1
|
Chemogenetics a robust approach to pharmacology and gene therapy. Biochem Pharmacol 2020; 175:113889. [DOI: 10.1016/j.bcp.2020.113889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
|
2
|
Pisa R, Cupido T, Kapoor TM. Designing Allele-Specific Inhibitors of Spastin, a Microtubule-Severing AAA Protein. J Am Chem Soc 2019; 141:5602-5606. [PMID: 30875216 DOI: 10.1021/jacs.8b13257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The bump-hole approach is a powerful chemical biology strategy to specifically probe the functions of closely related proteins. However, for many protein families, such as the ATPases associated with diverse cellular activities (AAA), we lack structural data for inhibitor-protein complexes to design allele-specific chemical probes. Here we report the X-ray structure of a pyrazolylaminoquinazoline-based inhibitor bound to spastin, a microtubule-severing AAA protein, and characterize the residues involved in inhibitor binding. We show that an inhibitor analogue with a single-atom hydrogen-to-fluorine modification can selectively target a spastin allele with an engineered cysteine mutation in its active site. We also report an X-ray structure of the fluoro analogue bound to the spastin mutant. Furthermore, analyses of other mutant alleles suggest how the stereoelectronics of the fluorine-cysteine interaction, rather than sterics alone, contribute to the inhibitor-allele selectivity. This approach could be used to design allele-specific probes for studying cellular functions of spastin isoforms. Our data also suggest how tuning stereoelectronics can lead to specific inhibitor-allele pairs for the AAA superfamily.
Collapse
Affiliation(s)
- Rudolf Pisa
- Laboratory of Chemistry and Cell Biology , The Rockefeller University , New York , New York 10065 , United States
| | - Tommaso Cupido
- Laboratory of Chemistry and Cell Biology , The Rockefeller University , New York , New York 10065 , United States
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology , The Rockefeller University , New York , New York 10065 , United States
| |
Collapse
|
3
|
Reilly ML, Stokman MF, Magry V, Jeanpierre C, Alves M, Paydar M, Hellinga J, Delous M, Pouly D, Failler M, Martinovic J, Loeuillet L, Leroy B, Tantau J, Roume J, Gregory-Evans CY, Shan X, Filges I, Allingham JS, Kwok BH, Saunier S, Giles RH, Benmerah A. Loss-of-function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum Mol Genet 2019; 28:778-795. [PMID: 30388224 PMCID: PMC6381319 DOI: 10.1093/hmg/ddy381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Diderot University, Department of Life Sciences, Paris, France
| | - Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, JE Utrecht, Netherlands
| | - Virginie Magry
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Cecile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marine Alves
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Jacqueline Hellinga
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Daniel Pouly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marion Failler
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Antoine Béclère Hospital, AP-HP, Clamart, France
- INSERM U-788, Génétique/Neurogénétique, 94270 Le Kremlin-Bicêtre, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker–Enfants Malades, AP-HP, Paris, France
| | - Brigitte Leroy
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Julia Tantau
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Joelle Roume
- Service de Génétique, Centre hospitalier intercommunal de Poissy, 78100 Saint Germain en Laye, France
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xianghong Shan
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
4
|
Islam K. The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem Biol 2018; 25:1171-1184. [PMID: 30078633 PMCID: PMC6195450 DOI: 10.1016/j.chembiol.2018.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/13/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
Successful mapping of the human genome has sparked a widespread interest in deciphering functional information encoded in gene sequences. However, because of the high degree of conservation in sequences along with topological and biochemical similarities among members of a protein superfamily, uncovering physiological role of a particular protein has been a challenging task. Chemical genetic approaches have made significant contributions toward understanding protein function. One such effort, dubbed the bump-and-hole approach, has convincingly demonstrated that engineering at the protein-small molecule interface constitutes a powerful method for elucidating the function of a specific gene product. By manipulating the steric component of protein-ligand interactions in a complementary manner, an orthogonal system is developed to probe a specific enzyme-cofactor pair without interference from related members. This article outlines current efforts to expand the approach for diverse protein classes and their applications. Potential future innovations to address contemporary biological problems are highlighted as well.
Collapse
Affiliation(s)
- Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Barkovich KJ, Moore MK, Hu Q, Shokat KM. Chemical genetic inhibition of DEAD-box proteins using covalent complementarity. Nucleic Acids Res 2018; 46:8689-8699. [PMID: 30102385 PMCID: PMC6158709 DOI: 10.1093/nar/gky706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/07/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
DEAD-box proteins are an essential class of enzymes involved in all stages of RNA metabolism. The study of DEAD-box proteins is challenging in a native setting since they are structurally similar, often essential and display dosage sensitivity. Pharmacological inhibition would be an ideal tool to probe the function of these enzymes. In this work, we describe a chemical genetic strategy for the specific inactivation of individual DEAD-box proteins with small molecule inhibitors using covalent complementarity. We identify a residue of low conservation within the P-loop of the nucleotide-binding site of DEAD-box proteins and show that it can be mutated to cysteine without a substantial loss of enzyme function to generate electrophile-sensitive mutants. We then present a series of small molecules that rapidly and specifically bind and inhibit electrophile-sensitive DEAD-box proteins with high selectivity over the wild-type enzyme. Thus, this approach can be used to systematically generate small molecule-sensitive alleles of DEAD-box proteins, allowing for pharmacological inhibition and functional characterization of members of this enzyme family.
Collapse
Affiliation(s)
- Krister J Barkovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Megan K Moore
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Qi Hu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Allocating dissipation across a molecular machine cycle to maximize flux. Proc Natl Acad Sci U S A 2017; 114:11057-11062. [PMID: 29073016 DOI: 10.1073/pnas.1707534114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biomolecular machines consume free energy to break symmetry and make directed progress. Nonequilibrium ATP concentrations are the typical free energy source, with one cycle of a molecular machine consuming a certain number of ATP, providing a fixed free energy budget. Since evolution is expected to favor rapid-turnover machines that operate efficiently, we investigate how this free energy budget can be allocated to maximize flux. Unconstrained optimization eliminates intermediate metastable states, indicating that flux is enhanced in molecular machines with fewer states. When maintaining a set number of states, we show that-in contrast to previous findings-the flux-maximizing allocation of dissipation is not even. This result is consistent with the coexistence of both "irreversible" and reversible transitions in molecular machine models that successfully describe experimental data, which suggests that, in evolved machines, different transitions differ significantly in their dissipation.
