers for the J genes. By sequence analysis of IGV region genes from distinct cells, the clonal relationship of the B-lineage cells can unequivocally be determined and related to the histological distribution of the cells. The approach is also useful to determine V, D and J gene usage. Moreover, the presence and pattern of somatic IGV gene mutations give valuable insight into the differentiation stage of the B cells.
Collapse
Affiliation(s)
- Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt/Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
3
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
4
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Chisca M, Larouche J, Xing Q, Kassiotis G. Antibodies against endogenous retroviruses. Immunol Rev 2024; 328:300-313. [PMID: 39152687 PMCID: PMC11659944 DOI: 10.1111/imr.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The human genome harbors hundreds of thousands of integrations of ancient retroviruses, amassed over millions of years of evolution. To reduce further amplification in the genome, the host prevents transcription of these now endogenous retroviruses (ERVs) through epigenetic repression and, with evolutionary time, ERVs are incapacitated by accumulating mutations and deletions. However, several members of recently endogenized ERV groups still retain the capacity to produce viral RNA, retroviral proteins, and higher order structures, including virions. The retention of viral characteristics, combined with the reversible nature of epigenetic repression, particularly as seen in cancer, allow for immunologically unanticipated ERV expression, perceived by the adaptive immune system as a genuine retroviral infection, to which it has to respond. Accordingly, antibodies reactive with ERV antigens have been detected in diverse disorders and, occasionally, in healthy individuals. Although they are part of self, the retroviral legacy of ERV antigens, and association with and, possibly, causation of disease states may set them apart from typical self-antigens. Consequently, the pathogenic or, indeed, host-protective capacity of antibodies targeting ERV antigens is likely to be context-dependent. Here, we review the immunogenicity of typical ERV proteins, with emphasis on the antibody response and its potential disease implications.
Collapse
Affiliation(s)
- Mihaela Chisca
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Qi Xing
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | - George Kassiotis
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
6
|
Mamidi MK, Huang J, Honjo K, Li R, Tabengwa EM, Neeli I, Randall NL, Ponnuchetty MV, Radic M, Leu CM, Davis RS. FCRL1 immunoregulation in B cell development and malignancy. Front Immunol 2023; 14:1251127. [PMID: 37822931 PMCID: PMC10562807 DOI: 10.3389/fimmu.2023.1251127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Murali K. Mamidi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Edlue M. Tabengwa
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nar’asha L. Randall
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Manasa V. Ponnuchetty
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming ChiaoTung University, Taipei, Taiwan
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Hao Q, Zhan C, Lian C, Luo S, Cao W, Wang B, Xie X, Ye X, Gui T, Voena C, Pighi C, Wang Y, Tian Y, Wang X, Dai P, Cai Y, Liu X, Ouyang S, Sun S, Hu Q, Liu J, Ye Y, Zhao J, Lu A, Wang JY, Huang C, Su B, Meng FL, Chiarle R, Pan-Hammarström Q, Yeap LS. DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Sci Immunol 2023; 8:eade1167. [PMID: 36961908 PMCID: PMC10351598 DOI: 10.1126/sciimmunol.ade1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.
Collapse
Affiliation(s)
- Qian Hao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanzong Zhan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Simin Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
- Present address: Kindstar Global Precision Medicine Institute, Wuhan, China and Kindstar Biotech, Wuhan, China
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
| | - Chiara Pighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Yanyan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Shengqun Ouyang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Shiqi Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Endocrinology and Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
| | - Leng-Siew Yeap
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
8
|
Gueye S, Gauthier M, Benyahia R, Trape L, Dahri S, Kounde C, Perier T, Meklati L, Guelib I, Faye M, Rostaing L. [Nephropathy associated with monoclonal immunoglobulins: From clonal expansion B to renal toxicity of pathological immunoglobulins]. Nephrol Ther 2022; 18:591-603. [PMID: 36428151 DOI: 10.1016/j.nephro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
Germinal center regulation pathways are often involved in lymphomagenesis and myelomagenesis. Most of the lymphomas (and multiple myeloma) derive from post-germinal center B-cells that have undergone somatic hypermutation and class switch recombination. Hence, B-cell clonal expansion can be responsible for the presence of a monoclonal component (immunoglobulin) of variable titer which, owing to physicochemical properties, can provoke pathologically defined entities of diseases. These diseases can affect any functional part of the kidney, by multiple mechanisms, either well known or not. The presence of renal deposition is influenced by germinal gene involved, immunoglobulin primary structure, post-translational modifications and microenvironmental interactions. The two ways immunoglobulin can cause kidney toxicity are (i) an excess of production (overcoming catabolism power by proximal tubule epithelial cells) with an excess of free light chains within the distal tubules and a subsequent risk of precipitation due to local physicochemical properties; (ii) by structural characteristics that predispose immunoglobulin to a renal disease (whatever their titer). The purpose of this manuscript is to review literature concerning the pathophysiology of renal toxicities of clonal immunoglobulin, from molecular B-cell expansion mechanisms to immunoglobulin renal toxicity.
Collapse
Affiliation(s)
- Serigne Gueye
- Service de néphrologie-dialyse, CH de Cahors, France.
| | | | | | - Lucas Trape
- Service de néphrologie-dialyse, CH de Cahors, France
| | - Souad Dahri
- Service de néphrologie-dialyse, CH de Cahors, France
| | | | - Thomas Perier
- Service de néphrologie-dialyse, CH de Cahors, France
| | | | | | - Maria Faye
- Université Cheikh Anta Diop, Dakar, Sénégal
| | - Lionel Rostaing
- Service de néphrologie-dialyse, CH de Cahors, France; Service de néphrologie, hémodialyse, aphérèses et greffe rénale, France; Inserm U563, IFR-BMT, CHU de Purpan, Toulouse, France; Université Grenoble-Alpes, France
| |
Collapse
|
9
|
Çakan E, Gunaydin G. Activation induced cytidine deaminase: An old friend with new faces. Front Immunol 2022; 13:965312. [PMID: 36405752 PMCID: PMC9670734 DOI: 10.3389/fimmu.2022.965312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Activation induced cytidine deaminase (AID) protein is a member of APOBEC family. AID converts cytidine to uracil, which is a key step for somatic hypermutation (SHM) and class switch recombination (CSR). AID also plays critical roles in B cell precursor stages, removing polyreactive B cells from immune repertoire. Since the main function of AID is inducing point mutations, dysregulation can lead to increased mutation load, translocations, disturbed genomic integrity, and lymphomagenesis. As such, expression of AID as well as its function is controlled strictly at various molecular steps. Other members of the APOBEC family also play crucial roles during carcinogenesis. Considering all these functions, AID represents a bridge, linking chronic inflammation to carcinogenesis and immune deficiencies to autoimmune manifestations.
