1
|
Worley MJ. Salmonella Type III Secretion System Effectors. Int J Mol Sci 2025; 26:2611. [PMID: 40141253 PMCID: PMC11942329 DOI: 10.3390/ijms26062611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella is estimated to infect between 200 million and over 1 billion people per year. The exact number is not known, as many cases go unreported. Integral to the pathogenesis of Salmonella, as well as numerous other Gram-negative pathogens, is its type III effectors. Salmonella possesses two distinct type III secretion systems, encoded by Salmonella pathogenicity island-1 and Salmonella pathogenicity island-2. Together, they secrete at least 49 type III effectors into host cells that are collectively responsible for many of the virulence attributes of this pathogen. These virulence factors facilitate the invasion of host cells, induce and attenuate inflammation, and change the migratory properties of infected phagocytes, among other things. The effects of all type III effectors on Salmonella virulence are discussed.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
2
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. Structure 2024; 32:725-738.e8. [PMID: 38518780 PMCID: PMC11162321 DOI: 10.1016/j.str.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024]
Abstract
Entry of Salmonella into host enterocytes relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a 1:2 stoichiometry with sub-nanomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the groove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved by a combination of fast association via the core and very slow dissociation dictated by the arm. Similar to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by actin depolymerizing factor (ADF)/cofilin, which correlated with increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Liu X, Liu Y, Zhao X, Li X, Yao T, Liu R, Wang Q, Wang Q, Li D, Chen X, Liu B, Feng L. Salmonella enterica serovar Typhimurium remodels mitochondrial dynamics of macrophages via the T3SS effector SipA to promote intracellular proliferation. Gut Microbes 2024; 16:2316932. [PMID: 38356294 PMCID: PMC10877990 DOI: 10.1080/19490976.2024.2316932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.
Collapse
Affiliation(s)
- Xingmei Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xueping Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Ting Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Qiushi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xintong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University Shenzhen, Shenzhen, China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573373. [PMID: 38234808 PMCID: PMC10793455 DOI: 10.1101/2023.12.26.573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Entry of Salmonella into host enterocytes strictly relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a unique mode in a 1:2 stoichiometry with picomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the grove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved via a combination of fast association via the core and very slow dissociation dictated by the arm. Similarly to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by ADF/cofilin, which correlated with the increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
McGuckin MA, Davies JM, Felgner P, Wong KY, Giri R, He Y, Moniruzzaman M, Kryza T, Sajiir H, Hooper JD, Florin TH, Begun J, Oussalah A, Hasnain SZ, Hensel M, Sheng YH. MUC13 Cell Surface Mucin Limits Salmonella Typhimurium Infection by Protecting the Mucosal Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2023; 16:985-1009. [PMID: 37660948 PMCID: PMC10630632 DOI: 10.1016/j.jcmgh.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND & AIMS MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Julie M Davies
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pascal Felgner
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Rabina Giri
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Yaowu He
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Md Moniruzzaman
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Haressh Sajiir
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - John D Hooper
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Timothy H Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jakob Begun
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Abderrahim Oussalah
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy, France
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michael Hensel
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Laboratory of B-Lymphocytes in Autoimmunity and Malignancies, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
6
|
Li Q, Wang L, Xu J, Liu S, Song Z, Chen T, Deng X, Wang J, Lv Q. Quercitrin Is a Novel Inhibitor of Salmonella enterica Serovar Typhimurium Type III Secretion System. Molecules 2023; 28:5455. [PMID: 37513327 PMCID: PMC10383848 DOI: 10.3390/molecules28145455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose was to screen type III secretory system (T3SS) inhibitors of Salmonella enterica serovar Typhimurium (S. Typhimurium) from natural compounds. The pharmacological activities and action mechanisms of candidate compounds in vivo and in vitro were systematically studied and analyzed. Using a SipA-β-lactamase fusion reporting system, we found that quercitrin significantly blocked the translocation of SipA into eukaryotic host cells without affecting the growth of bacteria. Adhesion and invasion assay showed that quercitrin inhibited S. Typhimurium invasion into host cells and reduced S. Typhimurium mediated host cell damage. β-galactosidase activity detection and Western blot analysis showed that quercitrin significantly inhibited the expression of SPI-1 genes (hilA and sopA) and effectors (SipA and SipC). The results of animal experiments showed that quercitrin significantly reduced colony colonization and alleviated the cecum pathological injury of the infected mice. Small molecule inhibitor quercitrin directly inhibited the function of T3SS and provided a potential antibiotic alternative against S. Typhimurium infection. Importance: T3SS plays a crucial role in the bacterial invasion and pathogenesis of S. Typhimurium. Compared with conventional antibiotics, small molecules could inhibit the virulence factors represented by S. Typhimurium T3SS. They have less pressure on bacterial vitality and a lower probability of producing drug resistance. Our results provide strong evidence for the development of novel inhibitors against S. Typhimurium infection.
Collapse
Affiliation(s)
- Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinses Medicine, Changchun 130021, China
| | - Lianping Wang
- School of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Changchun 132101, China
| | - Jingwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuang Liu
- Jilin Jinziyuan Biotech Inc., Shuangliao 136400, China
| | - Zeyu Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tingting Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianghua Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
7
|
Kusumawaty D, Augustine SMN, Aryani A, Effendi Y, Emran TB, Tallei TE. Configuration of gut bacterial community profile and their potential functionality in the digestive tract of the wild and cultivated Indonesian shortfin elver-phase eels ( Anguilla bicolor bicolor McClelland, 1844). 3 Biotech 2023; 13:153. [PMID: 37131968 PMCID: PMC10148933 DOI: 10.1007/s13205-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
This study aimed to explore the bacteria present in the digestive tracts of wild and cultivated Indonesian shortfin eel during the elver phase. The eel has high export potential due to its vitamin and micronutrient content, but slow growth and vulnerability to collapse in farm conditions hinder its cultivation. The microbiota in the eel's digestive tract is crucial for its health, particularly during the elver phase. This study used Next Generation Sequencing to analyze the community structure and diversity of bacteria in the eels' digestive tracts, focusing on the V3-V4 regions of the 16S rRNA gene. Mothur software was used for data analysis and PAST v.3.26 was used to calculate alpha diversity. The results showed that Proteobacteria (64.18%) and Firmicutes (33.55%) were the predominant phyla in the digestive tract of cultivated eels, while Bacteroidetes (54.16%), Firmicutes (14.71%), and Fusobacteria (10.56%) were predominant in wild eels. The most prevalent genera in cultivated and wild elver were Plesiomonas and Cetobacterium, respectively. The microbiota in the digestive tract of cultivated eels was diverse despite uneven distribution. The KEGG database analysis revealed that the primary function of the microbiome was to facilitate the eel's absorption of nutrients by contributing significantly to the metabolism of carbohydrates and amino acids. This study's findings can aid in assessing eel health and improving eel farming conditions.
