1
|
Mathó C, Fernández MC, Bonanata J, Liu XD, Martin A, Vieites A, Sansó G, Barontini M, Jonasch E, Coitiño EL, Pennisi PA. VHL-P138R and VHL-L163R Novel Variants: Mechanisms of VHL Pathogenicity Involving HIF-Dependent and HIF-Independent Actions. Front Endocrinol (Lausanne) 2022; 13:854365. [PMID: 35388293 PMCID: PMC8978939 DOI: 10.3389/fendo.2022.854365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
The von Hippel-Lindau (VHL) disease is an autosomal dominant cancer syndrome caused by mutations in the VHL tumor suppressor gene. VHL protein (pVHL) forms a complex (VBC) with Elongins B-C, Cullin2, and Rbx1. Although other functions have been discovered, the most described function of pVHL is to recognize and target hypoxia-inducible factor (HIF) for degradation. This work comprises the functional characterization of two novel variants of the VHL gene (P138R and L163R) that have been described in our center in patients with VHL disease by in vitro, in vivo, and in silico approaches. In vitro, we found that these variants have a significantly shorter half-life compared to wild-type VHL but still form a functional VBC complex. Altered fibronectin deposition was evidenced for both variants using immunofluorescence. In vivo studies revealed that both variants failed to suppress tumor growth. By means of molecular dynamics simulations, we inspected in silico the nature of the changes introduced by each variant in the VBC complex. We have demonstrated the pathogenicity of P138R and L163R novel variants, involving HIF-dependent and HIF-independent mechanisms. These results provide the basis for future studies regarding the impact of structural alterations on posttranslational modifications that drive pVHL's fate and functions.
Collapse
Affiliation(s)
- Cecilia Mathó
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Celia Fernández
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Jenner Bonanata
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Xian-De Liu
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ayelen Martin
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Vieites
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Gabriela Sansó
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marta Barontini
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Eric Jonasch
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - E. Laura Coitiño
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Patricia Alejandra Pennisi
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas- Fundación de Endocrinología Infantil (CONICET-FEI) División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- *Correspondence: Patricia Alejandra Pennisi,
| |
Collapse
|
2
|
Chen Z, Kibler RD, Hunt A, Busch F, Pearl J, Jia M, VanAernum ZL, Wicky BIM, Dods G, Liao H, Wilken MS, Ciarlo C, Green S, El-Samad H, Stamatoyannopoulos J, Wysocki VH, Jewett MC, Boyken SE, Baker D. De novo design of protein logic gates. Science 2020; 368:78-84. [PMID: 32241946 DOI: 10.1126/science.aay2790] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo-designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions.
Collapse
Affiliation(s)
- Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jocelynn Pearl
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Mengxuan Jia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Basile I M Wicky
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Galen Dods
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hanna Liao
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Matthew S Wilken
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Christie Ciarlo
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Shon Green
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - John Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, Division of Oncology, University of Washington, Seattle, WA 98109, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. .,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
4
|
Pan M, Zhou Y, Wang Y, Li L, Song Y, Hou L, Zhao J. Screening and Identification of the Host Proteins Interacting with Toxoplasma gondii Rhoptry Protein ROP16. Front Microbiol 2017; 8:2408. [PMID: 29255456 PMCID: PMC5722834 DOI: 10.3389/fmicb.2017.02408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii, as a zoonotic protozoan parasite, develops sophisticated strategies to manipulate hosts for efficient intracellular survival. After successful invasion, T. gondii injects many effector proteins into host cells for various purposes. TgROP16 (T. gondii rhoptry protein 16), which is secreted from rhoptries into host cells, can activate the host STAT (signal transducer and activator of transcription) signaling pathway through phosphorylation of STAT3 and STAT6. However, whether there are other host proteins modulated by TgROP16 is currently unknown. In this study, yeast two-hybrid (Y2H) screen was used to look for additional host proteins interacting with TgROP16. Yeast cells expressing a mouse cDNA library cloned into the prey vector were used to mate with yeasts expressing ROP16 without signal peptide. Two mouse proteins, Dnaja1 (DnaJ heat shock protein family member A1) and Gabra4 (gamma-aminobutyric acid A receptor, subunit alpha 4) were identified to interact with ROP16 from this screen. Further analysis suggested that the Predomain of ROP16 played key roles in mediating interactions with these host proteins, whereas the contribution from the Kinase domain was minor. The interactions between Dnaja1 and different parts of ROP16 were also estimated in vivo by co-immunoprecipitation. The results showed that the Predomain of ROP16 was the major region to interact with Dnaja1, which is consistent with the Y2H results. Based on the gene ontology analysis, Dnaja1 is predicted to participate in stress response while Gabra4 is involved in the system development process. The discovery of new host proteins that interact with ROP16 of T. gondii will help us to further investigate the functions of this effector proteins during T. gondii infection.
Collapse
Affiliation(s)
- Ming Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Longjiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongle Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lun Hou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
5
|
Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? SCIENCE CHINA-LIFE SCIENCES 2017; 60:1114-1124. [PMID: 29039125 DOI: 10.1007/s11427-017-9178-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
Hypoxia acts as an important regulator of physiological and pathological processes. Hypoxia inducible factors (HIFs) are the central players involved in the cellular adaptation to hypoxia and are regulated by oxygen sensing EGLN prolyl hydroxylases. Hypoxia affects many aspects of cellular growth through both redox effects and through the stabilization of HIFs. The HIF isoforms likely have differential effects on tumor growth via alteration of metabolism, growth, and self-renewal and are likely highly context-dependent. In some tumors such as renal cell carcinoma, the EGLN/HIF axis appears to drive tumorigenesis, while in many others HIF1 and HIF2 may actually have a tumor suppressive role. An emerging role of HIF biology is its effects on the tumor microenvironment. The EGLN/HIF axis plays a key role in regulating the function of the various components of the tumor microenvironment, which include cancer-associated fibroblasts, endothelial cells, immune cells, and the extracellular matrix (ECM). Here, we discuss hypoxia and the diverse roles of HIFs in the setting of tumorigenesis and the maintenance of the tumor microenvironment as well as possible future directions of the field.
Collapse
|
6
|
Management Strategies and Outcomes for VHL-related Craniospinal Hemangioblastomas. J Kidney Cancer VHL 2017; 4:37-44. [PMID: 28868236 PMCID: PMC5573741 DOI: 10.15586/jkcvhl.2017.90] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023] Open
Abstract
Hemangioblastomas are rare and benign tumors accounting for less than 2% of all central nervous system (CNS) tumors. The vast majority of hemangioblastomas occur sporadically, whereas a small number of cases, especially in younger patients, are associated with Von Hippel–Lindau (VHL) syndrome. It is thought that loss of tumor suppressor function of the VHL gene results in stabilization of hypoxia-inducible factor alpha with downstream activation of cellular proliferative and angiogenic genes that promote tumorigenesis. VHL-related hemangioblastomas predominantly occur in the cerebellum and spine. Lesions are often diagnosed on contrast-enhanced craniospinal MRIs, and the diagnosis of VHL occurs through assessment for germline VHL mutations. Surgical resection remains the primary treatment modality for symptomatic or worrisome lesions, with excellent local control rates and neurological outcomes. Stereotactic radiotherapy can be employed in patients who are deemed high risk for surgery, have multiple lesions, or have non-resectable lesions. Given the tendency for development of either new or multiple lesions, close radiographic surveillance is often recommended for asymptomatic lesions.