Collapse
Affiliation(s)
- Elif Çakan
- Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| |
Collapse
|
10
|
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation of immunoglobulin (Ig) gene variable regions and class switch recombination (CSR) of Ig heavy chain constant regions. Two decades of intensive research has greatly expanded our knowledge of how AID functions in peripheral B cells to optimize antibody responses against infections, while maintaining tight regulation of AID to restrain its activity to protect B cell genomic integrity. The many exciting recent advances in the field include: 1) the first description of AID's molecular structure, 2) remarkable advances in high throughput approaches that precisely track AID targeting genome-wide, and 3) the discovery that the cohesion-mediate loop extrusion mechanism [initially discovered in V(D)J recombination studies] also governs AID-medicated CSR. These advances have significantly advanced our understanding of AID's biochemical properties in vitro and AID's function and regulation in vivo. This mini review will discuss these recent discoveries and outline the challenges and questions that remain to be addressed.
Collapse
|
11
|
Contribution of rare mutational outcomes to broadly neutralizing antibodies. Acta Biochim Biophys Sin (Shanghai) 2022; 54:820-827. [PMID: 35713319 PMCID: PMC9828561 DOI: 10.3724/abbs.2022065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies are important immune molecules that are elicited by B cells to protect our bodies during viral infections or vaccinations. In humans, the antibody repertoire is diversified by programmed DNA lesion processes to ensure specific and high affinity binding to various antigens. Broadly neutralizing antibodies (bnAbs) are antibodies that have strong neutralizing activities against different variants of a virus. bnAbs such as anti-HIV bnAbs often have special characteristics including insertions and deletions, long complementarity determining region 3 (CDR3), and high frequencies of mutations, often at improbable sites of the variable regions. These unique features are rare mutational outcomes that are acquired during antibody diversification processes. In this review, we will discuss possible mechanisms that generate these rare antibody mutational outcomes. The understanding of the mechanisms that generate these rare mutational outcomes during antibody diversification will have implications in vaccine design strategies to elicit bnAbs.
Collapse
|
12
|
Lupo C, Spisak N, Walczak AM, Mora T. Learning the statistics and landscape of somatic mutation-induced insertions and deletions in antibodies. PLoS Comput Biol 2022; 18:e1010167. [PMID: 35653375 PMCID: PMC9197026 DOI: 10.1371/journal.pcbi.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/14/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Affinity maturation is crucial for improving the binding affinity of antibodies to antigens. This process is mainly driven by point substitutions caused by somatic hypermutations of the immunoglobulin gene. It also includes deletions and insertions of genomic material known as indels. While the landscape of point substitutions has been extensively studied, a detailed statistical description of indels is still lacking. Here we present a probabilistic inference tool to learn the statistics of indels from repertoire sequencing data, which overcomes the pitfalls and biases of standard annotation methods. The model includes antibody-specific maturation ages to account for variable mutational loads in the repertoire. After validation on synthetic data, we applied our tool to a large dataset of human immunoglobulin heavy chains. The inferred model allows us to identify universal statistical features of indels in heavy chains. We report distinct insertion and deletion hotspots, and show that the distribution of lengths of indels follows a geometric distribution, which puts constraints on future mechanistic models of the hypermutation process. Affinity maturation of B cell receptors is an important mechanism by which our body designs neutralizing antibodies to defend us against pathogens, including broadly neutralizing antibodies, which target a wide range of variants of the same pathogen. Such antibodies often contain key insertions and deletions to the germline gene, or “indels”, which are caused by somatic hypermutations. However, the mechanism, frequency and role of these indels are still elusive. We designed a computational method based on a probabilistic framework to infer the characteristics of this mutational process from high-throughput antibody sequencing experiments. Applied to human data, our approach provides a comprehensive quantitative description of insertions and deletions, opening avenues for better understanding the process of affinity maturation and the design of vaccines for eliciting a broad antibody response.
Collapse
Affiliation(s)
- Cosimo Lupo
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
- * E-mail: (AMW); (TM)
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
- * E-mail: (AMW); (TM)
| |
Collapse
|
13
|
Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia 2021; 35:2002-2016. [PMID: 33953289 PMCID: PMC8257491 DOI: 10.1038/s41375-021-01251-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.
Collapse
|
14
|
Rabani H, Ziv M, Lavi N, Aviv A, Suriu C, Shalata A, Haddid Y, Tadmor T. Deletions and amplifications of the IGH variable and constant regions:a novel prognostic parameter in patients with multiple myeloma. Leuk Res 2020; 99:106476. [PMID: 33171301 DOI: 10.1016/j.leukres.2020.106476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022]
Abstract
Cytogenetic abnormalities are a recognized factor in the pathogenesis of multiple myeloma (MM). While chromosomal translocations involving the IGH gene have been investigated and reported, the implications of deletions or amplifications in the IGH gene have been less frequently examined. We conducted a retrospective analysis of 260 patients with MM from Northern Israel. Fluorescent in situ hybridization (FISH) analysis of separated CD-138 positive cells was done on bone marrow samples collected between 2016 and 2018. We used IGH break apart probes to identify IGH abnormalities and performed statistical analysis of clinical and prognostic features, comparing the different cytogenetic groups. Deletions in the variable region of the IGH (IGHv) were found in 17.3 % (n = 45) of patients and correlated with significantly worse progression free survival (PFS) after two years of follow up (p = 0.008), as well as with a worse response to 1st line treatment (p = 0.037). The median PFS was 7.1 and 17.7 months in patients with and without IGHv deletion, respectively. PFS differences remained significant (p = 0.017) in subgroup analysis of patients with high-risk cytogenetics (n = 108, 19 with IGHv deletion). Overall survival was not significantly different in the two groups. Constant region (IGHc) amplifications, were less frequently found (6.15 %, n = 16), yet significantly correlated with worse PFS after two years of follow up (p = 0.023). This difference remained valid in the high-risk subgroup (p = 0.001). In Conclusion, we identified that deletion of the IGH variable region and amplification in the IGH constant region, are both associated with poor prognosis and inferior outcome in MM.
Collapse
Affiliation(s)
- Hadas Rabani
- Internal Medicine C, Bnai Zion Medical Center, Haifa, Israel
| | - Mira Ziv
- Winter Institute for Human Genetics, Bnai-Zion Medical Center, Affiliated With Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Noa Lavi
- Hematology and Bone Marrow Transplantation Institute, Rambam Health Care Campus, Haifa, Israel
| | - Ariel Aviv
- Hematology Unit, HaEmek Medical Center, Afula, Israel
| | - Celia Suriu
- Hematology Unit, Galilee Medical Center, Nahariya, Israel
| | - Adel Shalata
- Winter Institute for Human Genetics, Bnai-Zion Medical Center, Affiliated With Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yarin Haddid
- Winter Institute for Human Genetics, Bnai-Zion Medical Center, Affiliated With Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Tadmor
- Hematology Unit, Bnai Zion Medical Center, Haifa, and The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
15
|
Deighan WI, Winton VJ, Melani RD, Anderson LC, McGee JP, Schachner LF, Barnidge D, Murray D, Alexander HD, Gibson DS, Deery MJ, McNicholl FP, McLaughlin J, Kelleher NL, Thomas PM. Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing. Clin Chem Lab Med 2020; 59:653-661. [PMID: 33079696 DOI: 10.1515/cclm-2020-1072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
Objectives Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. Methods Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. Results We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. Conclusions Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities.