Collapse
Affiliation(s)
- Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Stella Melbournita Noor Augustine
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Any Aryani
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, 12110 Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381 Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115 North Sulawesi Indonesia
| |
Collapse
|
8
|
Li XM, Huang S, Li XD. Photo-ANA enables profiling of host-bacteria protein interactions during infection. Nat Chem Biol 2023; 19:614-623. [PMID: 36702958 DOI: 10.1038/s41589-022-01245-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens rapidly change and adapt their proteome to cope with the environment in host cells and secrete effector proteins to hijack host targets and ensure their survival and proliferation during infection. Excessive host proteins make it difficult to profile pathogens' proteome dynamics by conventional proteomics. It is even more challenging to map pathogen-host protein-protein interactions in real time, given the low abundance of bacterial effectors and weak and transient interactions in which they may be involved. Here we report a method for selectively labeling bacterial proteomes using a bifunctional amino acid, photo-ANA, equipped with a bio-orthogonal handle and a photoreactive warhead, which enables simultaneous analysis of bacterial proteome reprogramming and pathogen-host protein interactions of Salmonella enterica serovar Typhimurium (S. Typhimurium) during infection. Using photo-ANA, we identified FLOT1/2 as host interactors of S. Typhimurium effector PipB2 in late-stage infection and globally profiled the extensive interactions between host proteins and pathogens during infection.
Collapse
Affiliation(s)
- Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Siyue Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
10
|
Felipe-López A, Hansmeier N, Danzer C, Hensel M. Manipulation of microvillar proteins during Salmonella enterica invasion results in brush border effacement and actin remodeling. Front Cell Infect Microbiol 2023; 13:1137062. [PMID: 36936760 PMCID: PMC10018140 DOI: 10.3389/fcimb.2023.1137062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Enterocyte invasion by the gastrointestinal pathogen Salmonella enterica is accompanied by loss of brush border and massive remodeling of the actin cytoskeleton, leading to microvilli effacement and formation of membrane ruffles. These manipulations are mediated by effector proteins translocated by the Salmonella Pathogenicity Island 1-encoded type III secretion system (SPI1-T3SS). To unravel the mechanisms of microvilli effacement and contribution of SPI1-T3SS effector proteins, the dynamics of host-pathogen interactions was analyzed using live cell imaging (LCI) of polarized epithelial cells (PEC) expressing LifeAct-GFP. PEC were infected with S. enterica wild-type and mutant strains with defined defects in SPI1-T3SS effector proteins, and pharmacological inhibition of actin assembly were applied. We identified that microvilli effacement involves two distinct mechanisms: i) F-actin depolymerization mediated by villin and ii), the consumption of cytoplasmic G-actin by formation of membrane ruffles. By analyzing the contribution of individual SPI1-T3SS effector proteins, we demonstrate that SopE dominantly triggers microvilli effacement and formation of membrane ruffles. Furthermore, SopE via Rac1 indirectly manipulates villin, which culminates in F-actin depolymerization. Collectively, these results indicate that SopE has dual functions during F-actin remodeling in PEC. While SopE-Rac1 triggers F-actin polymerization and ruffle formation, activation of PLCγ and villin by SopE depolymerizes F-actin in PEC. These results demonstrate the key role of SopE in destruction of the intestinal barrier during intestinal infection by Salmonella.
Collapse
Affiliation(s)
| | | | - Claudia Danzer
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- *Correspondence: Michael Hensel,
| |
Collapse
|
11
|
Romero MD, Carabeo RA. Distinct roles of the Chlamydia trachomatis effectors TarP and TmeA in the regulation of formin and Arp2/3 during entry. J Cell Sci 2022; 135:jcs260185. [PMID: 36093837 PMCID: PMC9659389 DOI: 10.1242/jcs.260185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. The recent discovery of TmeA, which, like TarP, is an invasion-associated type III effector implicated in actin remodeling, raised questions regarding the nature of their functional interaction. Quantitative live-cell imaging of actin remodeling at invasion sites revealed differences in recruitment and turnover kinetics associated with the TarP and TmeA pathways, with the former accounting for most of the robust actin dynamics at invasion sites. TarP-mediated recruitment of actin nucleators, i.e. formins and the Arp2/3 complex, was crucial for rapid actin kinetics, generating a collaborative positive feedback loop that enhanced their respective actin-nucleating activities within invasion sites. In contrast, the formin Fmn1 was not recruited to invasion sites and did not collaborate with Arp2/3 within the context of TmeA-associated actin recruitment. Although the TarP-Fmn1-Arp2/3 signaling axis is responsible for the majority of actin dynamics, its inhibition had similar effects as the deletion of TmeA on invasion efficiency, consistent with the proposed model that TarP and TmeA act on different stages of the same invasion pathway.
Collapse
Affiliation(s)
- Matthew D. Romero
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
12
|
Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate. Sci Rep 2021; 11:22803. [PMID: 34815429 PMCID: PMC8611075 DOI: 10.1038/s41598-021-02054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have demonstrated the key role of the Salmonella Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of Salmonella in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization. Salmonella resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which Salmonella Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of Salmonella Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type Salmonella and T3SS1-invalidated Salmonella followed a common pathway leading to the formation of a Salmonella containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to Salmonella multiplication as well as the formation of a tubular network resembling Salmonella induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that Salmonella Typhimurium invasion and intracellular survival can be completely independent of T3SS1.