Collapse
|
7
|
Engelke MF, Winding M, Yue Y, Shastry S, Teloni F, Reddy S, Blasius TL, Soppina P, Hancock WO, Gelfand VI, Verhey KJ. Engineered kinesin motor proteins amenable to small-molecule inhibition. Nat Commun 2016; 7:11159. [PMID: 27045608 PMCID: PMC4822052 DOI: 10.1038/ncomms11159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest.
Collapse
Affiliation(s)
- Martin F. Engelke
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Shankar Shastry
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, USA
| | - Federico Teloni
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Sanjay Reddy
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - T. Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Pushpanjali Soppina
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - William O. Hancock
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, USA
| | - Vladimir I. Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Floor SN, Barkovich KJ, Condon KJ, Shokat KM, Doudna JA. Analog sensitive chemical inhibition of the DEAD-box protein DDX3. Protein Sci 2015; 25:638-49. [PMID: 26650549 DOI: 10.1002/pro.2857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 01/09/2023]
Abstract
Proper maintenance of RNA structure and dynamics is essential to maintain cellular health. Multiple families of RNA chaperones exist in cells to modulate RNA structure, RNA-protein complexes, and RNA granules. The largest of these families is the DEAD-box proteins, named after their catalytic Asp-Glu-Ala-Asp motif. The human DEAD-box protein DDX3 is implicated in diverse biological processes including translation initiation and is mutated in numerous cancers. Like many DEAD-box proteins, DDX3 is essential to cellular health and exhibits dosage sensitivity, such that both decreases and increases in protein levels can be lethal. Therefore, chemical inhibition would be an ideal tool to probe the function of DDX3. However, most DEAD-box protein active sites are extremely similar, complicating the design of specific inhibitors. Here, we show that a chemical genetic approach best characterized in protein kinases, known as analog-sensitive chemical inhibition, is viable for DDX3 and possibly other DEAD-box proteins. We present an expanded active-site mutant that is tolerated in vitro and in vivo, and is sensitive to chemical inhibition by a novel bulky inhibitor. Our results highlight a course towards analog sensitive chemical inhibition of DDX3 and potentially the entire DEAD-box protein family.
Collapse
Affiliation(s)
- Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California
| | - Krister J Barkovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Kendall J Condon
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,Howard Hughes Medical Institute, University of California, San Francisco, California.,Department of Chemistry, University of California, Berkeley, California
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California.,Department of Chemistry, University of California, Berkeley, California.,Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California.,Lawrence Berkeley National Laboratory, Physical Biosciences Division, Berkeley, California
| |
Collapse
|
9
|
Blum G, Islam K, Luo M. Bioorthogonal profiling of protein methylation (BPPM) using an azido analog of S-adenosyl-L-methionine. ACTA ACUST UNITED AC 2015; 5:45-66. [PMID: 23667794 DOI: 10.1002/9780470559277.ch120240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein methyltransferases (PMTs) utilize S-adenosyl-L-methionine (SAM) as a cofactor and transfer its sulfonium methyl moiety to diverse substrates. These methylation events can lead to meaningful biological outcomes, from transcriptional activation/silencing to cell cycle regulation. This article describes recently developed technology based on protein engineering in tandem with SAM analog cofactors and bioorthogonal click chemistry to unambiguously profile the substrates of a specific PMT. The protocols encapsulate the logic and methods of selectively profiling the substrates of a candidate PMT by (1) engineering the selected PMT to accommodate a bulky SAM analog; (2) generating a proteome containing the engineered PMT; (3) visualizing the proteome-wide substrates of the designated PMT via bioorthogonal labeling with a fluorescent tag; and finally (4) pulling down the proteome-wide substrates for mass spectrometric analysis.
Collapse
Affiliation(s)
- Gil Blum
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
10
|
Islam K. Allele-specific chemical genetics: concept, strategies, and applications. ACS Chem Biol 2015; 10:343-63. [PMID: 25436868 DOI: 10.1021/cb500651d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.
Collapse
Affiliation(s)
- Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Arora K, Talje L, Asenjo AB, Andersen P, Atchia K, Joshi M, Sosa H, Allingham JS, Kwok BH. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. J Mol Biol 2014; 426:2997-3015. [PMID: 24949858 DOI: 10.1016/j.jmb.2014.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
Abstract
The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central β-sheet is twisted ~10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins-known as the "rigor-like" state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.
Collapse
Affiliation(s)
- Kritica Arora
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Lama Talje
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Parker Andersen
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Kaleem Atchia
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Monika Joshi
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Hernando Sosa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada.
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada.
| |
Collapse
|
12
|
Glotfelty LG, Zahs A, Iancu C, Shen L, Hecht GA. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. Am J Physiol Cell Physiol 2014; 307:C245-54. [PMID: 24920678 DOI: 10.1152/ajpcell.00336.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial tight junctions are critical for creating a barrier yet allowing paracellular transport. Although it is well established that the actin cytoskeleton is critical for preserving the dynamic organization of the tight junction and maintaining normal tight junction protein recycling, contributions of microtubules to tight junction organization and function remain undefined. The aim of this study is to determine the role of microtubules in tight junction homeostasis and restoration. Our data demonstrate that occludin traffics on microtubules and that microtubule disruption perturbs tight junction structure and function. Microtubules are also shown to be required for restoring barrier function following Ca(2+) chelation and repletion. These processes are mediated by proteins participating in microtubule minus-end-directed trafficking but not plus-end-directed trafficking. These studies show that microtubules participate in the preservation of epithelial tight junction structure and function and play a vital role in tight junction restoration, thus expanding our understanding of the regulation of tight junction physiology.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Anita Zahs
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Catalin Iancu
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Le Shen
- University of Chicago, Chicago, Illinois
| | - Gail A Hecht
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois; Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
13
|
Talje L, Ben El Kadhi K, Atchia K, Tremblay-Boudreault T, Carreno S, Kwok BH. DHTP is an allosteric inhibitor of the kinesin-13 family of microtubule depolymerases. FEBS Lett 2014; 588:2315-20. [PMID: 24859087 DOI: 10.1016/j.febslet.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
The kinesin-13 family of microtubule depolymerases is a major regulator of microtubule dynamics. RNA interference-induced knockdown studies have highlighted their importance in many cell division processes including spindle assembly and chromosome segregation. Since microtubule turnovers and most mitotic events are relatively rapid (in minutes or seconds), developing tools that offer faster control over protein functions is therefore essential to more effectively interrogate kinesin-13 activities in living cells. Here, we report the identification and characterization of a selective allosteric kinesin-13 inhibitor, DHTP. Using high resolution microscopy, we show that DHTP is cell permeable and can modulate microtubule dynamics in cells.
