1
|
Liu M, Peng W, Ji X. Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review. Mini Rev Med Chem 2025; 25:178-189. [PMID: 39185650 DOI: 10.2174/0113895575311618240820103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024]
Abstract
Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.
Collapse
Affiliation(s)
- Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| |
Collapse
|
2
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
3
|
Díez-Fuertes F, De La Torre-Tarazona HE, Calonge E, Pernas M, Alonso-Socas MDM, Capa L, García-Pérez J, Sakuntabhai A, Alcamí J. Transcriptome Sequencing of Peripheral Blood Mononuclear Cells from Elite Controller-Long Term Non Progressors. Sci Rep 2019; 9:14265. [PMID: 31582776 PMCID: PMC6776652 DOI: 10.1038/s41598-019-50642-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/12/2019] [Indexed: 11/24/2022] Open
Abstract
The elite controller (EC)-long term non-progressor (LTNP) phenotype represent a spontaneous and advantageous model of HIV-1 control in the absence of therapy. The transcriptome of peripheral blood mononuclear cells (PBMCs) collected from EC-LTNPs was sequenced by RNA-Seq and compared with the transcriptomes from other phenotypes of disease progression. The transcript abundance estimation combined with the use of supervised classification algorithms allowed the selection of 20 genes and pseudogenes, mainly involved in interferon-regulated antiviral mechanisms and cell machineries of transcription and translation, as the best predictive genes of disease progression. Differential expression analyses between phenotypes showed an altered calcium homeostasis in EC-LTNPs evidenced by the upregulation of several membrane receptors implicated in calcium-signaling cascades and intracellular calcium-mobilization and by the overrepresentation of NFAT1/Elk-1-binding sites in the promoters of the genes differentially expressed in these individuals. A coordinated upregulation of host genes associated with HIV-1 reverse transcription and viral transcription was also observed in EC-LTNPs –i.e. p21/CDKN1A, TNF, IER3 and GADD45B. We also found an upregulation of ANKRD54 in EC-LTNPs and viremic LTNPs in comparison with typical progressors and a clear alteration of type-I interferon signaling as a consequence of viremia in typical progressors before and after receiving antiretroviral therapy.
Collapse
Affiliation(s)
- Francisco Díez-Fuertes
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain. .,Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Humberto Erick De La Torre-Tarazona
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain
| | - Esther Calonge
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain
| | - Maria Pernas
- Molecular Virology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain
| | | | - Laura Capa
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases, Pasteur Institute, 75015, Paris, France
| | - José Alcamí
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km. 2, 28220, Majadahonda, Madrid, Spain. .,Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Madlala P, Van de Velde P, Van Remoortel B, Vets S, Van Wijngaerden E, Van Laethem K, Gijsbers R, Schrijvers R, Debyser Z. Analysis of ex vivo HIV-1 infection in a controller-discordant couple. J Virus Erad 2018. [DOI: 10.1016/s2055-6640(20)30268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Madlala P, Van de Velde P, Van Remoortel B, Vets S, Van Wijngaerden E, Van Laethem K, Gijsbers R, Schrijvers R, Debyser Z. Analysis of ex vivo HIV-1 infection in a controller-discordant couple. J Virus Erad 2018; 4:170-173. [PMID: 30050679 PMCID: PMC6038135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Elite controllers (EC) are a rare group of individuals living with HIV-1 who naturally control HIV-1 replication to levels below the limit of detection without antiretroviral therapy (ART) and rarely progress to AIDS. The mechanisms contributing to this control remain incompletely elucidated. In the present study, we have assessed whether cellular host factors could modulate HIV-1 replication post-entry in a controller-discordant couple living with HIV-1. METHODS CD4 T cells from a controller-discordant couple, one partner being an EC and the other an HIV-1 progressor (PR), and healthy controls (HC) were isolated, activated and infected with VSV-G pseudotyped yellow fluorescent protein-encoding single-round HIV-1 virus (HIV-YFP). Viral reverse transcripts, 2-LTR circles and integrated proviral HIV-1 DNA were monitored by quantitative PCR (qPCR) and integration sites were analysed. We further measured LEDGF/p75 and p21 mRNA expression levels by qPCR. RESULTS Infection of activated CD4 T cells with HIV-YFP was reduced in EC compared with the PR partner, and HC. Evaluation of viral DNA forms suggested a block after entry and during the early steps of HIV-1 reverse transcription in EC. The integration site distribution pattern in EC, PR and HC was similar. The p21 expression in CD4 T cells of EC was elevated compared with the PR or HC, in line with previous work. CONCLUSIONS Our study suggests a reduced permissiveness to HIV-1 infection of CD4 T cells from EC due to a block of HIV-1 replication after entry and before integration that might contribute to the EC phenotype in our patient.
Collapse
Affiliation(s)
| | | | - Barbara Van Remoortel
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| | - Sofie Vets
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| | - Eric Van Wijngaerden
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology and Immunology,
KU Leuven,
Belgium
| | - Kristel Van Laethem
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology,
KU Leuven,
Belgium
| | - Rik Gijsbers
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology,
KU Leuven,
Belgium
| | - Rik Schrijvers
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology,
KU Leuven,
Belgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium,Corresponding author: Zeger Debyser,
Kapucijnenvoer 33 VCTB+5, B-3000 Leuven,
Flanders,
Belgium
| |
Collapse
|
6
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Medina-Moreno S, Dowling TC, Zapata JC, Le NM, Sausville E, Bryant J, Redfield RR, Heredia A. Targeting of CDK9 with indirubin 3'-monoxime safely and durably reduces HIV viremia in chronically infected humanized mice. PLoS One 2017; 12:e0183425. [PMID: 28817720 PMCID: PMC5560554 DOI: 10.1371/journal.pone.0183425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022] Open
Abstract
Successful propagation of HIV in the human host requires entry into a permissive cell, reverse transcription of viral RNA, integration into the human genome, transcription of the integrated provirus, and assembly/release of new virus particles. Currently, there are antiretrovirals against each of these viral steps, except for provirus transcription. An inhibitor of HIV transcription could both increase potency of treatment and suppress drug-resistant strains. Cellular cyclin-dependent kinase 9 (CDK9) serves as a cofactor for the HIV Tat protein and is required for effective transcription of the provirus. Previous studies have shown that the CDK9 inhibitor Indirubin 3’-monoxime (IM) inhibits HIV transcription in vitro and in short-term in vivo studies of HIV acute infection in humanized mice (PBMC-NSG model), suggesting a therapeutic potential. The objective of this study is to evaluate the toxicity, pharmacokinetics and long-term antiviral activity of IM during chronic HIV infection in humanized mice (HSC-NSG model). We show that IM concentrations above EC50 values are rapidly achieved and sustained for > 3 h in plasma, and that non-toxic concentrations durably reduce HIV RNA levels. In addition, IM enhanced the antiviral activity of antiretrovirals from the reverse transcriptase, protease and integrase inhibitor classes in in vitro infectivity assays. In summary, IM may enhance current antiretroviral treatments and could help achieve a “functional cure” in HIV patients by preventing expression of proviruses.
Collapse
Affiliation(s)
- Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas C. Dowling
- Department of Pharmaceutical Sciences, Ferris State University, Grand Rapids, Michigan, United States of America
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nhut M. Le
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Edward Sausville
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Robert R. Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Leng J, Ho HP, Buzon MJ, Pereyra F, Walker BD, Yu XG, Chang EJ, Lichterfeld M. A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4(+) T cells from elite controllers. Cell Host Microbe 2015; 15:717-728. [PMID: 24922574 DOI: 10.1016/j.chom.2014.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/30/2014] [Accepted: 04/23/2014] [Indexed: 01/22/2023]
Abstract
HIV-1 reverse transcription represents the predominant target for pharmacological inhibition of viral replication, but cell-intrinsic mechanisms that can block HIV-1 reverse transcription in a clinically significant way are poorly defined. We find that effective HIV-1 reverse transcription depends on the phosphorylation of viral reverse transcriptase by host cyclin-dependent kinase (CDK) 2 at a highly conserved Threonine residue. CDK2-dependent phosphorylation increased the efficacy and stability of viral reverse transcriptase and enhanced viral fitness. Interestingly, p21, a cell-intrinsic CDK inhibitor that is upregulated in CD4(+) T cells from "elite controllers," potently inhibited CDK2-dependent phosphorylation of HIV-1 reverse transcriptase and significantly reduced the efficacy of viral reverse transcription. These data suggest that p21 can indirectly block HIV-1 reverse transcription by inhibiting host cofactors supporting HIV-1 replication and identify sites of viral vulnerability that are effectively targeted in persons with natural control of HIV-1 replication.