Collapse
|
13
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
14
|
ARHGEF26 enhances Salmonella invasion and inflammation in cells and mice. PLoS Pathog 2021; 17:e1009713. [PMID: 34242364 PMCID: PMC8294491 DOI: 10.1371/journal.ppat.1009713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/21/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella hijack host machinery in order to invade cells and establish infection. While considerable work has described the role of host proteins in invasion, much less is known regarding how natural variation in these invasion-associated host proteins affects Salmonella pathogenesis. Here we leveraged a candidate cellular GWAS screen to identify natural genetic variation in the ARHGEF26 (Rho Guanine Nucleotide Exchange Factor 26) gene that renders lymphoblastoid cells susceptible to Salmonella Typhi and Typhimurium invasion. Experimental follow-up redefined ARHGEF26’s role in Salmonella epithelial cell infection. Specifically, we identified complex serovar-by-host interactions whereby ARHGEF26 stimulation of S. Typhi and S. Typhimurium invasion into host cells varied in magnitude and effector-dependence based on host cell type. While ARHGEF26 regulated SopB- and SopE-mediated S. Typhi (but not S. Typhimurium) infection of HeLa cells, the largest effect of ARHGEF26 was observed with S. Typhimurium in polarized MDCK cells through a SopB- and SopE2-independent mechanism. In both cell types, knockdown of the ARHGEF26-associated protein DLG1 resulted in a similar phenotype and serovar specificity. Importantly, we show that ARHGEF26 plays a critical role in S. Typhimurium pathogenesis by contributing to bacterial burden in the enteric fever murine model, as well as inflammation in the colitis infection model. In the enteric fever model, SopB and SopE2 are required for the effects of Arhgef26 deletion on bacterial burden, and the impact of sopB and sopE2 deletion in turn required ARHGEF26. In contrast, SopB and SopE2 were not required for the impacts of Arhgef26 deletion on colitis. A role for ARHGEF26 on inflammation was also seen in cells, as knockdown reduced IL-8 production in HeLa cells. Together, these data reveal pleiotropic roles for ARHGEF26 during infection and highlight that many of the interactions that occur during infection that are thought to be well understood likely have underappreciated complexity. During infection, Salmonella manipulates host cells into engulfing the bacteria and establishing an intracellular niche. While many studies have identified genes involved in different stages of this Salmonella invasion process, few studies have examined how differences between human hosts contribute to infection susceptibility. Here we leveraged a candidate genetic screen to identify natural genetic variation in the human ARHGEF26 gene that correlates with Salmonella invasion. Springboarding from this result, we experimentally tested and redefined ARHGEF26’s role in Salmonella invasion, discovered a new role for ARHGEF26 in regulating inflammation during Salmonella disease, and demonstrated the relevance of these findings in mouse models. Building on how ARHGEF26 functions in other contexts, we implicated two ARHGEF26-interacting host proteins as contributors to Salmonella pathobiology. Collectively, these results identify a potential source of inter-person diversity in susceptibility to Salmonella disease and expand our molecular understanding of Salmonella infection to include a multifaceted role for ARHGEF26. They further identify important future directions in understanding how Salmonella recruit and manipulate ARHGEF26 as well as how ARHGEF26 is able to drive Salmonella-beneficial processes.
Collapse
|
15
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
16
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
17
|
Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front Cell Infect Microbiol 2020; 10:595502. [PMID: 33330138 PMCID: PMC7714789 DOI: 10.3389/fcimb.2020.595502] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.
Collapse
|
18
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
19
|
Zhu B, Luo F, Shen Y, Yang W, Sun C, Wang J, Li J, Mo X, Xu B, Zhang X, Li Y, Hu W. Schistosoma japonicum cathepsin B2 (SjCB2) facilitates parasite invasion through the skin. PLoS Negl Trop Dis 2020; 14:e0008810. [PMID: 33104723 PMCID: PMC7644097 DOI: 10.1371/journal.pntd.0008810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cercariae invasion of the human skin is the first step in schistosome infection. Proteases play key roles in this process. However, little is known about the related hydrolytic enzymes in Schistosoma japonicum. Here, we investigated the biochemical features, tissue distribution and biological roles of a cathepsin B cysteine protease, SjCB2, in the invasion process of S. japonicum cercariae. Enzyme activity analysis revealed that recombinant SjCB2 is a typical cysteine protease with optimum temperature and pH for activity at 37°C and 4.0, respectively, and can be totally inhibited by the cysteine protease inhibitor E-64. Immunoblotting showed that both the zymogen (50 kDa) and mature enzyme (30.5 kDa) forms of SjCB2 are expressed in the cercariae. It was observed that SjCB2 localized predominantly in the acetabular glands and their ducts of cercariae, suggesting that the protease could be released during the invasion process. The protease degraded collagen, elastin, keratin, fibronectin, immunoglobulin (A, G and M) and complement C3, protein components of the dermis and immune system. In addition, proteomic analysis demonstrated that SjCB2 can degrade the human epidermis. Furthermore, it was showed that anti-rSjCB2 IgG significantly reduced (22.94%) the ability of the cercariae to invade the skin. The cysteine protease, SjCB2, located in the acetabular glands and their ducts of S. japonicum cercariae. We propose that SjCB2 facilitates skin invasion by degrading the major proteins of the epidermis and dermis. However, this cysteine protease may play additional roles in host-parasite interaction by degrading immunoglobins and complement protein. Schistosomiasis is one of the most prevalent parasitic diseases in the world, with about 200 million humans infected in 74 tropical countries. The infection of schistosome is initiated when the larvae, cercariae, penetrate the human skin. Proteolytic enzymes are likely involved in the invasion process, but these have yet to be characterized for S. japonicum. Here, we have functionally expressed a recombinant form of the cathepsin B cysteine protease SjCB2 in the yeast Pichia pastoris. Our study showed that SjCB2 degraded a number of proteins associated with the skin and immune systems, and disrupted the structure of the human epidermis. The enzyme was located in the acetabular glands and their ducts in the cercariae, where it would be stored before released into the skin. Antibody-blocking studies revealed that SjCB2 had a 22.94% contribution during the cercariae invasion process. Taken together, our findings suggest that SjCB2 helped cercariae penetrating the skin barrier and evading the immune attack to allow successful infection in the mammalian host.
Collapse
Affiliation(s)
- Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yi Shen
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wenbin Yang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Jian Li
- Dermatology Department, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Xumin Zhang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
- * E-mail: (YL); (WH)
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail: (YL); (WH)
| |
Collapse
|
20
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
21
|
The Small RNA PinT Contributes to PhoP-Mediated Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00312-19. [PMID: 31262841 DOI: 10.1128/jb.00312-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium induces inflammatory diarrhea and bacterial uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). HilA activates transcription of the SPI1 structural components and effector proteins. Expression of hilA is activated by HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. Many environmental signals and other regulators are integrated into this regulatory loop, primarily via HilD. After the invasion of Salmonella into host intestinal epithelial cells or during systemic replication in macrophages, the SPI T3SS is no longer required or expressed. We have shown that the two-component regulatory system PhoPQ, required for intracellular survival, represses the SPI1 T3SS mostly by controlling the transcription of hilA and hilD Here we show that PinT, one of the PhoPQ-regulated small RNAs (sRNAs), contributes to this regulation by repressing hilA and rtsA translation. PinT base pairs with both the hilA and rtsA mRNAs, resulting in translational inhibition of hilA, but also induces degradation of the rts transcript. PinT also indirectly represses expression of FliZ, a posttranslational regulator of HilD, and directly represses translation of ssrB, encoding the primary regulator of the SPI2 T3SS. Our in vivo mouse competition assays support the concept that PinT controls a series of virulence genes at the posttranscriptional level in order to adapt Salmonella from the invasion stage to intracellular survival.IMPORTANCE Salmonella is one of the most important food-borne pathogens, infecting over one million people in the United States every year. These bacteria use a needle-like device to interact with intestinal epithelial cells, leading to invasion of the cells and induction of inflammatory diarrhea. A complex regulatory network controls expression of the invasion system in response to numerous environmental signals. Here we explore the molecular mechanisms by which the small RNA PinT contributes to this regulation, facilitating inactivation of the system after invasion. PinT controls several important virulence systems in Salmonella, tuning the transition between different stages of infection.