Collapse
Affiliation(s)
- W Ian Deighan
- Department of Clinical Chemistry, Altnagelvin Area Hospital, Londonderry, UK
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - John P McGee
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Luis F Schachner
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - David Barnidge
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David Murray
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - David S Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | | | - Joseph McLaughlin
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Neil L Kelleher
- Proteomics Center of Excellence & Departments of Chemistry and Molecular Biology,Northwestern University, Evanston, IL, USA
| | - Paul M Thomas
- Proteomics Center of Excellence & Departments of Chemistry and Molecular Biology,Northwestern University, Evanston, IL, USA
| |
Collapse
|
16
|
In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc Natl Acad Sci U S A 2020; 117:27307-27318. [PMID: 33067389 DOI: 10.1073/pnas.2002954117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.
Collapse
|
17
|
Lambert JM, Srour N, Delpy L. The Yin and Yang of RNA surveillance in B lymphocytes and antibody-secreting plasma cells. BMB Rep 2019. [PMID: 31619318 PMCID: PMC6941761 DOI: 10.5483/bmbrep.2019.52.12.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The random V(D)J recombination process ensures the diversity of the primary immunoglobulin (Ig) repertoire. In two thirds of cases, imprecise recombination between variable (V), diversity (D), and joining (J) segments induces a frameshift in the open reading frame that leads to the appearance of premature termination codons (PTCs). Thus, many B lineage cells harbour biallelic V(D)J-rearrangements of Ig heavy or light chain genes, with a productively-recombined allele encoding the functional Ig chain and a nonproductive allele potentially encoding truncated Ig polypeptides. Since the pattern of Ig gene expression is mostly biallelic, transcription initiated from nonproductive Ig alleles generates considerable amounts of primary transcripts with out-of-frame V(D)J junctions. How RNA surveillance pathways cooperate to control the noise from nonproductive Ig genes will be discussed in this review, focusing on the benefits of nonsense-mediated mRNA decay (NMD) activation during B-cell development and detrimental effects of nonsense-associated altered splicing (NAS) in terminally differentiated plasma cells.
Collapse
Affiliation(s)
- Jean-Marie Lambert
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Nivine Srour
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Laurent Delpy
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| |
Collapse
|
18
|
Irena R, Leszek K. The living organism: evolutionary design or an accident. BIO-ALGORITHMS AND MED-SYSTEMS 2019. [DOI: 10.1515/bams-2019-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe presented work discusses some evolutionary phenomena underlining the complexity of organism creation and surprisingly the short evolutionary time of this process in particular. Uncommonness of this process ensued from the necessary simultaneous combining of highly complicated biological mechanisms, of which some were generated independently before the direct evolutionary demand. This in conclusion points to still not fully understood biological program ensuring superiority of the permanent evolutionary progress over effects of purely random mutational changes as the driving mechanism in evolution.
Collapse
Affiliation(s)
- Roterman Irena
- Department of Bioinformatics and Telemedicine, Jagiellonian University – Medical College, Lazarza 16, 31-530 Krakow, Poland
| | - Konieczny Leszek
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kopernika 7C, 31-034 Krakow, Poland
| |
Collapse
|
19
|
Yu K, Lieber MR. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol 2019; 54:333-351. [PMID: 31509023 PMCID: PMC6856442 DOI: 10.1080/10409238.2019.1659227] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the gene rearrangement process by which B lymphocytes change the Ig heavy chain constant region to permit a switch of Ig isotype from IgM to IgG, IgA, or IgE. At the DNA level, CSR occurs via generation and joining of DNA double strand breaks (DSBs) at intronic switch regions located just upstream of each of the heavy chain constant regions. Activation-induced deaminase (AID), a B cell specific enzyme, catalyzes cytosine deaminations (converting cytosines to uracils) as the initial DNA lesions that eventually lead to DSBs and CSR. Progress on AID structure integrates very well with knowledge about Ig class switch region nucleic acid structures that are supported by functional studies. It is an ideal time to review what is known about the mechanism of Ig CSR and its relation to somatic hypermutation. There have been many comprehensive reviews on various aspects of the CSR reaction and regulation of AID expression and activity. This review is focused on the relation between AID and switch region nucleic acid structures, with a particular emphasis on R-loops.
Collapse
Affiliation(s)
- Kefei Yu
- Michigan State University, Department of Microbiology & Molecular Genetics, 5175 Biomedical Physical Sciences, East Lansing, MI 48824
| | - Michael R. Lieber
- USC Norris Comprehensive Cancer Ctr., Departments of Pathology, of Molecular Microbiology & Immunology, of Biochemistry & Molecular Biology, and of the Section of Molecular & Computational Biology within the Department of Biological Sciences, 1441 Eastlake Ave., NTT5428, Los Angeles, CA 90089-9176
| |
Collapse
|
20
|
Szankasi P, Bolia A, Liew M, Schumacher JA, Gee EPS, Matynia AP, Li KD, Patel JL, Xu X, Salama ME, Kelley TW. Comprehensive detection of chromosomal translocations in lymphoproliferative disorders by massively parallel sequencing. J Hematop 2019. [DOI: 10.1007/s12308-019-00360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
22
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
Marcelis L, Tousseyn T, Sagaert X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr Top Microbiol Immunol 2019; 421:77-106. [PMID: 31123886 DOI: 10.1007/978-3-030-15138-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma, or extranodal marginal zone lymphoma of MALT, is an indolent B-cell non-Hodgkin lymphoma linked with preexisting chronic inflammation. The stomach is the most commonly affected organ and the MALT lymphoma pathogenesis is clearly associated with Helicobacter pylori gastroduodenitis. Inflammation induces the lymphoid infiltrates in extranodal sites, where the lymphoma then subsequently develops. Genetic aberrations arise through the release of reactive oxygen species (ROS), H. pylori-induced endonucleases, and other effects. The involvement of nuclear factor kappa B (NF-κB) pathway activation, a critical regulator of pro-inflammatory responses, further highlights the role of inflammation in gastric MALT lymphoma. The NF-κB pathway regulates key elements of normal lymphocyte function, including the transcription of proliferation-promoting and anti-apoptotic genes. Aberrant constitutive activation of NF-κB signaling can lead to autoimmunity and malignancy. NF-κB pathway activation can happen through both the canonical and non-canonical pathways and can be caused by multiple genetic aberrations such as t(11;18)(q12;q21), t(1;14)(p22;q32), and t(14;18)(q32;q21) translocations, chronic inflammation and even directly by H. pylori-associated mechanisms. Gastric MALT lymphoma is considered one of the best models of how inflammation initiates genetic events that lead to oncogenesis, determines tumor biology, dictates clinical behavior and leads to viable therapeutic targets. The purpose of this review is to present gastric MALT lymphoma as an outstanding example of the close pathogenetic link between chronic inflammation and tumor development and to describe how this information can be integrated into daily clinical practice.