Collapse
Affiliation(s)
- Jin Leng
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Hsin-Pin Ho
- Department of Chemistry, York College and the Graduate Center, City University of New York, New York, NY, USA
| | - Maria J Buzon
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Emmanuel J Chang
- Department of Chemistry, York College and the Graduate Center, City University of New York, New York, NY, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Burlein C, Bahnck C, Bhatt T, Murphy D, Lemaire P, Carroll S, Miller MD, Lai MT. Development of a sensitive amplified luminescent proximity homogeneous assay to monitor the interactions between pTEFb and Tat. Anal Biochem 2014; 465:164-71. [PMID: 25132562 DOI: 10.1016/j.ab.2014.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 12/31/2022]
Abstract
The viral transactivator protein (Tat) plays an essential role in the replication of human immunodeficiency type 1 virus (HIV-1) by recruiting the host positive transcription elongation factor (pTEFb) to the RNA polymerase II transcription machinery to enable an efficient HIV-1 RNA elongation process. Blockade of the interaction between Tat and pTEFb represents a novel strategy for developing a new class of antiviral agents. In this study, we developed a homogeneous assay in AlphaLISA (amplified luminescent proximity homogeneous assay) format using His-tagged pTEFb and biotinylated Tat to monitor the interaction between Tat and pTEFb. On optimizing the assay conditions, the signal-to-background ratio was found to be greater than 10-fold. The assay was validated with untagged Tat and peptides known to compete with Tat for pTEFb binding. The Z' of the assay is greater than 0.5, indicating that the assay is robust and can be easily adapted to a high-throughput screening format. Furthermore, the affinity between Tat and pTEFb was determined to be approximately 20 pM, and only 7% of purified Tat was found to be active in forming tertiary complex with pTEFb. Development of this assay should facilitate the discovery of a new class of antiviral agents providing HIV-1 patients with broader treatment choices.
Collapse
Affiliation(s)
- Christine Burlein
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Carolyn Bahnck
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Triveni Bhatt
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Dennis Murphy
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Peter Lemaire
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Steve Carroll
- Department of In Vitro Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | - Michael D Miller
- Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA
| | - Ming-Tain Lai
- Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA.
| |
Collapse
|
10
|
Sancineto L, Iraci N, Massari S, Attanasio V, Corazza G, Barreca ML, Sabatini S, Manfroni G, Avanzi NR, Cecchetti V, Pannecouque C, Marcello A, Tabarrini O. Computer-Aided Design, Synthesis and Validation of 2-Phenylquinazolinone Fragments as CDK9 Inhibitors with Anti-HIV-1 Tat-Mediated Transcription Activity. ChemMedChem 2013; 8:1941-53. [DOI: 10.1002/cmdc.201300287] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 12/20/2022]
|
11
|
|
12
|
Keskin H, Garriga J, Georlette D, Graña X. Complex effects of flavopiridol on the expression of primary response genes. Cell Div 2012; 7:11. [PMID: 22458775 PMCID: PMC3339560 DOI: 10.1186/1747-1028-7-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/29/2012] [Indexed: 11/15/2022] Open
Abstract
Background The Positive Transcription Elongation Factor b (P-TEFb) is a complex of Cyclin Dependent Kinase 9 (CDK9) with either cyclins T1, T2 or K. The complex phosphorylates the C-Terminal Domain of RNA polymerase II (RNAPII) and negative elongation factors, stimulating productive elongation by RNAPII, which is paused after initiation. P-TEFb is recruited downstream of the promoters of many genes, including primary response genes, upon certain stimuli. Flavopiridol (FVP) is a potent pharmacological inhibitor of CDK9 and has been used extensively in cells as a means to inhibit CDK9 activity. Inhibition of P-TEFb complexes has potential therapeutic applications. Results It has been shown that Lipopolysaccharide (LPS) stimulates the recruitment of P-TEFb to Primary Response Genes (PRGs) and proposed that P-TEFb activity is required for their expression, as the CDK9 inhibitor DRB prevents localization of RNAPII in the body of these genes. We have previously determined the effects of FVP in global gene expression in a variety of cells and surprisingly observed that FVP results in potent upregulation of a number of PRGs in treatments lasting 4-24 h. Because inhibition of CDK9 activity is being evaluated in pre-clinical and clinical studies for the treatment of several pathologies, it is important to fully understand the short and long term effects of its inhibition. To this end, we determined the immediate and long-term effect of FVP in the expression of several PRGs. In exponentially growing normal human fibroblasts, the expression of several PRGs including FOS, JUNB, EGR1 and GADD45B, was rapidly and potently downregulated before they were upregulated following FVP treatment. In serum starved cells re-stimulated with serum, FVP also inhibited the expression of these genes, but subsequently, JUNB, GADD45B and EGR1 were upregulated in the presence of FVP. Chromatin Immunoprecipitation of RNAPII revealed that EGR1 and GADD45B are transcribed at the FVP-treatment time points where their corresponding mRNAs accumulate. These results suggest a possible stress response triggered by CDK9 inhibition than ensues transcription of certain PRGs. Conclusions We have shown that certain PRGs are transcribed in the presence of FVP in a manner that might be independent of CDK9, suggesting a possible alternative mechanism for their transcription when P-TEFb kinase activity is pharmacologically inhibited. These results also show that the sensitivity to FVP is quite variable, even among PRGs.
Collapse
Affiliation(s)
- Havva Keskin
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, AHP bldg,, room 308, 3307 North Broad St, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
13
|
Muniz L, Kiss T, Egloff S. [Misregulation of P-TEFb activity: pathological consequences]. Med Sci (Paris) 2012; 28:200-5. [PMID: 22377309 DOI: 10.1051/medsci/2012282019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
P-TEFb stimulates transcription elongation by phosphorylating the carboxy-terminal domain of RNA pol II and antagonizing the effects of negative elongation factors. Its cellular availability is controlled by an abundant non coding RNA, conserved through evolution, the 7SK RNA. Together with the HEXIM proteins, 7SK RNA associates with and sequesters a fraction of cellular P-TEFb into a catalytically inactive complex. Active and inactive forms of P-TEFb are kept in a functional and dynamic equilibrium tightly linked to the transcriptional requirement of the cell. Importantly, cardiac hypertrophy and development of various types of human malignancies have been associated with increased P-TEFb activity, consequence of a disruption of this regulatory equilibrium. In addition, the HIV-1 Tat protein also releases P-TEFb from the 7SK/HEXIM complex during viral infection to promote viral transcription and replication. Here, we review the roles played by the 7SK RNP in cancer development, cardiac hypertrophy and AIDS.
Collapse
Affiliation(s)
- Lisa Muniz
- Université de Toulouse, université Paul Sabatier, CNRS laboratoire de biologie moléculaire des eucaryotes, Toulouse, France
| | | | | |
Collapse
|
14
|
Schang LM, Coccaro E, Lacasse JJ. CDK INHIBITORY NUCLEOSIDE ANALOGS PREVENT TRANSCRIPTION FROM VIRAL GENOMES. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 24:829-37. [PMID: 16248044 DOI: 10.1081/ncn-200060314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Targeting viral proteins has lead to many successful antivirals. Yet, such antivirals rapidly select for resistance, tend to be active against only a few related viruses, and require previous characterization of the target proteins. Alternatively, antivirals may be targeted to cellular proteins. Replication of many viruses requires cellular CDKs and pharmacological CDK inhibitors (PCIs), such as the purine-based roscovitine (Rosco), are proving safe in clinical trials against cancer. Rosco inhibits replication of wild-type or (multi-)drug resistant HIV, HCMV, EBV, VZV, and HSV-1 and 2. However, the antiviral mechanisms of purine PCIs remain unknown. Our objective is to characterize these mechanisms using HSV as a model We have shown that Rosco prevents initiation of transcription from viral, but not cellular, genomes. This inhibition is promoter independent, but genome dependent, and requires no viral proteins. This is a novel antiviral mechanism and a previously unknown activity for purine PCIs.
Collapse
Affiliation(s)
- L M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
15
|
Nilson KA, Price DH. The Role of RNA Polymerase II Elongation Control in HIV-1 Gene Expression, Replication, and Latency. GENETICS RESEARCH INTERNATIONAL 2011; 2011:726901. [PMID: 22567366 PMCID: PMC3335632 DOI: 10.4061/2011/726901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/22/2011] [Indexed: 11/20/2022]
Abstract
HIV-1 usurps the RNA polymerase II elongation control machinery to regulate the expression of its genome during lytic and latent viral stages. After integration into the host genome, the HIV promoter within the long terminal repeat (LTR) is subject to potent downregulation in a postinitiation step of transcription. Once produced, the viral protein Tat commandeers the positive transcription elongation factor, P-TEFb, and brings it to the engaged RNA polymerase II (Pol II), leading to the production of viral proteins and genomic RNA. HIV can also enter a latent phase during which factors that regulate Pol II elongation may play a role in keeping the virus silent. HIV, the causative agent of AIDS, is a worldwide health concern. It is hoped that knowledge of the mechanisms regulating the expression of the HIV genome will lead to treatments and ultimately a cure.