Collapse
Affiliation(s)
- Lama Talje
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Khaled Ben El Kadhi
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Kaleem Atchia
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Thierry Tremblay-Boudreault
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sébastien Carreno
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada; Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benjamin H Kwok
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada; Département de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
14
|
Hardt N, Hacker SM, Marx A. Synthesis and fluorescence characteristics of ATP-based FRET probes. Org Biomol Chem 2013; 11:8298-305. [PMID: 24173528 DOI: 10.1039/c3ob41751d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine triphosphate (ATP) analogues labelled with two dyes suitable for undergoing Förster Resonance Energy Transfer (FRET) have the potential to be valuable tools to continuously study the enzymatic activity of ATP consuming enzymes. Here, we present a synthesis strategy that allows obtaining these ATP analogues in a straight-forward manner. Earlier studies indicate that modifying ATP at the O2'- and the γ-position is a very promising starting point for the design of these probes. We synthesized probes modified with five different combinations of dyes attached to these positions and investigated their fluorescence characteristics in the non-cleaved state as well as after enzymatic hydrolysis. All presented probes largely change their fluorescence characteristics upon cleavage. They include ratiometric FRET probes as well as dark quenched analogues. For typical in vitro applications a combination of the sulfonated polymethine dyes Sulfo-Cy3 and Sulfo-Cy5 seems to be most promising due to their excellent solubility in aqueous buffer and a large change of fluorescence characteristics upon cleavage. For this combination of dyes we also synthesized analogues modified at the γ- and the C2- or the O3'-position, respectively, as these attachment sites are also well accepted by certain ATP consuming enzymes. These analogues show comparably large changes in fluorescence characteristics. Overall, we present new ATP-based FRET probes that have the potential to enable monitoring the enzymatic activity of ATP consuming enzymes.
Collapse
Affiliation(s)
- Norman Hardt
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
15
|
Hacker SM, Hardt N, Buntru A, Pagliarini D, Möckel M, Mayer TU, Scheffner M, Hauck CR, Marx A. Fingerprinting differential active site constraints of ATPases. Chem Sci 2013. [DOI: 10.1039/c3sc21916j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Islam K, Bothwell I, Chen Y, Sengelaub C, Wang R, Deng H, Luo M. Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J Am Chem Soc 2012; 134:5909-15. [PMID: 22404544 PMCID: PMC3336210 DOI: 10.1021/ja2118333] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein methyltransferases (PMTs) play critical roles in multiple biological processes. Because PMTs often function in vivo through forming multimeric protein complexes, dissecting their activities in the native contexts is challenging but relevant. To address such a need, we envisioned a Bioorthogonal Profiling of Protein Methylation (BPPM) technology, in which a SAM analogue cofactor can be utilized by multiple rationally engineered PMTs to label substrates of the corresponding native PMTs. Here, 4-azidobut-2-enyl derivative of S-adenosyl-L-methionine (Ab-SAM) was reported as a suitable BPPM cofactor. The resultant cofactor-enzyme pairs were implemented to label specifically the substrates of closely related PMTs (e.g., EuHMT1 and EuHMT2) in a complex cellular mixture. The BPPM approach, coupled with mass spectrometric analysis, enables the identification of the nonhistone targets of EuHMT1/2. Comparison of EuHMT1/2's methylomes indicates that the two human PMTs, although similar in terms of their primary sequences, can act on the distinct sets of nonhistone targets. Given the conserved active sites of PMTs, Ab-SAM and its use in BPPM are expected to be transferable to other PMTs for target identification.
Collapse
Affiliation(s)
- Kabirul Islam
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ian Bothwell
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Yuling Chen
- School of Life Sciences, Tshinghua University, Beijing 100084, China
| | - Caitlin Sengelaub
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rui Wang
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Haiteng Deng
- School of Life Sciences, Tshinghua University, Beijing 100084, China
- Proteomic Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Firestone AJ, Weinger JS, Maldonado M, Barlan K, Langston LD, O'Donnell M, Gelfand VI, Kapoor TM, Chen JK. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 2012; 484:125-9. [PMID: 22425997 PMCID: PMC3321072 DOI: 10.1038/nature10936] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 02/01/2012] [Indexed: 01/01/2023]
Abstract
The conversion of chemical energy into mechanical force by AAA+ (ATPases associated with diverse cellular activities) ATPases is integral to cellular processes, including DNA replication, protein unfolding, cargo transport, and membrane fusion1. The AAA+ ATPase motor cytoplasmic dynein regulates ciliary trafficking2, mitotic spindle formation3, and organelle transport4, and dissecting its precise functions has been challenging due to its rapid timescale of action and the lack of cell-permeable, chemical modulators. Here we describe the discovery of ciliobrevins, the first specific small-molecule antagonists of cytoplasmic dynein. Ciliobrevins perturb protein trafficking within the primary cilium, leading to their malformation and Hedgehog signaling blockade. Ciliobrevins also prevent spindle pole focusing, kinetochore-microtubule attachment, melanosome aggregation, and peroxisome motility in cultured cells. We further demonstrate the ability of ciliobrevins to block dynein-dependent microtubule gliding and ATPase activity in vitro. Ciliobrevins therefore will be useful reagents for studying cellular processes that require this microtubule motor and may guide the development of additional AAA+ ATPase superfamily inhibitors.
Collapse
Affiliation(s)
- Ari J Firestone
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Islam K, Zheng W, Yu H, Deng H, Luo M. Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem Biol 2011; 6:679-84. [PMID: 21495674 PMCID: PMC3137739 DOI: 10.1021/cb2000567] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in normal physiology and disease processes. Profiling PKMT targets is an important but challenging task. With cancer-relevant G9a as a target, we have demonstrated success in developing S-adenosyl-L-methionine (SAM) analogues, particularly (E)-hex-2-en-5-ynyl SAM (Hey-SAM), as cofactors for engineered G9a. Hey-SAM analogue in combination with G9a Y1154A mutant modifies the same set of substrates as their native counterparts with remarkable efficiency. (E)-Hex-2-en-5-ynylated substrates undergo smooth click reaction with an azide-based probe. This approach is thus suitable for substrate characterization of G9a and expected to further serve as a starting point to evolve other PKMTs to utilize a similar set of cofactors.