Collapse
|
7
|
Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure 2015; 23:441-449. [PMID: 25661653 DOI: 10.1016/j.str.2014.12.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023]
Abstract
The von Hippel-Lindau tumor suppressor protein (VHL) recruits a Cullin 2 (Cul2) E3 ubiquitin ligase to downregulate HIF-1α, an essential transcription factor for the hypoxia response. Mutations in VHL lead to VHL disease and renal cell carcinomas. Inhibition of this pathway to upregulate erythropoietin production is a promising new therapy to treat ischemia and chronic anemia. Here, we report the crystal structure of VHL bound to a Cul2 N-terminal domain, Elongin B, and Elongin C (EloC). Cul2 interacts with both the VHL BC box and cullin box and a novel EloC site. Comparison with other cullin E3 ligase structures shows that there is a conserved, yet flexible, cullin recognition module and that cullin selectivity is influenced by distinct electrostatic interactions. Our structure provides a structural basis for the study of the pathogenesis of VHL disease and rationale for the design of novel compounds that may modulate cullin-substrate receptor interactions.
Collapse
Affiliation(s)
- Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Haitao Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Jennifer L Fribourgh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Leslie S Wolfe
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Ashouri K, Mohseni S, Tourtelot J, Sharma P, Spiess PE. Implications of Von Hippel-Lindau Syndrome and Renal Cell Carcinoma. J Kidney Cancer VHL 2015; 2:163-173. [PMID: 28326271 PMCID: PMC5345519 DOI: 10.15586/jkcvhl.2015.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/20/2015] [Indexed: 01/20/2023] Open
Abstract
Von Hippel-Lindau syndrome (VHLS) is a rare hereditary neoplastic disorder caused by mutations in the vhl gene leading to the development of tumors in several organs including the central nervous system, pancreas, kidneys, and reproductive organs. Manifestations of VHLS can present at different ages based on the affected organ and subclass of disease. In the subclasses of VHLS that cause renal disease, renal involvement typically begins closer to the end of the second decade of life and can present in different ways ranging from simple cystic lesions to solid tumors. Mutations in vhl are most often associated with clear cell renal carcinoma, the most common type of renal cancer, and also play a major role in sporadic cases of clear cell renal carcinoma. The recurrent, multifocal nature of this disease presents difficult challenges in the long-term management of patients with VHLS. Optimization of renal function warrants the use of several different approaches common to the management of renal carcinoma such as nephron sparing surgery, enucleation, ablation, and targeted therapies. In VHLS, renal lesions of 3 cm or bigger are considered to have metastatic potential and even small lesions often harbor malignancy. Many of the aspects of management revolve around optimizing both oncologic outcome and long-term renal function. As new surgical strategies and targeted therapies develop, the management of this complex disease evolves. This review will discuss the key aspects of the current management of VHLS.
Collapse
Affiliation(s)
- Kenan Ashouri
- Department of Genitourinary Oncology; Department of Endocrinology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sophia Mohseni
- Department of Genitourinary Oncology; Department of Endocrinology, Moffitt Cancer Center, Tampa, FL, USA
| | - John Tourtelot
- Department of Genitourinary Oncology; Department of Endocrinology, Moffitt Cancer Center, Tampa, FL, USA
| | - Pranav Sharma
- Department of Genitourinary Oncology; Department of Endocrinology, Moffitt Cancer Center, Tampa, FL, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology; Department of Endocrinology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
9
|
Loss of BRMS1 promotes a mesenchymal phenotype through NF-κB-dependent regulation of Twist1. Mol Cell Biol 2014; 35:303-17. [PMID: 25368381 DOI: 10.1128/mcb.00869-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is downregulated in non-small cell lung cancer (NSCLC), and its reduction correlates with disease progression. Herein, we investigate the mechanisms through which loss of the BRMS1 gene contributes to epithelial-to-mesenchymal transition (EMT). Using a short hairpin RNA (shRNA) system, we show that loss of BRMS1 promotes basal and transforming growth factor beta-induced EMT in NSCLC cells. NSCLC cells expressing BRMS1 shRNAs (BRMS1 knockdown [BRMS1(KD)]) display mesenchymal characteristics, including enhanced cell migration and differential regulation of the EMT markers. Mesenchymal phenotypes observed in BRMS1(KD) cells are dependent on RelA/p65, the transcriptionally active subunit of nuclear factor kappa B (NF-κB). In addition, chromatin immunoprecipitation analysis demonstrates that loss of BRMS1 increases Twist1 promoter occupancy of RelA/p65 K310-a key histone modification associated with increased transcription. Knockdown of Twist1 results in reversal of BRMS1(KD)-mediated EMT phenotypic changes. Moreover, in our animal model, BRMS1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing lung tumors than BRMS1(KD) cells. Collectively, this study demonstrates that loss of BRMS1 promotes malignant phenotypes that are dependent on NF-κB-dependent regulation of Twist1. These observations offer fresh insight into the mechanisms through which BRMS1 regulates the development of metastases in NSCLC.
Collapse
|
10
|
Wimuttisuk W, West M, Davidge B, Yu K, Salomon A, Singer JD. Novel Cul3 binding proteins function to remodel E3 ligase complexes. BMC Cell Biol 2014; 15:28. [PMID: 25011449 PMCID: PMC4107866 DOI: 10.1186/1471-2121-15-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
Abstract
Background Cullins belong to a family of scaffold proteins that assemble multi-subunit ubiquitin ligase complexes to recruit protein substrates for ubiquitination via unique sets of substrate adaptor, such as Skp1 or Elongin B, and a substrate-binding protein with a conserved protein-protein interacting domain, such as leucine-rich repeats (LRR), a WD40 domain, or a zinc-finger domain. In the case of the Cullin3 (Cul3), it forms a BTB-Cul3-Rbx1 (BCR) ubiquitin ligase complex where it is believed that a BTB domain-containing protein performs dual functions where it serves as both the substrate adaptor and the substrate recognition protein. Results Tandem affinity purification and LC/MS-MS analysis of the BCR complex led to the identification of 10,225 peptides. After the SEQUEST algorithm and CDART program were used for protein identification and domain prediction, we discovered a group of Cul3-bound proteins that contain either the LRR or WD40 domain (CLWs). Further biochemical analysis revealed that the LRR domain-containing CLWs could bind both Cul3 and BTB domain-containing proteins. The dual binding role for the LRR domain-containing CLWs results in causing the BTB-domain protein to become a substrate instead of an adaptor. To further distinguish potential substrates from other components that are part of the BCR ubiquitin ligase complex, we altered the parameters in the SEQUEST algorithm to select for peptide fragments with a modified lysine residue. This method not only identifies the potential substrates of the BCR ubiquitin ligase complex, but it also pinpoints the lysine residue in which the post-translational modification occurs. Interestingly, none of the CLWs were identified by this method, supporting our hypothesis that CLWs were not potential substrates but rather additional components of the BCR ubiquitin ligase complex. Conclusion Our study identified a new set of Cul3-binding proteins known as CLWs via tandem affinity purification and LC/MS-MS analysis. Subsequently, our biochemical analysis revealed that some CLWs modify binding of BTB domain-containing proteins to the complex, causing degradation of the BTB domain-containing protein. As these CLWs were excluded from our list of substrates, we propose that CLWs serve as unique Cul3 binding proteins that provide an alternative regulatory mechanism for the complex.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, Oregon, USA.
| |
Collapse
|
11
|
Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem J 2013; 456:55-66. [PMID: 23961993 DOI: 10.1042/bj20121711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loss and/or inactivation of the VHL (von Hippel-Lindau) tumour suppressor causes various tumours. Using a yeast two-hybrid system, we have identified the AR (androgen receptor) co-activator UXT (ubiquitously expressed transcript), as a VHL-interacting protein. GST pull-down and co-immunoprecipitation assays show that UXT interacts with VHL. In addition, UXT recruits VHL to the nucleus. VHL associates with the DBD (DNA-binding domain) and hinge domains of the AR and induces AR ubiquitination. Moreover, VHL interaction with the AR activates AR transactivation upon DHT (dihydrotestosterone) treatment. VHL knockdown inhibits AR ubiquitination and decreases transcriptional activation of the AR. Our data suggest that the VHL-UXT interaction and VHL-induced ubiquitination of AR regulate transcriptional activation of the AR.