Collapse
Affiliation(s)
- Kyle A Nilson
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
16
|
|
17
|
Ramakrishnan R, Yu W, Rice AP. Limited redundancy in genes regulated by Cyclin T2 and Cyclin T1. BMC Res Notes 2011; 4:260. [PMID: 21791050 PMCID: PMC3160394 DOI: 10.1186/1756-0500-4-260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/26/2011] [Indexed: 12/04/2022] Open
Abstract
Background The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb) complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9) as its catalytic subunit and is regulated by its Cyclin partners, Cyclin T1 and Cyclin T2. The HIV-1 Tat transactivator protein enhances viral gene expression by exclusively recruiting the Cdk9-Cyclin T1 P-TEFb complex to a RNA element in nascent viral transcripts called TAR. The expression patterns of Cyclin T1 and Cyclin T2 in primary monocytes and CD4+ T cells suggests that Cyclin T2 may be generally involved in expression of constitutively expressed genes in quiescent cells, while Cyclin T1 may be involved in expression of genes up-regulated during macrophage differentiation, T cell activation, and conditions of increased metabolic activity To investigate this issue, we wished to identify the sets of genes whose levels are regulated by either Cyclin T2 or Cyclin T1. Findings We used shRNA lentiviral vectors to stably deplete either Cyclin T2 or Cyclin T1 in HeLa cells. Total RNA extracted from these cells was subjected to cDNA microarray analysis. We found that 292 genes were down- regulated by depletion of Cyclin T2 and 631 genes were down-regulated by depletion of Cyclin T1 compared to cells transduced with a control lentivirus. Expression of 100 genes was commonly reduced in either knockdown. Additionally, 111 and 287 genes were up-regulated when either Cyclin T2 or Cyclin T1 was depleted, respectively, with 45 genes in common. Conclusions These results suggest that there is limited redundancy in genes regulated by Cyclin T1 or Cyclin T2.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, Carrington MF, Porter LC, Burke PS, Yang Y, Ryan BJ, Liu R, Weiss RH, Pereyra F, Cress WD, Brass AL, Rosenberg ES, Walker BD, Yu XG, Lichterfeld M. CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest 2011; 121:1549-60. [PMID: 21403397 PMCID: PMC3069774 DOI: 10.1172/jci44539] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/19/2011] [Indexed: 12/25/2022] Open
Abstract
Elite controllers represent a unique group of HIV-1-infected persons with undetectable HIV-1 replication in the absence of antiretroviral therapy. However, the mechanisms contributing to effective viral immune defense in these patients remain unclear. Here, we show that compared with HIV-1 progressors and HIV-1-negative persons, CD4+ T cells from elite controllers are less susceptible to HIV-1 infection. This partial resistance to HIV-1 infection involved less effective reverse transcription and mRNA transcription from proviral DNA and was associated with strong and selective upregulation of the cyclin-dependent kinase inhibitor p21 (also known as cip-1 and waf-1). Experimental blockade of p21 in CD4+ T cells from elite controllers resulted in a marked increase of viral reverse transcripts and mRNA production and led to higher enzymatic activities of cyclin-dependent kinase 9 (CDK9), which serves as a transcriptional coactivator of HIV-1 gene expression. This suggests that p21 acts as a barrier against HIV-1 infection in CD4+ T cells from elite controllers by inhibiting a cyclin-dependent kinase required for effective HIV-1 replication. These data demonstrate a mechanism of host resistance to HIV-1 in elite controllers and may open novel perspectives for clinical strategies to prevent or treat HIV-1 infection.
Collapse
Affiliation(s)
- Huabiao Chen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chun Li
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jinghe Huang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thai Cung
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katherine Seiss
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jill Beamon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mary F. Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lindsay C. Porter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick S. Burke
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yue Yang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bethany J. Ryan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruiwu Liu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert H. Weiss
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William D. Cress
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Abraham L. Brass
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric S. Rosenberg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
Program of Biological Sciences in Dental Medicine, Harvard University, Cambridge, Massachusetts, USA.
Department of Biochemistry and Molecular Medicine and
Division of Nephrology, Department of Medicine, UCD, Davis, California, USA.
Department of Molecular Oncology, Lee Moffitt Cancer Center, Tampa, Florida, USA.
Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Muniz L, Egloff S, Ughy B, Jády BE, Kiss T. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. PLoS Pathog 2010; 6:e1001152. [PMID: 20976203 PMCID: PMC2954905 DOI: 10.1371/journal.ppat.1001152] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) transcriptional transactivator (Tat) is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II). Tat recruits the host positive transcription elongation factor b (P-TEFb) to the HIV-1 promoter through binding to the transactivator RNA (TAR) at the 5′-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA) and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5′-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR. Expression and replication of the human immunodeficiency virus (HIV) is supported by the viral transcriptional transactivator (Tat) that recruits the host positive transcription elongation factor b (P-TEFb) to the promoter of the integrated viral genome. Here, we demonstrate that HIV Tat specifically and efficiently binds to the host 7SK small nuclear RNA (snRNA) that is a negative regulator of P-TEFb. Although HIV Tat has been reported to interact with a plethora of host factors, our results indicate that the 7SK transcriptional regulatory snRNA is a major and important cellular target of HIV Tat. We demonstrate that binding of Tat to the 7SK snRNA disrupts the 7SK-P-TEFb negative transcriptional regulatory complex and releases active P-TEFb. Thus, we propose that Tat not only targets P-TEFb for HIV transcription, but also modulates the nuclear level of active P-TEFb in HIV-infected cells.
Collapse
Affiliation(s)
- Lisa Muniz
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
| | - Sylvain Egloff
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
| | - Bettina Ughy
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Beáta E. Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
20
|
Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther 2009; 9:1369-82. [PMID: 19732026 DOI: 10.1517/14712590903257781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse transcriptase, viral protease or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host's proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be used to better design therapeutics against HIV-1.
Collapse
Affiliation(s)
- William Coley
- George Washington University, School of Medicine, Department of Microbiology, Immunology and Tropical Medicine, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
21
|
Garriga J, Xie H, Obradovic Z, Graña X. Selective control of gene expression by CDK9 in human cells. J Cell Physiol 2009; 222:200-8. [PMID: 19780058 DOI: 10.1002/jcp.21938] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 associates with T-type cyclins and positively regulates transcriptional elongation by phosphorylating RNA polymerase II (RNAPII) and negative elongation factors. However, it is unclear whether CDK9 is required for transcription of most genes by RNAPII or alternatively plays a role regulating the expression of restricted subsets of genes. We have investigated the direct effects of inhibiting cellular CDK9 activity in global gene expression in human cells by using a dominant-negative form of CDK9 (dnCDK9). We have also compared direct inhibition of cellular CDK9 activity to pharmacological inhibition with flavopiridol (FVP), a CDK inhibitor that potently inhibits CDK9 and cellular transcription. Because of its presumed selectivity for CDK9, FVP has been previously used as a tool to infer the role of CDK9 on global gene expression. DNA microarray analyses described here show that inhibition of gene expression by FVP is consistent with global inhibition of transcription. However, specific inhibition of CDK9 activity with dnCDK9 leads to a distinctive pattern of changes in gene expression, with more genes being specifically upregulated (122) than downregulated (84). Indeed, the expression of many short-lived transcripts downregulated by FVP is not modulated by dnCDK9. Nevertheless, consistently with FVP inhibiting CDK9 activity, a significant number of the genes downregulated/upregulated by dnCDK9 are modulated with a similar trend by FVP. Our data suggests that the potent effects of FVP on transcription are likely to involve inhibition of CTD kinases in addition to CDK9. Our data also suggest complex and gene-specific modulation of gene expression by CDK9.