Collapse
Affiliation(s)
- Kabirul Islam
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Weihong Zheng
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Haiqiang Yu
- Proteomics Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Haiteng Deng
- Proteomics Resource Center, Rockefeller University, New York, NY 10065, USA
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Calleri E, Ceruti S, Cristalli G, Martini C, Temporini C, Parravicini C, Volpini R, Daniele S, Caccialanza G, Lecca D, Lambertucci C, Trincavelli ML, Marucci G, Wainer IW, Ranghino G, Fantucci P, Abbracchio MP, Massolini G. Frontal affinity chromatography-mass spectrometry useful for characterization of new ligands for GPR17 receptor. J Med Chem 2010; 53:3489-501. [PMID: 20394377 DOI: 10.1021/jm901691y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of frontal affinity chromatography-mass spectrometry (FAC-MS), along with molecular modeling studies, to the screening of potential drug candidates toward the recently deorphanized G-protein-coupled receptor (GPCR) GPR17 is shown. GPR17 is dually activated by uracil nucleotides and cysteinyl-leukotrienes, and is expressed in organs typically undergoing ischemic damage (i.e., brain, heart and kidney), thus representing a new pharmacological target for acute and chronic neurodegeneration. GPR17 was entrapped on an immobilized artificial membrane (IAM), and this stationary phase was used to screen a library of nucleotide derivatives by FAC-MS to select high affinity ligands. The chromatographic results have been validated with a reference functional assay ([(35)S]GTPgammaS binding assay). The receptor nucleotide-binding site was studied by setting up a column where a mutated GPR17 receptor (Arg255Ile) has been immobilized. The chromatographic behavior of the tested nucleotide derivatives together with in silico studies have been used to gain insights into the structure requirement of GPR17 ligands.
Collapse
Affiliation(s)
- Enrica Calleri
- Department of Pharmaceutical Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chapman E, Farr GW, Furtak K, Horwich AL. A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL. Bioorg Med Chem Lett 2009; 19:811-3. [PMID: 19110421 PMCID: PMC2633924 DOI: 10.1016/j.bmcl.2008.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/29/2022]
Abstract
The chaperonin GroEL is a megadalton-sized molecular machine that plays an essential role in the bacterial cell assisting protein folding to the native state through actions requiring ATP binding and hydrolysis. A combination of medicinal chemistry and genetics has been employed to generate an orthogonal pair, a small molecule that selectively inhibits ATPase activity of a GroEL ATP-binding pocket variant. An initial screen of kinase-directed inhibitors identified an active pyrazolo-pyrimidine scaffold that was iteratively modified and screened against a collective of GroEL nucleotide pocket variants to identify a cyclopentyl carboxamide derivative, EC3016, that specifically inhibits ATPase activity and protein folding by the GroEL mutant, I493C, involving a side chain positioned near the base of ATP. This orthogonal pair will enable in vitro studies of the action of ATP in triggering activation of GroEL-mediated protein folding and might enable further studies of GroEL action in vivo. The approach originated for studying kinases by Shokat and his colleagues may thus also be used to study large macromolecular machines.
Collapse
Affiliation(s)
- Eli Chapman
- The Scripps Research Institute, Molecular Biology, 10550 North Torrey Pines Road, Mb46, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
22
|
Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. ACTA ACUST UNITED AC 2007; 176:497-507. [PMID: 17283182 PMCID: PMC2063984 DOI: 10.1083/jcb.200607098] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown. Using online confocal imaging of transected, cultured Aplysia californica neurons, we report that axotomy leads to reorientation of the microtubule (MT) polarities and formation of two distinct MT-based vesicle traps at the cut axonal end. Approximately 100 microm proximal to the cut end, a selective trap for anterogradely transported vesicles is formed, which is the plus end trap. Distally, a minus end trap is formed that exclusively captures retrogradely transported vesicles. The concentration of anterogradely transported vesicles in the former trap optimizes the formation of a GC after axotomy.
Collapse
Affiliation(s)
- Hadas Erez
- Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Gregan J, Zhang C, Rumpf C, Cipak L, Li Z, Uluocak P, Nasmyth K, Shokat KM. Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat Protoc 2007; 2:2996-3000. [PMID: 18007635 PMCID: PMC2957860 DOI: 10.1038/nprot.2007.447] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reversible protein phosphorylation is a major regulatory mechanism in a cell. A chemical-genetic strategy to conditionally inactivate protein kinases has been developed recently. Mutating a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors. The inhibitor can only bind to the mutant kinase and not to any other wild-type kinase, allowing specific inactivation of the modified kinase. Here, we describe a protocol to construct conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. This protocol can be completed in about 3 weeks and should be applicable to other organisms as well.
Collapse
Affiliation(s)
- Juraj Gregan
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 1, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ivanov AI, McCall IC, Babbin B, Samarin SN, Nusrat A, Parkos CA. Microtubules regulate disassembly of epithelial apical junctions. BMC Cell Biol 2006; 7:12. [PMID: 16509970 PMCID: PMC1444913 DOI: 10.1186/1471-2121-7-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 03/01/2006] [Indexed: 11/21/2022] Open
Abstract
Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ingrid C McCall
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Brian Babbin
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Stanislav N Samarin
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Asma Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Charles A Parkos
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
25
|
Kafri Y, Nelson DR. Sequence heterogeneity and the dynamics of molecular motors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2005; 17:S3871-S3886. [PMID: 21690730 DOI: 10.1088/0953-8984/17/47/016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effect of sequence heterogeneity on the dynamics of molecular motors is reviewed and analysed using a set of recently introduced lattice models. First, we review results for the influence of heterogeneous tracks such as a single strand of DNA or RNA on the dynamics of the motors. We stress how the predicted behaviour might be observed experimentally in anomalous drift and diffusion of motors over a wide range of parameters near the stall force and discuss the extreme limit of strongly biased motors with one-way hopping. We then consider the dynamics in an environment containing a variety of different fuels which supply chemical energy for the motor motion, either on a heterogeneous or on a periodic track. The results for motion along a periodic track are relevant to kinesin motors in a solution with a mixture of different nucleotide triphosphate fuel sources.