Collapse
|
12
|
Kitamura K, Komatsu M, Biyani M, Futakami M, Kawakubo T, Yamamoto K, Nishigaki K. Proven in vitro evolution of protease cathepsin E-inhibitors and -activators at pH 4.5 using a paired peptide method. J Pept Sci 2012; 18:711-9. [PMID: 23109368 DOI: 10.1002/psc.2453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/08/2012] [Accepted: 08/20/2012] [Indexed: 12/25/2022]
Abstract
Improving a particular function of molecules is often more difficult than identifying such molecules ab initio. Here, a method to acquire higher affinity and/or more functional peptides was developed as a progressive library selection method. The primary library selection products were utilized to build a secondary library composed of blocks of 4 amino acids, of which selection led to peptides with increased activity. These peptides were further converted to randomly generate paired peptides. Cathepsin E-inhibitors thus obtained exhibited the highest activities and affinities (pM order). This was also the case with cathepsin E-activating peptides, proving the methodological effectiveness. The primary, secondary, and tertiary library selections can be regarded as module-finding, module-shuffling, and module-pairing, respectively, which resembles the progression of the natural evolution of proteins. The mode of peptide binding to their target proteins is discussed in analogy to antibodies and epitopes of an antigen.
Collapse
Affiliation(s)
- Koichiro Kitamura
- Janusys Corporation, #508, Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama, 333-0844, Japan; Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Saitama, 338-8570, Japan; Rational Evolutionary Design of Advanced Biomolecules, Saitama (REDS), Saitama Small Enterprise Promotion Corporation, #552, Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama, 333-0844, Japan; City Area Program Saitama Metropolitan Area, Saitama small and medium Enterprises Development Corporation, 2-3-2 Kamiochiai, Chuo-ku, Saitama City, Saitama, 338-0001, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Limaverde-Sousa G, Barreto EDA, Ferreira CG, Casali-da-Rocha JC. Simulation of the mutation F76del on the von Hippel-Lindau tumor suppressor protein: mechanism of the disease and implications for drug development. Proteins 2012; 81:349-63. [PMID: 23011899 DOI: 10.1002/prot.24191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/08/2012] [Accepted: 09/19/2012] [Indexed: 11/05/2022]
Abstract
The von Hippel-Lindau tumor suppressor protein (pVHL) plays a central role in the oxygen-sensing pathway by regulating the degradation of the hypoxia-inducible factor (HIF-1α). The capture of HIF-1α by pVHL is regulated by an oxygen-dependent hydroxylation of a specific conserved prolyl residue. The VHL gene is mutated in the von Hippel-Lindau cancer predisposition syndrome, which is characterized by the development of highly vascularized tumors and is associated with constitutively high levels of HIF-1α. The disturbance of the dynamic coupling between HIF-1α and pVHL bearing the commonly found mutation F76del was experimentally confirmed but the mechanism of such complex disruption is still not clear. Performing unbiased molecular dynamics simulations, we show that the F76del mutation may enlarge the HIF binding pocket in pVHL and induce the formation of an internal cavity in the hydrophobic core of the β-domain, which can lead to a partial destabilization of the β-sheets S1, S4, and S7 and a consequent loss of hydrogen bonds with a conserved recognition motif in HIF. The newly formed cavity has a significant druggability score and may be a suitable target for stabilizing ligands. Studies of this nature may help to fill the information gap between genotype-phenotype correlations with details obtained at atomic level and provide basis for future development of drug candidates, such as pharmacological chaperones, with the specific aim of reverting the dysfunction of such pathological protein complexes found in patients with VHL.
Collapse
Affiliation(s)
- Gabriel Limaverde-Sousa
- Coordenação de Pesquisa Clínica e Incorporação Tecnológica, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37, Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
14
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
15
|
Kim JJ, Rini BI, Hansel DE. Von Hippel Lindau syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:228-49. [PMID: 20687511 DOI: 10.1007/978-1-4419-6448-9_22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Von Hippel-Lindau syndrome (VHLS) is an autosomal dominant familial cancer syndrome arising from germ-line inactivation of the VHL gene on the short arm of chromosome 3. VHLS manifests in a myriad of hyper-vascular tumors of both benign and malignant nature. Incidence of VHLS is roughly 1 in 36,000 live births and has over 90% penetrance by the age of 65. Improved understanding of the natural history and biology of VHLS has led to the introduction of screening protocols, early interventions and improved treatments, all of which resulted in a substantially improved prognosis for this disease. Further details regardingvariegated molecular pathways and mechanisms ofVHLS are emerging with the subsequent advent of novel treatment protocols that are currently in clinical trials.
Collapse
Affiliation(s)
- Jenny J Kim
- Cleveland Clinic, Taussig Cancer Institute, Celveland, Ohio 44195, USA
| | | | | |
Collapse
|
16
|
Moore LE, Wilson RT, Campleman SL. Lifestyle Factors, Exposures, Genetic Susceptibility, and Renal Cell Cancer Risk: A Review. Cancer Invest 2009; 23:240-55. [PMID: 15945510 DOI: 10.1081/cnv-200055962] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Malignant kidney tumors account for approximately 2% of all new primary cancer cases diagnosed in the United States, with an estimated 30,000 cases occurring annually. Although a variety of agents, chemical and biological, have been implicated as causal agents in the development of renal cell carcinoma (RCC), the etiology remains enigmatic. The strongest association has been developed between cigarette smoking and renal cancer however consistent, positive associations between RCC and obesity, diabetes, and hypertension have also been reported. In addition, more recent investigations of familial kidney cancer syndromes indicate that a strong genetic component contributes to RCC development. Several genes have been identified through investigation of familial kidney cancer syndromes. This review article describes recent trends in RCC incidence and the currently identifiable etiological causes that account for approximately half of the RCC cases diagnoses. The remainder of this review then focuses on additional risk factors that have thus far not been well examined but may be helpful in explaining the increasing incidence trends and the geographic or racial variation observed nationally and worldwide.
Collapse
Affiliation(s)
- Lee E Moore
- Occupational Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
17
|
Plafker KS, Singer JD, Plafker SM. The ubiquitin conjugating enzyme, UbcM2, engages in novel interactions with components of cullin-3 based E3 ligases. Biochemistry 2009; 48:3527-37. [PMID: 19256485 PMCID: PMC2680606 DOI: 10.1021/bi801971m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The class III ubiquitin conjugating enzymes (E2s) are distinguished from other E2s by the presence of unique N-terminal domains, and the utilization of importin-11 for transport into the nucleus in an activation dependent fashion. To begin determining the physiological roles of these enzymes, we carried out a yeast two-hybrid screen with the class III E2, UbcM2. This screen retrieved RCBTB1, a putative substrate adaptor for a cullin3 (CUL3) E3 ligase. We initially established through biochemical studies that RCBTB1 has the properties of a CUL3 substrate adaptor. Further analysis of the UbcM2-RCBTB1 complex led to the discovery and characterization of the following novel interactions: (i) UbcM2 binds an N-terminal domain of CUL3 requiring the first 57 amino acids, the same domain that binds to RCBTB1 and other substrate adaptors; (ii) UbcM2 does not bind mutants of CUL3 that are deficient in substrate adaptor recruitment; (iii) UbcM2 interacts with CUL3 independent of a bridging RING-finger protein; and (iv) can engage the neddylated (i.e., activated) form of CUL3. We also present evidence that UbcM2 can bind to the N-terminal halves of multiple cullins, implying that this E2 is a general cofactor for this class of ligases. Together, these studies represent the first evidence that UbcM2, in concert with substrate adaptors, engages activated CUL3 ligases, thus suggesting that class III E2s are novel regulators of cullin ligases.