Collapse
|
22
|
Dhanda AS, Yu C, Guttman JA. Distribution of CD147 During Enteropathogenic Escherichia coli and Salmonella enterica Serovar Typhimurium Infections. Anat Rec (Hoboken) 2019; 302:2224-2232. [PMID: 31443124 DOI: 10.1002/ar.24235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) and Salmonella enterica serovar Typhimurium (S. Typhimurium) are highly infectious gastrointestinal human pathogens. These microbes inject bacterial-derived effector proteins directly into the host cell cytosol as part of their disease processes. A common host subcellular target of these pathogens is the actin cytoskeleton, which is commandeered by the bacteria and is used during their attachment onto (EPEC) or invasion into (S. Typhimurium) the host cells. We previously demonstrated that the host enzyme cyclophilin A (CypA) is recruited to the actin-rich regions of EPEC pedestals and S. Typhimurium membrane ruffles. To further expand the growing catalogue of host proteins usurped by actin-hijacking bacteria, we examined the host plasma membrane protein and cognate receptor of CypA, CD147, during EPEC and S. Typhimurium infections. Here, we show that CD147 is enriched at the basolateral regions of pedestals but, unlike CypA, it is absent from their actin-rich core. We show that the CD147 recruitment to these areas requires EPEC pedestal formation and not solely bacteria-host cell contact. Additionally, we demonstrate that the depletion of CD147 by siRNA does not alter the formation of pedestals. Finally, we show that CD147 is also a component of actin-rich membrane ruffles generated during S. Typhimurium invasion of host cells. Collectively, our findings establish CD147 as another host component present at dynamic actin-rich structures formed during bacterial infections. Anat Rec, 302:2224-2232, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Connie Yu
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
23
|
Chong A, Starr T, Finn CE, Steele-Mortimer O. A role for the Salmonella Type III Secretion System 1 in bacterial adaptation to the cytosol of epithelial cells. Mol Microbiol 2019; 112:1270-1283. [PMID: 31370104 DOI: 10.1111/mmi.14361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that invades the intestinal epithelium. Following invasion of epithelial cells, Salmonella survives and replicates within two distinct intracellular niches. While all of the bacteria are initially taken up into a membrane bound vacuole, the Salmonella-containing vacuole or SCV, a significant proportion of them promptly escape into the cytosol. Cytosolic Salmonella replicates more rapidly compared to the vacuolar population, although the reasons for this are not well understood. SipA, a multi-function effector protein, has been shown to affect intracellular replication and is secreted by cytosolic Salmonella via the invasion-associated Type III Secretion System 1 (T3SS1). Here, we have used a multipronged microscopy approach to show that SipA does not affect bacterial replication rates per se, but rather mediates intra-cytosolic survival and/or initiation of replication following bacterial egress from the SCV. Altogether, our findings reveal an important role for SipA in the early survival of cytosolic Salmonella.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
24
|
Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019; 9:270. [PMID: 31428589 PMCID: PMC6689963 DOI: 10.3389/fcimb.2019.00270] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella species can infect a diverse range of birds, reptiles, and mammals, including humans. The type III protein secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) delivers effector proteins required for intestinal invasion and the production of enteritis. The T3SS is regarded as the most important virulence factor of Salmonella. SPI-1 encodes transcription factors that regulate the expression of some virulence factors of Salmonella, while other transcription factors encoded outside SPI-1 participate in the expression of SPI-1-encoded genes. SPI-1 genes are responsible for the invasion of host cells, regulation of the host immune response, e.g., the host inflammatory response, immune cell recruitment and apoptosis, and biofilm formation. The regulatory network of SPI-1 is very complex and crucial. Here, we review the function, effectors, and regulation of SPI-1 genes and their contribution to the pathogenicity of Salmonella.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rongli Piao
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
25
|
Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N. Genome sequencing and analysis of Salmonella enterica subsp. enterica serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates. PeerJ 2019; 7:e6948. [PMID: 31293824 PMCID: PMC6601603 DOI: 10.7717/peerj.6948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I–III restriction-modification sites and the CRISPR-Cas system of the Type I–E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
Collapse
Affiliation(s)
- Khalidah Syahirah Ashari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hair Bejo
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
De Souza Santos M, Orth K. The Role of the Type III Secretion System in the Intracellular Lifestyle of Enteric Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0008-2019. [PMID: 31152523 PMCID: PMC11026088 DOI: 10.1128/microbiolspec.bai-0008-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Several pathogens have evolved to infect host cells from within, which requires subversion of many host intracellular processes. In the case of Gram-negative pathogenic bacteria, adaptation to an intracellular life cycle relies largely on the activity of type III secretion systems (T3SSs), an apparatus used to deliver effector proteins into the host cell, from where these effectors regulate important cellular functions such as vesicular trafficking, cytoskeleton reorganization, and the innate immune response. Each bacterium is equipped with a unique suite of these T3SS effectors, which aid in the development of an individual intracellular lifestyle for their respective pathogens. Some bacteria adapt to reside and propagate within a customized vacuole, while others establish a replicative niche in the host cytosol. In this article, we review the mechanisms by which T3SS effectors contribute to these different lifestyles. To illustrate the formation of a vacuolar and a cytosolic lifestyle, we discuss the intracellular habitats of the enteric pathogens Salmonella enterica serovar Typhimurium and Shigella flexneri, respectively. These represent well-characterized systems that function as informative models to contribute to our understanding of T3SS-dependent subversion of intracellular processes. Additionally, we present Vibrio parahaemolyticus, another enteric Gram-negative pathogen, as an emerging model for future studies of the cytosolic lifestyle.