Collapse
Affiliation(s)
- Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
22
|
Ali A, Ghosh A, Nathans RS, Sharova N, O’Brien S, Cao H, Stevenson M, Rana TM. Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (P-TEFb) and block HIV-1 replication. Chembiochem 2009; 10:2072-80. [PMID: 19603446 PMCID: PMC2754223 DOI: 10.1002/cbic.200900303] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Indexed: 01/18/2023]
Abstract
The positive transcription elongation factor (P-TEFb; CDK9/cyclin T1) regulates RNA polymerase II-dependent transcription of cellular and integrated viral genes. It is an essential cofactor for HIV-1 Tat transactivation, and selective inhibition of P-TEFb blocks HIV-1 replication without affecting cellular transcription; this indicates that P-TEFb could be a potential target for developing anti-HIV-1 therapeutics. Flavopiridol, a small molecule CDK inhibitor, blocks HIV-1 Tat transactivation and viral replication by inhibiting P-TEFb kinase activity, but it is highly cytotoxic. In the search for selective and less cytotoxic P-TEFb inhibitors, we prepared a series of flavopiridol analogues and evaluated their kinase inhibitory activity against P-TEFb and CDK2/cyclin A, and tested their cellular antiviral potency and cytotoxicity. We identified several analogues that selectively inhibit P-TEFb kinase activity in vitro and show antiviral potency comparable to that of flavopiridol, but with significantly reduced cytotoxicity. These compounds are valuable molecular probes for understanding P-TEFb-regulated cellular and HIV-1 gene transcription and provide potential anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Akbar Ali
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Animesh Ghosh
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Robin S. Nathans
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Natalia Sharova
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Siobhan O’Brien
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Hong Cao
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Mario Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Tariq M. Rana
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
- Program for RNA Biology, Sanford Children’s Health Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
23
|
Polyanionic drugs and viral oncogenesis: a novel approach to control infection, tumor-associated inflammation and angiogenesis. Molecules 2008; 13:2758-85. [PMID: 19002078 PMCID: PMC6245429 DOI: 10.3390/molecules13112758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/29/2008] [Indexed: 01/01/2023] Open
Abstract
Polyanionic macromolecules are extremely abundant both in the extracellular environment and inside the cell, where they are readily accessible to many proteins for interactions that play a variety of biological roles. Among polyanions, heparin, heparan sulfate proteoglycans (HSPGs) and glycosphingolipids (GSLs) are widely distributed in biological fluids, at the cell membrane and inside the cell, where they are implicated in several physiological and/or pathological processes such as infectious diseases, angiogenesis and tumor growth. At a molecular level, these processes are mainly mediated by microbial proteins, cytokines and receptors that exert their functions by binding to HSPGs and/or GSLs, suggesting the possibility to use polyanionic antagonists as efficient drugs for the treatment of infectious diseases and cancer. Polysulfated (PS) or polysulfonated (PSN) compounds are a heterogeneous group of natural, semi-synthetic or synthetic molecules whose prototypes are heparin and suramin. Different structural features confer to PS/PSN compounds the capacity to bind and inhibit the biological activities of those same heparin-binding proteins implicated in infectious diseases and cancer. In this review we will discuss the state of the art and the possible future development of polyanionic drugs in the treatment of infectious diseases and cancer.
Collapse
|
24
|
Nojima M, Huang Y, Tyagi M, Kao HY, Fujinaga K. The positive transcription elongation factor b is an essential cofactor for the activation of transcription by myocyte enhancer factor 2. J Mol Biol 2008; 382:275-87. [PMID: 18662700 DOI: 10.1016/j.jmb.2008.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 01/12/2023]
Abstract
The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyte enhancer factor 2 (MEF2) family of transcription factors, key regulatory factors for myocyte development. Knockdown of endogenous cyclin T1 in murine C2C12 cells abolishes MEF2-dependent reporter gene expression as well as transcription of endogenous MEF2 target genes, whereas overexpression of P-TEFb enhances MEF2-dependent transcription. P-TEFb interacts with MEF2 both in vitro and in vivo. Activation of MEF2-dependent transcription induced by serum starvation is mediated by a rapid dissociation of P-TEFb from its inhibitory subunit, HEXIM1, and a subsequent recruitment of P-TEFb to MEF2 binding sites in the promoter region of MEF2 target genes. These results indicate that recruitment of P-TEFb is a critical step for stimulation of MEF2-dependent transcription, therefore providing a fundamentally important regulatory mechanism underlying the transcriptional program in muscle cells.
Collapse
Affiliation(s)
- Masanori Nojima
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
25
|
Ni Z, Saunders A, Fuda NJ, Yao J, Suarez JR, Webb WW, Lis JT. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol Cell Biol 2008; 28:1161-70. [PMID: 18070927 PMCID: PMC2223398 DOI: 10.1128/mcb.01859-07] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 10/31/2007] [Accepted: 11/15/2007] [Indexed: 12/21/2022] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the major metazoan RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) Ser2 kinase, and its activity is believed to promote productive elongation and coupled RNA processing. Here, we demonstrate that P-TEFb is critical for the transition of Pol II into a mature transcription elongation complex in vivo. Within 3 min following P-TEFb inhibition, most polymerases were restricted to within 150 bp of the transcription initiation site of the active Drosophila melanogaster Hsp70 gene, and live-cell imaging demonstrated that these polymerases were stably associated. Polymerases already productively elongating at the time of P-TEFb inhibition, however, proceeded with elongation in the absence of active P-TEFb and cleared from the Hsp70 gene. Strikingly, all transcription factors tested (P-TEFb, Spt5, Spt6, and TFIIS) and RNA-processing factor CstF50 exited the body of the gene with kinetics indistinguishable from that of Pol II. An analysis of the phosphorylation state of Pol II upon the inhibition of P-TEFb also revealed no detectable CTD Ser2 phosphatase activity upstream of the Hsp70 polyadenylation site. In the continued presence of P-TEFb inhibitor, Pol II levels across the gene eventually recovered.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Department of Molecular Biology and Genetics,1 School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Salerno D, Hasham MG, Marshall R, Garriga J, Tsygankov AY, Graña X. Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in primary human peripheral blood lymphocytes. Gene 2007; 405:65-78. [PMID: 17949927 PMCID: PMC2222555 DOI: 10.1016/j.gene.2007.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 01/22/2023]
Abstract
HIV-1 transcription is essential for the virus replication cycle. HIV-1 Tat is a viral transactivator that strongly stimulates the processivity of RNA polymerase II (RNAPII) via recruitment of the cyclin T1/CDK9 positive transcription elongation factor, which phosphorylates the C-terminal domain (CTD) of RNAPII. Consistently, HIV-1 replication in transformed cells is very sensitive to direct CDK9 inhibition. Thus, CDK9 could be a potential target for anti-HIV-1 therapy. A clearer understanding of the requirements for CDK9 activity in primary human T cells is needed to assess whether the CDK9-dependent step in HIV-1 transcription can be targeted clinically. We have investigated the effects of limiting CDK9 activity with recombinant lentiviruses expressing a dominant-negative form of CDK9 (HA-dnCDK9) in peripheral blood lymphocytes (PBLs) and other cells. Our results show that direct inhibition of CDK9 potently inhibits HIV-1 replication in single-round infection assays with little to undetectable effects on RNAPII transcription, RNA synthesis, proliferation and viability. In PBLs purified from multiple donors, direct inhibition of CDK9 activity blocks HIV-1 replication/transcription but does not prevent T-cell activation, as determined via measurement of cell surface and cell cycle entry and progression markers, and DNA synthesis. We have also compared the effects of HA-dnCDK9 to flavopiridol (FVP), a general CDK inhibitor that potently inhibits CDK9. In contrast to HA-dnCDK9, FVP interferes with key cellular processes at concentrations that inhibit HIV-1 replication with potency similar to HA-dnCDK9. In particular, FVP inhibits several T-cell activation markers and DNA synthesis in primary PBLs at the minimal concentrations required to inhibit HIV-1 replication. Our results imply that small pharmacological compounds targeting CDK9 with enhanced selectivity could be developed into effective anti-HIV-1 therapeutic drugs.
Collapse
Affiliation(s)
- Dominic Salerno
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
| | - Muneer G. Hasham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
- Department of Microbiology and Immunology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
| | - Renée Marshall
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
| | - Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
| | - Alexander Y. Tsygankov
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
- Department of Microbiology and Immunology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
- Department of Biochemistry, Temple University School of Medicine, 3307 North Broad St., Philadelphia, PA 19140, U.S.A
| |
Collapse
|
27
|
Young TM, Tsai M, Tian B, Mathews MB, Pe'ery T. Cellular mRNA activates transcription elongation by displacing 7SK RNA. PLoS One 2007; 2:e1010. [PMID: 17925858 PMCID: PMC1995758 DOI: 10.1371/journal.pone.0001010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/11/2007] [Indexed: 11/24/2022] Open
Abstract
The positive transcription elongation factor P-TEFb is a pivotal regulator of gene expression in higher cells. Originally identified in Drosophila, attention was drawn to human P-TEFb by the discovery of its role as an essential cofactor for HIV-1 transcription. It is recruited to HIV transcription complexes by the viral transactivator Tat, and to cellular transcription complexes by a plethora of transcription factors. P-TEFb activity is negatively regulated by sequestration in a complex with the HEXIM proteins and 7SK RNA. The mechanism of P-TEFb release from the inhibitory complex is not known. We report that P-TEFb-dependent transcription from the HIV promoter can be stimulated by the mRNA encoding HIC, the human I-mfa domain-containing protein. The 3′-untranslated region of HIC mRNA is necessary and sufficient for this action. It forms complexes with P-TEFb and displaces 7SK RNA from the inhibitory complex in cells and cell extracts. A 314-nucleotide sequence near the 3′ end of HIC mRNA has full activity and contains a predicted structure resembling the 3′-terminal hairpin of 7SK that is critical for P-TEFb binding. This represents the first example of a cellular mRNA that can regulate transcription via P-TEFb. Our findings offer a rationale for 7SK being an RNA transcriptional regulator and suggest a practical means for enhancing gene expression.