Collapse
Affiliation(s)
- Lukas Marcelis
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Xavier Sagaert
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium.
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium.
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium.
| |
Collapse
|
24
|
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Many B cell lymphomas require B cell antigen receptor expression, and in several instances, chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Many B cell malignancies derive from germinal center B cells, most likely because of the high proliferation rate of these cells and the high activity of mutagenic processes.
Collapse
|
25
|
Laser-Based Microdissection of Single Cells from Tissue Sections and PCR Analysis of Rearranged Immunoglobulin Genes from Isolated Normal and Malignant Human B Cells. Methods Mol Biol 2019; 1956:61-75. [PMID: 30779030 DOI: 10.1007/978-1-4939-9151-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Normal and malignant B cells carry rearranged immunoglobulin (Ig) variable region genes, which due to their practically limitless diversity represent ideal clonal markers for these cells. We describe here an approach to isolate single cells from frozen tissue sections by microdissection using a laser-based method. From the isolated cells, rearranged IgH and Igκ genes are amplified in a semi-nested PCR approach, using a collection of V gene subgroup-specific primers recognizing nearly all V genes together with primers for the J genes. By sequence analysis of V region genes from distinct cells, the clonal relationship of the B lineage cells can unequivocally be determined and related to the histological distribution of the cells. The approach is also useful to determine V, D, and J gene usage. Moreover, the presence and pattern of somatic Ig V gene mutations give valuable insight into the stage of differentiation of the B cells.
Collapse
|
26
|
Epidemiology, pathogenesis, molecular characteristics, classification and prognosis of the diffuse large B-cell lymphoma. Fam Med 2018. [DOI: 10.30841/2307-5112.5.2018.165327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Niavarani A, Shahrabi Farahani A, Sharafkhah M, Rassoulzadegan M. Pancancer analysis identifies prognostic high-APOBEC1 expression level implicated in cancer in-frame insertions and deletions. Carcinogenesis 2018; 39:327-335. [PMID: 29346513 DOI: 10.1093/carcin/bgy005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome insertions and deletions (indels) show tremendous functional impacts despite they are much less common than single nucleotide variants, which are at the center of studies assessing cancer mutational signatures. We studied 8891 tumor samples of 32 types from The Cancer Genome Atlas in order to explore those genes which are potentially implicated in cancer indels. Survival analysis identified in-frame indels as the most important variants predicting adverse outcome. Transcriptome-wide association study identified 16 genes overexpressed in both tumor samples and tumor types with high number of in-frame indels, of whom four (APOBEC1, BCL2L15, FOXL1 and PDX1) were identified with gene products distributed within the nucleus. APOBEC1 emerged as the mere consistently hypomethylated gene in tumor samples with high number of in-frame indels. The correlation of APOBEC1 expression levels with cancer indels was independent of age and defects in DNA homologous recombination (HR) and/or mismatch repair. Unlike frame-shift indels, triplet repeat motifs were found to occur frequently at in-frame indel sites. The splicing variant 3, making a shorter isoform b, showed essentially all the same indel correlations as of APOBEC1. Expression levels of both APOBEC1 and variant 3 were found to be predicting adverse prognosis independent of DNA HR and mismatch repair. Not less importantly, high level of variant 3 in paired normal tissues was also proved to predict cancer outcome. Our findings propose APOBEC1 and isoform b as the potential endogenous mutators implicated in cancer in-frame indels and pave the way for their use as novel prognostic tumor markers.
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Shahrabi Farahani
- Digestive Oncology Research Center, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Digestive Oncology Research Center, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Rassoulzadegan
- Institut Valrose Biologie, INSERM U1091, Université Nice Sophia Antipolis, Nice, France
| |
Collapse
|
28
|
Yermanos AD, Dounas AK, Stadler T, Oxenius A, Reddy ST. Tracing Antibody Repertoire Evolution by Systems Phylogeny. Front Immunol 2018; 9:2149. [PMID: 30333820 PMCID: PMC6176079 DOI: 10.3389/fimmu.2018.02149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023] Open
Abstract
Antibody evolution studies have been traditionally limited to either tracing a single clonal lineage (B cells derived from a single V-(D)-J recombination) over time or examining bulk functionality changes (e.g., tracing serum polyclonal antibody proteins). Studying a single B cell disregards the majority of the humoral immune response, whereas bulk functional studies lack the necessary resolution to analyze the co-existing clonal diversity. Recent advances in high-throughput sequencing (HTS) technologies and bioinformatics have made it possible to examine multiple co-evolving antibody monoclonal lineages within the context of a single repertoire. A plethora of accompanying methods and tools have been introduced in hopes of better understanding how pathogen presence dictates the global evolution of the antibody repertoire. Here, we provide a comprehensive summary of the tremendous progress of this newly emerging field of systems phylogeny of antibody responses. We present an overview encompassing the historical developments of repertoire phylogenetics, state-of-the-art tools, and an outlook on the future directions of this fast-advancing and promising field.
Collapse
Affiliation(s)
- Alexander Dimitri Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kevin Dounas
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Annette Oxenius
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
29
|
Affiliation(s)
- Luca Roncati
- Section of Pathology, Department of Diagnostic and Clinical Medicine and of Public Health, University of Modena and Reggio Emilia, Modena (MO), Italy
| | - Antonio Maiorana
- Section of Pathology, Department of Diagnostic and Clinical Medicine and of Public Health, University of Modena and Reggio Emilia, Modena (MO), Italy
| |
Collapse
|
30
|
Two Cases of γ-Heavy Chain Disease and a Review of the Literature. Case Rep Hematol 2018; 2018:4832619. [PMID: 30186642 PMCID: PMC6109557 DOI: 10.1155/2018/4832619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022] Open
Abstract
Gamma heavy chain disease (γ-HCD) is a rare lymphoproliferative disorder characterised by the production of a truncated immunoglobulin heavy chain. Fewer than 200 cases have been reported in the literature. In some cases, γ-HCD occurs with other lymphoid neoplasms. This study reports clinical, biochemical, haematological, and histological findings in two cases of γ-HCD. We describe newer biochemical diagnostic tools (HevyLite measurement, capillary electrophoresis, and immunotyping) that can aid in the characterisation of γ-HCD. The first case is an 88-year-old woman with γ-HCD. The second case is an 81-year-old woman who developed γ-HCD during treatment for Waldenstrom's macroglobulinemia. In the second patient, histopathology identified a separate clone responsible for the secretion of the gamma heavy chain. Studies on the clonal evolution of the disease may provide insight into therapeutic implications and the genomic complexity of the disease.