Collapse
Affiliation(s)
| | | | - Scott M. Plafker
- Address correspondence this author at Department of Cell Biology, 940 Stanton L. Young Blvd., BMSB 538, University of Oklahoma, Oklahoma City, OK 73104. Tel: (405) 271−2335 (ext 242). Fax: (405) 271−3548. E-mail:
| |
Collapse
|
18
|
Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 2008; 3:7. [PMID: 18282298 PMCID: PMC2266742 DOI: 10.1186/1747-1028-3-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/18/2008] [Indexed: 11/29/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed of a cullin, RING H2 finger protein, a variable substrate-recognition subunit (SRS), and for most CRLs, an adaptor that links the SRS to the complex. Eukaryotic species contain multiple cullins, with five major types in metazoa. Each cullin forms a distinct class of CRL complex, with distinct adaptors and/or substrate-recognition subunits. Despite this diversity, each of the classes of CRL complexes is subject to similar regulatory mechanisms. This review focuses on the global regulation of CRL complexes, encompassing: neddylation, deneddylation by the COP9 Signalosome (CSN), inhibitory binding by CAND1, and the dimerization of CRL complexes. We also address the role of cycles of activation and inactivation in regulating CRL activity and switching between substrate-recognition subunits.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Bldg,, Athens, GA 30602-2607, USA.
| | | |
Collapse
|
19
|
Bex C, Knauth K, Dambacher S, Buchberger A. A yeast two-hybrid system reconstituting substrate recognition of the von Hippel-Lindau tumor suppressor protein. Nucleic Acids Res 2007; 35:e142. [PMID: 17986458 PMCID: PMC2175351 DOI: 10.1093/nar/gkm932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The von Hippel-Lindau tumor suppressor protein (pVHL) is inactivated in the hereditary cancer syndrome von Hippel-Lindau disease and in the majority of sporadic renal carcinomas. pVHL is the substrate-binding subunit of the CBCVHL ubiquitin ligase complex that negatively regulates cell growth by promoting the degradation of hypoxia-inducible transcription factor subunits (HIF1/2α). Proteomics-based identification of novel pVHL substrates is hampered by their short half-life and low abundancy in mammalian cells. The usefulness of yeast two-hybrid (Y2H) approaches, on the other hand, has been limited by the failure of pVHL to adopt its native structure and by the absence of prolylhydroxylase activity critical for pVHL substrate recognition. Therefore, we modified the Y2H system to faithfully reconstitute the physical interaction between pVHL and its substrates. Our approach relies on the coexpression of pVHL with the cofactors Elongin B and Elongin C and with HIF1/2α prolylhydroxylases. In a proof-of-principle Y2H screen, we identified the known substrates HIF1/2α and new candidate substrates including diacylglycerol kinase iota, demonstrating that our strategy allows detection of stable interactions between pVHL and otherwise elusive cellular targets. Additional future applications may include structure/function analyses of pVHL-HIF1/2α binding and screens for therapeutically relevant compounds that either stabilize or disrupt this interaction.
Collapse
Affiliation(s)
- Claudia Bex
- Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
20
|
Hypoxia-inducible factors: Crosstalk between their protein stability and protein degradation. Cancer Lett 2007; 257:145-56. [DOI: 10.1016/j.canlet.2007.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 11/21/2022]
|
21
|
Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY. Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 2007; 26:63-74. [PMID: 17434127 PMCID: PMC2905600 DOI: 10.1016/j.molcel.2007.02.024] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/15/2007] [Accepted: 02/20/2007] [Indexed: 12/25/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional factor. Under normal oxygen tension, HIF-1 activity is usually suppressed due to the rapid, oxygen-dependent degradation of one of its two subunits, HIF-1alpha. Here we report that normoxic HIF-1 activity can be upregulated through NO-mediated S-nitrosylation and stabilization of HIF-1alpha. In murine tumors, exposure to ionizing radiation stimulated the generation of NO in tumor-associated macrophages. As a result, the HIF-1alpha protein is S-nitrosylated at Cys533 (through "biotin switch" assay) in the oxygen-dependent degradation domain, which prevents its destruction. Importantly, this mechanism appears to be independent of the prolylhydroxylase-based pathway that is involved in oxygen-dependent regulation of HIF-1alpha. Selective disruption of this S-nitrosylation significantly attenuated both radiation-induced and macrophage-induced activation of HIF-1alpha. This interaction between NO and HIF-1 sheds new light on their involvement in tumor response to treatment as well as mammalian inflammation process in general.
Collapse
Affiliation(s)
- Fang Li
- Department of Radiation Oncology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Pierre Sonveaux
- Unit of Pharmacology & Therapeutics, University of Louvain (UCL) Medical School, Avenue E. Mounier, 53B, B-1200 Brussels, Belgium
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Zahid N. Rabbani
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Shanling Liu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- West China 2 University Hospital, Sichuan University, Chengdu, China
| | - Bin Yan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Qian Huang
- No.1 People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Chuan-Yuan Li
- Department of Radiation Oncology, University of Colorado Health Sciences Center, Aurora, CO 80045
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
22
|
Vasudevan S, Starostina NG, Kipreos ET. The Caenorhabditis elegans cell-cycle regulator ZYG-11 defines a conserved family of CUL-2 complex components. EMBO Rep 2007; 8:279-86. [PMID: 17304241 PMCID: PMC1808032 DOI: 10.1038/sj.embor.7400895] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 11/29/2006] [Accepted: 12/06/2006] [Indexed: 12/18/2022] Open
Abstract
The cullin CUL-2 is a crucial component of a subclass of multisubunit cullin-RING ubiquitin-ligases. The specificity of CUL-2-based complexes is provided by variable substrate-recognition subunits that bind to specific substrates. In Caenorhabditis elegans, CUL-2 regulates several key processes in cell division and embryonic development, including meiotic progression, anterior-posterior polarity and mitotic chromatin condensation. However, the substrate recognition subunits that work in these CUL-2-dependent processes were unknown. Here, we present evidence that ZYG-11 is the substrate-recognition subunit for a CUL-2-based complex that regulates these functions. We show that ZYG-11 interacts with CUL-2 in vivo and binds to the complex adaptor protein Elongin C using a nematode variant of the VHL-box motif. We show that the ZYG11 gene family encompasses two main branches in metazoa, and provide evidence that members of the extended ZYG11 family in nematodes and humans are conserved components of CUL2-based ubiquitin-ligases.
Collapse
Affiliation(s)
- Srividya Vasudevan
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Building, Athens, Georgia 30602, USA
| | - Natalia G Starostina
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Building, Athens, Georgia 30602, USA
| | - Edward T Kipreos
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Building, Athens, Georgia 30602, USA
- Tel: +1 706 542 3862; Fax: +1 706 542 4271; E-mail:
| |
Collapse
|
23
|
|
24
|
Gordon SM, Alon N, Buchwald M. FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J Biol Chem 2005; 280:36118-25. [PMID: 16127171 DOI: 10.1074/jbc.m507758200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, cancer predisposition, and increased cellular sensitivity to DNA-cross-linking agents. The products of seven of the nine identified FA genes participate in a protein complex required for monoubiquitination of the FANCD2 protein. Direct interaction of the FANCE protein with both fellow FA complex component FANCC and the downstream FANCD2 protein has been observed in the yeast two-hybrid system. Here, we demonstrate the ability of FANCE to mediate the interaction between FANCC and FANCD2 in the yeast three-hybrid system and confirm the FANCE-mediated association of FANCC with FANCD2 in human cells. A yeast two-hybrid system-based screen was devised to identify randomly mutagenized FANCE proteins capable of interaction with FANCC but not with FANCD2. Exogenous expression of these mutants in an FA-E cell line and subsequent evaluation of FANCD2 monoubiquitination and DNA cross-linker sensitivity indicated a critical role for the FANCE/FANCD2 interaction in maintaining FA pathway integrity. Three-hybrid experiments also demonstrated the ability of FANCE to mediate the interaction between FA core complex components FANCC and FANCF, indicating an additional role for FANCE in complex assembly. Thus, FANCE is shown to be a key mediator of protein interactions both in the architecture of the FA protein complex and in the connection of complex components to the putative downstream targets of complex activity.