Collapse
Affiliation(s)
- Tara M. Young
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Michael Tsai
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (TP)
| | - Tsafi Pe'ery
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (TP)
| |
Collapse
|
28
|
Sedore SC, Byers SA, Biglione S, Price JP, Maury WJ, Price DH. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res 2007; 35:4347-58. [PMID: 17576689 PMCID: PMC1935001 DOI: 10.1093/nar/gkm443] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Basal transcription of the HIV LTR is highly repressed and requires Tat to recruit the positive transcription elongation factor, P-TEFb, which functions to promote the transition of RNA polymerase II from abortive to productive elongation. P-TEFb is found in two forms in cells, a free, active form and a large, inactive complex that also contains 7SK RNA and HEXIM1 or HEXIM2. Here we show that HIV infection of cells led to the release of P-TEFb from the large form. Consistent with Tat being the cause of this effect, transfection of a FLAG-tagged Tat in 293T cells caused a dramatic shift of P-TEFb out of the large form to a smaller form containing Tat. In vitro, Tat competed with HEXIM1 for binding to 7SK, blocked the formation of the P-TEFb–HEXIM1–7SK complex, and caused the release P-TEFb from a pre-formed P-TEFb–HEXIM1–7SK complex. These findings indicate that Tat can acquire P-TEFb from the large form. In addition, we found that HEXIM1 binds tightly to the HIV 5′ UTR containing TAR and recruits and inhibits P-TEFb activity. This suggests that in the absence of Tat, HEXIM1 may bind to TAR and repress transcription elongation of the HIV LTR.
Collapse
Affiliation(s)
- Stanley C. Sedore
- Department of Biochemistry, Department of Microbiology, Medical Scientist Training Program and Interdisciplinary Molecular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Sarah A. Byers
- Department of Biochemistry, Department of Microbiology, Medical Scientist Training Program and Interdisciplinary Molecular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Sebastian Biglione
- Department of Biochemistry, Department of Microbiology, Medical Scientist Training Program and Interdisciplinary Molecular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Jason P. Price
- Department of Biochemistry, Department of Microbiology, Medical Scientist Training Program and Interdisciplinary Molecular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Wendy J. Maury
- Department of Biochemistry, Department of Microbiology, Medical Scientist Training Program and Interdisciplinary Molecular Biology Program, University of Iowa, Iowa City, IA, USA
| | - David H. Price
- Department of Biochemistry, Department of Microbiology, Medical Scientist Training Program and Interdisciplinary Molecular Biology Program, University of Iowa, Iowa City, IA, USA
- *To whom correspondence should be addressed. +1 319 335 7910+1 319 384 4770
| |
Collapse
|
29
|
Fu J, Yoon HG, Qin J, Wong J. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol 2007; 27:4641-51. [PMID: 17452463 PMCID: PMC1951478 DOI: 10.1128/mcb.00857-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.
Collapse
Affiliation(s)
- Junjiang Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
30
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
31
|
Wang Q, Young TM, Mathews MB, Pe’ery T. Developmental regulators containing the I-mfa domain interact with T cyclins and Tat and modulate transcription. J Mol Biol 2007; 367:630-46. [PMID: 17289077 PMCID: PMC1868487 DOI: 10.1016/j.jmb.2007.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/21/2006] [Accepted: 01/04/2007] [Indexed: 11/28/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) complexes, composed of cyclin-dependent kinase 9 (CDK9) and cyclin T1 or T2, are engaged by many cellular transcription regulators that activate or inhibit transcription from specific promoters. The related I-mfa (inhibitor of MyoD family a) and HIC (human I-mfa-domain-containing) proteins function in myogenic differentiation and embryonic development by participating in the Wnt signaling pathway. We report that I-mfa is a novel regulator of P-TEFb. Both HIC and I-mfa interact through their homologous I-mfa domains with cyclin T1 and T2 at two binding sites. One site is the regulatory histidine-rich domain that interacts with CDK9 substrates including RNA polymerase II. The second site contains a lysine and arginine-rich motif that is highly conserved between the two T cyclins. This site overlaps and includes the previously identified Tat/TAR recognition motif of cyclin T1 required for activation of human immunodeficiency virus type 1 (HIV-1) transcription. HIC and I-mfa can serve as substrates for P-TEFb. Their I-mfa domains also bind the activation domain of HIV-1 Tat and inhibit Tat- and P-TEFb-dependent transcription from the HIV-1 promoter. This transcriptional repression is cell-type specific and can operate via Tat and cyclin T1. Genomic and sequence comparisons indicate that the I-mf and HIC genes, as well as flanking genes, diverged from a duplicated chromosomal region. Our findings link I-mfa and HIC to viral replication, and suggest that P-TEFb is modulated in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., Newark, NJ 07103-2714
| | - Tara M. Young
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., Newark, NJ 07103-2714
| | - Tsafi Pe’ery
- Department of Biochemistry and Molecular Biology, New Jersey Medical School
- Department of Medicine, New Jersey Medical School
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., Newark, NJ 07103-2714
- *Corresponding author: Ph:(973) 972-8763; Fax:(973) 972-5594 E-mail:
| |
Collapse
|
32
|
He N, Pezda AC, Zhou Q. Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation. Mol Cell Biol 2006; 26:7068-76. [PMID: 16980611 PMCID: PMC1592901 DOI: 10.1128/mcb.00778-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P-TEFb phosphorylates RNA polymerase II and negative elongation factors to stimulate general transcriptional elongation. It is kept in a functional equilibrium through alternately interacting with its positive (the Brd4 protein) and negative (the HEXIM1 protein and 7SK snRNA) regulators. To investigate the physiological significance of this phenomenon, we analyzed the responses of HeLa cells and murine erythroleukemia cells (MELC) to hexamethylene bisacetamide (HMBA), which inhibits growth and induces differentiation of many cell types. For both cell types, an efficient, albeit temporary disruption of the 7SK-HEXIM1-P-TEFb snRNP and enhanced formation of the Brd4-P-TEFb complex occurred soon after the treatment started. When the P-TEFb-dependent HEXIM1 expression markedly increased as the treatment continued, the abundant HEXIM1 pushed the P-TEFb equilibrium back toward the 7SK/HEXIM1-bound state. For HeLa cells, as HMBA produced only a minor, temporary effect on their growth, the equilibrium gradually returned to its pretreatment level. In contrast, long-term treatment of MELC induced terminal division and differentiation. Concurrently, the P-TEFb equilibrium was shifted overwhelmingly toward the 7SK snRNP side. Together, these data link the P-TEFb equilibrium to the intracellular transcriptional demand and proliferative/differentiated states of cells.
Collapse
Affiliation(s)
- Nanhai He
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
33
|
Abstract
Hijacking of the host cell’s signal transduction machinery has been increasingly regarded as an important strategy for facilitating virus propagation. The positive-transcription elongation factor (P-TEFb) complex, cyclin-dependent kinase (CDK)9/cyclin T1, is an example of such an attack by HIV. Upon infection of cells, the HIV protein transactivator of transcription (Tat) forms a highly specific complex with the two host cell proteins CDK9 and cyclin T1. This complex ensures phosphorylation of the native CDK9 substrate, RNA polymerase II, leading to productive elongation of viral RNA in the host cell. Although challenging, inhibition of CDK9 activity with small molecules is a therapeutically valid strategy to inhibit HIV replication. Other than direct antiviral agents, that inhibit HIV replication through a direct interaction with viral proteins, CDK9 inhibitors might not suffer from the emergence of resistant virus strains. This review outlines the advantages and prospects of selective CDK9 inhibitors in the management of HIV infections.