Collapse
|
31
|
Bender S, Ayala MV, Javaugue V, Bonaud A, Cogné M, Touchard G, Jaccard A, Bridoux F, Sirac C. Comprehensive molecular characterization of a heavy chain deposition disease case. Haematologica 2018; 103:e557-e560. [PMID: 30026336 DOI: 10.3324/haematol.2018.196113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sébastien Bender
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges
| | - Maria Victoria Ayala
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges
| | - Vincent Javaugue
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges.,Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Poitiers
| | - Amélie Bonaud
- Institut national de la santé et de la recherche médicale INSERM UMR996 - Cytokines, Chimiokines, Immunopathologie, Université Paris-Sud et Université Paris-Saclay
| | - Michel Cogné
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges
| | - Guy Touchard
- Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Poitiers
| | - Arnaud Jaccard
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges.,Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Limoges, France
| | - Frank Bridoux
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges.,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges.,Service de Néphrologie et Transplantation, Centre Hospitalier Universitaire de Poitiers
| | - Christophe Sirac
- Centre National de la recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges .,Centre National de l'Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Centre Hospitalier Universitaire de Limoges
| |
Collapse
|
32
|
Persson H, Kirik U, Thörnqvist L, Greiff L, Levander F, Ohlin M. In Vitro Evolution of Antibodies Inspired by In Vivo Evolution. Front Immunol 2018; 9:1391. [PMID: 29977238 PMCID: PMC6021498 DOI: 10.3389/fimmu.2018.01391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
In vitro generation of antibodies often requires variable domain sequence evolution to adapt the protein in terms of affinity, specificity, or developability. Such antibodies, including those that are of interest for clinical development, may have their origins in a diversity of immunoglobulin germline genes. Others and we have previously shown that antibodies of different origins tend to evolve along different, preferred trajectories. Apart from substitutions within the complementary determining regions, evolution may also, in a germline gene-origin-defined manner, be focused to residues in the framework regions, and even to residues within the protein core, in many instances at a substantial distance from the antibody’s antigen-binding site. Examples of such germline origin-defined patterns of evolution are described. We propose that germline gene-preferred substitution patterns offer attractive alternatives that should be considered in efforts to evolve antibodies intended for therapeutic use with respect to appropriate affinity, specificity, and product developability. We also hypothesize that such germline gene-origin-defined in vitro evolution hold potential to result in products with limited immunogenicity, as similarly evolved antibodies will be parts of conventional, in vivo-generated antibody responses and thus are likely to have been seen by the immune system in the past.
Collapse
Affiliation(s)
- Helena Persson
- Drug Discovery and Development Platform, Science for Life Laboratory, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Ufuk Kirik
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.,Human Antibody Therapeutics, Drug Discovery and Development Platform, Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Castiblanco DP, Norton DD, Maul RW, Gearhart PJ. J H6 downstream intronic sequence is dispensable for RNA polymerase II accumulation and somatic hypermutation of the variable gene in Ramos cells. Mol Immunol 2018; 97:101-108. [PMID: 29625296 DOI: 10.1016/j.molimm.2018.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/30/2018] [Indexed: 02/03/2023]
Abstract
Activation-induced deaminase (AID) introduces nucleotide substitutions within the variable region of immunoglobulin genes to promote antibody diversity. This activity, which is limited to 1.5 kb downstream of the variable gene promoter, mutates both the coding exon and downstream intronic sequences. We recently reported that RNA polymerase II accumulates in these regions during transcription in mice. This build-up directly correlates with the area that is accessible to AID, and manipulation of RNA polymerase II levels alters the mutation frequency. To address whether the intronic DNA sequence by itself can regulate RNA polymerase II accumulation and promote mutagenesis, we deleted 613 bp of DNA downstream of the JH6 intron in the human Ramos B cell line. The loss of this sequence did not alter polymerase abundance or mutagenesis in the variable gene, suggesting that most of the intronic sequence is dispensable for somatic hypermutation.
Collapse
Affiliation(s)
- Diana P Castiblanco
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Darrell D Norton
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss current knowledge and recent findings regarding pathogenesis, outcome, and treatment for heavy chain disease (HCD) involving the small bowel, focusing on alpha HCD or immunoproliferative small intestinal disease (IPSID), the HCD subtype typically affecting the small bowel. RECENT FINDINGS A link between Campylobacter jejuni infection and IPSID has been established, but there is controversy as to the role played by this organism in disease pathogenesis. While cytogenetic abnormalities involving various immunoglobulin loci and PAX5 have been reported, these have been described in rare, single cases, limiting their ability to shed further light on disease pathogenesis. IPSID is typically regarded as a pre-lymphomatous condition with eventual progression to frank lymphoma; however, recent reports of longstanding non-progressive cases have expanded its clinical spectrum. IPSID is an uncommon disorder affecting the small intestine. This review focuses on current knowledge and novel insight regarding its pathogenesis, outcome, and treatment, with an emphasis on future directions.
Collapse
|
35
|
Heavy-Chain Diseases and Myeloma-Associated Fanconi Syndrome: an Update. Mediterr J Hematol Infect Dis 2018; 10:e2018011. [PMID: 29326807 PMCID: PMC5760076 DOI: 10.4084/mjhid.2018.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022] Open
Abstract
The heavy chain diseases (HCDs) are rare B-cell malignancies characterized by the production of a monoclonal immunoglobulin heavy chain without an associated light chain. There are three types of HCD, defined by the class of immunoglobulin heavy chain produced: IgA (α-HCD), IgG (γ-HCD), and IgM (μ-HCD). Alpha-HCD is the most common and usually occurs as intestinal malabsorption in a young adult from a country of the Mediterranean area. Gamma- and μ-HCDs are rarer and associated with a B-cell non-Hodgkin lymphoma that produces an abnormal Ig heavy chain. These patients may occasionally be diagnosed with a monoclonal gammopathy of undetermined significance (MGUS). Fanconi syndrome, on the other hand, can be primary (inherited) or secondary (acquired). The only exception to this rule is the idiopathic form. Adult acquired Fanconi syndrome can be a rare complication of a monoclonal gammopathy. At diagnosis, most patients have an MGUS or smoldering multiple myeloma, with renal failure and evidence of osteomalacia. During follow-up, patients can develop an end-stage renal disease. Chemotherapy provides little benefit on renal function.