Collapse
Affiliation(s)
- Susan M Gordon
- Program in Genetics and Genomic Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | | | | |
Collapse
|
25
|
Alleman WG, Tabios RL, Chandramouli GVR, Aprelikova ON, Torres-Cabala C, Mendoza A, Rogers C, Rodgers C, Sopko NA, Linehan WM, Vasselli JR. The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2'-deoxycytidine. Clin Cancer Res 2005; 10:7011-21. [PMID: 15501981 DOI: 10.1158/1078-0432.ccr-04-0516] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Clear cell renal carcinoma (ccRCC) is strongly associated with loss of the von Hippel-Lindau (VHL) tumor suppressor gene. The VHL gene is functionally lost through hypermethylation in up to 19% of sporadic ccRCC cases. We theorized that re-expressing VHL silenced by methylation in ccRCC cells, using a hypo-methylating agent, may be an approach to treatment in patients with this type of cancer. We test the ability of two hypo-methylating agents to re-express VHL in cell culture and in mice bearing human ccRCC and evaluate the effects of re-expressed VHL in these models. EXPERIMENTAL DESIGN Real-time reverse transcription-PCR was used to evaluate the ability of zebularine and 5-aza-2'-deoxycytidine (5-aza-dCyd) to re-express VHL in four ccRCC cell lines with documented VHL gene silencing through hypermethylation. We evaluated if the VHL re-expressed after hypo-methylating agent treatment could recreate similar phenotypic changes in ccRCC cells observed when the VHL gene is re-expressed via transfection in cell culture and in a xenograft mouse model. Finally we evaluate global gene expression changes occurring in our cells, using microarray analysis. RESULTS 5-Aza-dCyd was able to re-express VHL in our cell lines both in culture and in xenografted murine tumors. Well described phenotypic changes of VHL expression including decreased invasiveness into Matrigel, and decreased vascular endothelial growth factor and glucose transporter-1 expression were observed in the treated lines. VHL methylated ccRCC xenografted tumors were significantly reduced in size in mice treated with 5-aza-dCyd. Mice bearing nonmethylated but VHL-mutated tumors showed no tumor shrinkage with 5-aza-dCyd treatment. CONCLUSION Hypo-methylating agents may be useful in the treatment of patients having ccRCC tumors consisting of cells with methylated VHL.
Collapse
|
26
|
Willems AR, Schwab M, Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:133-70. [PMID: 15571813 DOI: 10.1016/j.bbamcr.2004.09.027] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase family was discovered through genetic requirements for cell cycle progression in budding yeast. In these multisubunit enzymes, an invariant core complex, composed of the Skp1 linker protein, the Cdc53/Cul1 scaffold protein and the Rbx1/Roc1/Hrt1 RING domain protein, engages one of a suite of substrate adaptors called F-box proteins that in turn recruit substrates for ubiquitination by an associated E2 enzyme. The cullin-RING domain-adaptor architecture has diversified through evolution, such that in total many hundreds of distinct SCF and SCF-like complexes enable degradation of myriad substrates. Substrate recognition by adaptors often depends on posttranslational modification of the substrate, which thus places substrate stability under dynamic regulation by intracellular signaling events. SCF complexes control cell proliferation through degradation of critical regulators such as cyclins, CDK inhibitors and transcription factors. A plethora of other processes in development and disease are controlled by other SCF-like complexes, including those based on Cul2-SOCS-box adaptor protein and Cul3-BTB domain adaptor protein combinations. Recent structural insights into SCF-like complexes have begun to illuminate aspects of substrate recognition and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Andrew R Willems
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada, M5G 1X5
| | | | | |
Collapse
|
27
|
Kaelin WG. The von Hippel-Lindau tumor suppressor protein: roles in cancer and oxygen sensing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:159-66. [PMID: 16869749 DOI: 10.1101/sqb.2005.70.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biallelic inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is a common event in hereditary (von Hippel- Lindau disease) and sporadic hemangioblastomas and clear-cell renal carcinomas. Germ-line VHL mutations are also linked to some hereditary pheochromocytoma families. The VHL gene product, pVHL, interacts with a number of cellular proteins and is implicated in the control of angiogenesis, extracellular matrix formation, cell metabolism, and mitogenesis. The best understood function of pVHL relates to its role as the substrate recognition unit of an E3 ligase that targets the heterodimeric transcription factor HIF (hypoxia-inducible factor) for destruction in the presence of oxygen. Down-regulation of HIF appears to be both necessary and sufficient for renal tumor suppression by pVHL, and HIF is strongly suspected of contributing to hemangioblastoma development as well. Recent work suggests that pVHL's role in pheochromocytoma is not related to HIF but rather to the ability of pVHL to regulate neuronal apoptosis, which is mediated by c-Jun, when growth factors such as NGF become limiting. Loss of pVHL leads to up-regulation of JunB, which antagonizes c-Jun and blunts apoptosis.
Collapse
Affiliation(s)
- W G Kaelin
- Howard Hughes Medical Institute, Dana-Farber and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Giles RH, Voest EE. Tumor suppressors APC and VHL: gatekeepers of the intestine and kidney. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 40:151-81. [PMID: 17153484 DOI: 10.1007/3-540-27671-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Rachel H Giles
- Department Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
29
|
Yan Q, Kamura T, Cai Y, Jin J, Ivan M, Mushegian A, Conaway RC, Conaway JW. Identification of Elongin C and Skp1 sequences that determine Cullin selection. J Biol Chem 2004; 279:43019-26. [PMID: 15280393 DOI: 10.1074/jbc.m408018200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.
Collapse
Affiliation(s)
- Qin Yan
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu J, Vasudevan S, Kipreos ET. CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development 2004; 131:3513-25. [PMID: 15215209 DOI: 10.1242/dev.01245] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The faithful segregation of chromosomes during meiosis is vital for sexual reproduction. Currently, little is known about the molecular mechanisms regulating the initiation and completion of meiotic anaphase. We show that inactivation of CUL-2, a member of the cullin family of ubiquitin ligases, delays or abolishes meiotic anaphase II with no effect on anaphase I, indicating differential regulation during the two meiotic stages. In cul-2 mutants, the cohesin REC-8 is removed from chromosomes normally during meiosis II and sister chromatids separate, suggesting that the failure to complete anaphase results from a defect in chromosome movement rather than from a failure to sever chromosome attachments. CUL-2 is required for the degradation of cyclin B1 in meiosis and inactivation of cyclin B1 partially rescued the meiotic delay in cul-2 mutants. In cul-2 mutants, the failure to degrade cyclin B1 precedes the metaphase II arrest. CUL-2 is also required for at least two aspects of embryonic polarity. The extended meiosis II in cul-2 mutants induces polarity reversals that include reversed orientation of polarity proteins, P granules, pronuclei migration and asymmetric cell division. Independently of its role in meiotic progression, CUL-2 is required to limit the initiation/spread of the polarity protein PAR-2 in regions distant from microtubule organizing centers. Finally, we show that inactivation of the leucine-rich repeat protein ZYG-11 produces meiotic and polarity reversal defects similar to those observed in cul-2 mutants, suggesting that the two proteins function in the same pathways.