Collapse
Affiliation(s)
- Bert M Klebl
- GPC Biotech AG, Fraunhoferstr. 20, D-82152 Martinsried, Germany
| | - Axel Choidas
- GPC Biotech AG, Fraunhoferstr. 20, D-82152 Martinsried, Germany
| |
Collapse
|
34
|
Marshall RM, Salerno D, Garriga J, Graña X. Cyclin T1 expression is regulated by multiple signaling pathways and mechanisms during activation of human peripheral blood lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 175:6402-11. [PMID: 16272292 DOI: 10.4049/jimmunol.175.10.6402] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stimulation of primary human T lymphocytes results in up-regulation of cyclin T1 expression, which correlates with phosphorylation of the C-terminal domain of RNA polymerase II (RNAP II). Up-regulation of cyclin T1 and concomitant stabilization of cyclin-dependent kinase 9 (CDK9) may facilitate productive replication of HIV in activated T cells. We report that treatment of PBLs with two mitogens, PHA and PMA, results in accumulation of cyclin T1 via distinct mechanisms. PHA induces accumulation of cyclin T1 mRNA and protein, which results from cyclin T1 mRNA stabilization, without significant change in cyclin T1 promoter activity. Cyclin T1 mRNA stabilization requires the activation of both calcineurin and JNK because inhibition of either precludes cyclin T1 accumulation. In contrast, PMA induces cyclin T1 protein up-regulation by stabilizing cyclin T1 protein, apparently independently of the proteasome and without accumulation of cyclin T1 mRNA. This process is dependent on Ca2+-independent protein kinase C activity but does not require ERK1/2 activation. We also found that PHA and anti-CD3 Abs induce the expression of both the cyclin/CDK complexes involved in RNAP II C-terminal domain phosphorylation and the G1-S cyclins controlling cell cycle progression. In contrast, PMA alone is a poor inducer of the expression of G1-S cyclins but often as potent as PHA in inducing RNAP II cyclin/CDK complexes. These findings suggest coordination in the expression and activation of RNAP II kinases by pathways that independently stimulate gene expression but are insufficient to induce S phase entry in primary T cells.
Collapse
Affiliation(s)
- Renée M Marshall
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
35
|
Heredia A, Davis C, Bamba D, Le N, Gwarzo MY, Sadowska M, Gallo RC, Redfield RR. Indirubin-3'-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 2005; 19:2087-95. [PMID: 16284457 DOI: 10.1097/01.aids.0000194805.74293.11] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effects of the cyclin dependent kinase (CDK) inhibitor Indirubin-3'-monoxime (IM) on Tat-mediated transactivation function, a step of the HIV-1 cycle that is not currently targeted in antiviral therapy. METHODS The effects of IM on CDK implicated in HIV-1 Tat transactivation function were evaluated by kinase assays, transfection experiments, RNase protection assay and RT-PCR analysis of viral transcripts. The antiviral effect of IM was investigated in cells from HIV-1 infected individuals as well as in cell lines, primary lymphocytes and monocyte-derived macrophages. The antiviral activity of IM was also tested against drug-resistant HIV-1. RESULTS IM inhibits the kinase activity of CDK9 [50% inhibitory concentration (IC50) of 0.05 microM], the catalytic subunit of Positive transcription elongation factor b (P-TEFb). Inhibition of CDK9 activity by IM results in abrogation of Tat-induced expression of HIV-1 RNA in cell lines. In addition, IM inhibits the replication of HIV-1 in both peripheral blood mononuclear cells (IC50 of 1 microM) and macrophages (IC50 of 0.5 microM). IM is effective against primary and drug-resistant strains of HIV-1. Importantly, the antiviral effects of the drug were seen at concentrations that did not affect cell proliferation. CONCLUSIONS Non-toxic concentrations of IM inhibit HIV-1 by blocking viral gene expression mediated by the cellular factor P-TEFb. The drug is effective against wild-type and drug-resistant strains of HIV-1. IM may help control replication of HIV-1 in patients by disrupting a step of the HIV-1 cycle that is not being targeted in current antiretroviral treatments.
Collapse
Affiliation(s)
- Alonso Heredia
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lacasse JJ, Provencher VMI, Urbanowski MD, Schang LM. Purine and nonpurine pharmacological cyclin-dependent kinase inhibitors target initiation of viral transcription. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.1.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D, Barbier P, de Mareuil J, Braguer D, Kaleebu P, Yirrell DL, Loret EP. The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. J Biol Chem 2004; 279:48197-204. [PMID: 15331610 DOI: 10.1074/jbc.m406195200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection and the progression to AIDS are characterized by the depletion of CD4(+) T-cells. HIV-1 infection leads to apoptosis of uninfected bystander cells and the direct killing of HIV-infected cells. This is mediated, in part, by the HIV-1 Tat protein, which is secreted by virally infected cells and taken up by uninfected cells. We chemically synthesized two 86-residue subtype D Tat proteins, Ug05RP and Ug11LTS, from two Ugandan patients who were clinically categorized as either rapid progressor or long-term survivor, with non-conservative mutations located essentially in the glutamine-rich region. Structural heterogeneities were revealed by CD, which translate into differing trans-activational and apoptotic effects. CD data analysis and molecular modeling indicated that the short alpha-helix observed in subtype D Tat proteins from rapid progressor patients such as Tat Mal and Tat Ug05RP is not present in Ug11LTS. We show that Tat Ug05RP is more efficient than Tat Ug11LTS in its trans-activational role and in inducing apoptosis in binding tubulin via the mitochondrial pathway. The glutamine-rich region of Tat appears to be involved in the Tat-mediated apoptosis of T-cells.
Collapse
Affiliation(s)
- Grant R Campbell
- CNRS Formation de Recherche en Evolution 2737, Faculté de Pharmacie, Université de la Méditerranée, 27, Boulevard Jean Moulin, 13385 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chiu YL, Cao H, Jacque JM, Stevenson M, Rana TM. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 2004; 78:2517-29. [PMID: 14963154 PMCID: PMC369228 DOI: 10.1128/jvi.78.5.2517-2529.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human positive transcription elongation factor P-TEFb is composed of two subunits, cyclin T1 (hCycT1) and CDK9, and is involved in transcriptional regulation of cellular genes as well as human immunodeficiency virus type 1 (HIV-1) mRNA. Replication of HIV-1 requires the Tat protein, which activates elongation of RNA polymerase II at the HIV-1 promoter by interacting with hCycT1. To understand the cellular functions of P-TEFb and to test whether suppression of host proteins such as P-TEFb can modulate HIV infectivity without causing cellular toxicity or lethality, we used RNA interference (RNAi) to specifically knock down P-TEFb expression by degrading hCycT1 or CDK9 mRNA. RNAi-mediated gene silencing of P-TEFb in HeLa cells was not lethal and inhibited Tat transactivation and HIV-1 replication in host cells. We also found that CDK9 protein stability depended on hCycT1 protein levels, suggesting that the formation of P-TEFb CDK-cyclin complexes is required for CDK9 stability. Strikingly, P-TEFb knockdown cells showed normal P-TEFb kinase activity. Our studies suggest the existence of a dynamic equilibrium between active and inactive pools of P-TEFb in the cell and indicate that this equilibrium shifts towards the active kinase form to sustain cell viability when P-TEFb protein levels are reduced. The finding that a P-TEFb knockdown was not lethal and still showed normal P-TEFb kinase activity suggested that there is a critical threshold concentration of activated P-TEFb required for cell viability and HIV replication. These results provide new insights into the regulation of P-TEFb function and suggest the possibility that similar mechanisms for monitoring protein levels to modulate the activity of proteins may exist for the regulation of a variety of other enzymatic pathways.
Collapse
Affiliation(s)
- Ya-Lin Chiu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
39
|
Schang LM. Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:197-209. [PMID: 15023361 DOI: 10.1016/j.bbapap.2003.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (CDKs) are required for replication of adeno-, papilloma- and other viruses that replicate only in dividing cells. Surprisingly, CDKs are also required for replication of HIV-1, HSV-1, and other viruses that can replicate in non-dividing cells. Since two low-molecular weight pharmacological CDK inhibitors (PCIs), flavopiridol (Flavo) and roscovitine (Rosco), appear to be non-toxic in human clinical trials against cancer, these drugs have been proposed as potential antiviral drugs. Rosco preferentially inhibits CDKs involved in cell cycle regulation (CDK1, 2, and 7) or neuronal functions (CDK5), whereas Flavo preferentially inhibits CDKs involved in cell cycle (CDK1, 2, 4, 7) or transcription (CDK7, and 9). As potential antivirals, PCIs display several advantages: (i) they are active against many different viruses, including drug-resistant strains of HIV-1 and HSV-1; (ii) PCI-resistant mutants of HIV-1 or HSV-1 have not been identified; and (iii) the antiviral effects of PCIs and conventional antivirals appear to be additive (as expected from drugs that target independent pathways). Moreover, PCIs target both the etiological agents (i.e., the virus) and the pathogenic mechanisms (i.e., unrestricted cell division) of the many diseases that include both a CDK-requiring virus and unrestricted cell division (e.g., Kaposi's sarcoma, cervical carcinoma, HIV-associated nephropathy-HIVAN). This is nicely illustrated in a recent study which demonstrated the efficacy of Flavo in a mouse model of HIVAN. Herein, we will review the involvement of CDKs in viral replication and the antiviral properties of the most extensively characterized PCIs, with special emphasis on the mechanisms of inhibition of viral transcription.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry and Department of Medical Microbiology and Immunology, Signal Transduction Research Group, Molecular Mechanisms of Growth Control Research Group, University of Alberta, Canada.