Collapse
|
36
|
Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies. Cell Mol Immunol 2017; 16:53-64. [PMID: 29200193 DOI: 10.1038/cmi.2017.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The antibody repertoire of Bos taurus is characterized by a subset of variable heavy (VH) chain regions with ultralong third complementarity determining regions (CDR3) which, compared to other species, can provide a potent response to challenging antigens like HIV env. These unusual CDR3 can range to over seventy highly diverse amino acids in length and form unique β-ribbon 'stalk' and disulfide bonded 'knob' structures, far from the typical antigen binding site. The genetic components and processes for forming these unusual cattle antibody VH CDR3 are not well understood. Here we analyze sequences of Bos taurus antibody VH domains and find that the subset with ultralong CDR3 exclusively uses a single variable gene, IGHV1-7 (VHBUL) rearranged to the longest diversity gene, IGHD8-2. An eight nucleotide duplication at the 3' end of IGHV1-7 encodes a longer V-region producing an extended F β-strand that contributes to the stalk in a rearranged CDR3. A low amino acid variability was observed in CDR1 and CDR2, suggesting that antigen binding for this subset most likely only depends on the CDR3. Importantly a novel, potentially AID mediated, deletional diversification mechanism of the B. taurus VH ultralong CDR3 knob was discovered, in which interior codons of the IGHD8-2 region are removed while maintaining integral structural components of the knob and descending strand of the stalk in place. These deletions serve to further diversify cysteine positions, and thus disulfide bonded loops. Hence, both germline and somatic genetic factors and processes appear to be involved in diversification of this structurally unusual cattle VH ultralong CDR3 repertoire.
Collapse
|
37
|
|
38
|
Rohde M, Bonn BR, Zimmermann M, Lange J, Möricke A, Klapper W, Oschlies I, Szczepanowski M, Nagel I, Schrappe M, Loeffler M, Siebert R, Reiter A, Burkhardt B. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Münster protocols. Haematologica 2017; 102:1091-1098. [PMID: 28209658 PMCID: PMC5451341 DOI: 10.3324/haematol.2016.156885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Mature B-cell non-Hodgkin lymphoma is the most common subtype of non-Hodgkin lymphoma in childhood and adolescence. B-cell non-Hodgkin lymphomas are further classified into histological subtypes, with Burkitt lymphoma and Diffuse large B-cell lymphoma being the most common subgroups in pediatric patients. Translocations involving the MYC oncogene are known as relevant but not sufficient for Burkitt lymphoma pathogenesis. Recently published large-scale next-generation sequencing studies unveiled sets of additional recurrently mutated genes in samples of pediatric and adult B-cell non-Hodgkin lymphoma patients. ID3, TCF3 and CCND3 are potential drivers of Burkitt lymphomagenesis. In the study herein, frequency and clinical relevance of mutations in ID3, TCF3 and CCND3 were analyzed within a well-defined cohort of 84 uniformly diagnosed and treated pediatric B-cell non-Hodgkin lymphoma patients of the Berlin-Frankfurt-Münster group. Mutation frequency was 78% (ID3), 13% (TCF3) and 36% (CCND3) in Burkitt lymphoma (including Burkitt leukemia). ID3 and CCND3 mutations were associated with more advanced stages of the disease in MYC rearrangement positive Burkitt lymphoma. In conclusion, ID3-TCF3-CCND3 pathway genes are mutated in more than 88% of MYC-rearranged pediatric B-cell non-Hodgkin lymphoma and the pathway may represent a highly relevant second hit of Burkitt lymphoma pathogenesis, especially in children and adolescents.
Collapse
Affiliation(s)
- Marius Rohde
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Bettina R Bonn
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Jonas Lange
- Pediatric Hematology and Oncology, University Hospital Münster, Germany.,Translational Oncology, Department of Medicine A, University Hospital Münster; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Anja Möricke
- Pediatric Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrecht University, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrecht University, Kiel, Germany
| | - Monika Szczepanowski
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrecht University, Kiel, Germany
| | - Inga Nagel
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Schrappe
- Pediatric Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | | | | | - Markus Loeffler
- Institute for Medical Informatics Statistics and Epidemiology, University Leipzig, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Germany.,Institute of Human Genetics, University of Ulm and University Medical Center Ulm, Germany
| | - Alfred Reiter
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Münster, Germany
| |
Collapse
|
39
|
Abstract
Most human B cell lymphomas originate from germinal center (GC) B cells. This is partly caused by the high proliferative activity of GC B cells and the remodeling processes acting at the immunoglobulin (Ig) loci of these cells, i.e., somatic hypermutation and class-switching. Mistargeting of these processes can cause chromosomal translocations, and the hypermutation machinery may also target non-Ig genes. As somatic hypermutation is exclusively active in GC B cells, the presence of somatic mutations in rearranged IgV genes is a standard criterium for a GC or post-GC B cell origin of lymphomas. Beyond this, ongoing somatic hypermutation during lymphoma clone expansion indicates that the lymphoma has an active GC B cell differentiation program. The proto-oncogene BCL6 is specifically expressed in GC B cells and also acquires somatic mutations as a physiological by-product of the somatic hypermutation process, albeit at a lower level than IgV genes. Thus, detection of BCL6 mutations is a further genetic trait of a GC experience of a B cell lymphoma. Typically, B cell lymphomas retain key features of their specific cells of origin, including a differentiation stage-specific gene expression pattern. This is at least partly due to genetic lesions, which "freeze" the lymphoma cells at the differentiation stage at which the transformation occurred. Therefore, identification of the normal B cell subset with the most similar gene expression pattern to a particular type of B cell lymphoma has been instrumental to deduce the precise cell of origin of lymphomas.We present here protocols to analyze human B cell lymphomas for a potential origin from GC B cells by determining the presence of mutations in rearranged IgV genes and the BCL6 gene, and by comparing the gene expression pattern of lymphoma cells with those of normal B cell subsets by genechip or RNA-sequencing analysis.
Collapse
|
40
|
Malcolm TIM, Hodson DJ, Macintyre EA, Turner SD. Challenging perspectives on the cellular origins of lymphoma. Open Biol 2016; 6:rsob.160232. [PMID: 27683157 PMCID: PMC5043587 DOI: 10.1098/rsob.160232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Both B and T lymphocytes have signature traits that set them apart from other cell types. They actively and repeatedly rearrange their DNA in order to produce a unique and functional antigen receptor, they have potential for massive clonal expansion upon encountering antigen via this receptor or its precursor, and they have the capacity to be extremely long lived as ‘memory’ cells. All three of these traits are fundamental to their ability to function as the adaptive immune response to infectious agents, but concurrently render these cells vulnerable to transformation. Thus, it is classically considered that lymphomas arise at a relatively late stage in a lymphocyte's development during the process of modifying diversity within antigen receptors, and when the cell is capable of responding to stimulus via its receptor. Attempts to understand the aetiology of lymphoma have reinforced this notion, as the most notable advances to date have shown chronic stimulation of the antigen receptor by infectious agents or self-antigens to be key drivers of these diseases. Despite this, there is still uncertainty about the cell of origin in some lymphomas, and increasing evidence that a subset arises in a more immature cell. Specifically, a recent study indicates that T-cell lymphoma, in particular nucleophosmin-anaplastic lymphoma kinase-driven anaplastic large cell lymphoma, may originate in T-cell progenitors in the thymus.