Collapse
Affiliation(s)
- Marcela De Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
27
|
Hausmann A, Hardt WD. The Interplay between Salmonella enterica Serovar Typhimurium and the Intestinal Mucosa during Oral Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0004-2019. [PMID: 30953432 PMCID: PMC11588296 DOI: 10.1128/microbiolspec.bai-0004-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infection results in a dynamic interplay between the pathogen and its host. The underlying interactions are multilayered, and the cellular responses are modulated by the local environment. The intestine is a particularly interesting tissue regarding host-pathogen interaction. It is densely colonized by commensal microbes and a portal of entry for ingested pathogens. This necessitates constant monitoring of microbial stimuli in order to maintain homeostasis during encounters with benign microbiota and to trigger immune defenses in response to bacterial pathogens. Homeostasis is maintained by physical barriers (the mucus layer and epithelium), chemical defenses (antimicrobial peptides), and innate immune responses (NLRC4 inflammasome), which keep the bacteria from reaching the sterile lamina propria. Intestinal pathogens represent potent experimental tools to probe these barriers and decipher how pathogens can circumvent them. The streptomycin mouse model of oral Salmonella enterica serovar Typhimurium infection provides a well-characterized, robust experimental system for such studies. Strikingly, each stage of the gut tissue infection poses a different set of challenges to the pathogen and requires tight control of virulence factor expression, host response modulation, and cooperation between phenotypic subpopulations. Therefore, successful infection of the intestinal tissue relies on a delicate and dynamic balance between responses of the pathogen and its host. These mechanisms can be deciphered to their full extent only in realistic in vivo infection models.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, D-BIOL ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
28
|
Chua MD, Walker BD, Jin JP, Guttman JA. Calponins Are Recruited to Actin-Rich Structures Generated by Pathogenic Escherichia coli, Listeria, and Salmonella. Anat Rec (Hoboken) 2018; 301:2103-2111. [PMID: 30312538 DOI: 10.1002/ar.23956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Abstract
The ingestion of enteropathogenic Escherichia coli (EPEC), Listeria monocytogenes, or Salmonella enterica serovar Typhimurium leads to their colonization of the intestinal lumen, which ultimately causes an array of ailments ranging from diarrhea to bacteremia. Once in the intestines, these microbes generate various actin-rich structures to attach, invade, or move within the host intestinal epithelial cells. Although an assortment of actin-associated proteins has been identified to varying degrees at these structures, the localization of many actin stabilizing proteins have yet to be analyzed. Here, we examined the recruitment of the actin-associated proteins, calponin 1 and 2 at EPEC pedestals, L. monocytogenes actin clouds, comet tails and listeriopods, and S. Typhimurium membrane ruffles. In other systems, calponins are known to bind to and stabilize actin filaments. In EPEC pedestals, calponin 1 was recruited uniformly throughout the structures while calponin 2 was enriched at the apical tip. During L. monocytogenes infections, calponin 1 was found through all the actin-rich structures generated by the bacteria, while calponin 2 was only present within actin-rich structures formed by L. monocytogenes near the host cell membrane. Finally, both calponins were found within S. Typhimurium-generated membrane ruffles. Taken together, we have shown that although calponin 1 is recruited to actin-rich structures formed by the three bacteria, calponin 2 is specifically recruited to only membrane-bound actin-rich structures formed by the bacteria. Thus, our findings suggest that calponin 2 is a novel marker for membrane-bound actin structures formed by pathogenic bacteria. Anat Rec, 301:2103-2111, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Dominic Chua
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Julian A Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
29
|
Dhanda AS, Warren KE, Chiu RH, Guttman JA. Cyclophilin A ControlsSalmonellaInternalization Levels and is Present atE. coliActin‐Rich Pedestals. Anat Rec (Hoboken) 2018; 301:2086-2094. [DOI: 10.1002/ar.23957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Aaron S. Dhanda
- Department of Biological SciencesFaculty of Science, Simon Fraser University Burnaby British Columbia Canada
| | - Kiera E. Warren
- Department of Biological SciencesFaculty of Science, Simon Fraser University Burnaby British Columbia Canada
| | - Robert H. Chiu
- Dental and Craniofacial Research Institute and School of DentistryUniversity of California Los Angeles California
- Surgical Oncology & Jonsson Comprehensive Cancer CenterUniversity of California Los Angeles California
| | - Julian A. Guttman
- Department of Biological SciencesFaculty of Science, Simon Fraser University Burnaby British Columbia Canada
| |
Collapse
|
30
|
Singh PK, Kapoor A, Lomash RM, Kumar K, Kamerkar SC, Pucadyil TJ, Mukhopadhyay A. Salmonella SipA mimics a cognate SNARE for host Syntaxin8 to promote fusion with early endosomes. J Cell Biol 2018; 217:4199-4214. [PMID: 30309979 PMCID: PMC6279372 DOI: 10.1083/jcb.201802155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023] Open
Abstract
Intracellular pathogens can modulate host Rabs and SNAREs to support their replication and immune evasion. Singh et al. show that the Salmonella effector SipA functionally mimics an R-SNARE and recruits host Q-SNAREs to promote membrane fusion. Thus, SNARE mimicry by this intracellular pathogen effector modulates the host trafficking machinery for Salmonella survival. SipA is a major effector of Salmonella, which causes gastroenteritis and enteric fever. Caspase-3 cleaves SipA into two domains: the C-terminal domain regulates actin polymerization, whereas the function of the N terminus is unknown. We show that the cleaved SipA N terminus binds and recruits host Syntaxin8 (Syn8) to Salmonella-containing vacuoles (SCVs). The SipA N terminus contains a SNARE motif with a conserved arginine residue like mammalian R-SNAREs. SipAR204Q and SipA1–435R204Q do not bind Syn8, demonstrating that SipA mimics a cognate R-SNARE for Syn8. Consequently, Salmonella lacking SipA or that express the SipA1–435R204Q SNARE mutant are unable to recruit Syn8 to SCVs. Finally, we show that SipA mimicking an R-SNARE recruits Syn8, Syn13, and Syn7 to the SCV and promotes its fusion with early endosomes to potentially arrest its maturation. Our results reveal that SipA functionally substitutes endogenous SNAREs in order to hijack the host trafficking pathway and promote Salmonella survival.