| |
Collapse
|
40
|
Cocude C, Truong MJ, Billaut-Mulot O, Delsart V, Darcissac E, Capron A, Mouton Y, Bahr GM. A novel cellular RNA helicase, RH116, differentially regulates cell growth, programmed cell death and human immunodeficiency virus type 1 replication. J Gen Virol 2003; 84:3215-3225. [PMID: 14645903 DOI: 10.1099/vir.0.19300-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In an effort to define novel cellular factors regulating human immunodeficiency virus type 1 (HIV-1) replication, a differential display analysis has been performed on endogenously infected cells stimulated with the HIV-suppressive immunomodulator Murabutide. In this study, the cloning and identification of a Murabutide-downregulated gene, named RH116, bearing classical motifs that are characteristic of the DExH family of RNA helicases, are reported. The 116 kDa encoded protein shares 99·9 % similarity with MDA-5, an inducible RNA helicase described recently. Ectopic expression of RH116 in HeLa-CD4 cells inhibited cell growth and cell proliferation but had no measurable effect on programmed cell death. RH116 presented steady state cytoplasmic localization and could translocate to the nucleus following HIV-1 infection. Moreover, the endogenous expression of RH116, at both the transcript and protein levels, was found to be considerably upregulated after infection. Overexpression of RH116 in HIV-1-infected HeLa-CD4 cells also resulted in a dramatic increase in the level of secreted viral p24 protein. This enhancement in virus replication did not stem from upregulated proviral DNA levels but correlated with increased unspliced and singly spliced viral mRNA transcripts. These findings implicate RH116 in the regulation of HIV-1 replication and point to an apoptosis-independent role for this novel helicase in inducing cell growth arrest.
Collapse
Affiliation(s)
- C Cocude
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - M-J Truong
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - O Billaut-Mulot
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - V Delsart
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - E Darcissac
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - A Capron
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - Y Mouton
- INSERM Unité 547, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - G M Bahr
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| |
Collapse
|
41
|
Abstract
Positive transcription factor b (P-TEFb) is required for RNA polymerase II to make the transition from abortive to productive elongation. This important factor is a heterodimer of a cyclin-dependent kinase, cyclin-dependent kinase 9 (Cdk9), and one of four cyclin partners, cyclin T1, T2a, T2b or K. We demonstrate here that there exists in cells a second form of Cdk9 that is 13 kDa larger than the protein originally identified. Both of these forms, which we name Cdk9(42) and Cdk9(55), are present in HeLa and NIH/3T3 cells. Cdk9(55) is generated from an mRNA that originates from a second promoter located upstream of the startpoint of transcription used to generate mRNAs encoding Cdk9(42). Antibodies specific for Cdk9(55) immunoprecipitate Cdk(55) and cyclin T1, but not Cdk9(42). Cdk9(55) in the immunoprecipitates is active as judged by its ability to phosphorylate the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Recently it has been shown that the activity of P-TEFb is negatively regulated in cells by reversible association with a small cellular RNA called 7SK. We show here that P-TEFb molecules containing either form of Cdk9 are found in association with 7SK and both complexes are disrupted by treatment with 600 mM KCl. The relative abundance of Cdk9(55) and Cdk9(42) changes in different cell types, including HeLa, NIH/3T3, human macrophages and mouse lung tissue. Additionally, treatment of macrophages with lipopolysaccharides or infection with human immunodeficiency virus alters the relative abundance of the two forms of Cdk9.
Collapse
Affiliation(s)
- Sarah M Shore
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
42
|
Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Mol Cell Biol 2003; 23:1688-702. [PMID: 12588988 PMCID: PMC151712 DOI: 10.1128/mcb.23.5.1688-1702.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin T1, together with the kinase CDK9, is a component of the transcription elongation factor P-TEFb which binds the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. P-TEFb facilitates transcription by phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II. Cyclin T1 is an exceptionally large cyclin and is therefore a candidate for interactions with regulatory proteins. We identified granulin as a cyclin T1-interacting protein that represses expression from the HIV-1 promoter in transfected cells. The granulins, mitogenic growth factors containing repeats of a cysteine-rich motif, were reported previously to interact with Tat. We show that granulin formed stable complexes in vivo and in vitro with cyclin T1 and Tat. Granulin bound to the histidine-rich domain of cyclin T1, which was recently found to bind to the CTD, but not to cyclin T2. Binding of granulin to P-TEFb inhibited the phosphorylation of a CTD peptide. Granulin expression inhibited Tat transactivation, and tethering experiments showed that this effect was due, at least in part, to a direct action on cyclin T1 in the absence of Tat. In addition, granulin was a substrate for CDK9 but not for the other transcription-related kinases CDK7 and CDK8. Thus, granulin is a cellular protein that interacts with cyclin T1 to inhibit transcription.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-1709, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fujinaga K, Irwin D, Geyer M, Peterlin BM. Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression. J Virol 2002; 76:10873-81. [PMID: 12368330 PMCID: PMC136629 DOI: 10.1128/jvi.76.21.10873-10881.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cyclin T1 (hCycT1) protein from the positive transcription elongation factor b (P-TEFb) binds the transactivator Tat and the transactivation response (TAR) RNA stem loop from human immunodeficiency virus type 1 (HIV). This complex activates the elongation of viral transcription. To create effective inhibitors of Tat and thus HIV replication, we constructed mutant hCycT1 proteins that are defective in binding its kinase partner, Cdk9, or TAR. Although these mutant hCycT1 proteins did not increase Tat transactivation in murine cells, their dominant-negative effects were small in human cells. Higher inhibitory effects were obtained when hCycT1 was fused with the mutant Cdk9 protein. Since the autophosphorylation of the C terminus of Cdk9 is required for the formation of the stable complex between P-TEFb, Tat, and TAR, these serines and threonines were changed to glutamate in a kinase-inactive Cdk9 protein. This chimera inhibited Tat transactivation and HIV gene expression in human cells. Therefore, this dominant-negative kinase-inactive mutant Cdk9.hCycT1 chimera could be used for antiviral gene therapy.
Collapse
Affiliation(s)
- Koh Fujinaga
- Department of Medicine, University of California at San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | |
Collapse
|
44
|
Shim EY, Walker AK, Shi Y, Blackwell TK. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 2002; 16:2135-46. [PMID: 12183367 PMCID: PMC186450 DOI: 10.1101/gad.999002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metazoan transcription elongation factor P-TEFb (CDK-9/cyclin T) is essential for HIV transcription, and is recruited by some cellular activators. P-TEFb promotes elongation in vitro by overcoming pausing that requires the SPT-4/SPT-5 complex, but considerable evidence indicates that SPT-4/SPT-5 facilitates elongation in vivo. Here we used RNA interference to investigate P-TEFb functions in vivo, in the Caenorhabditis elegans embryo. We found that P-TEFb is broadly essential for expression of early embryonic genes. P-TEFb is required for phosphorylation of Ser 2 of the RNA Polymerase II C-terminal domain (CTD) repeat, but not for most CTD Ser 5 phosphorylation, supporting the model that P-TEFb phosphorylates CTD Ser 2 during elongation. Remarkably, although heat shock genes are cdk-9-dependent, they can be activated when spt-4 and spt-5 expression is inhibited along with cdk-9. This observation suggests that SPT-4/SPT-5 has an inhibitory function in vivo, and that mutually opposing influences of P-TEFb and SPT-4/SPT-5 may combine to facilitate elongation, or insure fidelity of mRNA production. Other genes are not expressed when cdk-9, spt-4, and spt-5 are inhibited simultaneously, suggesting that these genes require P-TEFb in an additional mechanism, and that they and heat shock genes are regulated through different P-TEFb-dependent elongation pathways.