Collapse
Affiliation(s)
- Tim I M Malcolm
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Daniel J Hodson
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Elizabeth A Macintyre
- Hematology and INSERM1151, Institut Necker-Enfants Malades, Université Sorbonne Paris Cité at Descartes and Assistance Publique-Hôpitaux de Paris, Paris 75743 Cedex 15, France
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
41
|
Otto C, Scholtysik R, Schmitz R, Kreuz M, Becher C, Hummel M, Rosenwald A, Trümper L, Klapper W, Siebert R, Küppers R. NovelIGHandMYCTranslocation Partners in Diffuse Large B-Cell Lymphomas. Genes Chromosomes Cancer 2016; 55:932-943. [DOI: 10.1002/gcc.22391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Claudia Otto
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | - Roland Schmitz
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE); University of Leipzig; Leipzig Germany
| | - Claudia Becher
- Institute of Human Genetics; Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein; Kiel Germany
| | | | | | - Lorenz Trümper
- Department of Hematology/Oncology; University Hospital Göttingen; Göttingen Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry; University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrechts-University; Kiel Germany
| | - Reiner Siebert
- Institute of Human Genetics; Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein; Kiel Germany
- Institute of Human Genetics; University of Ulm; Ulm Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | | |
Collapse
|
42
|
Galardy PJ, Bedekovics T, Hermiston ML. Targeting childhood, adolescent and young adult non-Hodgkin lymphoma: therapeutic horizons. Br J Haematol 2016; 173:625-36. [PMID: 27019108 DOI: 10.1111/bjh.14016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is the third most common malignancy in children, adolescents and young adults (CAYA). NHL is a diverse set of diseases that arise at key regulatory checkpoints during B or T cell development in the bone marrow, germinal centre or thymus. While advances in the use of conventional cytotoxic agents have led to dramatic improvements in survival, these cures are associated with significant acute and long-term toxicities. Moreover, the prognosis for CAYA patients with relapsed or refractory NHL remains dismal, with the vast majority dying of their disease. Thanks to a large number of candidate-based biological studies, together with large-scale sequencing efforts, there has been an explosion of knowledge regarding the molecular pathophysiology of B- and T-NHL. This has ushered development of a flurry of novel therapeutic approaches that may simultaneously provide new hope for relapsed patients and an opportunity to reduce the therapeutic burden in newly diagnosed CAYA. Here we review a selection of the most promising new therapeutic approaches to these diseases. While the vast majority of these agents are untested in children, on-going work from many cooperative groups will soon explore their use in paediatric disease, in hope of further improving outcomes while maximizing quality of life.
Collapse
Affiliation(s)
- Paul J Galardy
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tibor Bedekovics
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michelle L Hermiston
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. Microbiol Spectr 2016; 3:MDNA3-0037-2014. [PMID: 26104555 DOI: 10.1128/microbiolspec.mdna3-0037-2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary antibody repertoire is generated by mechanisms involving the assembly of the exons that encode the antigen-binding variable regions of immunoglobulin heavy (IgH) and light (IgL) chains during the early development of B lymphocytes. After antigen-dependent activation, mature B lymphocytes can further alter their IgH and IgL variable region exons by the process of somatic hypermutation (SHM), which allows the selection of B cells in which SHMs resulted in the production of antibodies with increased antigen affinity. In addition, during antigen-dependent activation, B cells can also change the constant region of their IgH chain through a DNA double-strand-break (DSB) dependent process referred to as IgH class switch recombination (CSR), which generates B cell progeny that produce antibodies with different IgH constant region effector functions that are best suited for a elimination of a particular pathogen or in a particular setting. Both the mutations that underlie SHM and the DSBs that underlie CSR are initiated in target genes by activation-induced cytidine deaminase (AID). This review describes in depth the processes of SHM and CSR with a focus on mechanisms that direct AID cytidine deamination in activated B cells and mechanisms that promote the differential outcomes of such cytidine deamination.
Collapse
|
44
|
Tang Y, Chen J, Wang J, Zheng K, Liao D, Liao X, Liu W, Wang L. Fixed nuclei as alternative template of BIOMED-2 multiplex polymerase chain reaction for immunoglobulin gene clonality testing in B-cell malignancies. AMERICAN JOURNAL OF BLOOD RESEARCH 2015; 5:62-78. [PMID: 27069754 PMCID: PMC4769348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Evaluation of immunoglobulin (Ig) gene rearrangements with BIOMED-2 multiplex PCR has become a standard detection of clonality in mature B cell malignancies. Conventionally, this method is relatively labor-intensive and time-consuming, as it requires DNA isolation from bone marrow aspirates (BM) or peripheral blood (PB) in patients with BM or PB involvement. On the other hand, fluorescence in situ hybridization (FISH) is routinely used as genetic screening in B cell malignancies, but the surplus fixed nuclei initially prepared for FISH usually turn useless afterwards. We sought to use these surplus nuclei after FISH as a template to perform PCR-based Ig gene clonality testing. Templates of 12 patients with mature B cell malignancies, which consisted of both DNA isolated with commercial DNA isolation kit from fresh BM or PB (DNA group) and the fixed nuclei initially prepared for FISH (nuclei group) from the same individuals, were subjected to PCR with BIOMED-2 primer sets for immunoglobulin heavy chain and kappa light chain under recommended conditions. Our result, for the first time, showed a high consistency between the two groups in detecting B cell clonality, which indicates that nuclei for FISH can function as a reliable template comparable to fresh tissue-isolated DNA in PCR based Ig clonality testing. This offers a simple, rapid and more economical alternative to standard Ig testing based on regular DNA.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| | - Jie Chen
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| | - Jianchao Wang
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| | - Ke Zheng
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| | - Dianying Liao
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| | - Xiaomei Liao
- Department of Hematology, West China Hospital, Sichuan UniversityChina
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| | - Lin Wang
- Department of Pathology, West China Hospital, Sichuan UniversityChina
| |
Collapse
|
45
|
Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, Jakubauskaitė A, Liu M, Mani V, Neuberg D, Kepler TB, Wang JH, Alt FW. Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell 2015; 163:1124-1137. [PMID: 26582132 DOI: 10.1016/j.cell.2015.10.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/01/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Abstract
In activated B lymphocytes, AID initiates antibody variable (V) exon somatic hypermutation (SHM) for affinity maturation in germinal centers (GCs) and IgH switch (S) region DNA breaks (DSBs) for class-switch recombination (CSR). To resolve long-standing questions, we have developed an in vivo assay to study AID targeting of passenger sequences replacing a V exon. First, we find AID targets SHM hotspots within V exon and S region passengers at similar frequencies and that the normal SHM process frequently generates deletions, indicating that SHM and CSR employ the same mechanism. Second, AID mutates targets in diverse non-Ig passengers in GC B cells at levels similar to those of V exons, definitively establishing the V exon location as "privileged" for SHM. Finally, Peyer's patch GC B cells generate a reservoir of V exons that are highly mutated before selection for affinity maturation. We discuss the implications of these findings for harnessing antibody diversification mechanisms.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joyce K Hwang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhou Du
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Fei-Long Meng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Agnė Jakubauskaitė
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mengyuan Liu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Vinidhra Mani
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jing H Wang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Complexity of the human memory B-cell compartment is determined by the versatility of clonal diversification in germinal centers. Proc Natl Acad Sci U S A 2015; 112:E5281-9. [PMID: 26324941 DOI: 10.1073/pnas.1511270112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our knowledge about the clonal composition and intraclonal diversity of the human memory B-cell compartment and the relationship between memory B-cell subsets is still limited, although these are central issues for our understanding of adaptive immunity. We performed a deep sequencing analysis of rearranged immunoglobulin (Ig) heavy chain genes from biological replicates, covering more than 100,000 memory B lymphocytes from two healthy adults. We reveal a highly similar B-cell receptor repertoire among the four main human IgM(+) and IgG(+) memory B-cell subsets. Strikingly, in both donors, 45% of sequences could be assigned to expanded clones, demonstrating that the human memory B-cell compartment is characterized by many, often very large, B-cell clones. Twenty percent of the clones consisted of class switched and IgM(+)(IgD(+)) members, a feature that correlated significantly with clone size. Hence, we provide strong evidence that the vast majority of Ig mutated B cells--including IgM(+)IgD(+)CD27(+) B cells--are post-germinal center (GC) memory B cells. Clone members showed high intraclonal sequence diversity and high intraclonal versatility in Ig class and IgG subclass composition, with particular patterns of memory B-cell clone generation in GC reactions. In conclusion, GC produce amazingly large, complex, and diverse memory B-cell clones, equipping the human immune system with a versatile and highly diverse compartment of IgM(+)(IgD(+)) and class-switched memory B cells.