Collapse
Affiliation(s)
| | - Anjali Kapoor
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Kamal Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
31
|
Toll-Like Receptor 2 and Lipoprotein-Like Lipoproteins Enhance Staphylococcus aureus Invasion in Epithelial Cells. Infect Immun 2018; 86:IAI.00343-18. [PMID: 29844243 DOI: 10.1128/iai.00343-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus contains a certain subclass of lipoproteins, the so-called lipoprotein-like lipoproteins (Lpl's), that not only represent Toll-like receptor 2 (TLR2) ligands but are also involved in host cell invasion. Here we addressed the question of which factors contribute to Lpl-mediated invasion of epithelial cells and keratinocytes. For this purpose, we compared the invasiveness of USA300 and its Δlpl mutant under different conditions. In the presence of the matrix proteins IgG, fibrinogen (Fg), and fibronectin (Fn), and of fetal bovine serum (FBS), the invasion ratio was increased in both strains, and always more in USA300 than in its Δlpl mutant. Interestingly, when we compared the invasion of HEK-0 and HEK-TLR2 cells, the cells expressing TLR2 showed a 9-times-higher invasion frequency. When HEK-TLR2 cells were additionally stimulated with a synthetic lipopeptide, Pam3CSK4 (P3C), the invasion frequency was further increased. A potential reason for the positive effect of TLR2 on invasion could be that TLR2 activation by P3C also activates F-actin formation. Here we show that S. aureus invasion depends on a number of factors, on the host side as well as on the bacterial side.
Collapse
|
32
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
33
|
Xu C, Zhang BZ, Lin Q, Deng J, Yu B, Arya S, Yuen KY, Huang JD. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect Dis 2018; 18:195. [PMID: 29699491 PMCID: PMC5921394 DOI: 10.1186/s12879-018-3104-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus. METHODS Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7-9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student's t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant. RESULTS Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains. CONCLUSIONS The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.
Collapse
Affiliation(s)
- Chen Xu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qiubin Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Smriti Arya
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. .,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China. .,Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
34
|
Zhang K, Riba A, Nietschke M, Torow N, Repnik U, Pütz A, Fulde M, Dupont A, Hensel M, Hornef M. Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo. PLoS Pathog 2018. [PMID: 29522566 PMCID: PMC5862521 DOI: 10.1371/journal.ppat.1006925] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effector molecules translocated by the Salmonella pathogenicity island (SPI)1-encoded type 3 secretion system (T3SS) critically contribute to the pathogenesis of human Salmonella infection. They facilitate internalization by non-phagocytic enterocytes rendering the intestinal epithelium an entry site for infection. Their function in vivo has remained ill-defined due to the lack of a suitable animal model that allows visualization of intraepithelial Salmonella. Here, we took advantage of our novel neonatal mouse model and analyzed various bacterial mutants and reporter strains as well as gene deficient mice. Our results demonstrate the critical but redundant role of SopE2 and SipA for enterocyte invasion, prerequisite for transcriptional stimulation and mucosal translocation in vivo. In contrast, the generation of a replicative intraepithelial endosomal compartment required the cooperative action of SipA and SopE2 or SipA and SopB but was independent of SopA or host MyD88 signaling. Intraepithelial growth had no critical influence on systemic spread. Our results define the role of SPI1-T3SS effector molecules during enterocyte invasion and intraepithelial proliferation in vivo providing novel insight in the early course of Salmonella infection. Non-typhoidal Salmonella represent a major causative agent of gastroenteritis worldwide. Hallmark of the pathogenesis is their ability to actively invade the intestinal epithelium by virtue of their type 3 secretion system that delivers bacterial virulence factors directly into the host cell cytosol. The role of these virulence factors during enterocyte entry and intraepithelial growth has only been investigated in vitro since the previously established in vivo models in small animals did not allow visualization of intraepithelial Salmonella. However, immortalized cell lines lack the overlaying mucus layer, final cell lineage differentiation, apical-basolateral polarization as well as continuous migration along the crypt villus axis and thus the role of virulence factors during the Salmonella infection in vivo has remained largely undefined. Here, we took advantage of our novel neonatal mouse infection model and for the first time systematically analyzed the importance of Salmonella virulence factors for enterocyte invasion and intraepithelial growth.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Ambre Riba
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Monika Nietschke
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Pütz
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
- * E-mail:
| |
Collapse
|
35
|
El Qaidi S, Wu M, Zhu C, Hardwidge PR. Salmonella, E. coli, and Citrobacter Type III Secretion System Effector Proteins that Alter Host Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:205-218. [PMID: 30411307 DOI: 10.1007/5584_2018_289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria deliver virulence proteins termed 'effectors' to counteract host innate immunity. Protein-protein interactions within the host cell ultimately subvert the generation of an inflammatory response to the infecting pathogen. Here we briefly describe a subset of T3SS effectors produced by enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), Citrobacter rodentium, and Salmonella enterica that inhibit innate immune pathways. These effectors are interesting for structural and mechanistic reasons, as well as for their potential utility in being engineered to treat human autoimmune disorders associated with perturbations in NF-κB signaling.
Collapse
Affiliation(s)
- Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Miaomiao Wu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
36
|
Razzuoli E, Amadori M, Lazzara F, Bilato D, Ferraris M, Vito G, Ferrari A. Salmonella serovar-specific interaction with jejunal epithelial cells. Vet Microbiol 2017; 207:219-225. [PMID: 28757027 DOI: 10.1016/j.vetmic.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/01/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023]
Abstract
Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- Laboratory of Diagnostics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129, Genova, Italy
| | - Massimo Amadori
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, via A. Bianchi 9, 25124, Brescia, Italy.
| | - Fabrizio Lazzara
- Laboratory of Diagnostics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129, Genova, Italy
| | - Dania Bilato
- Laboratory of Cellular Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, via A. Bianchi 9, 25124, Brescia, Italy
| | - Monica Ferraris
- Laboratory of Diagnostics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129, Genova, Italy
| | - Guendalina Vito
- Laboratory of Diagnostics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129, Genova, Italy
| | - Angelo Ferrari
- Laboratory of Diagnostics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129, Genova, Italy
| |
Collapse
|
37
|
Mercado-Lubo R, McCormick BA. Can a nanoparticle that mimics Salmonella effectively combat tumor chemotherapy resistance? Nanomedicine (Lond) 2017; 12:705-710. [PMID: 28322607 DOI: 10.2217/nnm-2017-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Regino Mercado-Lubo
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA
| | - Beth A McCormick
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA
| |
Collapse
|
38
|
Tsou LK, Yount JS, Hang HC. Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells. Bioorg Med Chem 2017; 25:2883-2887. [PMID: 28325635 DOI: 10.1016/j.bmc.2017.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
Increasing antibiotic resistance and beneficial effects of host microbiota has motivated the search for anti-infective agents that attenuate bacterial virulence rather than growth. For example, we discovered that specific flavonoids such as baicalein and quercetin from traditional medicinal plant extracts could attenuate Salmonella enterica serovar Typhimurium type III protein secretion and invasion of host cells. Here, we show epigallocatechin-3-gallate from green tea extracts also inhibits the activity of S. Typhimurium type III protein effectors and significantly reduces bacterial invasion into host cells. These results reveal additional dietary plant metabolites that can attenuate bacterial virulence and infection of host cells.