Collapse
Affiliation(s)
- Ji Liu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | | | |
Collapse
|
31
|
Jensen RL, Gillespie D, House P, Layfield L, Shelton C. Endolymphatic sac tumors in patients with and without von Hippel-Lindau disease: the role of genetic mutation, von Hippel-Lindau protein, and hypoxia inducible factor-1alpha expression. J Neurosurg 2004; 100:488-97. [PMID: 15035285 DOI: 10.3171/jns.2004.100.3.0488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECT Endolymphatic sac (ELS) tumors are low-grade malignancies of the temporal bone that are associated with von Hippel-Lindau (VHL) disease but can also occur sporadically. The VHL gene product VHL protein is important in the regulation of hypoxia inducible factor (HIF)-1alpha, which controls expression of molecules that are important in angiogenesis and cell metabolism. In this study the authors examine the role of VHL and HIF-1 in ELS tumors. METHODS The ELS tumors from three patients were examined using the following method: DNA from tumor tissue was isolated, amplified by polymerase chain reaction and the VHL gene sequence was compared with the known wild-type sequence. Loss of heterozygosity (LOH) studies were performed to confirm the sequencing data. Immunohistochemical evaluation for VHL, HIF-1alpha, vascular endothelial growth factor (VEGF), and carbonic anhydrase IX (CA IX) was performed. Snap-frozen tumor tissue was examined using Western blot and HIF-1 immunoassays for HIF-1alpha and VHL expression. Two patients had sporadic ELS tumors and the other one suffered from VHL disease. Results of VHL gene sequencing were normal in the tissue derived from the sporadic ELS tumors. The ELS tumor, pheochromocytoma, and spinal hemangioblastoma were heterozygous for the same C-to-A transversion found in the germline carried by the patient with VHL disease. No LOH was detected in the tumor tissue obtained in the patient with VHL disease. Expression of HIF-1alpha, VEGF, and CA IX evaluated using immunohistochemical studies was elevated in the VHL-associated tumors. Nevertheless, Western blots and immunoassays for HIF-1alpha did not show elevated expression in these tumors. CONCLUSIONS The sporadic and VHL disease-associated ELS tumors in this study had normal VHL-mediated HIF-1 regulation. This is a result of normal VHL gene expression in the case of the sporadic ELS tumor. In the VHL-associated ELS tumor, this is due to one normal copy of the VHL gene and adequate VHL gene expression.
Collapse
Affiliation(s)
- Randy L Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah 84132-2303, USA.
| | | | | | | | | |
Collapse
|
32
|
Pintard L, Willems A, Peter M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 2004; 23:1681-7. [PMID: 15071497 PMCID: PMC394240 DOI: 10.1038/sj.emboj.7600186] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/04/2004] [Indexed: 11/09/2022] Open
Abstract
Cullin-based E3 ligases target substrates for ubiquitin-dependent degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (ElonginC-Cul2-SOCS box) complexes are so far the best-characterized cullin-based ligases. Their atomic structure has been solved recently, and several substrates have been described in different organisms. In addition to Cul1 and Cul2, higher eucaryotic genomes encode for three other cullins: Cul3, Cul4, and Cul5. Recent results have shed light on the molecular composition and function of Cul3-based E3 ligases. In these complexes, BTB-domain-containing proteins may bridge the cullin to the substrate in a single polypeptide, while Skp1/F-box or ElonginC/SOCS heterodimers fulfill this function in the SCF and ECS complexes. BTB-containing proteins are evolutionary conserved and involved in diverse biological processes, but their function has not previously been linked to ubiquitin-dependent degradation. In this review, we present these new findings and compare the composition of Cul3-based ligases to the well-defined SCF and ECS ligases.
Collapse
Affiliation(s)
- Lionel Pintard
- Institute of Biochemistry, ETH Hoenggerberg, Zuerich, Switzerland.
| | | | | |
Collapse
|
33
|
Maynard MA, Ohh M. Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 2004; 24:1-13. [PMID: 14654728 DOI: 10.1159/000075346] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 10/20/2003] [Indexed: 12/31/2022]
Abstract
The development of hereditary von Hippel-Lindau (VHL) disease and the majority of sporadic kidney cancers are due to the functional inactivation of the VHL gene. The product of the VHL gene, pVHL, in association with elongins B and C, cullin 2, and Rbx1 form an E3 ubiquitin-ligase complex VEC that targets the alpha subunits of hypoxia-inducible factor (HIF) for ubiquitination. Ubiquitin-tagged HIF-alpha proteins are subsequently degraded by the common 26S proteasome. pVHL functions as the substrate-docking interface that specifically recognizes prolyl-hydroxylated HIF-alpha. This hydroxylation occurs only in the presence of oxygen or normoxia. Thus, under hypoxia, HIF-alpha subunits are no longer subjected to degradation and are thereby able to dimerize with the common and constitutively stable beta subunits. The heterodimeric HIFs upregulate a myriad of hypoxia-inducible genes, triggering our physiologic response to hypoxia. Inappropriate accumulations of HIF-alpha in VHL disease are believed to contribute to the pathogenesis via the upregulation of several of these HIF target genes. Our current molecular understanding of the roles of HIF and pVHL in the development of VHL-associated clear-cell renal cell carcinoma (CC-RCC) is the focus of this review.
Collapse
Affiliation(s)
- Mindy A Maynard
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont., Canada
| | | |
Collapse
|
34
|
Abstract
Sensing and responding to fluxes in oxygen tension is perhaps the single most important variable in physiology, and animal tissues have developed a number of essential mechanisms to cope with the stress of low physiological oxygen levels, or hypoxia. Among these coping mechanisms is the response mediated by the hypoxia-inducible transcription factor, or HIF-1. HIF-1 is an essential component in changing the transcriptional repertoire of tissues as oxygen levels drop, and could prove to be a very important target for drug development, as treatments evolve for diseases, such as cancer, heart disease and stroke, in which hypoxia is a central aspect.
Collapse
Affiliation(s)
- Amato Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5468, USA
| | | | | |
Collapse
|
35
|
Abstract
ABSTRACT. Recent studies of a relatively rare hereditary cancer syndrome, von Hippel-Lindau (VHL) disease, have shed new light on the molecular pathogenesis of kidney cancer and, perhaps more important, on how mammalian cells sense and respond to changes in oxygen availability. This knowledge is already translating into new therapeutic targets for kidney cancer as well as for multiple conditions, such as myocardial infarction and stroke, in which ischemia plays a pathogenic role. This review summarizes the current knowledge of the molecular pathogenesis of von Hippel-Lindau disease and the role of the VHL gene product (pVHL) in kidney cancer and the mammalian oxygen sensing pathway. E-mail: william_kaelin@dfci.harvard.edu
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
36
|
Dannenberg H, De Krijger RR, van der Harst E, Abbou M, IJzendoorn Y, Komminoth P, Dinjens WNM. Von Hippel-Lindau gene alterations in sporadic benign and malignant pheochromocytomas. Int J Cancer 2003; 105:190-5. [PMID: 12673678 DOI: 10.1002/ijc.11060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Von Hippel-Lindau (VHL) gene product has a wide spectrum of tissue-specific functions, and specific germline mutations are associated with clinical phenotypes in VHL disease. In particular, missense mutations are correlated with the susceptibility to pheochromocytomas. An association between VHL aberrations and prognosis has been suggested in renal clear cell carcinoma but has not been studied in pheochromocytomas. We studied the frequency and spectrum of VHL alterations in apparently sporadic pheochromocytomas in relation to the clinical behavior in 72 patients, including 48 patients with clinically benign and 24 patients with malignant pheochromocytomas. Single-strand conformation polymorphism (SSCP) analysis followed by DNA sequencing, loss of heterozygosity analysis of the VHL locus and immunohistochemistry for VHL protein expression were used to investigate somatic VHL gene alterations. In 2 patients, 1 with a malignant tumor, germline mutations were identified in the stop codon. Tumor-specific intragenic VHL mutations and accompanying loss of heterozygosity were identified in 2 (4.3%) of 47 sporadic benign pheochromocytomas compared to 4 (17.4%) of 23 malignant tumors (p = 0.064). Only one of these mutations has been previously described, in a renal clear cell carcinoma. Expression of the VHL protein was observed in all pheochromocytomas. No distinction in the nature of VHL alterations between benign and malignant pheochromocytomas and no correlation with histopathologic or clinical features was observed. We report novel VHL mutations in sporadic pheochromocytomas, which are slightly correlated with malignancy. VHL mutations may have some impact on the malignant transformation of pheochromocytomas.