Collapse
|
47
|
Reiche S, Dwai Y, Bussmann BM, Horn S, Sieg M, Jassoy C. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells. PLoS One 2015; 10:e0128684. [PMID: 26086076 PMCID: PMC4472751 DOI: 10.1371/journal.pone.0128684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4% in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses.
Collapse
Affiliation(s)
- Sven Reiche
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Yamen Dwai
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Biology, Faculty of Natural Sciences, Tishreen University, Latakia, Syria
| | - Bianca M. Bussmann
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Horn
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Biology, Faculty of Natural Sciences, Tishreen University, Latakia, Syria
| | - Christian Jassoy
- Institute of Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
48
|
Vockerodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalikova K, Murray PG. The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol 2015; 235:312-22. [PMID: 25294567 DOI: 10.1002/path.4459] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
Since the discovery in 1964 of the Epstein-Barr virus (EBV) in African Burkitt lymphoma, this virus has been associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies. Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in the virus-host balance that exist between the different EBV-associated cancers. A further challenge is to identify the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer, the virus cannot be working alone. This article will review what is known about the contribution of EBV to lymphoma development.
Collapse
Affiliation(s)
- Martina Vockerodt
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Savage P. Clinical observations on chemotherapy curable malignancies: unique genetic events, frozen development and enduring apoptotic potential. BMC Cancer 2015; 15:11. [PMID: 25605631 PMCID: PMC4308945 DOI: 10.1186/s12885-015-1006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/31/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A select number of relatively rare metastatic malignancies comprising trophoblast tumours, the rare childhood cancers, germ cells tumours, leukemias and lymphomas have been routinely curable with chemotherapy for more than 30 years. However for the more common metastatic malignancies chemotherapy treatment frequently brings clinical benefits but cure is not expected. Clinically this clear divide in outcome between the tumour types can appear at odds with the classical theories of chemotherapy sensitivity and resistance that include rates of proliferation, genetic development of drug resistance and drug efflux pumps. We have looked at the clinical characteristics of the chemotherapy curable malignancies to see if they have any common factors that could explain this extreme differential sensitivity to chemotherapy. DISCUSSION It has previously been noted how the onset of malignancy can leave malignant cells fixed with some key cellular functions remaining frozen at the point in development at which malignant transformation occurred. In the chemotherapy curable malignancies the onset of malignancy is in each case closely linked to one of the unique genetic events of; nuclear fusion for molar pregnancies, choriocarcinoma and placental site trophoblast tumours, gastrulation for the childhood cancers, meiosis for testicular cancer and ovarian germ cell tumours and VDJ rearrangement and somatic hypermutation for acute leukemia and lymphoma. These processes are all linked to natural periods of supra-physiological apoptotic potential and it appears that the malignant cells arising from them usually retain this heightened sensitivity to DNA damage. To investigate this hypothesis we have examined the natural history of the healthy cells during these processes and the chemotherapy sensitivity of malignancies arising before, during and after the events. To add to the debate on chemotherapy resistance and sensitivity, we would argue that malignancies can be functionally divided into 2 groups. Firstly those that arise in cells with naturally heightened apoptotic potential as a result of their proximity to the unique genetic events, where the malignancies are generally chemotherapy curable and then the more common malignancies that arise in cells of standard apoptotic potential that are not curable with classical cytotoxic drugs.
Collapse
Affiliation(s)
- Philip Savage
- BCCA Vancouver Island, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada.
| |
Collapse
|
50
|
Bowers PM, Verdino P, Wang Z, da Silva Correia J, Chhoa M, Macondray G, Do M, Neben TY, Horlick RA, Stanfield RL, Wilson IA, King DJ. Nucleotide insertions and deletions complement point mutations to massively expand the diversity created by somatic hypermutation of antibodies. J Biol Chem 2014; 289:33557-67. [PMID: 25320089 DOI: 10.1074/jbc.m114.607176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During somatic hypermutation (SHM), deamination of cytidine by activation-induced cytidine deaminase and subsequent DNA repair generates mutations within immunoglobulin V-regions. Nucleotide insertions and deletions (indels) have recently been shown to be critical for the evolution of antibody binding. Affinity maturation of 53 antibodies using in vitro SHM in a non-B cell context was compared with mutation patterns observed for SHM in vivo. The origin and frequency of indels seen during in vitro maturation were similar to that in vivo. Indels are localized to CDRs, and secondary mutations within insertions further optimize antigen binding. Structural determination of an antibody matured in vitro and comparison with human-derived antibodies containing insertions reveal conserved patterns of antibody maturation. These findings indicate that activation-induced cytidine deaminase acting on V-region sequences is sufficient to initiate authentic formation of indels in vitro and in vivo and that point mutations, indel formation, and clonal selection form a robust tripartite system for antibody evolution.
Collapse
Affiliation(s)
| | - Petra Verdino
- From Anaptysbio Inc., San Diego, California 92121 and
| | | | | | - Mark Chhoa
- From Anaptysbio Inc., San Diego, California 92121 and
| | | | - Minjee Do
- From Anaptysbio Inc., San Diego, California 92121 and
| | | | | | - Robyn L Stanfield
- the Department of Integrative Structural and Computational Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ian A Wilson
- the Department of Integrative Structural and Computational Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - David J King
- From Anaptysbio Inc., San Diego, California 92121 and
| |
Collapse
|