Collapse
Affiliation(s)
- Lun K Tsou
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, ROC
| | - Jacob S Yount
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA; Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
39
|
Ingram JP, Brodsky IE, Balachandran S. Interferon-γ in Salmonella pathogenesis: New tricks for an old dog. Cytokine 2016; 98:27-32. [PMID: 27773552 DOI: 10.1016/j.cyto.2016.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Salmonella enterica is a facultative intracellular bacterium that is the leading cause of food borne illnesses in humans. The cytokine IFN-γ has well-established antibacterial properties against Salmonella and other intracellular microbes, for example its capacity to activate macrophages, promote phagocytosis, and destroy phagocytosed microbes by free radical-driven toxification of phagosomes. But IFN-γ induces the expression of hundreds of uncharacterized genes, suggesting that this cytokine deploys additional antimicrobial strategies that await discovery. Recently, one such mechanism, mediated by a family of IFN-inducible small GTPases called Guanylate Binding Proteins (GBPs) has been uncovered. GBPs were shown to facilitate the pyroptotic clearance of Salmonella from infected macrophages by rupturing the protective intracellular vacuole this microbe forms around itself. Once this protective vacuole is lost, exposed Salmonella activates pyroptosis, which destroys the infected cell. In this review, we summarize such emerging roles for IFN-γ in restricting Salmonella pathogenesis.
Collapse
Affiliation(s)
- Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, United States
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, United States.
| |
Collapse
|
40
|
Andritschke D, Dilling S, Emmenlauer M, Welz T, Schmich F, Misselwitz B, Rämö P, Rottner K, Kerkhoff E, Wada T, Penninger JM, Beerenwinkel N, Horvath P, Dehio C, Hardt WD. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS One 2016; 11:e0161965. [PMID: 27627128 PMCID: PMC5023170 DOI: 10.1371/journal.pone.0161965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.
Collapse
Affiliation(s)
- Daniel Andritschke
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Sabrina Dilling
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | | | - Tobias Welz
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Benjamin Misselwitz
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Pauli Rämö
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Teiji Wada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
41
|
Hung CC, Eade CR, Altier C. The protein acyltransferase Pat post-transcriptionally controls HilD to repress Salmonella invasion. Mol Microbiol 2016; 102:121-36. [PMID: 27341691 DOI: 10.1111/mmi.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/12/2023]
Abstract
N-Lysine acylation is a post-translational modification important for both prokaryotic and eukaryotic cells to control a wide array of cellular functions. Here we demonstrate that the protein acyltransferase Pat regulates genes on Salmonella Pathogenicity Island 1 (SPI1) that are required for the invasion of the intestinal epithelium. Mutation of pat slightly increased spleen colonization by Salmonella in streptomycin-treated mice, with more of the pat mutant reaching the spleen than the wild type strain. Growth of Salmonella under specific conditions selectively induced expression of Pat, and deletion of pat increased SPI1 gene expression under the same growth conditions. In addition, over-expression of Pat repressed SPI1 expression and bacterial entry into epithelial cells. These results demonstrate that Salmonella invasion is negatively controlled by Pat. Regulation of the SPI1 central regulator HilD was essential for Pat to exert its effects. The control of HilD by Pat was through post-transcriptional mechanisms, moderately repressing hilD translation while significantly reducing HilD stability. Additionally, growth of Salmonella in the presence of histone deacetylases inhibitors reduced expression of SPI1 by affecting HilD stability, supporting the concept that altering the stability of this regulator is required for Pat to control Salmonella invasion.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Colleen R Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
42
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
43
|
MacDonald LC, O’Keefe S, Parnes MF, MacDonald H, Stretz L, Templer SJ, Wong EL, Berger BW. A Secreted Ankyrin-Repeat Protein from Clinical Stenotrophomonas maltophilia Isolates Disrupts Actin Cytoskeletal Structure. ACS Infect Dis 2016; 2:62-70. [PMID: 27622948 DOI: 10.1021/acsinfecdis.5b00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stenotrophomonas maltophilia is an emerging, multidrug-resistant pathogen of increasing importance for the immunocompromised, including cystic fibrosis patients. Despite its significance as an emerging pathogen, relatively little is known regarding the specific factors and mechanisms that contribute to its pathogenicity. We identify and characterize a putative ankyrin-repeat protein (Smlt3054) unique to clinical S. maltophilia isolates that binds F-actin in vitro and co-localizes with actin in transfected HEK293a cells. Smlt3054 is endogenously expressed and secreted from clinical S. maltophilia isolates, but not an environmental isolate (R551-3). The in vitro binding of Smlt3054 to F-actin resulted in a thickening of the filaments as observed by TEM. Ectopic expression of Smlt3054-GFP exhibits strong co-localization with F-actin, with distinct, retrograde F-actin waves specifically associated with Smlt3054 in individual cells as well as formation of dense, internal inclusions at the expense of retrograde F-actin waves. Collectively, our results point to an interaction between Smlt3054 and F-actin. Furthermore, as a potentially secreted protein unique to clinical S. maltophilia isolates, Smlt3054 may serve as a starting point for understanding the mechanisms by which S. maltophilia has become an emergent pathogen.
Collapse
Affiliation(s)
- Logan C. MacDonald
- Program in Bioengineering and Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sean O’Keefe
- Program in Bioengineering and Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Mei-Fan Parnes
- Program in Bioengineering and Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Hanlon MacDonald
- Program in Bioengineering and Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lindsey Stretz
- Program in Bioengineering and Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Suzanne J. Templer
- Division of Infectious Disease, Lehigh Valley Health Network, 1250 South Cedar Crest Boulevard, Suite 200, Allentown, Pennsylvania 18103, United States
| | - Emily L. Wong
- Division of Infectious Disease, Lehigh Valley Health Network, 1250 South Cedar Crest Boulevard, Suite 200, Allentown, Pennsylvania 18103, United States
| | - Bryan W. Berger
- Program in Bioengineering and Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
44
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
45
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
46
|
Abstract
Salmonellae invasion and intracellular replication within host cells result in a range of diseases, including gastroenteritis, bacteraemia, enteric fever and focal infections. In recent years, considerable progress has been made in our understanding of the molecular mechanisms that salmonellae use to alter host cell physiology; through the delivery of effector proteins with specific activities and through the modulation of defence and stress response pathways. In this Review, we summarize our current knowledge of the complex interplay between bacterial and host factors that leads to inflammation, disease and, in most cases, control of the infection by its animal hosts, with a particular focus on Salmonella enterica subsp. enterica serovar Typhimurium. We also highlight gaps in our knowledge of the contributions of salmonellae and the host to disease pathogenesis, and we suggest future avenues for further study.