Collapse
Affiliation(s)
- Eun Yong Shim
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Schang LM, Bantly A, Knockaert M, Shaheen F, Meijer L, Malim MH, Gray NS, Schaffer PA. Pharmacological cyclin-dependent kinase inhibitors inhibit replication of wild-type and drug-resistant strains of herpes simplex virus and human immunodeficiency virus type 1 by targeting cellular, not viral, proteins. J Virol 2002; 76:7874-82. [PMID: 12097601 PMCID: PMC136397 DOI: 10.1128/jvi.76.15.7874-7882.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Accepted: 04/29/2002] [Indexed: 11/20/2022] Open
Abstract
Pharmacological cyclin-dependent kinase (cdk) inhibitors (PCIs) block replication of several viruses, including herpes simplex virus type 1 (HSV-1) and human immunodeficiency virus type 1 (HIV-1). Yet, these antiviral effects could result from inhibition of either cellular cdks or viral enzymes. For example, in addition to cellular cdks, PCIs could inhibit any of the herpesvirus-encoded kinases, DNA replication proteins, or proteins involved in nucleotide metabolism. To address this issue, we asked whether purine-derived PCIs (P-PCIs) inhibit HSV and HIV-1 replication by targeting cellular or viral proteins. P-PCIs inhibited replication of HSV-1 and -2 and HIV-1, which require cellular cdks to replicate, but not vaccinia virus or lymphocytic choriomeningitis virus, which are not known to require cdks to replicate. P-PCIs also inhibited strains of HSV-1 and HIV-1 that are resistant to conventional antiviral drugs, which target viral proteins. In addition, the anti-HSV effects of P-PCIs and a conventional antiherpesvirus drug, acyclovir, were additive, demonstrating that the two drugs act by distinct mechanisms. Lastly, the spectrum of proteins that bound to P-PCIs in extracts of mock- and HSV-infected cells was the same. Based on these observations, we conclude that P-PCIs inhibit virus replication by targeting cellular, not viral, proteins.
Collapse
Affiliation(s)
- Luis M Schang
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ghose R, Liou LY, Herrmann CH, Rice AP. Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4(+) T lymphocytes by combination of cytokines. J Virol 2001; 75:11336-43. [PMID: 11689614 PMCID: PMC114719 DOI: 10.1128/jvi.75.23.11336-11343.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combinations of cytokines are known to reactivate transcription and replication of latent human immunodeficiency virus type 1 (HIV-1) proviruses in resting CD4(+) T lymphocytes isolated from infected individuals. Transcription of the HIV-1 provirus by RNA polymerase II is strongly stimulated by the viral Tat protein. Tat function is mediated by a cellular protein kinase known as TAK (cyclin T1/P-TEFb) that is composed of Cdk9 and cyclin T1. We have found that treatment of peripheral blood lymphocytes and purified resting CD4(+) T lymphocytes with the combination of interleukin-2 (IL-2), IL-6, and tumor necrosis factor alpha resulted in an increase in Cdk9 and cyclin T1 protein levels and an increase in TAK enzymatic activity. The cytokine induction of TAK in resting CD4(+) T lymphocytes did not appear to require proliferation of lymphocytes. These results suggest that induction of TAK by cytokines secreted in the microenvironment of lymphoid tissue may be involved in the reactivation of HIV-1 in CD4(+) T lymphocytes harboring a latent provirus.
Collapse
Affiliation(s)
- R Ghose
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
47
|
Zhou M, Nekhai S, Bharucha DC, Kumar A, Ge H, Price DH, Egly JM, Brady JN. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem 2001; 276:44633-40. [PMID: 11572868 DOI: 10.1074/jbc.m107466200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat stimulates human immunodeficiency virus, type 1 (HIV-1), transcription elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to the TAR RNA structure. It has been demonstrated further that CDK9 phosphorylation is required for high affinity binding of Tat/P-TEFb to the TAR RNA structure and that the state of P-TEFb phosphorylation may regulate Tat transactivation. We now demonstrate that CDK9 phosphorylation is uniquely regulated in the HIV-1 preinitiation and elongation complexes. The presence of TFIIH in the HIV-1 preinitiation complex inhibits CDK9 phosphorylation. As TFIIH is released from the elongation complex between +14 and +36, CDK9 phosphorylation is observed. In contrast to the activity in the "soluble" complex, phosphorylation of CDK9 is increased by the presence of Tat in the transcription complexes. Consistent with these observations, we have demonstrated that purified TFIIH directly inhibits CDK9 autophosphorylation. By using recombinant TFIIH subcomplexes, our results suggest that the XPB subunit of TFIIH is responsible for this inhibition of CDK9 phosphorylation. Interestingly, our results further suggest that the phosphorylated form of CDK9 is the active kinase for RNA polymerase II carboxyl-terminal domain phosphorylation.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, Basic Research Laboratory, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fraldi A, Licciardo P, Majello B, Giordano A, Lania L. Distinct regions of cyclinT1 are required for binding to CDK9 and for recruitment to the HIV-1 Tat/TAR complex. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:247-53. [PMID: 11455589 DOI: 10.1002/jcb.1149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tat-mediated activation of the HIV-1 promoter activity requires Tat-dependent recruitment of the cyclinT1/CDK9 complex (P-TEFb) to the transacting element (TAR) RNA. Tat interaction with the cyclinT1, the regulatory partner of CDK9, results in a specific recruitment of the heterodimer CycT1/CDK9 complex to TAR, whereby it promotes transcription elongation of the HIV-1 LTR-mediated transcription. Using the yeast two-hybrid protein interaction assay we analyzed the binding between cyclinT1 and CDK9. Moreover, using a modified three-hybrid yeast interaction system, we analyzed the recruitment of CycT1 to the Tat/TAR complex. The data presented here demonstrated that distinct domains of cyclinT1 interact with CDK9 and Tat/TAR in vivo. These findings will be instrumental for the designing of proper dominant-negative P-TEFb components capable to interfere with Tat function. J. Cell. Biochem. Suppl. 36: 247-253, 2001.
Collapse
Affiliation(s)
- A Fraldi
- Department of Genetics, Molecular and General Biology, University Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | | | |
Collapse
|
49
|
Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001; 276:31793-9. [PMID: 11431468 DOI: 10.1074/jbc.m102306200] [Citation(s) in RCA: 509] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavopiridol (L86-8275, HMR1275) is a cyclin-dependent kinase (Cdk) inhibitor in clinical trials as a cancer therapy that has been recently shown to block human immunodeficiency virus Tat transactivation and viral replication through inhibition of positive transcription elongation factor b (P-TEFb). Flavopiridol is the most potent P-TEFb inhibitor reported and the first Cdk inhibitor that is not competitive with ATP. We examined the ability of flavopiridol to inhibit P-TEFb (Cdk9/cyclin T1) phosphorylation of both RNA polymerase II and the large subunit of the 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor and found that the IC(50) determined was directly related to the concentration of the enzyme. We concluded that the flavonoid associates with P-TEFb with 1:1 stoichiometry even at concentrations of enzyme in the low nanomolar range. These results indicate that the apparent lack of competition with ATP could be caused by a very tight binding of the drug. We developed a novel immobilized P-TEFb assay and demonstrated that the drug remains bound for minutes even in the presence of high salt. Flavopiridol remained bound in the presence of a 1000-fold excess of the commonly used inhibitor DRB, suggesting that the immobilized P-TEFb could be used in a simple screening assay that would allow the discovery or characterization of compounds with binding properties similar to flavopiridol. Finally, we compared the ability of flavopiridol and DRB to inhibit transcription in vivo using nuclear run-on assays and concluded that P-TEFb is required for transcription of most RNA polymerase II molecules in vivo.
Collapse
Affiliation(s)
- S H Chao
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
50
|
Ramanathan Y, Rajpara SM, Reza SM, Lees E, Shuman S, Mathews MB, Pe'ery T. Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences. J Biol Chem 2001; 276:10913-20. [PMID: 11278802 DOI: 10.1074/jbc.m010975200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CDK7, CDK8, and CDK9 are cyclin-dependent kinases (CDKs) that phosphorylate the C-terminal domain (CTD) of RNA polymerase II. They have distinct functions in transcription. Because the three CDKs target only serine 5 in the heptad repeat of model CTD substrates containing various numbers of repeats, we tested the hypothesis that the kinases differ in their ability to phosphorylate CTD heptad arrays. Our data show that the kinases display different preferences for phosphorylating individual heptads in a synthetic CTD substrate containing three heptamer repeats and specific regions of the CTD in glutathione S-transferase fusion proteins. They also exhibit differences in their ability to phosphorylate a synthetic CTD peptide that contains Ser-2-PO(4). This phosphorylated peptide is a poor substrate for CDK9 complexes. CDK8 and CDK9 complexes, bound to viral activators E1A and Tat, respectively, target only serine 5 for phosphorylation in the CTD peptides, and binding to the viral activators does not change the substrate preference of these kinases. These results imply that the display of different CTD heptads during transcription, as well as their phosphorylation state, can affect their phosphorylation by the different transcription-associated CDKs.
Collapse
Affiliation(s)
- Y Ramanathan
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|