Collapse
Affiliation(s)
- Yariv Kafri
- Physicochimie Curie (CNRS-UMR168), Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | |
Collapse
|
26
|
Abstract
While chemical genetic approach uses small molecules to probe protein functions in cells or organisms, orthogonal chemical genetics refers to strategies that utilize reengineered protein-small molecule interfaces, to alter specificities, in order to probe their functions. The advantage of orthogonal chemical genetics is that the changes at the interfaces are generally so minute that it goes undetected by natural processes, and thus depicts a true physiological picture of biological phenomenon. This review highlights the recent advances in the area of orthogonal chemical genetics, especially those designed to probe signaling processes. Dynamic protein-protein and enzyme-substrate interactions following stimuli form the foundation of signal transduction. These processes not only break spatial and temporal boundaries between interacting proteins, but also impart distinct regulatory properties by creating functional diversity at the interfaces. Functional and temporal modulation of these dynamic interactions by specific chemical probes provides extremely powerful tools to initiate, ablate, decouple and deconvolute different components of a signaling pathway at multiple stages. Not surprisingly, multiple receptor-ligand reengineering approaches have been developed in the last decade to selectively manipulate these transient interactions with the aim of unraveling signaling events. However, given the diversity of protein-protein interactions and novel chemical genetic probes developed to perturb these processes, a short review cannot do adequate justice to all aspects of signaling. For this reason, this review focuses on some orthogonal chemical-genetic strategies that are developed to study signaling processes involving enzyme-substrate interactions.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Kapitein LC, Peterman EJG, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 2005; 435:114-8. [PMID: 15875026 DOI: 10.1038/nature03503] [Citation(s) in RCA: 529] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 03/02/2005] [Indexed: 11/09/2022]
Abstract
During cell division, mitotic spindles are assembled by microtubule-based motor proteins. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules. However, the precise roles of kinesin-5 during this process are unknown. Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at approximately 20 nm s(-1) towards the plus-ends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at approximately 40 nm s(-1), comparable to spindle pole separation rates in vivo. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding.
Collapse
Affiliation(s)
- Lukas C Kapitein
- Department of Physics and Astronomy and Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Kwok BH, Yang JG, Kapoor TM. The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5. Curr Biol 2005; 14:1783-8. [PMID: 15458652 DOI: 10.1016/j.cub.2004.09.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 08/18/2004] [Accepted: 08/24/2004] [Indexed: 11/17/2022]
Abstract
During early embryonic cycles, the time required for mitotic spindle assembly must match the autonomous cell cycle oscillations because a lack of coordination between these two processes will result in chromosome segregation errors. Members of the widely conserved BimC kinesin family are essential for spindle formation in all eukaryotes, and complete loss of BimC function results in monopolar spindles that have two spindle poles that are not separated. However, the precise roles of BimC motor activity in the spindle assembly process are not known. To examine the contribution of BimC kinesin's motor activity to spindle assembly, we generated and characterized mutants of Eg5, a vertebrate BimC kinesin, with reduced in vitro microtubule-gliding velocities. In Xenopus egg extracts, we replaced endogenous Eg5 with recombinant wild-type or mutant motor proteins. By using centrosome-dependent and centrosome-independent spindle assembly assays, we found that mechanisms that determine spindle size and shape were robust to approximately 6-fold reductions in Eg5 motility. However, the spindle assembly process was slower when Eg5 motor function was impaired. This role of Eg5 was independent of its contribution to centrosome separation. We provide evidence that Eg5 is a rate-limiting component of the cellular machinery that drives spindle assembly in vertebrates.
Collapse
Affiliation(s)
- Benjamin H Kwok
- Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
29
|
Abstract
Chemistry-driven strategies for modifying, controlling and monitoring protein function in vitro and in vivo have attracted widespread interest among chemists in recent years. Several strategies have now emerged that complement standard genetics-based approaches, and they are being increasingly adopted by biologists to address issues in relevant contexts from cells to animals. With the development of these chemical biology tools, we might be approaching a time when detailed quantitative analysis of protein function, to a degree previously available only in reconstituted systems, is attainable in an in vivo setting.
Collapse
Affiliation(s)
- Michael E Hahn
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, Box 223, New York, NY 10021, USA
| | | |
Collapse
|
30
|
Provance DW, Gourley CR, Silan CM, Cameron LC, Shokat KM, Goldenring JR, Shah K, Gillespie PG, Mercer JA. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc Natl Acad Sci U S A 2004; 101:1868-73. [PMID: 14766983 PMCID: PMC357019 DOI: 10.1073/pnas.0305895101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Selective, in situ inhibition of individual unconventional myosins is a powerful approach to determine their specific physiological functions. Here, we report the engineering of a myosin Vb mutant that still hydrolyzes ATP, yet is selectively sensitized to an N(6)-substituted ADP analog that inhibits its activity, causing it to remain tightly bound to actin. Inhibition of the sensitized mutant causes inhibition of accumulation of transferrin in the cytoplasm and increases levels of plasma-membrane transferrin receptor, suggesting that myosin Vb functions in traffic between peripheral and pericentrosomal compartments.
Collapse
|
31
|
Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 2003; 125:10561-9. [PMID: 12940738 DOI: 10.1021/ja0362813] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein splicing is a naturally occurring process in which an intervening intein domain excises itself out of a precursor polypeptide in an autocatalytic fashion with concomitant linkage of the two flanking extein sequences by a native peptide bond. We have recently reported an engineered split VMA intein whose splicing activity in trans between two polypeptides can be triggered by the small molecule rapamycin. In this report, we show that this conditional protein splicing (CPS) system can be used in mammalian cells. Two model constructs harboring maltose-binding protein (MBP) and a His-tag as exteins were expressed from a constitutive promoter after transient transfection. The splicing product MBP-His was detected by Western blotting and immunoprecipitation in cells treated with rapamycin or a nontoxic analogue thereof. No background splicing in the absence of the small-molecule inducer was observed over a 24-h time course. Product formation could be detected within 10 min of addition of rapamycin, indicating the advantage of the posttranslational nature of CPS for quick responses. The level of protein splicing was dose dependent and could be competitively attenuated with the small molecule ascomycin. In related studies, the geometric flexibility of the CPS components was investigated with a series of purified proteins. The FKBP and FRB domains, which are dimerized by rapamycin and thereby induce the reconstitution of the split intein, were fused to the extein sequences of the split intein halves. CPS was still triggered by rapamycin when FKBP and FRB occupied one or both of the extein positions. This finding suggests yet further applications of CPS in the area of proteomics. In summary, CPS holds great promise to become a powerful new tool to control protein structure and function in vitro and in living cells.