Collapse
Affiliation(s)
- Doris L. LaRock
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Anu Chaudhary
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, WA 98195
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Immunology, University of Washington, Seattle, WA 98195
- Department of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
47
|
Pimenta EM, Barnes BJ. A conserved region within interferon regulatory factor 5 controls breast cancer cell migration through a cytoplasmic and transcription-independent mechanism. Mol Cancer 2015; 14:32. [PMID: 25649192 PMCID: PMC4326371 DOI: 10.1186/s12943-015-0305-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023] Open
Abstract
Background Migration of breast cancer cells out of a duct or lobule is a prerequisite for invasion and metastasis. However, the factors controlling breast cancer cell migration are not fully elucidated. We previously found that expression of the transcription factor interferon regulatory factor 5 (IRF5) is significantly decreased as a breast lesion progresses from a non-malignant stage to ductal carcinoma in situ and is eventually lost in ~80% of invasive ductal carcinomas examined. Human in vitro and murine in vivo models of invasive breast cancer confirmed an important role for IRF5 in regulating cell motility, invasion and/or metastasis; yet, the mechanism(s) by which this occurs is not known. Since IRF5 is primarily expressed in the cytoplasm of human mammary epithelial cells, we hypothesized that IRF5 may function in a transcription-independent manner to control intrinsic cell migration. Results A series of IRF5 deletion mutants were tested in cell motility, invasion and migration assays. A novel, conserved 10 amino acid domain was identified that regulates mammary epithelial cell migration. This region (∆115-125) is downstream of IRF5′s DNA binding domain and therefore when absent, retains IRF5 transcription activity but loses cell migration control. An IRF5 construct with a mutated nuclear localization signal further confirmed that IRF5 controls migration in a cytoplasmic and transcription-independent manner. Candidate cytoskeletal molecules were identified in MDA-MB-231 cells to interact with IRF5 by immunoprecipitation and mass spectrometry analysis. α6-tubulin was independently confirmed to interact with endogenous IRF5 in MCF-10A cells. Alterations in F-actin bundling after staining EV- and IRF5-231 cells with phalloidin suggests that IRF5 may control cell migration/motility through its interaction with cytoskeletal molecules that contribute to the formation of F-actin networks. Last and most notably, we found that IRF5′s control of cell migration is not restricted to mammary epithelial cells but functions in other epithelial cell types suggesting a more global role for this newly identified cell migratory function of IRF5. Conclusions These findings are significant as they identify a new regulator of epithelial cell migration and provide specific insight into the mechanism(s) by which loss of IRF5 expression in mammary epithelial cells contributes to breast cancer metastasis.
Collapse
Affiliation(s)
- Erica Maria Pimenta
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA. .,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center Rm. G1224, 205 South Orange Ave, Newark, NJ, 07103, USA.
| | - Betsy J Barnes
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA. .,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center Rm. G1224, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
48
|
Lhocine N, Arena ET, Bomme P, Ubelmann F, Prévost MC, Robine S, Sansonetti PJ. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host Microbe 2015; 17:164-77. [PMID: 25600187 PMCID: PMC4346658 DOI: 10.1016/j.chom.2014.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/16/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023]
Abstract
Salmonella invasion of intestinal epithelial cells requires extensive, though transient, actin modifications at the site of bacterial entry. The actin-modifying protein villin is present in the brush border where it participates in the constitution of microvilli and in epithelial restitution after damage through its actin-severing activity. We investigated a possible role for villin in Salmonella invasion. The absence of villin, which is normally located at the bacterial entry site, leads to a decrease in Salmonella invasion. Villin is necessary for early membrane-associated processes and for optimal ruffle assembly by balancing the steady-state level of actin. The severing activity of villin is important for Salmonella invasion in vivo. The bacterial phosphatase SptP tightly regulates villin phosphorylation, while the actin-binding effector SipA protects F-actin and counterbalances villin-severing activity. Thus, villin plays an important role in establishing the balance between actin polymerization and actin severing to facilitate the initial steps of Salmonella entry. The host actin-binding protein villin is required for Salmonella apical invasion Villin plays a role in Salmonella ruffle formation and actin dynamics Villin-severing activity promotes Salmonella invasion in cells and in vivo The bacterial effectors SipA and SptP regulate villin activities
Collapse
Affiliation(s)
- Nouara Lhocine
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Ellen T Arena
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Perrine Bomme
- Plateforme de Microscopie Ultrastructurale, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Florent Ubelmann
- Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France; Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciencias Médicas, Universidade Nova de Lisboa, 1169-056, Portugal
| | - Marie-Christine Prévost
- Plateforme de Microscopie Ultrastructurale, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Sylvie Robine
- Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
49
|
Abstract
The FGFR pathway triggers a wide range of key biological responses. Among others, the Breathless (Btl, Drosophila FGFR1) receptor cascade promotes cell migration during embryonic tracheal system development. However, how the actin cytoskeleton responds to Btl pathway activation to induce cell migration has remained largely unclear. Our recent results shed light into this issue by unveiling a link between the actin-bundling protein Singed (Sn) and the Btl pathway. We showed that the Btl pathway regulates sn, which leads to the stabilization of the actin bundles required for filopodia formation and actin cytoskeleton rearrangement. This regulation contributes to tracheal migration, tracheal branch fusion and tracheal cell elongation. Parallel actin bundles (PABs) are usually cross-linked by more than one actin-bundling protein. Accordingly, we have also shown that sn synergistically interacts with forked (f), another actin crosslinker. In this Extra View we extend f analysis and hypothesize how both actin-bundling proteins may act together to regulate the PABs during tracheal embryonic development. Although both proteins are required for similar tracheal events, we suggest that Sn is essential for actin bundle initiation and stiffening, while F is required for the lengthening and further stabilization of the PABs.
Collapse
Affiliation(s)
- Pilar Okenve-Ramos
- a Institut de Biologia Molecular de Barcelona-CSIC ; Baldiri Reixac ; Barcelona , Spain
| | | |
Collapse
|
50
|
Vorwerk S, Krieger V, Deiwick J, Hensel M, Hansmeier N. Proteomes of host cell membranes modified by intracellular activities of Salmonella enterica. Mol Cell Proteomics 2014; 14:81-92. [PMID: 25348832 DOI: 10.1074/mcp.m114.041145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches.
Collapse
Affiliation(s)
- Stephanie Vorwerk
- From the ‡Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Viktoria Krieger
- From the ‡Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jörg Deiwick
- From the ‡Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Michael Hensel
- From the ‡Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Nicole Hansmeier
- From the ‡Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|