Collapse
Affiliation(s)
- Hilde Dannenberg
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Melville MW, McClellan AJ, Meyer AS, Darveau A, Frydman J. The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. Mol Cell Biol 2003; 23:3141-51. [PMID: 12697815 PMCID: PMC153194 DOI: 10.1128/mcb.23.9.3141-3151.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degree of cooperation and redundancy between different chaperones is an important problem in understanding how proteins fold in the cell. Here we use the yeast Saccharomyces cerevisiae as a model system to examine in vivo the chaperone requirements for assembly of the von Hippel-Lindau protein (VHL)-elongin BC (VBC) tumor suppressor complex. VHL and elongin BC expressed in yeast assembled into a correctly folded VBC complex that resembles the complex from mammalian cells. Unassembled VHL did not fold and remained associated with the cytosolic chaperones Hsp70 and TRiC/CCT, in agreement with results from mammalian cells. Analysis of the folding reaction in yeast strains carrying conditional chaperone mutants indicates that incorporation of VHL into VBC requires both functional TRiC and Hsp70. VBC assembly was defective in cells carrying either a temperature-sensitive ssa1 gene as their sole source of cytosolic Hsp70/SSA function or a temperature-sensitive mutation in CCT4, a subunit of the TRiC/CCT complex. Analysis of the VHL-chaperone interactions in these strains revealed that the cct4ts mutation decreased binding to TRiC but did not affect the interaction with Hsp70. In contrast, loss of Hsp70 function disrupted the interaction of VHL with both Hsp70 and TRiC. We conclude that, in vivo, folding of some polypeptides requires the cooperation of Hsp70 and TRiC and that Hsp70 acts to promote substrate binding to TRiC.
Collapse
Affiliation(s)
- Mark W Melville
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Michal Safran
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Safran M, Kaelin WG. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 2003; 111:779-83. [PMID: 12639980 PMCID: PMC153778 DOI: 10.1172/jci18181] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Michal Safran
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
40
|
Abstract
Hypoxia is prevalent in many tumours and is prognostically important. A transcriptional pathway controlled by hypoxia-inducible factor-1 (HIF) is also commonly up-regulated in cancer, resulting in the induction of genes with both pro- and anti-tumourigenic properties. High HIF levels may arise as a response to the tumour micro-environment or because of genetic events, including mutations affecting the von Hippel-Lindau tumour suppressor protein. Recent elucidation of mechanisms underlying the regulation of HIF, via amino acid hydroxylases, suggests a role in balancing energy production, iron metabolism and oxygen supply. Co-selection of properties linked by the HIF pathway may explain the glycolytic phenotype of tumours and underlie tumour angiogenesis, which though benefiting the tumour as a whole is unlikely to be directly selected at the clonal level because it will not give one cell specific advantage over its neighbours.
Collapse
Affiliation(s)
- Christopher W Pugh
- Henry Wellcome Building of Genomic Medicine, University of Oxford, Headington, UK.
| |
Collapse
|
41
|
Jensen RL, Soleau S, Bhayani MK, Christiansen D. Expression of hypoxia inducible factor-1 alpha and correlation with preoperative embolization of meningiomas. J Neurosurg 2002; 97:658-67. [PMID: 12296651 DOI: 10.3171/jns.2002.97.3.0658] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Vascular endothelial growth factor (VEGF) has been implicated in meningioma tumorigenesis and growth. The production of VEGF is regulated by hypoxia inducible factor-1alpha (HIF-1alpha), especially under conditions of hypoxia. In this study, the authors examine the expression of HIF-1alpha and VEGF in meningiomas, with a special emphasis on conditions of hypoxia, such as preoperative embolization, and on in vitro studies in cultured cells. METHODS Meningiomas obtained in 142 patients were studied using immunohistochemical methods to detect HIF-1alpha and the results were correlated with the extent or lack of preoperative embolization and expression of VEGF. Primary meningioma cell cultures were established and cell culture experiments were performed using a hypoxia chamber to stimulate HIF-1alpha and VEGF production. Expression of HIF-1alpha in primary meningioma cell cultures was measured using immunoblot assays. The VEGF secretion was measured using enzyme-linked immunosorbent assay. Half of the meningiomas studied were positive for HIF-1alpha, with a strong correlation between complete embolization and HIF-1alpha expression. Most of the meningiomas studied expressed VEGF protein, and VEGF expression did not correlate with the degree of embolization. A strong correlation was found between VEGF and HIF-1alpha expression in immunohistochemical studies. Secretion of VEGF is increased by hypoxia and growth factor stimulation. In meningiomas, growth factors stimulate HIF-1alpha expression. The role of hypoxia is less clear. CONCLUSIONS The expression of HIF-1alpha is increased by complete preoperative embolization of meningiomas. The expression of HIF-1alpha also correlates with VEGF secretion in meningiomas. Growth factor and hypoxic stimulation both contribute to VEGF control, but which is most important (or whether both are equally important) will require further studies.
Collapse
Affiliation(s)
- Randy L Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City 84132-2303, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
The von Hippel-Lindau hereditary cancer syndrome was first described about 100 years ago. The unusual clinical features of this disorder predicted a role for the von Hippel-Lindau gene (VHL) in the oxygen-sensing pathway. Indeed, recent studies of this gene have helped to decipher how cells sense changes in oxygen availability, and have revealed a previously unappreciated role of prolyl hydroxylation in intracellular signalling. These studies, in turn, are laying the foundation for the treatment of a diverse set of disorders, including cancer, myocardial infarction and stroke.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
43
|
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 2002; 76:9194-206. [PMID: 12186903 PMCID: PMC136464 DOI: 10.1128/jvi.76.18.9194-9206.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 06/12/2002] [Indexed: 12/26/2022] Open
Abstract
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.
Collapse
Affiliation(s)
- Josephine N Harada
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
44
|
Kamura T, Brower CS, Conaway RC, Conaway JW. A molecular basis for stabilization of the von Hippel-Lindau (VHL) tumor suppressor protein by components of the VHL ubiquitin ligase. J Biol Chem 2002; 277:30388-93. [PMID: 12048197 DOI: 10.1074/jbc.m203344200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multiprotein von Hippel-Lindau (VHL) tumor suppressor (CBC(VHL), Cul2-Elongin BC-VHL) and SCF (Skp1-Cul1/Cdc53-F-box protein) complexes are members of structurally related families of E3 ubiquitin ligases that use a heterodimeric module composed of a member of the Cullin protein family and the RING finger protein Rbx1 (ROC1/Hrt1) to activate ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34. VHL and F-box proteins function as the substrate recruitment subunits of CBC(VHL) and SCF complexes, respectively. In cells, many F-box proteins are short lived and are proposed to be ubiquitylated by an autocatalytic mechanism and destroyed by the proteasome following assembly into SCF complexes. In contrast, the VHL protein is stabilized by interaction with the Elongin B and C subunits of CBC(VHL) in cells. In this report, we have presented direct biochemical evidence that unlike the F-box protein Cdc4, which is ubiquitylated in vitro by Cdc34 in the context of the SCF, the VHL protein is protected from Ubc5-catalyzed ubiquitylation following assembly into the CBC(VHL) complex. CBC(VHL) is continuously required for negative regulation of hypoxia-inducible transcription factors in normoxic cells and of SCF complexes, many of which function only transiently during the cell cycle or in response to cellular signals. Our findings provide a molecular basis for the different modes of cellular regulation of VHL and F-box proteins and are consistent with the known roles of CBC(VHL).