Collapse
Affiliation(s)
- Henning D Mootz
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
32
|
Abaza A, Soleilhac JM, Westendorf J, Piel M, Crevel I, Roux A, Pirollet F. M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis. J Biol Chem 2003; 278:27844-52. [PMID: 12740395 PMCID: PMC2652640 DOI: 10.1074/jbc.m304522200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human M phase phosphoprotein 1 (MPP1), previously identified through a screening of a subset of proteins specifically phosphorylated at the G2/M transition (Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L., and Westendorf, J. M. (1996) Mol. Biol. Cell 7, 1455-1469), is characterized as a plus-end-directed kinesin-related protein. Recombinant MPP1 exhibits in vitro microtubule-binding and microtubule-bundling properties as well as microtubule-stimulated ATPase activity. In gliding experiments using polarity-marked microtubules, MPP1 is a slow molecular motor that moves toward the microtubule plus-end at a 0.07 microm/s speed. In cycling cells, MPP1 localizes mainly to the nuclei in interphase. During mitosis, MPP1 is diffuse throughout the cytoplasm in metaphase and subsequently localizes to the midzone to further concentrate on the midbody. MPP1 suppression by RNA interference induces failure of cell division late in cytokinesis. We conclude that MPP1 is a new mitotic molecular motor required for completion of cytokinesis.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Animals
- Cell Cycle Proteins
- Cell Division/physiology
- Cell Line
- Cell Movement
- Cells, Cultured
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Epitopes
- Flow Cytometry
- G2 Phase
- Gene Library
- Genome
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Immunoblotting
- Insecta
- Kinesins/metabolism
- Kinetics
- Luminescent Proteins/metabolism
- Metaphase
- Microscopy, Fluorescence
- Microtubules/metabolism
- Mitosis
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Phosphorylation
- Protein Structure, Tertiary
- RNA Interference
- RNA, Small Interfering/metabolism
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Time Factors
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- Aouatef Abaza
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Université Joseph Fourier - Grenoble ICea LYON
17, Rue Des Martyrs
38054 Grenoble Cedex 9,FR
| | - Jean-Marc Soleilhac
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Université Joseph Fourier - Grenoble ICea LYON
17, Rue Des Martyrs
38054 Grenoble Cedex 9,FR
| | - Joanne Westendorf
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Université Joseph Fourier - Grenoble ICea LYON
17, Rue Des Martyrs
38054 Grenoble Cedex 9,FR
| | - Matthieu Piel
- CDC, Compartimentation et dynamique cellulaires
CNRS : UMR144Institut Curie26 Rue d'Ulm
75248 Paris Cedex 05,FR
| | | | - Aurelien Roux
- UPCC, Unite physico-chimie Curie
CNRS : UMR168Institut CurieBâtiment Curie
26 rue d'Ulm
75248 Paris Cedex 05,FR
| | - Fabienne Pirollet
- Organisation Fonctionnelle du Cytosquelette
INSERM : U366Université Joseph Fourier - Grenoble ICea LYON
17, Rue Des Martyrs
38054 Grenoble Cedex 9,FR
- * Correspondence should be adressed to: Fabienne Pirollet
| |
Collapse
|
33
|
Levitsky K, Ciolli CJ, Belshaw PJ. Selective inhibition of engineered receptors via proximity-accelerated alkylation. Org Lett 2003; 5:693-6. [PMID: 12605492 DOI: 10.1021/ol027448k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new approach for creating allele-specific inhibitors is demonstrated. In this approach, a receptor and ligand are engineered to contain complementary reactive groups that form a covalent bond via a proximity-accelerated reaction upon formation of the receptor-ligand complex, irreversibly modulating the biological function of the receptor. This approach is demonstrated in the cyclophilin-cyclosporin receptor-ligand system by introducing thiol and acrylamide functional groups in the receptor and ligand, respectively.
Collapse
Affiliation(s)
- Konstantin Levitsky
- Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
34
|
Peterson JR, Mitchison TJ. Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. CHEMISTRY & BIOLOGY 2002; 9:1275-85. [PMID: 12498880 DOI: 10.1016/s1074-5521(02)00284-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemical inhibitors, whether natural products or synthetic, have had an enormous impact on the study of the eukaryotic cytoskeleton. Here we review the history of some of the most widely used cytoskeletal poisons and their influence on our understanding of cytoskeletal functions. We then highlight several new inhibitors and the targeted screens used to identify them and discuss why this approach has been successful.
Collapse
Affiliation(s)
- Jeffrey R Peterson
- Department of Cell Biology and Institute of Chemistry and Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
35
|
Swann SL, Bergh J, Farach-Carson MC, Ocasio CA, Koh JT. Structure-based design of selective agonists for a rickets-associated mutant of the vitamin d receptor. J Am Chem Soc 2002; 124:13795-805. [PMID: 12431109 DOI: 10.1021/ja0268377] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear and steroid hormone receptors function as ligand-dependent transcriptional regulators of diverse sets of genes associated with development and homeostasis. Mutations to the vitamin D receptor (VDR), a member of the nuclear and steroid hormone receptor family, have been linked to human vitamin D-resistant rickets (hVDRR) and result in high serum 1,25(OH)(2)D(3) concentrations and severe bone underdevelopment. Several hVDRR-associated mutants have been localized to the ligand binding domain of VDR and cause a reduction in or loss of ligand binding and ligand-dependent transactivation function. The missense mutation Arg274 --> Leu causes a >1000-fold reduction in 1,25(OH)(2)D(3) responsiveness and is, therefore, no longer regulated by physiological concentrations of the hormone. In this study, computer-aided molecular design was used to generate a focused library of nonsteroidal analogues of the VDR agonist LG190155 that were uniquely designed to complement the Arg274 --> Leu associated with hVDRR. Half of the designed analogues exhibit substantial activity in the hVDRR-associated mutant, whereas none of the structurally similar control compounds exhibited significant activity. The seven most active designed analogues were more than 16 to 526 times more potent than 1,25(OH)(2)D(3) in the mutant receptor (EC(50) = 3.3-121 nM). Significantly, the analogues are selective for the nuclear VDR and did not stimulate cellular calcium influx, which is associated with activation of the membrane-associated vitamin D receptor.
Collapse
Affiliation(s)
- Steve L Swann
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
36
|
Maliga Z, Kapoor TM, Mitchison TJ. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. CHEMISTRY & BIOLOGY 2002; 9:989-96. [PMID: 12323373 DOI: 10.1016/s1074-5521(02)00212-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monastrol, a cell-permeable inhibitor of the kinesin Eg5, has been used to probe the dynamic organization of the mitotic spindle. The mechanism by which monastrol inhibits Eg5 function is unknown. We found that monastrol inhibits both the basal and the microtubule-stimulated ATPase activity of the Eg5 motor domain. Unlike many ATPase inhibitors, monastrol does not compete with ATP binding to Eg5. Monastrol appears to inhibit microtubule-stimulated ADP release from Eg5 but does not compete with microtubule binding, suggesting that monastrol binds a novel allosteric site in the motor domain. Finally, we established that (S)-monastrol, as compared to the (R)-enantiomer, is a more potent inhibitor of Eg5 activity in vitro and in vivo. Future structural studies should help in designing more potent Eg5 inhibitors for possible use as anticancer drugs and cell biological reagents.
Collapse
Affiliation(s)
- Zoltan Maliga
- Program in Biophysics, Harvard University, Boston, MA 02115, USA.
| | | | | |
Collapse
|
37
|
Shokat K, Velleca M. Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discov Today 2002; 7:872-9. [PMID: 12546954 DOI: 10.1016/s1359-6446(02)02391-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Concurrent advances in both high-throughput chemistry and genomics have given rise to the field of chemical genetics as a discipline for elucidating and validating drug targets, and generating novel therapeutics. Indeed, chemical genetic approaches to drug discovery have now been applied to several important drug target classes, especially those involved in signal transduction. Chemical genetics is distinct from the broader term "chemogenomics" which is defined as the description of all possible drugs against all possible targets (reviewed in [1]). This review covers several "orthogonal" chemical genetic approaches and focuses on a unique analog sensitive kinase technology and its applications to kinase drug discovery.
Collapse
Affiliation(s)
- Kevan Shokat
- Dept of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
38
|
Abstract
High-throughput screening of small molecules is used extensively in pharmaceutical settings for the purpose of drug discovery. In the case of antimicrobials, this involves the identification of small molecules that are significantly more toxic to the microbe than to the host. Only a small percentage of the small molecules identified in these screens have been studied in sufficient detail to explain the molecular basis of their antimicrobial effect. Rarer still are small molecule screens undertaken with the explicit goal of learning more about the biology of a particular microbe or the mechanism of its interaction with its host. Recent technological advances in small molecule synthesis and high-throughput screening have made such mechanism-directed small molecule approaches a powerful and accessible experimental option. In this article, we provide an overview of the methods and technical requirements and we discuss the potential of small molecule approaches to address important and often otherwise experimentally intractable problems in cellular microbiology.
Collapse
Affiliation(s)
- Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | |
Collapse
|
39
|
Holt JR, Gillespie SKH, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 2002; 108:371-81. [PMID: 11853671 DOI: 10.1016/s0092-8674(02)00629-3] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin-1c (also known as myosin-Ibeta) has been proposed to mediate the slow component of adaptation by hair cells, the sensory cells of the inner ear. To test this hypothesis, we mutated tyrosine-61 of myosin-1c to glycine, conferring susceptibility to inhibition by N(6)-modified ADP analogs. We expressed the mutant myosin-1c in utricular hair cells of transgenic mice, delivered an ADP analog through a whole-cell recording pipette, and found that the analog rapidly blocked adaptation to positive and negative deflections in transgenic cells but not in wild-type cells. The speed and specificity of inhibition suggests that myosin-1c participates in adaptation in hair cells.
Collapse
Affiliation(s)
- Jeffrey R Holt
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Koh JT. Engineering selectivity and discrimination into ligand-receptor interfaces. CHEMISTRY & BIOLOGY 2002; 9:17-23. [PMID: 11841935 DOI: 10.1016/s1074-5521(02)00087-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reengineering of protein-ligand (or enzyme-substrate) interfaces using a combination of chemical and genetic methods has become an increasingly common technique to create new tools to manipulate and study biological systems. Many applications of ligand receptor engineering require that the engineered ligand and receptor function independently of endogenous ligands and receptors. Engineered ligands must selectively interact with modified receptors, and modified receptors must effectively discriminate against endogenous ligands. A variety of chemical design strategies have been used to reengineer ligand-receptor interfaces. The advantages and limitations of various strategies, which involve the manipulation of hydrophobic, polar, and charged residues, are compared. New design strategies and potential applications of ligand-receptor engineering are also discussed.
Collapse
Affiliation(s)
- John T Koh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
41
|
Matthies HJ, Baskin RJ, Hawley RS. Orphan kinesin NOD lacks motile properties but does possess a microtubule-stimulated ATPase activity. Mol Biol Cell 2001; 12:4000-12. [PMID: 11739796 PMCID: PMC60771 DOI: 10.1091/mbc.12.12.4000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NOD is a Drosophila chromosome-associated kinesin-like protein that does not fall into the chromokinesin subfamily. Although NOD lacks residues known to be critical for kinesin function, we show that microtubules activate the ATPase activity of NOD >2000-fold. Biochemical and genetic analysis of two genetically identified mutations of NOD (NOD(DTW) and NOD("DR2")) demonstrates that this allosteric activation is critical for the function of NOD in vivo. However, several lines of evidence indicate that this ATPase activity is not coupled to vectorial transport, including 1) NOD does not produce microtubule gliding; and 2) the substitution of a single amino acid in the Drosophila kinesin heavy chain with the analogous amino acid in NOD results in a drastic inhibition of motility. We suggest that the microtubule-activated ATPase activity of NOD provides transient attachments of chromosomes to microtubules rather than producing vectorial transport.