Collapse
Affiliation(s)
- Takumi Kamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
45
|
Brower CS, Sato S, Tomomori-Sato C, Kamura T, Pause A, Stearman R, Klausner RD, Malik S, Lane WS, Sorokina I, Roeder RG, Conaway JW, Conaway RC. Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc Natl Acad Sci U S A 2002; 99:10353-8. [PMID: 12149480 PMCID: PMC124918 DOI: 10.1073/pnas.162424199] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2001] [Indexed: 11/18/2022] Open
Abstract
The heterodimeric Elongin BC complex has been shown to interact in vitro and in cells with a conserved BC-box motif found in an increasing number of proteins including RNA polymerase II elongation factor Elongin A, suppressor of cytokine signaling (SOCS)-box proteins, and the von Hippel-Lindau tumor suppressor protein. Recently, the Elongin BC complex was found to function as an adaptor that links these BC-box proteins to a module composed of Cullin family members Cul2 or Cul5 and RING-H2 finger protein Rbx1 to reconstitute a family of E3 ubiquitin ligases that activate ubiquitylation by the E2 ubiquitin-conjugating enzyme Ubc5. As part of our effort to understand the functions of Elongin BC-based ubiquitin ligases, we exploited a modified yeast two-hybrid screen to identify a mammalian BC-box protein similar in sequence to Saccharomyces cerevisiae Mediator subunit Med8p. In this report we demonstrate (i) that mammalian MED8 is a subunit of the mammalian Mediator complex and (ii) that MED8 can assemble with Elongins B and C, Cul2, and Rbx1 to reconstitute a ubiquitin ligase. Taken together, our findings are consistent with the model that MED8 could function to recruit ubiquitin ligase activity directly to the RNA polymerase II transcriptional machinery.
Collapse
|
46
|
Groulx I, Lee S. Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 2002; 22:5319-36. [PMID: 12101228 PMCID: PMC133938 DOI: 10.1128/mcb.22.15.5319-5336.2002] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is becoming increasingly evident that the degradation of nuclear proteins requires nuclear-cytoplasmic trafficking of both the substrate proteins, as well as the E3 ubiquitin-ligases. Here, we show that nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein (VHL) is required for oxygen-dependent ubiquitination and degradation of the alpha subunits of hypoxia-inducible factor (HIF-alpha). VHL engages in a constitutive transcription-sensitive nuclear-cytoplasmic shuttle unaffected by oxygen tension or levels of nuclear substrate HIF-alpha. Ubiquitinated forms of HIF-alpha, as well as VHL/ubiquitinated HIF-alpha complexes, are found solely in the nuclear compartment of normoxic or reoxygenated VHL-competent cells. HIF-alpha localizes exclusively in the nucleus of hypoxic cells but is exported to the cytoplasm upon reoxygenation. Oxygen-dependent nuclear ubiquitination and nuclear export of HIF-alpha can be prevented by treatment with an HIF-specific prolyl hydroxylase inhibitor. Treatment with inhibitors of RNA polymerase II activity, which interfere with the ability of VHL to engage in nuclear export, also prevents cytoplasmic accumulation of HIF-alpha in reoxygenated cells. This caused a marked increase in the HIF-alpha half-life without affecting its nuclear ubiquitination. We present a model by which VHL-mediated ubiquitination of HIF-alpha and its subsequent degradation are dependent upon dynamic nuclear-cytoplasmic trafficking of both the E3 ubiquitin-ligase and the nuclear substrate protein.
Collapse
Affiliation(s)
- Isabelle Groulx
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5 Ontario, Canada
| | | |
Collapse
|
47
|
Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1:237-46. [PMID: 12086860 DOI: 10.1016/s1535-6108(02)00043-0] [Citation(s) in RCA: 604] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the von Hippel-Lindau tumor suppressor gene is linked to the development of hereditary (VHL Disease-associated) and sporadic clear cell carcinoma of the kidney. The VHL gene product, pVHL, targets the heterodimeric transcription factor HIF for polyubiquitination, and restoration of pVHL function in VHL(-/-) renal carcinoma cells suppresses their ability to form tumors in nude mice. Here we show that tumor suppression by pVHL can be overridden by a HIF variant that escapes pVHL control. These studies prove that HIF is a critical downstream target of pVHL and establish that activation of HIF target genes can promote tumorigenesis in vivo.
Collapse
Affiliation(s)
- Keiichi Kondo
- Department of Adult Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1:247-55. [PMID: 12086861 DOI: 10.1016/s1535-6108(02)00044-2] [Citation(s) in RCA: 355] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clear-cell renal carcinoma is associated with inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene. VHL is the substrate recognition subunit of an E3 ligase, known to target the alpha subunits of the HIF heterodimeric transcription factor for ubiquitin-mediated degradation under normoxic conditions. We demonstrate that competitive inhibition of the VHL substrate recognition site with a peptide derived from the oxygen degradation domain of HIF1alpha recapitulates the tumorigenic phenotype of VHL-deficient tumor cells. These studies prove that VHL substrate recognition is essential to the tumor suppressor function of VHL. We further demonstrate that normoxic stabilization of HIF1alpha alone, while capable of mimicking some aspects of VHL loss, is not sufficient to reproduce tumorigenesis, indicating that it is not the critical oncogenic substrate of VHL.
Collapse
Affiliation(s)
- Jodi K Maranchie
- Urologic Oncology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
49
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3118] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
50
|
Gupta A, Yang LX, Chen LC. Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene. Int J Radiat Oncol Biol Phys 2002; 52:822-30. [PMID: 11849807 DOI: 10.1016/s0360-3016(01)02739-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Members of the cullin gene family are known to be involved in cell cycle control. One of the cullin genes, Cul-4A, is amplified and overexpressed in breast cancer cells. This study investigates the effect of Cul-4A overexpression upon G2/M cell cycle checkpoint after DNA damage induced by either ionizing or nonionizing radiation. METHODS AND MATERIALS The normal mammary epithelial cell line MCF10A was stably transfected with full-length Cul-4A cDNA. Independent clones of MCF10A cells that overexpress Cul-4A proteins were selected and treated with either 8 Gy of ionizing radiation or 7 J/M(2) of UV radiation. The profile of cell cycle progression and the accumulation of several cell cycle proteins were analyzed. RESULTS We found that overexpression of Cul-4A in MCF10A cells abrogated the G2/M cell cycle checkpoint in response to DNA damage induced by ionizing irradiation, but not to DNA damage induced by nonionizing radiation. Analysis of cell cycle proteins showed that after ionizing irradiation, p53 accumulated in the mock-transfected MCF10A cells, but not in the Cul-4A transfectants. CONCLUSION Our results suggest a role for Cul-4A in tumorigenesis and/or tumor progression, possibly through disruption of cell cycle control.
Collapse
Affiliation(s)
- Anu Gupta
- Geraldine Brush Cancer Research Institute, California Pacific Medical Center, San Francisco, CA 94115, USA
| | | | | |
Collapse
|