Collapse
Affiliation(s)
- H J Matthies
- Department of Genetics, Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
42
|
Lin Q, Jiang F, Schultz PG, Gray NS. Design of allele-specific protein methyltransferase inhibitors. J Am Chem Soc 2001; 123:11608-13. [PMID: 11716715 DOI: 10.1021/ja011423j] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein arginine methyltransferases, which catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to arginine side chains in target proteins, regulate transcription, RNA processing, and receptor-mediated signaling. To specifically address the functional role of the individual members of this family, we took a "bump-and-hole" approach and designed a series of N(6)-substituted S-adenosylhomocysteine (SAH) analogues that are targeted toward a yeast protein methyltransferase RMT1. A point mutation was identified (E117G) in Rmt1 that renders the enzyme susceptible to selective inhibition by the SAH analogues. A mass spectrometry based enzymatic assay revealed that two compounds, N(6)-benzyl- and N(6)-naphthylmethyl-SAH, can inhibit the mutant enzyme over the wild-type with the selectivity greater than 20. When the E117G mutation was introduced into the Saccharomyces cerevisiae chromosome, the methylation of Npl3p, a known in vivo Rmt1 substrate, could be moderately reduced by N(6)-naphthylmethyl-SAH in the resulting allele. In addition, an N(6)-benzyl-SAM analogue was found to serve as an orthogonal SAM cofactor. This analogue is preferentially utilized by the mutant methyltransferase relative to the wild-type enzyme with a selectivity greater than 67. This specific enzyme/inhibitor and enzyme/substrate design should be applicable to other members of this protein family and facilitate the characterization of protein methyltransferase function in vivo when combined with RNA expression analysis.
Collapse
Affiliation(s)
- Q Lin
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
43
|
Shi Y, Koh JT. Selective regulation of gene expression by an orthogonal estrogen receptor–ligand pair created by polar-group exchange. ACTA ACUST UNITED AC 2001; 8:501-10. [PMID: 11358696 DOI: 10.1016/s1074-5521(01)00028-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The nuclear and steroid hormone receptors function as ligand-dependent transcriptional regulators in eukaryotes. Hormone receptors have been engineered to selectively respond to synthetic ligands and used as remote regulators of gene expression for the study of gene function and as potential regulators of gene therapies. RESULTS In this work, a new ligand-receptor engineering strategy called 'polar-group exchange' is used to create a mutant form of the estrogen receptor, ER(Glu353-->Ala), which lacks a carboxyl group critical for high-affinity binding of estradiol, but is able to transactivate in response to nanomolar concentrations of a carboxylate-functionalized estrogen analog, ES8. ES8 activates ER(Glu353-->Ala) at concentrations that do not appreciably activate the 'wild-type' receptor ER(wt). Two similar carboxylate-functionalized ligands, ES6 and ES7, do not induce transactivation function. Similar selectivities are observed in ligand-binding assays in vitro, which follow the trends predicted by molecular modeling. CONCLUSION Polar-group exchange is an effective strategy for rationally engineering ligand-receptor pairs. The ER(E353A)/ES8 ligand-receptor pair should constitute a unique and functionally orthogonal ligand-dependent transcriptional regulator.
Collapse
Affiliation(s)
- Y Shi
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, DE, USA
| | | |
Collapse
|
44
|
Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, Zhang C, Shokat KM. Unnatural ligands for engineered proteins: new tools for chemical genetics. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:577-606. [PMID: 10940260 DOI: 10.1146/annurev.biophys.29.1.577] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.
Collapse
Affiliation(s)
- A Bishop
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
The intrinsic polarity of microtubules within cells is exploited each time cells divide. Kinesins, microtubule-associated motor proteins, are required to execute the dramatic events of mitosis: bipolar spindle assembly, metaphase chromosome alignment, anaphase chromosome segregation, and separation of spindle poles prior to cytokinesis. Surprisingly, kinesin-related proteins have been found to move in either "plus-ward" or "minus-ward" directions along microtubules. Evidence from genetic analyses of simple eukaryotes and in vitro activity assays supports the notion that certain subfamilies of kinesin-related proteins provide antagonistic activities necessary to balance mitotic forces. A recent study by Sharp et al.((1)) sheds further light on the subject by exploiting the genetics and cytology of the fruit fly embryo.
Collapse
Affiliation(s)
- M M Heck
- University of Edinburgh, Institute of Cell and Molecular Biology, Michael Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK.
| |
Collapse
|
47
|
Gillespie PG, Gillespie SK, Mercer JA, Shah K, Shokat KM. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J Biol Chem 1999; 274:31373-81. [PMID: 10531338 DOI: 10.1074/jbc.274.44.31373] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinguishing the cellular functions carried out by enzymes of highly similar structure would be simplified by the availability of isozyme-selective inhibitors. To determine roles played by individual members of the large myosin superfamily, we designed a mutation in myosin's nucleotide-binding pocket that permits binding of adenine nucleotides modified with bulky N(6) substituents. Introduction of this mutation, Y61G in rat myosin-Ibeta, did not alter the enzyme's affinity for ATP or actin and actually increased its ATPase activity and actin-translocation rate. We also synthesized several N(6)-modified ADP analogs that should bind to and inhibit mutant, but not wild-type, myosin molecules. Several of these N(6)-modified ADP analogs were more than 40-fold more potent at inhibiting ATP hydrolysis by Y61G than wild-type myosin-Ibeta; in doing so, these analogs locked Y61G myosin-Ibeta tightly to actin. N(6)-(2-methylbutyl) ADP abolished actin filament motility mediated by Y61G, but not wild-type, myosin-Ibeta. Furthermore, a small fraction of inhibited Y61G molecules was sufficient to block filament motility mediated by mixtures of wild-type and Y61G myosin-Ibeta. Introduction of Y61G myosin-Ibeta molecules into a cell should permit selective inhibition by N(6)-modified ADP analogs of cellular processes dependent on myosin-Ibeta.
Collapse
Affiliation(s)
- P G Gillespie
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
48
|
Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999; 286:971-4. [PMID: 10542155 DOI: 10.1126/science.286.5441.971] [Citation(s) in RCA: 1356] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Small molecules that perturb specific protein functions are valuable tools for dissecting complex processes in mammalian cells. A combination of two phenotype-based screens, one based on a specific posttranslational modification, the other visualizing microtubules and chromatin, was used to identify compounds that affect mitosis. One compound, here named monastrol, arrested mammalian cells in mitosis with monopolar spindles. In vitro, monastrol specifically inhibited the motility of the mitotic kinesin Eg5, a motor protein required for spindle bipolarity. All previously known small molecules that specifically affect the mitotic machinery target tubulin. Monastrol will therefore be a particularly useful tool for studying mitotic mechanisms.
Collapse
Affiliation(s)
- T U Mayer
- Department of Cell Biology, and Institute of Chemistry and Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|